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Decomposition Frameworks

In this chapter, we introduce and illustrate several principles employed in
the formulation of domain decomposition methods for an elliptic equation. In
our discussion, we focus on a two subdomain decomposition of the domain
of the elliptic equation, into overlapping or non-overlapping subdomains, and
introduce the notion of a hybrid formulation of the elliptic equation. A hybrid
formulation is a coupled system of elliptic equations which is equivalent to
the original elliptic equation, with unknowns representing the true solution
on each subdomain. Such formulations provide a natural framework for the
construction of divide and conquer methods for an elliptic equation. Using
a hybrid formulation, we heuristically illustrate how novel divide and con-
quer iterative methods, non-matching grid discretizations and heterogeneous
approximations can be constructed for an elliptic equation.

We illustrate four alternative hybrid formulations for an elliptic equation.
Each will be described for a decomposition of the domain into two subdomains,
either overlapping or non-overlapping. We shall describe the following:

• Schwarz formulation.
• Steklov-Poincaré formulation.
• Lagrange multiplier formulation.
• Least squares-control formulation.

For each hybrid formulation, we illustrate how iterative methods, non-matching
grid discretizations and heterogeneous approximations can be formulated for
the elliptic equation based on its two subdomain decomposition. In Chap. 1.1,
we introduce notation and heuristically describe the structure of a hybrid for-
mulation. Chap. 1.2 describes a two subdomain Schwarz hybrid formulation,
based on overlapping subdomains. Chap. 1.3 describes the Steklov-Poincaré
formulation, based on two non-overlapping subdomains. The Lagrange mul-
tiplier formulation described in Chap. 1.4 applies only for a self adjoint and
coercive elliptic equation, and it employs two non-overlapping subdomains.
Chap. 1.5 describes the least squares-control formulation for a two subdo-
main overlapping or non-overlapping decomposition.
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1.1 Hybrid Formulations

Given a subdomain decomposition, a hybrid formulation of an elliptic equation
is an equivalent coupled system of elliptic equations involving unknowns on
each subdomain. In this section, we introduce notation on an elliptic equation
and heuristically describe the structure of its two subdomain hybrid formu-
lation. We outline how divide and conquer iterative methods, non-matching
grid discretizations, and heterogeneous approximations can be constructed for
an elliptic equation, using an hybrid formulation of it. Four commonly used
hybrid formulations are described in Chap. 1.2 through Chap. 1.5.

1.1.1 Elliptic Equation

We shall consider the following 2nd order elliptic equation:{
Lu ≡ −∇ · (a(x)∇u) + b(x) · ∇u + c(x) u = f, in Ω

u = 0, on ∂Ω,
(1.1)

for Ω ⊂ IRd. The coefficient a(x) will be assumed to satisfy:

0 < a0 ≤ a(x), ∀x ∈ Ω,

while b(x) and c(x) ≥ 0 will be assumed to be smooth, and f(x) ∈ L2(Ω).
Additional restrictions will be imposed on the coefficients as required.

1.1.2 Weak Formulation

A weak formulation of (1.1) is typically obtained by multiplying it by a suffi-
ciently smooth test function v(x) and integrating the diffusion term by parts
on Ω. It will seek u ∈ H1

0 (Ω) satisfying:⎧⎪⎪⎨
⎪⎪⎩

A(u, v) = F (v), ∀v ∈ H1
0 (Ω), where

A(u, v) ≡
∫

Ω
(a(x)∇u · ∇v + (b(x) · ∇u) v + c(x) u v) dx

F (v) ≡
∫

Ω
f v dx,

(1.2)

where the Sobolev space H1
0 (Ω) is formally defined as below [NE, LI4, JO2]:

H1
0 (Ω) ≡

{
v ∈ H1(Ω) : v = 0 on ∂Ω

}
,

while the space H1(Ω) is defined as:{
H1(Ω) ≡

{
v ∈ L2(Ω) : ‖v‖2

1,Ω < ∞
}

, where

‖v‖2
1,Ω ≡

∫
Ω

(
v2 + |∇v|2

)
dx,

for ∇v ≡
(

∂v
∂x1

, . . . , ∂v
∂xd

)
. The bilinear form A(., .) will be coercive if:

A(u, u) ≥ α ‖u‖2
1,Ω , ∀ v ∈ H1

0 (Ω),

for some α > 0 independent of u. Coercivity of A(., .) is guaranteed to hold
by the Poincaré-Freidrichs inequality, see [NE].



1.1 Hybrid Formulations 3

1.1.3 Discretization

A finite element discretization of (1.1) is obtained by Galerkin approximation
of (1.2). Let Th(Ω) denote a triangulation of Ω with elements of size h and
let Vh denote the space of continuous piecewise linear finite element functions
on Th(Ω), see [ST14, CI2, JO2, BR28, BR]. If {φ1, . . . , φn} forms a basis for
Vh∩H1

0 (Ω), then the finite element discretization of (1.1) will yield the system:

Au = f ,

where Aij = A(φi, φj) for 1 ≤ i, j ≤ n and f i = F (φi) for 1 ≤ i ≤ n.

1.1.4 Subdomain Decompositions

We shall employ the following notation, see Fig. 1.1.

Definition 1.1. A collection of two open subregions Ωi ⊂ Ω for i = 1, 2 will
be referred to as a non-overlapping decomposition of Ω if the following hold:{

Ω1 ∪ Ω2 = Ω,
Ω1 ∩ Ω2 = ∅.

Boundaries of the subdomains will be denoted ∂Ωi and their interior and ex-
terior segments by B(i) ≡ ∂Ωi ∩Ω and B[i] ≡ ∂Ωi ∩ ∂Ω, respectively. We will
denote the common interface by B ≡ ∂Ω1 ∩ ∂Ω2.

Definition 1.2. A collection of two open subregions Ω∗
i ⊂ Ω for i = 1, 2 will

be referred to as an overlapping decomposition of Ω if the following holds:

Ω∗
1 ∪ Ω∗

2 = Ω.

Boundaries of the subdomains will be denoted Bi ≡ ∂Ω∗
i and their interior

and exterior segments by B(i) ≡ ∂Ω∗
i ∩Ω and B[i] ≡ ∂Ω∗

i ∩ ∂Ω, respectively.

Ω2
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Non-overlapping subdomains
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Overlapping subdomains

Ω∗
1

Ω∗
2

Fig. 1.1. Two subdomain decompositions
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Remark 1.3. In applications, a decomposition of Ω into subdomains can be
chosen based either on the geometry of Ω or on the regularity of the solution
u (if known). An overlapping subdomain Ω∗

i can, if desired, be constructed
from a nonoverlapping subdomain Ωi by extending it to include all points in
Ω within a distance β > 0 of Ωi, yielding uniform overlap.

1.1.5 Partition of Unity

A partition of unity subordinate to the overlapping subdomains Ω∗
1 and Ω∗

2

consists of smooth functions χ1(x) and χ2(x) satisfying:⎧⎨
⎩

χi(x) ≥ 0, in Ω
∗
i

χi(x) = 0, in Ω\Ω
∗
i

χ1(x) + χ2(x) = 1, in Ω.

(1.3)

Each χi(.) may be non-zero on B[i]. In applications, each χi(x) may be re-
quired to satisfy a bound of the form |∇χi(x)| ≤ C h−1

0 , where h0 denotes the
diameter of each subdomain Ω∗

i .
Heuristically, a continuous partition of unity subordinate to Ω∗

1 and Ω∗
2

can be computed as follows. Let di(x) denote the distance function:

di(x) =
{

dist
(
x,B(i)

)
, if x ∈ Ω

∗
i

0, if x 
∈ Ω
∗
i ,

(1.4)

where B(i) ≡ (∂Ω∗
i ∩ Ω). Then, formally define:

χi(x) ≡ di(x)
d1(x) + d2(x)

, for 1 ≤ i ≤ 2. (1.5)

By construction, each di(x) will be continuous, nonnegative, with support in
Ω

∗
i , and satisfy the desired properties. To obtain a smooth function χi(x),

each di(x) may first be mollified, see [ST9].

Remark 1.4. Given a non-overlapping decomposition Ω1 and Ω2 of Ω, we shall
sometimes employ a discontinuous partition of unity satisfying:⎧⎨

⎩
χi(x) ≥ 0, in Ωi

χi(x) = 0, in Ω\Ωi

χ1(x) + χ2(x) = 1, in Ω.
(1.6)

Each χi(x) will be discontinuous across B = ∂Ω1 ∩ ∂Ω2. Such a partition of
unity may be constructed using di(x) = 1 on Ωi in (1.5).

1.1.6 Hybrid Formulation

Let Ω1 and Ω2 (or Ω∗
1 and Ω∗

2) form a decomposition of a domain Ω. Then, a
hybrid formulation of (1.1), is a coupled system of partial differential equations
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equivalent to (1.1), with one unknown function wi(x), representing the local
solution, on each subdomain Ωi (or Ω∗

i ). Two requirements must be satisfied.
First, the restriction ui(x) of the true solution u(x) of (1.1) to each subdomain
Ωi (or Ω∗

i ) must solve the hybrid system, i.e., (u1(x), u2(x)) must solve the
hybrid formulation. Second, the hybrid formulation must be well posed as a
coupled system, i.e., its solution (w1(x), w2(x)) must exist and be unique, and
furthermore, it must depend continuously on the data.

The first requirement ensures that the hybrid formulation is consistent
with the original problem (1.1), yielding wi(x) = ui(x) for i = 1, 2. The
second requirement ensures that the hybrid formulation is stable and uniquely
solvable. The latter is essential for the stability of a numerical approximation
of the hybrid formulation. Once the hybrid system is solved, the solution u(x)
of (1.1) can be expressed in terms of the local solutions wi(x) as:

u(x) = χ1(x) w1(x) + χ2(x) w2(x),

using a partition of unity χ1(x) and χ2(x) appropriate for the subdomains.
Typically, a hybrid formulation consists of a local problem posed on each

individual subdomain, along with matching conditions that couple the local
problems. In some hybrid formulations, a global functional may be employed,
whose optima is sought, or new variables may be introduced to couple the
local problems. Such coupling must ensure consistency and well posedness.

Local Problems. On each subdomain Ωi (or Ω∗
i ), a hybrid formulation will

require wi(x) to solve the original partial differential equation (1.1):⎧⎨
⎩

Lwi = fi, on Ωi (or Ω∗
i )

Ti(wi, γ) = gi, on B(i)

wi = 0, on B[i]

for i = 1, 2, (1.7)

where Ti(w1, γ) denotes a boundary operator which enforces either Dirichlet,
Neumann or Robin boundary conditions on B(i):

Ti(wi, γ) =

⎧⎪⎨
⎪⎩

wi, for Dirichlet boundary conditions
ni · (a(x)∇wi) for Neumann boundary conditions
ni · (a(x)∇wi) + γ wi for Robin boundary conditions.

(1.8)
Here ni denotes the unit exterior normal to B(i) and γ(·) denotes a coefficient
function in the Robin boundary condition. Typically, fi(x) is f(x) restricted
to Ωi (or Ω∗

i ). The choice of the boundary operator Ti(wi, γ) may differ with
each hybrid formulation. The boundary data gi(.) typically corresponds to
Ti(.) applied to the solution on the adjacent domain, however, it may also be
a control or a Lagrange multiplier function which couples the local problems.

Matching Conditions. Matching conditions couple the different local prob-
lems (1.7) by choosing gi(.) to ensure that the hybrid formulation is equiv-
alent to (1.1). Typically, matching conditions are equations satisfied by the
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true solution u(x) restricted to the interfaces or regions of overlap between
adjacent subdomains. For an elliptic equation, these may be either algebraic
equations, such as the requirement of continuity of the local solutions ui(x)
and uj(x) across adjacent subdomains:{

ui − uj = 0, on ∂Ωi ∩ ∂Ωj , non-overlapping case
ui − uj = 0, on ∂Ω∗

i ∩ Ω∗
j , overlapping case

or they may be differential constraints, such as continuity of the local fluxes:{
ni · (a(x)∇ui) + nj · (a(x)∇uj) = 0, on ∂Ωi ∩ ∂Ωj , non-overlapping case
ni · (a(x)∇ui) − ni · (a(x)∇uj) = 0, on ∂Ω∗

i ∩ Ω∗
j , overlapping case

where ni denotes the unit exterior normal to ∂Ωi. Such equations specify gi(.).
Other differential constraints may also be employed using linear combinations
of the above algebraic and differential constraints. Matching conditions may be
enforced either directly, as in the preceding constraints, or indirectly through
the use of intermediary variables such as Lagrange multipliers. In the lat-
ter case, the hybrid formulation may be derived as a saddle point problem
(Chap. 1.4 or Chap. 10) of an associated constrained optimization problem.

We shall express general matching conditions in the form:

Hi(w1, w2, g1, g2) = 0, for 1 ≤ i ≤ 2, (1.9)

for suitably chosen operators Hi(·) on the interface B(i).

Reconstruction of the Global Solution. Once a hybrid formulation con-
sisting of local equations of the form (1.7) for 1 ≤ i ≤ 2 together with equa-
tions of the form (1.9) has been formulated and solved, the global solution
u(.) may be represented in the form:

u(x) = χ1(x) w1(x) + χ2(x) w2(x), (1.10)

where χi(x) is a (possibly discontinuous) partition of unity subordinate to the
subdomains Ω1 and Ω2 (or Ω∗

1 and Ω∗
2).

Well Posedness of the Hybrid Formulation. To ensure that the hybrid
formulation is solvable and that it may be approximated numerically by stable
schemes, we require that the hybrid formulation be well posed [SM7, EV],
satisfying, for C > 0 independent of the data, the bound:

(‖w1‖ + ‖w2‖) ≤ C (‖|f1‖| + ‖|f2‖| + ‖|g1‖| + ‖|g2‖|) ,

where ‖·‖ and ‖| ·‖| are appropriately chosen norms for the solution and data,
as suggested by elliptic regularity theory [GI].

Iterative Methods. Domain decomposition iterative algorithms can be for-
mulated for solving (1.1) by directly applying traditional relaxation, descent or
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saddle point algorithms to a hybrid formulation. For instance, each unknown
wi may be updated sequentially using a relaxation procedure. Given current
approximations of w1, w2, g1, g2 update for wi by solving:⎧⎨

⎩
Lwi = fi, on Ωi (or Ω∗

i )
Ti(wi, γ) = gi, on B(i)

wi = 0, on B[i],

replacing Ti(wi, γ) = gi by either of the equations:

Hj(w1, w2, g1, g2) = 0, j = 1, 2,

using the current iterates on the other subdomains. Alternatively, a descent
or saddle point algorithm can be employed.

Discretization on a Nonmatching Grid. In various applications, it may
be of interest to independently triangulate different subregions Ωi (or Ω∗

i ) with
grids suited to the geometry of each subdomain. The resulting grids, however,
may not match on the regions of intersection between the subdomains, and are
referred to as nonmatching grids, see Fig. 1.2. On such non-matching grids, a
global discretization of (1.1) may be sought by directly discretizing the hybrid
formulation, namely, the the local problems and the matching conditions.

Heuristically, the construction of a global discretization of equation (1.1)
on a non-matching triangulation on Ωi (or Ω∗

i ), will involve the following
steps.

• Let Thi(Ω) (or Thi(Ω
∗
i )) denote independent triangulations of Ωi (or Ω∗

i )
with local grid sizes hi, see Fig. 1.2. These grids need not match on the
region of intersection or overlap between the subdomains.

• Each local problem in the hybrid formulation can be discretized as:⎧⎨
⎩

Ahi
whi

= fhi
, on Ωhi

(or Ω∗
hi

)
Thi

(whi
, γhi

) = ghi
, on B(i)

whi
= 0, on B[i].

Each local discretization should be a stable scheme.
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Fig. 1.2. Nonmatching grids
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• The matching conditions should also be discretized:

Hh
i (wh1 ,wh2 ,gh1 ,gh2) = 0, 1 ≤ i ≤ 2.

To ensure the stability and consistency of the global discretization of the
hybrid formulation, care must be exercised in discretizing the matching
conditions across the subdomain grids.

Such issues are described in Chap. 1.2 through 1.5, and in Chap. 11.

Heterogenous Approximation. A partial differential equation is said to
be heterogeneous if its type changes from one region to another. An example
is Tricomi’s equation [JO]:

ux1x1 − x1 ux2x2 = f(x1, x2),

which is of hyperbolic type for x1 > 0 and of elliptic type for x1 < 0. In various
applications, efficient computational methods may be available for the local
problems involved in an heterogeneous partial differential equation. In such
cases, it may be of interest to approximate a partial differential equation
of heterogeneous character by a partial differential equation of heterogeneous
type. We refer to such models as heterogeneous approximations.

Our discussion will be restricted to an elliptic-hyperbolic heterogeneous
approximation of a singularly perturbed elliptic equation of heterogeneous
character. We shall consider an advection dominated equation:{

−ε∆u + b(x) · ∇u + c(x) u = f(x), in Ω

u = 0, on ∂Ω,
(1.11)

where 0 < ε � 1 is a small perturbation parameter. Depending f(x), there
may be a subdomain Ω1 (or Ω∗

1) on which:

ε |∆u| � |b(x) · ∇u + c(x)u|, for x ∈ Ω1 (or Ω∗
1).

On Ω1 (or Ω∗
1), the restriction of elliptic equation Lu = f to the subdomain,

will be of hyperbolic character, approximately satisfying L1u = f , where:⎧⎨
⎩

Lu ≡ εL0u + L1u
L0u ≡ −∆u

L1u ≡ b(x) · ∇u + c(x)u.

If Ω2 (or Ω∗
2) denotes a complementary (layer) region, then equation (1.11)

will be approximately of elliptic character in Ω2 (or Ω∗
2).

Motivated by singular perturbation methodology [LA5, KE5, OM], it may
be computationally advantageous to approximate elliptic equation (1.11) by
an heterogeneous approximation involving an equation of mixed hyperbolic
and elliptic character. To obtain an heterogeneous approximation of (1.11),
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we may approximate its hybrid formulation based on Ωi (or Ω∗
i ) for 1 ≤ i ≤ 2.

For instance, we may approximate (1.7) by:⎧⎨
⎩

L̃ivi = fi, on Ωi (or Ω∗
i ),

T̃i(vi, γ) = g̃i, on B̃(i),

vi = 0, on B̃[i],

for i = 1, 2

with vi(x) ≈ wi(x), and we may approximate (1.9) by:

H̃i(v1, v2, g̃1, g̃2) = 0, for i = 1, 2

where L̃i, T̃i and H̃i(·) are heuristic local approximations of Li, Ti and Hi(·),
obtained by formally omitting ε∆u on Ω1 (or Ω∗

1). We refer the reader to
Chap. 1.2 through Chap. 1.5 and Chap. 12 for specific examples.

Remark 1.5. Care must be exercised in the selection of approximations since
each local problem must be well posed, and the global coupled system must
also be well posed. For instance, if we define L̃1u = L1u on Ω1 (or Ω∗

1) then
the local problem will be hyperbolic, and we must replace Dirichlet boundary
conditions on B(1) and B[1] by inflow boundary conditions. Similarly, if we
choose L̃2u = Lu on Ω2 (or Ω∗

2) then the local problem on Ω2 (or Ω∗
2) will be

elliptic and Dirichlet boundary or flux boundary conditions can be employed
on B(2) and B[2]. Often, approximate matching conditions for a heterogeneous
problem can also be derived heuristically by a vanishing viscosity approach,
see Chap. 1.3 and Chap. 12.

1.2 Schwarz Framework

The framework that we refer to as the Schwarz hybrid formulation is based
on the earliest known domain decomposition method, formulated by H. A.
Schwarz [SC5] in 1870. Schwarz formulated an iterative method, now referred
to as the Schwarz alternating method, which solves Laplace’s equation on an
irregular domain that is the union of regular regions (such as rectangular and
circular regions). Although Schwarz’s motivation was to study the existence
of harmonic functions on irregular regions, the hybrid formulation underlying
Schwarz’s iterative method, applies to a wider class of elliptic equations, and
it enables the formulation of other divide and conquer approximations.

In this section, we describe the hybrid formulation underlying the Schwarz
alternating method for a two subdomain overlapping decomposition of Ω.
We let Ω∗

1 and Ω∗
2 denote the overlapping subdomains, and let B(i) = ∂Ω∗

i ∩Ω
and B[i] = ∂Ω∗

i ∩ ∂Ω denote the interior and exterior boundary segments
of Ω∗

i , respectively, see Fig. 1.3. Using the hybrid formulation, we illustrate
the formulation of iterative methods, non-matching grid discretizations, and
heterogeneous approximations for elliptic equation (1.1).
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Ω∗
2

Ω∗
1

B[2]

B(2)

B[1]

B(1)

Fig. 1.3. Boundary segments for an overlapping decomposition

1.2.1 Motivation

To derive the hybrid formulation underlying Schwarz’s method, let u(x) denote
the solution of (1.1). Define wi(x) = u(x) on Ω∗

i for 1 ≤ i ≤ 2. Then, by
construction Lwi = f in Ω∗

i . Furthermore, the continuity of u will yield
matching of w1 and w2 on Ω∗

1 ∩ Ω∗
2 . It will therefore hold that:⎧⎪⎨

⎪⎩
Lw1 = f, in Ω∗

1

w1 = w2, on B(1)

w1 = 0, on B[1]

and

⎧⎪⎨
⎪⎩

Lw2 = f, in Ω∗
2

w2 = w1, on B(2)

w2 = 0, on B[2].

Importantly, if the above coupled, decomposed system for w1(x) and w2(x),
is well posed, then by solving it, the original solution can be recovered with
u(x) = wi(x) on Ω∗

i for i = 1, 2. We have the following uniqueness result.

Theorem 1.6. Suppose the following assumptions hold.

1. Let c(x) ≥ 0 and ∇ · b(x) ≤ 0.
2. Let u(x) denote a sufficiently smooth solution of equation (1.1).
3. Let w1(x) and w2(x) be sufficiently smooth solutions of the following sys-

tem of coupled elliptic equations:⎧⎪⎨
⎪⎩

Lw1 = f, in Ω∗
1

w1 = 0, on B[1]

w1 = w2, on B(1)

and

⎧⎪⎨
⎪⎩

Lw2 = f, in Ω∗
2

w2 = 0, on B[2]

w2 = w1, on B(2).

(1.12)

Then the following result will hold:

u(x) =

{
w1(x), on Ω

∗
1

w2(x), on Ω
∗
2.

Proof. If u(x) is a solution of equation (1.1) and w1(x) ≡ u(x) in Ω∗
1 and

w2(x) ≡ u(x) in Ω∗
2 , then w1(x) and w2(x) will satisfy (1.12) by construction.

To prove the converse, suppose that w1(x) and w2(x) satisfy (1.12). We will
first show that w1(x) = w2(x) on Ω∗

1∩Ω∗
2 . To this end, note that w1(x)−w2(x)
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has zero boundary conditions on ∂ (Ω∗
1 ∩ Ω∗

2). Additionally, by construction
w1(x)−w2(x) will be L-harmonic. By uniqueness of L-harmonic functions for
c(x) ≥ 0 and ∇ · b(x) ≤ 0, it will follow that w1(x) − w2(x) = 0 in Ω∗

1 ∩ Ω∗
2 .

This yields that w1(x) = w2(x) on Ω∗
1 ∩ Ω∗

2 . Now let χ1(x) and χ2(x) denote
a sufficiently smooth partition of unity subordinate to the cover Ω∗

1 and Ω∗
2 .

If we define u(x) = χ1(x) w1(x) + χ2(x) w2(x), then u(x) will satisfy (1.1),
since w1 = w2 in Ω∗

1 ∩ Ω∗
2 and since Lwi = f in Ω∗

i . ��

Remark 1.7. The above result suggests that given a partition of unity χ1(x)
and χ2(x) subordinate to Ω∗

1 and Ω∗
1 , respectively, a solution to elliptic equa-

tion (1.1) may be obtained by solving (1.12) and defining:

u(x) = χ1(x) w1(x) + χ2(x) w2(x).

This yields an equivalence between (1.1) and (1.12).

Remark 1.8. The preceding theorem yields equivalence between sufficiently
smooth solutions to (1.1) and (1.12). It is, however, not a result on the well
posedness (stability) of formulation (1.12) under perturbations of its data.
The latter requires that the perturbed system:⎧⎪⎨

⎪⎩
Lw̃1 = f̃1, in Ω∗

1

w̃1 = 0, on B[1]

w̃1 = w2 + r̃1, on B(1)

and

⎧⎪⎨
⎪⎩

Lw̃2 = f̃2, in Ω∗
2

w̃2 = 0, on B[2]

w̃2 = w1 + r̃2, on B(2),

(1.13)

be uniquely solvable and satisfy a bound of the form:

(‖|w̃1‖| + ‖|w̃2‖|) ≤ C
(
‖f̃1‖ + ‖f̃2‖ + ‖r̃1‖ + ‖r̃2‖

)
,

in appropriate norms. See Chap. 15 for maximum norm well posedness.

1.2.2 Iterative Methods

The iterative method proposed by H. A. Schwarz is a very popular method
for the solution of elliptic partial differential equations, see [SO, MO2, BA2]
and [MI, MA37, DR11, LI6, LI7, BR18]. It is robustly convergent for a large
class of elliptic equations, and can be motivated heuristically using the block
structure of (1.12). If w

(k)
i denotes the k’th iterate on subdomain Ω∗

i , it can
be updated by solving the block equation of (1.12) posed on subdomain Ω∗

i

with boundary conditions w1 = w2 on B(1) or w2 = w1 on B(2) approximated
by the current iterate on its adjacent subdomain:⎧⎪⎨

⎪⎩
Lw

(k+1)
1 = f, in Ω∗

1

w
(k+1)
1 = w

(k)
2 , on B(1)

w
(k+1)
1 = 0, on B[1]

and

⎧⎪⎨
⎪⎩

Lw
(k+1)
2 = f, in Ω∗

2

w
(k+1)
2 = w

(k+1)
1 , on B(2)

w
(k+1)
2 = 0, on B[2].

The resulting algorithm is the Schwarz alternating method. It is sequential in
nature and summarized below.
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Algorithm 1.2.1 (Schwarz Alternating Method)
Let v(0) denote the starting global approximate solution.

1. For k = 0, 1, · · · , until convergence do:
2. Solve for w

(k+1)
1 as follows:⎧⎪⎨

⎪⎩
Lw

(k+1)
1 = f1, in Ω∗

1

w
(k+1)
1 = v(k), on B(1)

w
(k+1)
1 = g, on B[1],

Define v(k+1/2) as follows:

v(k+1/2) ≡
{

w
(k+1)
1 , on Ω∗

1

v(k), on Ω\Ω∗
1 .

3. Solve for w
(k+1)
2 as follows:⎧⎪⎨

⎪⎩
Lw

(k+1)
2 = f2, in Ω∗

2

w
(k+1)
2 = g, on B[2]

w
(k+1)
2 = v(k+1/2), on B(2)

Define v(k+1) as follows:

v(k+1) ≡
{

w
(k+1)
2 , on Ω∗

2

v(k+1/2), on Ω\Ω∗
2 .

4. Endfor

Output: v(k)

Remark 1.9. The iterates v(k+ 1
2 ) and v(k+1) in the preceding algorithm are

continuous extensions of the subdomain solutions w
(k+1)
1 and w

(k+1)
2 , to the

entire domain Ω. Under suitable assumptions on the coefficients of the elliptic
equation and overlap amongst the subdomains Ω∗

i , the iterates v(k) converge
geometrically to the true solution u of (1.1), see Chap. 2.5 when b(x) = 0.

The preceding Schwarz algorithm is sequential in nature, requiring the
solution of one subdomain problem prior to another. Below, we describe an
unaccelerated parallel Schwarz algorithm which requires the concurrent solu-
tion of subdomain problems. It is motivated by a popular parallel method,
referred to as the additive Schwarz algorithm [DR11], which is employed typ-
ically as a preconditioner. The algorithm we describe is based on a partition
of unity χ1(x) and χ2(x) subordinate to the overlapping subdomains Ω∗

1 and
Ω∗

2 , respectively, see [DR11, CA19, MA33, FR8, TA5]. Let w
(k)
i denote the

k’th iterate on Ω∗
i for 1 ≤ i ≤ 2. Then, new iterates are computed as follows.
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Algorithm 1.2.2 (Parallel Partition of Unity Schwarz Method)
Let w

(0)
1 , w

(0)
2 denote starting local approximate solutions.

1. For k = 0, 1, · · · , until convergence do:
2. For i = 1, 2 determine w

(k+1)
i in parallel:⎧⎪⎪⎨

⎪⎪⎩
Lw

(k+1)
i = f, in Ω∗

i

w
(k+1)
i = χ1(x) w

(k)
1 (x) + χ2(x) w

(k)
2 (x), on B(i)

w
(k+1)
i = 0, on B[i],

3. Endfor
4. Endfor

Output: (w(k)
1 , w

(k)
2 )

If c(x) ≥ c0 > 0 and there is sufficient overlap, the iterates v(k) defined by:

v(k) ≡ χ1(x) w
(k)
1 (x) + χ2(x) w

(k)
2 (x),

will converge geometrically to the solution u of (1.1), see Chap. 15.

Remark 1.10. In practice, given a discretization of (1.1), discrete versions of
the above algorithms must be applied. Matrix versions of Schwarz algorithms
are described in Chap. 2. There the multisubdomain case is considered, and
coarse space correction is introduced, which is essential for robust convergence.
In Chap. 2 it is observed that the matrix version of the Schwarz alternating
method corresponds to a generalization (due to overlap) of the traditional
block Gauss-Seidel iterative method. The additive Schwarz method [DR11] is
also introduced there, corresponding to a generalized block Jacobi method.

1.2.3 Global Discretization

An advantage of the hybrid formulation (1.12) is that novel discretizations
of (1.1) may be obtained by discretizing (1.12). Each subdomain Ω∗

i may
be independently triangulated, resulting in a possibly non-matching grid, see
Fig. 1.4. Furthermore, each local problem may be discretized using tradi-
tional techniques suited to the local geometry and properties of the solution.
The resulting solution, however, may be nonconforming along the internal
boundaries B(i) of the subdomains, and care must be exercised in discretizing
the matching conditions to ensure that the global discretization is stable.

Below, we outline the construction of a global finite difference discretiza-
tion of (1.12) based on a two subdomain decomposition of Ω, as in Fig. 1.4,
using finite difference schemes on the subdomains. For details, see Chap. 11.
We triangulate each subdomain Ω∗

i for 1 ≤ i ≤ 2 by a grid Thi
(Ωi∗) of size

hi as in Fig. 1.4. The local triangulation can be suited to the geometry and
regularity of the solution on Ω∗

i . On each subdomain, we block partition the
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Th1(Ω
∗
1 )

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Th2(Ω
∗
2 )

Fig. 1.4. Nonmatching overset grids

local discrete solution whi
on Thi

(Ω∗
i ) as:

whi =
(
w(i)

I ,w(i)

B(i) ,w
(i)
B[i]

)T

, for i = 1, 2

corresponding to the grid points in the interior and the boundary segments
B(i) and B[i], respectively. Let ni, mi and li denote the number of grid points
of triangulation Thi(Ω

∗
i ) in the interior of Ω∗

i , on B(i) and B[i], respectively. By
assumption on the boundary values of whi

on B[i], it will hold that w(i)
B[i]

= 0.
Next, for i = 1, 2 discretize the elliptic equation Lwi = fi on Ω∗

i by employing
a stable scheme on Thi

(Ω∗
i ) and denote the discretization as:

A
(i)
II w(i)

I + A
(i)

IB(i)w
(i)

B(i) = fhi
, for 1 ≤ i ≤ 2.

Next, on each boundary segment B(i), discretize the inter-subdomain
matching conditions w1 = w2 on B(1) and w2 = w1 on B(2) by applying
appropriate interpolation stencils or by discretizing its weak form. If interpo-
lation stencils are employed, then the value wh1(x) at a grid point x on B

(1)
h1

may be expressed as a weighted average of nodal values of wh2(·) on the grid
points of Ω∗

h2
. We denote the discretized matching conditions as:

w(1)

B(1) = Ih1
h2

wh2 and w(2)

B(2) = Ih2
h1

wh1 .

Here Ih1
h2

will denote a matrix of size m1 × (n2 + m2 + l2) and Ih2
h1

will denote
a matrix of size m2 × (n1 +m1 + l1). If the local grids match on each segment
B[i], then this discretization step would be trivial. However, for nonmatching
grids care must be exercised to ensure stability of the global scheme.

The global discretization now will have the following block matrix form:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A
(1)
II w(1)

I + A
(1)

IB(1)w
(1)

B(1) = fh1 ,

w(1)

B(1) = Ih1
h2

wh2

A
(2)
II w(2)

I + A
(2)

IB(2)w
(2)

B(2) = fh2 ,

w(2)

B(2) = Ih2
h1

wh1 .

(1.14)

This algebraic system can be solved by the Schwarz alternating method.
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Remark 1.11. If c(x) ≥ c0 > 0 and the local discretizations satisfy a discrete
maximum principle, if the inter-grid interpolations Ih2

h1
and Ih1

h2
are convex

weights, and if the overlap is sufficiently large so that a certain contraction
property holds, see Chap. 11, then the above discretization can be shown to
be stable and convergent of optimal order in the maximum norm.

1.2.4 Heterogeneous Approximation

A heterogeneous approximation of a partial differential equation is a model
system of partial differential equations in which the problems posed on dif-
ferent subdomains are not all of the same type. Such approximations may be
useful if there is a reduction in computational costs resulting from the use
of a heterogeneous model. Here, we illustrate the construction of an elliptic-
hyperbolic approximation of an advection dominated elliptic equation:{

Lε u ≡ −ε∆u + b(x) · ∇u + c(x) u = f, in Ω
u = 0, on ∂Ω,

(1.15)

where 0 < ε � 1 is a perturbation parameter. In this case, depending on the
solution u, the singularly perturbed elliptic equation may be approximately
of hyperbolic character on some subregions and of elliptic character elsewhere,
motivating a heterogeneous approximation.

Suppose the overlapping subdomain Ω∗
1 can chosen such that:

|ε∆u(x)| � |b(x) · ∇u(x) + c(x) u(x)| for x ∈ Ω
∗
1.

Then, on Ω∗
1 the term Lεu may be approximated by L0 u defined by:

L0 u ≡ b(x) · ∇u + c(x)u.

Motivated by singular perturbation theory [LA5, KE5], a global heterogeneous
approximation of the singularly perturbed equation (1.15) may be sought by
replacing the elliptic equation Lε w1 = f1 on Ω∗

1 by the hyperbolic equation
L0 w1 = f1 within the Schwarz hybrid formulation (1.12).

To ensure well posedness of the local subproblems, however, the Dirichlet
boundary value problem on Ω∗

1 must be replaced by suitable inflow boundary
conditions, due to the hyperbolic nature of L0 w1 = f1:⎧⎪⎨

⎪⎩
L0 w1 = f1, in Ω∗

1

w1 = 0, on B[1],in,

w1 = w2, on B
(1)
in ,

where, the inflow boundary segments are defined by:{
B[1],in ≡ {x ∈ B[1] : b(x) · n(x) < 0}
B

(1)
in ≡ {x ∈ B(1) : b(x) · n(x) < 0},
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where n(x) denotes the exterior unit normal to ∂Ω∗
1 at x. The resulting global

heterogeneous approximation will be:⎧⎪⎪⎨
⎪⎪⎩

L0 w1 = f1, in Ω∗
1

w1 = 0, on B[1],in

w1 = w2, on B
(1)
in

and

⎧⎪⎪⎨
⎪⎪⎩

Lw2 = f2, in Ω∗
2

w2 = 0, on B[2]

w2 = w1, on B(2).

(1.16)

This heterogeneous system can be discretized, and the resulting algebraic
system can be solved by the Schwarz alternating method, see Chap. 12.

Remark 1.12. Well posedness of this heterogeneous system, as well as bounds
on the error resulting from such approximation are discussed in Chap. 15.

1.3 Steklov-Poincaré Framework

The hybrid formulation that we refer to as the Steklov-Poincaré framework is
motivated by a principle in physics referred as a transmission condition, em-
ployed in the study of electric fields in conductors [PO, ST8, LE12, AG, QU5].
The underlying principle states that across any interface within a conduct-
ing medium, the electric potential as well as the flux of electric current must
match, i.e., be continuous. The mathematical version of this principle suggests
a hybrid formulation for a 2nd order elliptic equation given a two subdomain
non-overlapping decomposition of its domain, separated by an interface.

1.3.1 Motivation

Consider elliptic equation (1.1) posed on Ω:{
L u ≡ −∇ · (a(x)∇u) + b(x) · ∇u + c(x) u = f, in Ω

u = 0, on ∂Ω,
(1.17)

Let Ω1, Ω2 denote a non-overlapping decomposition of Ω, as in Fig. 1.5, with
interface B = ∂Ω1∩∂Ω2 separating the two subdomains and B[i] ≡ ∂Ωi∩∂Ω.
Let ni(x) denote the unit outward normal vector to ∂Ωi at the point x ∈ B.
For i = 1, 2, denote the solution on each subdomain Ωi by wi(x) ≡ u(x).
Then, the following transmission conditions, which are derived later in this
section, will hold on the interface B for smooth solutions:{

w1 = w2, on B

n1 · (a∇w1 − bw1) = n1 · (a∇w2 − bw2) , on B.
(1.18)

The first condition requires the subdomain solutions w1 and w2 to match on
B, while the second condition requires the local fluxes n1 · (a∇w1 − bw1) and
n1 · (a∇w2 − bw2) associated with w1 and w2 to also match on B.
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Ω2

Ω1

B[2]

B[1]

B n1

�

Fig. 1.5. A two subdomain non-overlapping decomposition

Combining the transmission conditions with the elliptic equation on each
subdomain, yields the following hybrid formulation equivalent to (1.1):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lw1 = f, in Ω1

w1 − w2 = 0, on B

w1 = 0, on B[1]

Lw2 = f, in Ω2

n1 · (a∇w1 − bw1) + n2 · (a∇w2 − bw2) = 0, on B

w2 = 0, on B[2].

In this section, we shall outline how this hybrid formulation can be employed
to formulate novel domain decomposition iterative methods, discretization
methods and heterogeneous approximations for (1.1).

Remark 1.13. If the coefficient b(x) in elliptic equation (1.1) is continuous,
then the flux boundary condition may also be equivalently stated as:

n1 · (a∇w1) + n2 · (a∇w2) = 0, on B,

by taking linear combinations of (1.18), since w1(x) = w2(x) on B and since
n1(x) = −n2(x) on B. In particular, the following equivalent flux transmission
condition is preferred in several domain decomposition methods:

n1 ·
(

a∇w1 −
1
2
bw1

)
+ n2 ·

(
a∇w2 −

1
2
bw2

)
= 0, on B,

for continuous b(x), see [QU6, GA14, AC7, RA3].

Equivalence of the Steklov-Poincaré hybrid formulation is shown next.
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Theorem 1.14. Suppose the following assumptions hold.

1. Let Lu be defined by (1.1) with smooth coefficient b(x) and solution u.
2. Let w1(x) and w2(x) be smooth solutions of the following coupled system

of partial differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Lw1 = f, in Ω1

w1 = 0, on B[1]

w1 = w2, on B

Lw2 = f, in Ω2

w2 = 0, on B[2]

n1 · (a∇w2 − bw2) = n1 · (a∇w1 − bw1) , on B.

(1.19)

Then, the following result will hold.{
w1(x) = u(x), on Ω1

w2(x) = u(x), on Ω2.

Proof. Suppose u is a smooth solution to (1.1) and wi ≡ u on Ωi, we will
verify that (w1, w2) solves (1.19). By construction, Lwi = f in Ωi and wi = 0
on B[i]. By continuity of u (or an application of the trace theorem), we obtain
that w1 = w2 on B. To verify that the local fluxes match on B, employ the
following weak formulation of (1.1), and express each integral on Ω as a sum
of integrals on Ω1 and Ω2, to obtain:

2∑
i=1

∫
Ωi

(a∇wi · ∇v − wi ∇ · (b v) + cwi v) dx =
2∑

i=1

∫
Ωi

f v dx,

for v ∈ C∞
0 (Ω). If v is chosen to be of compact support in Ω and not identically

zero on B, then integration by parts yields:{∑2
i=1

∫
Ωi

−∇ · (a∇wi) v + (b · ∇wi) v + cwi v dx

−
∫

B
n1 · (a∇w1 − bw1 − a∇w2 + bw2) v dsx =

∑2
i=1

∫
Ωi

f v dx,

for v ∈ C∞
0 (Ω). Substituting that Lwi = f on Ωi, it follows that:∫

B

n1 · (a∇w1 − bw1 − a∇w1 + bw1) v dsx = 0, ∀v ∈ C∞
0 (Ω),

yielding the result that n1 · (a∇w1 − bw1) = n1 · (a∇w2 + bw2) on B. The
converse can be verified analogously. ��

Remark 1.15. The above result only demonstrates the equivalence of solu-
tions to both systems. It does not guarantee well posedness of hybrid for-
mulation (1.19). This may be demonstrated using elliptic regularity theory in
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appropriately chosen norms (however, we shall omit this). When system (1.19)
is well posed, given a solution (w1, w2) to (1.19), we may define:

u ≡
{

w1 in Ω1

w2 in Ω2,

thus yielding a solution u to (1.1).

We now introduce an operator, referred to as a Steklov-Poincaré operator,
which represents hybrid formulation (1.19) more compactly.

Definition 1.16. Given sufficiently smooth Dirichlet boundary data g(·) on
the interface B, we define a Steklov-Poincaré operator S(g, f1, f2) as follows:

S (g, f1, f2) ≡ n1 · (a∇w1 − bw1) − n1 · (a∇w2 − bw2) ,

where w1(·) and w2(·) are solutions to the following problems:⎧⎪⎨
⎪⎩

Lw1 = f1, in Ω1

w1 = 0, on B[1]

w1 = g, on B,

and

⎧⎪⎨
⎪⎩

Lw2 = f2, in Ω2

w2 = 0 on B[2]

w2 = g, on B.

(1.20)

If the local forcing terms f1(·) and f2(·) are nonzero, then the action of
the Steklov-Poincaré operator S(g, f1, f2) on g(·) will be affine linear. It will
map the Dirichlet data g(·) on B to the jump in the local fluxes (Neumann
data) across interface B using (1.20). Importantly, if an interface function g(·)
can be found which yields zero jump in the flux across B, i.e.

S(g, f1, f2) = 0, (1.21)

then, corresponding to this choice of interface data g(·), the local solutions
w1(·) and w2(·) to (1.20) will satisfy:{

w1 = w2 (= g), on B

n1 · (a∇w1 − bw1) = n1 · (a∇w2 − bw2) , on B,

so that (w1, w2) will solve (1.19). As a result, the search for a solution
(w1, w2) to problem (1.19) may be reduced to the search for interface data
g(·) which solves the Steklov-Poincaré problem (1.21). For such interface data
g(·), the local solutions (w1, w2) to (1.20) will yield the solution to (1.19)
with g(x) = u(x) on B. When a weak formulation is used, if X denotes the
space of Dirichlet data on B, the flux or Neumann data will belong to its dual
space X ′, where X = H

1/2
00 (B) for a standard subdomain decomposition and

X = H1/2(B) for an immersed subdomain decomposition.
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Remark 1.17. For computational purposes, the Steklov-Poincaré operator S
may be expressed as the sum of two subdomain operators:

S(g, f1, f2) ≡ S(1)(g, f1) + S(2)(g, f2),

where {
S(1)(g, f1) ≡ n1 · (a∇w1 − bw1)

S(2)(g, f2) ≡ n2 · (a∇w2 − bw2) ,

for w1 and w2 defined by (1.20). By definition, each operator S(i) will require
only subdomain information and will be affine linear.

Remark 1.18. Both S(1) and S(2) map the Dirichlet interface data g(·) pre-
scribed on B to the corresponding Neumann flux data n1 · (a∇w1 − bw1)
and n2 · (a∇w2 − bw2) on B, respectively, obtained by solution of the local
problems (1.20). As a result, the maps S(i) are commonly referred to as lo-
cal Dirichlet to Neumann maps. These Dirichlet to Neumann maps are not
differential operators since the solutions wi to (1.20) have representations
as integral operators acting on the data g. They are referred to as pseudo-
differential operators, and for the correct choice of Dirichlet interface data
g(·) on B, the jump in the Neumann data on B will be zero for the local
solutions.

In the rest of this section, we outline how iterative methods, global dis-
cretizations and heterogeneous approximations can be constructed for the
original problem (1.1) using the Steklov-Poincaré formulation (1.19).

1.3.2 Iterative Methods

The block structure of the Steklov-Poincaré system (1.19) suggests various
iterative algorithms for its solution. For instance, if w

(k)
1 and w

(k)
2 denote

the k’th iterates on subdomains Ω1 and Ω2, respectively, then the system of
equations posed on subdomain Ωi in (1.19) can be solved to yield updates
w

(k+1)
i for the local solutions, with boundary conditions chosen using preced-

ing iterates. The resulting iterative algorithm sequentially enforces either the
continuity or flux transmission boundary conditions on B, and is referred to
as a Dirichlet-Neumann algorithm as it requires the solution of Dirichlet and
Neumann boundary value problems. In the following, suppose that b(x) = 0
in Ω, and let 0 < θ < 1 denote a relaxation parameter required to ensure
convergence [BJ9, BR11, FU, MA29].
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Algorithm 1.3.1 (Dirichlet-Neumann Algorithm)
Let v

(0)
2 (where v

(0)
2 ≡ w

(0)
2 on B) denote a starting guess.

1. For k = 0, 1, · · · , until convergence do:
2. Solve for w

(k+1)
1 as follows:⎧⎪⎨

⎪⎩
Lw

(k+1)
1 = f1, in Ω1

w
(k+1)
1 = v

(k)
2 , on B

w
(k+1)
1 = 0, on B[1],

3. Solve for w
(k+1)
2 as follows:

⎧⎪⎨
⎪⎩

Lw
(k+1)
2 = f2, in Ω2

w
(k+1)
2 = 0, on B[2]

n2

(
a∇w

(k+1)
2

)
= n2

(
a∇w

(k+1)
1

)
, on B.

4. Update: v
(k+1)
2 = θ w

(k+1)
2 + (1 − θ)v(k)

2 on B.
5. Endfor

Output: (w(k)
1 , w

(k)
2 )

Remark 1.19. In step 2, the local solution w
(k+1)
1 matches v

(k)
2 on B (however,

the local fluxes may not match on B). This step requires the solution of an
elliptic equation on Ω1 with Dirichlet conditions on B[1] and B. In step 3,
the flux of w

(k+1)
2 matches the flux of w

(k+1)
1 on B (though w

(k+1)
2 may not

match w
(k+1)
1 on B). This step requires the solution of an elliptic equation on

Ω2 with Dirichlet conditions on B[2] and Neumann conditions on B. A matrix
formulation of this algorithm is given in Chap. 3.

Remark 1.20. Under restrictions on the coefficients (such as b(x) ≡ 0 and
c(x) ≥ 0), and additional restrictions on the parameter 0 < θ < 1, the iterates
w

(k)
i in the Dirichlet-Neumann algorithm will converge geometrically to the

true local solution wi of (1.19) as k → ∞, see [FU, MA29].

The preceding Dirichlet-Neumann algorithm has sequential steps. Various
algorithms have been proposed which solve subdomain problems in parallel,
see [BO7, DE3, DR18, MA14, DO13, QU6, GA14, AC7, RA3]. Multidomain
matrix versions of such algorithms are described in Chap. 3. Below, we de-
scribe a two fractional step algorithm, each step requiring the solution of
subdomain problems in parallel [DO13, DO18, YA2]. We assume b(x) = 0.
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Algorithm 1.3.2 (A Parallel Dirichlet-Neumann Algorithm)
Let w

(0)
1 and w

(0)
2 denote a starting guess on each subdomain.

Let 0 < θ, δ, β, α < 1 denote relaxation parameters.

1. For k = 0, 1, · · · , until convergence do:

2. Compute

{
µ(k+ 1

2 ) = θ n1 ·
(
a∇w

(k)
1

)
+ (1 − θ)n1 ·

(
a∇w

(k)
2

)
, on B

g(k+ 1
2 ) = δ w

(k)
1 + (1 − δ) w

(k)
2 , on B.

3. In parallel solve for w
(k+ 1

2 )
1 and w

(k+ 1
2 )

2⎧⎪⎪⎨
⎪⎪⎩

Lw
(k+ 1

2 )
1 = f, in Ω1

w
(k+ 1

2 )
1 = 0, on B[1]

n1 ·
(
a∇w

(k+ 1
2 )

1

)
= µ(k+ 1

2 ), on B,

and

⎧⎪⎪⎨
⎪⎪⎩

Lw
(k+ 1

2 )
2 = f, in Ω2

w
(k+ 1

2 )
2 = 0, on B[2]

w
(k+ 1

2 )
2 = g(k+ 1

2 ), on B,

4. Compute

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

µ(k+1) = β n2 ·
(
a∇w

(k+ 1
2 )

1

)
+ (1 − β)n2 ·

(
a∇w

(k+ 1
2 )

2

)
,

on B

g(k+1) = α w
(k+ 1

2 )
1 + (1 − α) w

(k+ 1
2 )

2 ,
on B.

5. In parallel solve for w
(k+1)
1 and w

(k+1)
2⎧⎪⎨

⎪⎩
Lw

(k+1)
1 = f, in Ω1

w
(k+1)
1 = 0, on B[1]

w
(k+1)
1 = g(k+1), on B,

and

⎧⎪⎨
⎪⎩

Lw
(k+1)
2 = f, in Ω2

w
(k+1)
2 = 0, on B[2]

n2 ·
(
a∇w

(k+1)
2

)
= µ(k+1), on B,

6. Endfor

Output: (w(k)
1 , w

(k)
2 )

Remark 1.21. Under appropriate restrictions on the coefficients a(x) and c(x),
and the relaxation parameters θ, δ, β, α, this parallel algorithm will converge
geometrically [YA2]. For related parallel algorithms, see [DO13, DO18].

When the advection coefficient b(x) 
= 0, a parallel algorithm, referred to
as a Robin-Robin algorithm can also be used [QU6, GA14, AC7, RA3]. Let:

Φi(w) ≡ ni ·
(

a(x)∇w − 1
2
b(x) w

)
+ zi(x) w,

denote a local Robin boundary operator on B for i = 1, 2 for an appropriately
chosen bounded interface function zi(x) > 0. For convenience, ĩ will denote a
complementary index to i (namely, ĩ = 2 when i = 1 and ĩ = 1 when i = 2).
Then, the Robin-Robin algorithm has the following form.
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Algorithm 1.3.3 (A Robin-Robin Algorithm)
Let w

(0)
1 and w

(0)
2 denote a starting guess on each subdomain

Let 0 < θ < 1 denote a relaxation parameter

1. For k = 0, 1, · · · , until convergence do:
2. For i = 1, 2 in parallel solve:⎧⎪⎨

⎪⎩
Lw

(k+1)
i = fi, in Ωi

w
(k+1)
i = 0, on B[i]

Φi

(
w

(k+1)
i

)
= θ Φi

(
w

(k)
i

)
+ (1 − θ) Φĩ

(
w

(k)

ĩ

)
, on B

3. Endfor
4. Endfor

Output: (w(k)
1 , w

(k)
2 )

Remark 1.22. When (c(x)− 1
2∇·b(x)) ≥ β > 0, the Robin-Robin iterates will

converge geometrically, for a suitable choice of relaxation parameter 0 < θ < 1
and zi(x) > 0, see [QU6, GA14, AC7, RA3].

1.3.3 Global Discretization

Hybrid formulation (1.19) can be used to construct a global discretization
of (1.1). Such discretizations have not been studied extensively, however, see
[AG, AG2, DO4] and in the context of spectral methods, see [MA4, PH].
A potential advantage of discretizing (1.19) is that each subdomain Ωi can
be independently triangulated, see Fig. 1.6, by methods suited to the local
geometry and regularity of the local solution, and each subproblem may be
discretized independently. However, care must be exercised in discretizing the
transmission conditions so that the resulting global discretization is stable.
Below, we heuristically outline the general stages that would be involved in
discretizing (1.19) using finite element methods.
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Th1(Ω1)

Fig. 1.6. Nonmatching local grids
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On each subdomain Ωi, generate a grid Thi
(Ωi) of size hi suited to the local

geometry and solution. If the resulting local grids do not match along B, as in
Fig. 1.6, they will be referred to as nonmatching grids. On each subdomain Ωi,
employ a traditional method to discretize the following Neumann problem:⎧⎨

⎩
Lwi = f, in Ωi

wi = 0, on B[i]

ni · (a∇wi − bwi) = gi, on B,

where ni denotes the exterior unit normal to ∂Ωi and the flux data gi is to be
chosen when the transmission conditions are applied. Employing block matrix
notation, denote the resulting local discretization by:[

A
(i)
II A

(i)
IB

A
(i)
BI A

(i)
BB

][
w(i)

I

w(i)
B

]
=

[
fhi

ghi

]
,

where w(i)
I denotes the interior unknowns on Ωhi

and w(i)
B denotes the bound-

ary unknowns on B associated with the discrete solution on Thi
(Ωi). Sepa-

rately discretize the two transmission conditions on B:{
w1 = w2, on B

n1 · (a∇w1 − bw1) = n1 · (a∇w2 − bw2) , on B.

Since the grid functions (w(i)
I ,w(i)

B ) may be nonmatching on B, care must be
exercised to ensure well posedness and stability of this discretization.

Below, we indicate how each transmission condition can be discretized by a
“mortar” element type method. Let ni and mi denote the number of unknowns
in w(i)

I and w(i)
B respectively. Then the continuity equation w1 = w2 on B may

be discretized by a Petrov-Galerkin approximation of its weak form:∫
B

(w1 − w2) v dsx = 0, v ∈ Xh(B),

where Xh(B) denotes some appropriately chosen subspace of L2(B). In a mor-
tar element discretization, Xh(B) is typically chosen as a finite element space
defined on a triangulation of B inherited from either triangulation Th1(Ω1)
or Th2(Ω2). Examples of such spaces are described in Chap. 11. For definite-
ness suppose Xh(B) = Xh1(B) is chosen to be of dimension m1 based on the
triangulation of B inherited from Th1(Ω1). Then, the discretized continuity
transmission condition will have the following matrix form:

M11w
(1)
B = M12w

(2)
B ,

where M11 and M12 are m1 × m1 and m1 × m2 mass matrices, respectively.
The flux transmission condition on B may be similarly discretized:∫
B

(n1 · (a∇w1 − bw1) − n1 · (a∇w2 − bw2)) µdsx = 0, ∀µ ∈ Yh(B),
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where it is sufficient to choose Yh(B) ⊂ H1
0 (B). Again, Yh(B) may be chosen

as a finite element space defined on the triangulation of B inherited from
either triangulation Ωh1 or Ωh2 . However, to ensure that the total number of
equations equals the total number of unknowns in the global system, it will
be preferable that Yh(B) be chosen using the complementary triangulation.
In the above example, since Xh(B) = Xh1(B) is of dimension m1, we choose
Yh(B) = Yh2(B) of dimension m2 based on triangulation Ωh2 . This will yield
m2 constraints, which we denote as:

M21

(
A

(1)
BIw

(1)
I + A

(1)
BBw(1)

B − f (1)
B

)
= −M22

(
A

(2)
BIw

(2)
I + A

(2)
BBw(2)

B − f (2)
B

)
,

where M21 and M22 are m2 × m1 and m2 × m2 matrices, respectively. The
interface forcing terms f (i)

B have been added to account for the approximation
resulting from integration by parts. The actual choice of subspaces Xh1(B)
and Yh2(B) will be critical to the stability of the resulting global discretization:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A
(1)
II w(1)

I + A
(1)
IBw(1)

B = fh1

M11w
(1)
B = M12w

(2)
B

A
(2)
II w

(2)
I + A

(2)
IBw(2)

B = fh2

M21

(
A

(1)
BIw

(1)
I + A

(1)
BBw

(1)
B − f (1)

B

)
= −M22

(
A

(2)
BIw

(2)
I + A

(2)
BBw(2)

B − f (2)
B

)
.

General theoretical results on the stability of such discretizations of (1.19) are
not known to the author, and this scheme was heuristically considered only
for its intrinsic interest.

Remark 1.23. If the grids Th1(Ω1) and Th2(Ω2) match on B, then m1 = m2.
We would then obtain M11 = M12, both square and nonsingular, yielding:

w(1)
B = w(2)

B .

Similarly, M21 = M22 will be square and nonsingular yielding:(
A

(1)
BIw

(1)
I + A

(1)
BBw

(1)
B − f (1)

B

)
= −

(
A

(2)
BIw

(2)
I + A

(2)
BBw(2)

B − f (2)
B

)
.

The resulting global discretization will then correspond to the standard finite
element discretization of (1.1).

1.3.4 Heterogeneous Approximations

A heterogeneous approximation of a partial differential equation is a coupled
system of partial differential equations which approximates the given equa-
tion, in which the approximating partial differential equations are not of the
same type in different subregions [GA15, QU6]. In the following, motivated
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by classical singular perturbation approximations [KE5, LA5], we heuristi-
cally outline how an elliptic-hyperbolic heterogeneous approximation can be
constructed for the following singularly perturbed elliptic equation:{

Lε u ≡ −ε∆u + b(x) · ∇u + c(x) u = f, in Ω
u = g, on ∂Ω,

(1.22)

where 0 < ε � 1 is a perturbation parameter. The Steklov-Poincaré hybrid
formulation (1.19) will be employed to heuristically approximate (1.22).

Suppose Ω1 and Ω2 form a non-overlapping decomposition of Ω such that:

ε |∆u| � |b · ∇u + c u| , on Ω1.

Then, on subdomain Ω1, we may approximate Lεu = f by L0 u = f , where
L0 u ≡ b(x) · ∇u + c(x)u. Formally, a global heterogeneous approximation
of (1.22) may be obtained by substituting the preceding approximation in the
hybrid formulation corresponding to (1.22), yielding:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

L0 w1 = f, in Ω1

w1 = 0, on B[1]

w1 = w2, on B

Lεw2 = f, in Ω2

w2 = 0, on B[2]

n1 · (ε∇w2 − bw2) = n1 · (ε∇w1 − bw1) . on B,

However, retaining the Dirichlet boundary conditions on B and B[1] for w1(.)
will yield an ill-posed problem for w1(.), since L0w1 is hyperbolic on Ω1.
Indeed, denote the inflow and outflow boundary segments on B and B[1] by:⎧⎪⎪⎨

⎪⎪⎩
Bin ≡ {x ∈ B : n1 · b(x) < 0}
Bout ≡ {x ∈ B : n1 · b(x) > 0}
B[1],in ≡ {x ∈ B[1] : n1 · b(x) < 0}.

Since L0w1 = f is hyperbolic, specification of Dirichlet or Neumann boundary
conditions on the entire boundary ∂Ω1 will yield a locally ill posed problem.
Fortunately, replacing the Dirichlet conditions by inflow conditions, resolves
this local ill-posedness on Ω1, see [GA15, QU6].

Thus, the boundary conditions w1 = 0 on B[1] and w1 = w2 on B can be
replaced by inflow boundary conditions w1 = 0 on B[1],in and w1 = w2 on Bin,
respectively. To deduce the remaining transmission boundary conditions in the
heterogeneous approximation, a subdomain vanishing viscosity approach may
be employed as in [GA15]. Accordingly, the elliptic equation Lεu = f may be
approximated by the discontinuous coefficient elliptic problem:{

Lε,η v = f, on Ω
v = 0, on ∂Ω,



1.4 Lagrange Multiplier Framework 27

where Lε,η v ≡ −∇ · (a(x, η)∇v) +b(x) · ∇v + c(x) v and a(x, η) is defined by:

a(x, η) ≡
{

η for x ∈ Ω1

ε for x ∈ Ω2.

For ε > 0 and η > 0, the problem will be elliptic and the traditional trans-
mission conditions should hold:{

w1 = w2, on B

n1 · (η∇w1 − bw1) = n1 · (ε∇w2 − bw2) , on B.

However, letting η → 0+, and imposing the inflow condition on Bin yields:{
w1 = w2, on Bin

−n1 · bw1 = n1 · (ε∇w2 − bw2) , on B.

When b(x) is continuous, the substitution that w1 = w2 on Bin will yield the
following additional simplifications:⎧⎪⎨

⎪⎩
w1 = w2, on Bin

0 = n1 · ε∇w2, on Bin

−n1 · bw1 = n1 · (ε∇w2 − bw2) , on Bout.

As a result, heuristically, the global system of partial differential equations
satisfied by the weak limit of the solutions vε,η as η → 0 will be:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L0 w1 = f, in Ω1

w1 = 0, on B[1],in

w1 = w2, on Bin

Lεw2 = f, in Ω2

n2 · (ε∇w2 − bw2) = −n2 · bw1, on Bout,
n2 · ∇w2 = 0, on Bin,

w2 = 0, on B[2].

Dirichlet-Neumann iterative methods can be formulated to solve the above
heterogeneous approximation to (1.22), see [GA15, QU6] and Chap. 12.

Remark 1.24. For rigorous results on the well posedness of the preceding het-
erogeneous system, readers are referred to [GA15].

1.4 Lagrange Multiplier Framework

The framework we refer to as the Lagrange multiplier formulation [GL, GL7],
underlies a variety of non-overlapping domain decomposition methods. It is
employed in the FETI (Finite Element Tearing and Interconnection) method
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(a constrained optimization based parallel iterative method [FA16, FA15]),
the mortar element method (a method for discretizing elliptic equations on
nonmatching grids [MA4, BE22, BE18, BE6, BE4, WO4, WO5]), and in non-
overlapping Schwarz iterative methods [LI8, GL8]. In this section, we illustrate
its application to formulate iterative algorithms, non-matching grid discretiza-
tions and heterogeneous approximations.

The Lagrange multiplier framework is applicable only when there is an
optimization principle associated with the elliptic equation. Thus, the solution
u must optimize some energy functional J(·). For such a property to hold,
the elliptic equation (1.1) must be self adjoint and coercive, requiring that
b(x) = 0 and c(x) ≥ 0. Accordingly, in this section we shall consider:{

Lu ≡ −∇ · (a(x)∇u) + c(x) u = f, in Ω
u = 0, on ∂Ω,

(1.23)

with c(x) ≥ 0. It is well known that the solution u minimizes an energy J(.),
see (1.24) and (1.25) within H1

0 (Ω). Given any non-overlapping subdomain
decomposition of Ω, we will show that the optimization problem (1.24) can be
reformulated as a constrained optimization problem based on the subdomains.
The Lagrange multiplier hybrid formulation will be the saddle point problem
associated with this constrained minimization problem.

1.4.1 Motivation

Let Ω1 and Ω2 form a non-overlapping decomposition of the domain Ω of
elliptic equation (1.23), see Fig. 1.7. Using this decomposition of Ω, we may
decompose the energy functional J(·) associated with (1.23) as a sum of en-
ergy contributions Ji(·) from each subdomain Ωi. The resulting sum of local
energies will be well defined even if the local displacement functions are dis-
continuous across the interface B = ∂Ω1 ∩ ∂Ω2. It is thus an extended energy
functional.

A constrained minimization problem equivalent to the minimization of
J(.) can be obtained by minimizing this extended energy functional, subject
to the constraint that the local displacements match on the interface B. The
Lagrange multiplier hybrid formulation is the saddle point problem associated
with this constrained minimization problem. We outline the steps below.

Ω2Ω1 B

Fig. 1.7. An immersed non-overlapping decomposition
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Minimization Formulation. It is well known, see [ST14, CI2, JO2, BR28],
that the solution u to (1.23) minimizes the energy J(·) associated with (1.23):

J(u) = min
w∈X

J(w), (1.24)

where ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

J(w) ≡ 1
2A(w, w) − F (w),

A(v, w) ≡
∫

Ω
(a∇v · ∇w + c vw) dx, for v, w ∈ X

F (w) ≡
∫

Ω
fwdx, for w ∈ X,

X ≡ H1
0 (Ω).

(1.25)

Constrained Minimization Formulation. Let {Ωi}2
i=1 be a non-over-

lapping decomposition of Ω. Suppose wi ≡ w on Ωi for 1 ≤ i ≤ 2. We
may express the energy J(w) = JE(w1, w2) ≡ J1(w1) + J2(w2), where:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

JE(w1, w2) ≡ J1(w1) + J2(w2), for wi ∈ Xi

Ji(wi) ≡ 1
2Ai(wi, wi) − Fi(wi), for wi ∈ Xi

Ai(vi, wi) ≡
∫

Ωi
(∇vi · a∇wi + cviwi) dx, for vi, wi ∈ Xi

Fi(wi) ≡
∫

Ωi
fwidx, for wi ∈ Xi,

Xi ≡
{
v ∈ H1(Ωi) : v = 0 on B[i]

}
.

Here JE(w1, w2) is defined even when w1 
= w2 on B. To obtain a constrained
minimization problem equivalent to (1.24), we minimize JE(v1, v2) within the
larger (extended) class of functions X1×X2 defined above, but subject to the
weak constraint that the subdomain functions match on B:

m ((v1, v2), µ) ≡
∫

B

(v1 − v2) µdsx = 0, ∀µ ∈ Y,

where Y ≡ H
−1/2
00 (B) (the dual space of H

1/2
00 (B)). Problem (1.24) will thus

be formally equivalent to the following constrained minimization problem:

J1(w1) + J2(w2) = min
(v1,v2)∈K

J1(v1) + J2(v2), (1.26)

where

K ≡ {(v1, v2) ∈ X1 × X2 : m ((v1, v2), µ) = 0, ∀µ ∈ Y } .

Saddle Point Formulation. By optimization theory, see [CI4] and Chap. 10,
the solution (w1, w2) to the constrained minimization problem (1.26) can be
expressed as components in the saddle point ((w1, w2), µ) of an associated
Lagrangian functional L (·, ·), where µ ∈ Y denotes an artificially introduced
variable referred to as a Lagrange multiplier. We define the Lagrangian func-
tion for ((v1, v2), η) ∈ X1 × X2 × Y as:

L ((v1, v2), η) ≡ J1(v1) + J2(v2) + m ((v1, v2), η) . (1.27)
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At the saddle point ((w1, w2), µ) ∈ X1 × X2 × Y of L (·), we obtain:

L ((w1, w2), η) ≤ L ((w1, w2), µ) ≤ L ((v1, v2), µ) (1.28)

for any choice of (v1, v2) ∈ X1 × X2 and η ∈ Y . Requiring the first order
variation at the saddle point ((w1, w2), µ) to be zero yields:{∑2

i=1 Ai(wi, vi) + m ((v1, v2), µ) =
∑2

i=1 Fi(vi), for vi ∈ Xi

m ((w1, w2), η) = 0, for η ∈ Y.
(1.29)

The above system is referred to as a saddle point problem.

Hybrid Formulation. If we integrate the weak form (1.29) by parts, we can
express it in terms of partial differential equations involving w1(.), w2(.) and
the Lagrange multiplier variable µ(.) as follows. We seek (w1, w2, µ) satisfying:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lw1 = f, in Ω1

w1 = 0, on B[1]

n1 · (a∇w1) = −µ, on B

Lw2 = f, in Ω2

w2 = 0, on B[2]

n2 · (a∇w1) = µ, on B

w1 = w2, on B

(1.30)

where B[i] ≡ ∂Ωi ∩ ∂Ω is the exterior boundary and ni is the unit exterior
normal to ∂Ωi for i = 1, 2. For each choice of Neumann data µ(·), each
subdomain problem for wi(.) will be uniquely solvable provided B[i] 
= ∅. We
must choose the Lagrange multiplier µ(.) (representing the flux on B) so that
w1 = w2 on B. The next result indicates the equivalence of (1.30) to (1.23).

Theorem 1.25. Suppose the following assumptions hold.

1. Let u be a solution to (1.23).
2. Let (w1, w2, µ) be a solution to the hybrid formulation (1.30).

Then u(x) = w1(x) in Ω1 and u(x) = w2(x) in Ω2.

Proof. The equivalence follows since (1.23) is equivalent to (1.19), and
since (1.30) is equivalent to (1.19) for the substitution µ = n2 · (a∇u)
on B. ��

Remark 1.26. The preceding result only asserts the equivalence between solu-
tions of (1.23) and (1.30). It does not demonstrate the well posedness of (1.30).
The latter can be demonstrated for (1.30) by employing general results on the
well posedness of the saddle point problem (1.29) associated with it [GI3].
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1.4.2 Iterative Methods

Since the Lagrange multiplier µ(.) determines w1(.) and w2(.) in (1.30), an
iterative method for solving (1.23) can be obtained by applying a saddle point
iterative algorithm such as Uzawa’s method, see Chap. 10, to update the
Lagrange multiplier function µ(·), as described below.

Algorithm 1.4.1 (Uzawa’s Method)
Let µ(0) denote a starting guess with chosen step size τ > 0.

1. For k = 0, 1, · · · until convergence do:
2. Determine w

(k+1)
1 and w

(k+1)
2 in parallel:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇ ·
(
a∇w

(k+1)
1

)
+ cw

(k+1)
1 = f, in Ω1

w
(k+1)
1 = 0, on B[1]

n1 ·
(
a∇w

(k+1)
1

)
= −µ(k), on B,

−∇ ·
(
a∇w

(k+1)
2

)
+ cw

(k+1)
2 = f, in Ω2

w
(k+1)
2 = 0, on B[2]

n2 ·
(
a∇w

(k+1)
2

)
= µ(k), on B.

3. Update µ(k+1) as follows:

µ(k+1)(x) = µ(k)(x) + τ
(
w

(k+1)
1 (x) − w

(k+1)
2 (x)

)
, for x ∈ B.

4. Endfor

Output: (w(k)
1 , w

(k)
2 )

Remark 1.27. The map µ(k) →
(
w

(k)
1 − w

(k)
2

)
will be compact, and thus the

iterates will converge geometrically to the true solution for sufficiently small
τ > 0. Discrete versions of Uzawa’s algorithm are described in Chap. 10.

Remark 1.28. The FETI method [FA16, FA15], see Chap. 4, is also based on
updating the Lagrange multiplier µ. However, it generalizes the preceding
saddle point iterative algorithm to the multisubdomain case, where the rate
of convergence may deteriorate with increasing number of subdomains, and
where the local problems may be singular.

An alternative hybrid formulation equivalent to (1.30) can be obtained
by replacing the Lagrangian functional L (·, ·) by an augmented Lagrangian
Lδ (·, ·), where an additional non-negative functional is added to the original
Lagrangian functional with a coefficient δ > 0, see [GL7, GL8]:

Lδ ((v1, v2), µ) ≡ J1(v1) + J2(v2) + m ((v1, v2), µ) +
δ

2
‖v1 − v2‖2

L2(B).
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The augmented term δ
2‖v1−v2‖2

L2(B) will be zero when the constraint v1 = v2

is satisfied on B. As a result, both formulations will be equivalent, and the
saddle point of the augmented Lagrangian will also yield the desired solution.
Applying an alternating directions implicit (ADI) method to determine the
saddle point of the augmented Lagrangian functional, will yield the following
algorithm, referred to as the non-overlapping Schwarz method [LI8, GL8].

Algorithm 1.4.2 (Non-Overlapping Schwarz Method)
Let w

(0)
1 , w

(0)
2 denote starting guesses.

Let δ > 0 be a chosen parameter.

1. For k = 0, 1, · · · until convergence do:
2. Solve in parallel:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇ ·
(
a∇w

(k+1)
1

)
+ cw

(k+1)
1 = f, in Ω1

w
(k+1)
1 = 0, on B[1]

n1 ·
(
a∇w

(k+1)
1

)
+ δw

(k+1)
1 = n1 ·

(
a∇w

(k)
2

)
+ δw

(k)
2 , on B,

−∇ ·
(
a∇w

(k+1)
2

)
+ cw

(k+1)
2 = f, in Ω2

w
(k+1)
2 = 0, on B[2]

n2 ·
(
a∇w

(k+1)
2

)
+ δw

(k+1)
2 = n2 ·

(
a∇w

(k)
1

)
+ δw

(k)
1 , on B.

3. Endfor

Output: (w(k)
1 , w

(k)
2 )

Remark 1.29. In practice, a careful choice of parameter δ > 0 will be necessary
for optimal convergence [LI8, GL8].

1.4.3 Global Discretization

In principle, a discretization of (1.23) can be obtained by discretizing (1.30).
Each subdomain can be triangulated independently without requiring the
local triangulations to match on B. However, to ensure that the resulting
discretization yields a constrained minimization problem, it is advantageous
to employ a Galerkin approximation of the saddle point problem (1.29). An
extensive literature exists on such nonmatching grid discretization techniques,
see [MA4, BE22, DO4, BE4, WO4, WO5]. The resulting discretization is re-
ferred to as a mortar element method, see also Chap. 11.

Triangulate each subdomain Ωi by a grid Thi
(Ωi) of size hi suited to the

local geometry and solution for 1 ≤ i ≤ 2, see Fig. 1.8. Let Xhi ⊂ Xi denote
a traditional finite element space defined on the triangulation Thi

(Ωi). Select
a triangulation of interface B inherited either from Th1(Ω1) or Th2(Ω2). For
definiteness, suppose that Th1(Ω1) is chosen. Construct a finite element space
Yh1(B) ⊂ L2(B) ⊂ Y consisting of piecewise polynomial functions defined on
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Ω2Ω1

B[1]

Fig. 1.8. Non-overlapping nonmatching grids

the triangulation of B inherited from Th1(Ω1). The dimension of Yh1 should
equal the dimension of Xh1∩H1

0 (B). See Chap. 11 for multiplier spaces Yh1(B).
Discretization of the saddle point formulation (1.29) using the subspaces

Xh1 × Xh2 × Yh1(B) will yield a linear system of the form:⎡
⎢⎢⎣

A(1) 0 M (1)T

0 A(2) −M (2)T

M (1) −M (2) 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

wh1

wh2

µh

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

fh1

fh2

0

⎤
⎥⎥⎦ ,

where:⎧⎪⎨
⎪⎩

Ai(whi
, whi

) = wT
hi

A(i)whi
, for 1 ≤ i ≤ 2

F (whi
) = wT

hi
fhi

, for 1 ≤ i ≤ 2

m ((wh1 , wh2), µh) = µT
h

(
M (1)wh1 − M (2)wh2

)
.

Here we have used whi
and µh to denote finite element functions and whi

and
µh as their vector representations with respect to some fixed basis.

If each nodal vector whi
is block partitioned as whi

=
(
w(i)

I ,w(i)
B

)T

cor-
responding to the unknowns in the interior of each subdomain and on the
interface B, then matrices A(i) and M (i) will have the block structure:

A(i) =

[
A

(i)
II A

(i)
IB

A
(i)T

IB A
(i)
BB

]
and M (i) =

[
0 M

(i)
B

]
, for 1 ≤ i ≤ 2

where w(i)
I and w(i)

B are of size ni and mi. Substituting, we obtain:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
(1)
II A

(1)
IB 0 0 0

A
(1)T

IB A
(1)
BB 0 0 M

(1)T

B

0 0 A
(2)
II A

(2)
IB 0

0 0 A
(2)T

IB A
(2)
BB −M

(2)T

B

0 M
(1)
B 0 −M

(2)
B 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w(1)
I

w(1)
B

w(2)
I

w(2)
B

µh

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f (1)
I

f (1)
B

f (2)
I

f (2)
B

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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If the dimension of the space Yh1(B) is m1, then matrix M
(1)
B will be square

and invertible of size m1. In this case, we may parameterize the solution space
of the interface constraints as:

w(1)
B ≡ R12w

(2)
B where R12 ≡ M

(1)−1

B M
(2)
B .

The local unknowns can then be represented as w(1)
I , w(1)

B = R12w
(2)
B ,

w(2)
I , and w(2)

B . Substituting this representation into the discrete energy
Jh1(w

(1)
I , R12w

(2)
B )+Jh2(w

(2)
I ,w(2)

B ) and applying first order stationarity con-
ditions for its minimum yields the following linear system:⎡

⎢⎢⎣
A

(1)
II 0 A

(1)
IBR12

0 A
(2)
II A

(2)
IB

RT
12A

(1)T

IB A
(2)T

IB RT
12A

(1)
BBR12 + A

(2)
BB

⎤
⎥⎥⎦

⎡
⎢⎢⎣

w(1)
I

w(2)
I

w(2)
B

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

f (1)
I

f (2)
I

RT
12f

(1)
B + f (2)

B

⎤
⎥⎥⎦ .

If both grids match, then R12 = I and the above discretization reduces to the
traditional conforming finite element discretization of (1.23).

Mortar element spaces Yhi(B) are described in Chap. 11. They include
piecewise polynomial functions which are continuous across elements as well
as piecewise polynomial functions which are discontinuous across elements
[MA4, BE22, BE18, BE6, BE4]. In the latter case, a basis for Yhi(B) can
be constructed so that matrix M

(i)
B is diagonal [WO4, WO5]. The resulting

global discretization will be stable and convergent of optimal order.

1.4.4 Heterogeneous Approximations

When elliptic equation (1.23) is singularly perturbed, its Lagrange multiplier
formulation (1.30) can be employed to heuristically study an heterogeneous
approximation of it. Below, we illustrate two alternative approximations of
the following singularly perturbed, self adjoint elliptic equation [KE5]:{

−∇ · (ε∇u) + c(x) u = f(x), in Ω
u = g(x), on ∂Ω,

(1.31)

where 0 < ε � 1 is a small perturbation parameter and c(x) ≥ c0 > 0.
Suppose Ω1 and Ω2 form a nonoverlapping decomposition of Ω, such that:

|ε∆u| � |c(x) u| , for x ∈ Ω1.

Then, Ω2 must enclose the boundary layer region of the solution.
To obtain an heterogeneous approximation of (1.31), we heuristically apply

the subdomain vanishing viscosity method as in [GA15]:{
−∇ · (aε,η(x)∇u) + c(x) u = f(x), in Ω

u = g(x), on ∂Ω,
(1.32)
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where

aε,η(x) ≡
{

η for x ∈ Ω1

ε for x ∈ Ω2.

For ε > 0 and η > 0, the above problem is elliptic and coercive. However, as
η → 0+, formally the limiting system (1.30) becomes:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c(x) w1 = f(x), in Ω1

w1 = g(x), on B[1]

0 = µ, on B

−ε∆w2 + c(x) w2 = f(x), in Ω2

w2 = g(x), on B[2]

ε∂w2
∂n = µ, on B

w1 = w2, on B.

Two alternative approximations may be constructed. Either the transmission
condition w1 = w2 or ε ∂w2

∂n = 0 can be enforced, but not both, since w1(.)
formally satisfies a zeroth order equation in Ω1. Since c(x) ≥ c0 > 0, the
limiting equation on Ω1 for w1(x) can be solved to formally yield:

w1(x) =
f(x)
c(x)

, on Ω1.

If B[1] 
= ∅ and the boundary data g(x) is not compatible with the formal
solution f(x)

c(x) , i.e., if g(x) 
= f(x)
c(x) on B[1], then the local solution may be ill

posed, indicating a poor choice of subdomain Ω1.
If a continuous (or H1(·)) solution is sought, then continuity of the local

solutions must be enforced and the flux transmission condition needs to be
omitted, yielding the following system:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c(x) w1 = f(x), in Ω1

w1 = g(x), on B[1]

−ε∆w2 + c(x) w2 = f(x), in Ω2

w2 = w1, on B

w2 = g(x), on B[2].

If a discontinuous approximation is sought, then the continuity transmission
condition can be omitted, and the flux transmission condition can be enforced,
yielding the alternative system:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c(x) w1 = f(x), in Ω1

w1 = g(x), on B[1]

−ε∆w2 + c(x) w2 = f(x), in Ω2

ε ∂w2
∂n = 0, on B

w2 = g(x), on B[2].
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In this case, the subproblems for w1 and w2 are formally decoupled. In both
cases, the limiting solutions may not minimize the energy functional Jε,η(·)
associated with (1.32) as η → 0+.

Remark 1.30. Since (1.30) is equivalent to (1.19), rigorous results on the well
posedness of the above approximation may be deduced from [GA15].

Remark 1.31. Similar heuristics may be applied to construct an approximation
of the singularly perturbed anisotropic elliptic equation using (1.30):{

−ε ux1x1 − ux2x2 − ux3x3 + c(x) u = f(x), in Ω

u = g(x), on ∂Ω,

for which the limiting problem is a degenerate elliptic equation. In this case,
both transmission conditions can be retained in the limiting problem.

1.5 Least Squares-Control Framework

The least squares-control method [LI2, GL] is a general optimization method,
which has various applications to partial differential equations. It results in
a constrained least squares problem, and is based on the minimization of a
square norm objective functional, subject to constraints. In domain decompo-
sition applications, see [AT, GL13, GU3, GU2], the square norm functional
typically measures the difference between the subdomain solutions on the re-
gions of overlap or intersection between the subdomains, while the constraints
require the local solutions to solve the original partial differential equation on
each subdomain, with appropriate boundary conditions. Since the boundary
data on each subdomain boundary is unknown, it is regarded as a control
function which parameterizes the local solution. The control boundary data
must be determined to minimize the square norm function, hence the name
least squares-control. Importantly, an optimization principle need not be as-
sociated with the underlying partial differential equation.

In this section, we describe the hybrid formulation associated with the
least squares-control method for the following elliptic equation:{

Lu ≡ −∇ · (a(x)∇u) + b(x) · ∇u + c(x) u = f(x), in Ω

u = 0, in ∂Ω,
(1.33)

in which the domain Ω is decomposed into two subdomains. The subdo-
mains can be overlapping or non-overlapping, but we focus on the overlapping
case. We illustrate the formulation of iterative methods, non-matching grid
discretizations, and heterogeneous approximations for (1.33).
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Ω∗
12 Ω∗

2Ω∗
1

B[2]

B[1]

Fig. 1.9. An overlapping decomposition

1.5.1 Motivation

Let Ω∗
1 and Ω∗

2 form an overlapping decomposition of Ω, with Ω∗
12 = Ω∗

1 ∩Ω∗
2 ,

see Fig. 1.9. Let B(i) = ∂Ω∗
i ∩ Ω and B[i] = ∂Ω∗

i ∩ ∂Ω denote the interior
and exterior segments, respectively, of the subdomain boundaries, and let ni

denote the unit exterior normal to ∂Ω∗
i . On each subdomain Ω∗

i for 1 ≤ i ≤ 2,
we let wi denote the approximation of the solution u to (1.33) on Ω∗

i , and let
gi denote the local Neumann data associated with wi on B(i).

If wi(.) = u(.) on Ω∗
i and gi(.) = ni ·(a(x)∇u) on B(i), then wi will satisfy:⎧⎪⎨
⎪⎩

Lwi = f, in Ω∗
i

wi = 0, on B[i]

ni · (a∇wi) = gi, on B(i).

Furthermore, since w1 and w2 will match on Ω∗
12, i.e., w1 = w2, on Ω∗

12, it will
hold that ‖w1 −w2‖2

L2(Ω∗
12)

= 0 and |w1 −w2|2H1(Ω∗
12)

= 0. Motivated by this,
define the following square norm functional J (·):

J (v1, v2) ≡
γ1

2

∫
Ω∗

12

(v1 − v2)2 dx +
γ2

2

∫
Ω∗

12

|∇(v1 − v2)|2 dx. (1.34)

Typically (γ1 = 1, γ2 = 0), but other choices are possible. Then, it will hold:

J(w1, w2) = 0,

for the true subdomain solutions.
The preceding observation suggests the following constrained minimization

problem equivalent to (1.33). Determine (w1, w2) which minimizes J (·) (with
minimum value zero), within a class K:

J(w1, w2) = min
(v1,v2)∈K

J(v1, v2), (1.35)

where K is defined by the constraints:

K ≡

⎧⎨
⎩(v1, v2) :

Lvi = f, in Ω∗
i

ni · (a∇wi) = gi, on B(i)

vi = 0, on B[i]

for 1 ≤ i ≤ 2

⎫⎬
⎭ . (1.36)
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Instead of Neumann conditions on B(i), we may alternatively pose Robin or
Dirichlet conditions. However, in the non-overlapping case, we cannot pose
Dirichlet conditions on B(i), since the functional J(.) typically measures the
difference between the Dirichlet data. To avoid cumbersome notation, we often
omit explicit inclusion of gi as an argument in the definition of J(., .) and K. In
a strict sense, we must replace vi by (vi, gi). Hopefully, such omission should
be clear from the context.

The following equivalence will hold.

Theorem 1.32. Suppose the following assumptions hold.

1. Let the solution u of (1.33) exist and be smooth.
2. Let (w1, w2) minimize (1.35) subject to the constraints (1.36).

Then at the minimum:

J(w1, w2) = min
(v1,v2)∈K

J(v1, v2),

it will hold that: {
w1 = u, on Ω∗

1

w2 = u, on Ω∗
2 .

Proof. Suppose u is the solution to (1.33) and wi ≡ u on Ω∗
i for 1 ≤ i ≤ 2.

Then, (w1, w2) will satisfy all the required constraints (1.36). Furthermore:

w1 − w2 = u − u = 0, in Ω∗
12,

yields that J(w1, w2) = 0 and minimizes J(., .) ≥ 0.
Conversely, suppose a solution to (1.35) exists, subject to constraints (1.36)

and minimizes J(v1, v2). Then this minimum value must be zero, since for
ui ≡ u in Ω∗

i for 1 ≤ i ≤ 2 it will hold that (u1, u2) ∈ K and J(u1, u2) = 0.
Thus, using the definition of J(., .) and that J(w1, w2) = 0, we obtain that
w1 = w2 on Ω∗

12. Let χ1(x) and χ2(x) form a partition of unity subordinate to
the cover Ω∗

1 and Ω∗
2 . The it is easily verified that χ1(x) w1(x) + χ2(x) w2(x)

solves (1.33), since Lwi = f in Ω∗
i and since w1 = w2 in Ω∗

12. Thus, by the
uniqueness of solutions to (1.33) it follows that:

u(x) ≡ χ1(x) w1(x) + χ2(x) w2(x).

The desired result follows using w1 = w2 on Ω∗
12. ��

Remark 1.33. The preceding result only demonstrates an equivalence between
the solutions of (1.33) and (1.35). It does not guarantee the well posedness
of (1.35) under perturbation of data. Such a result, however, will hold under
appropriate assumptions (such as b = 0, coercivity of (1.33)) given sufficient
overlap between the subdomains.
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Remark 1.34. Well posedness of the constrained minimization problem (1.35)
will depend on the definition of J (·). For instance, when the elliptic equa-
tion (1.33) is self adjoint and coercive, J(v1, v2) = 1

2‖v1 − v2‖2
H1(Ω∗

12)
can be

shown to yield a well posed saddle point problem [GL, AT], where the term
J(v1, v2) is coercive in the constraint space K. More generally, an augmented
Lagrangian formulation [GL7] may be employed to regularize (1.35).

As mentioned earlier, the constraint set K in (1.36) can be parameterized in
terms of the Dirichlet, Neumann or Robin data gi specified on each boundary
segment B(i), for 1 ≤ i ≤ 2. For instance, when Neumann boundary conditions
are imposed on each B(i), define an affine linear mapping Ei as follows:

Ei gi ≡ vi, where

⎧⎨
⎩

L vi = f, in Ω∗
i

ni · (a∇vi) = gi, on B(i)

vi = 0, on B[i].

Then, the constraint set K can be represented as:

K ≡ {(E1g1, E2g2) : for gi ∈ Xi, 1 ≤ i ≤ 2} ,

where g1 and g2 are regarded as control data. For Neumann conditions, the
function space Xi for the boundary data for gi is typically chosen for each
1 ≤ i ≤ 2 as Xi = (H1/2

00 (B(i)))′ or Xi = H−1/2(B(i)). This parameterization
enables the reformulation of this constrained minimization problem (1.35) as
an unconstrained minimization problem. Define a function H(·):

H(g1, g2) ≡ J(E1g1, E2g2). (1.37)

Then, the unconstrained minimum (g∗1 , g∗2) of H(·, ·):

H(g∗1 , g∗2) = min
(g1,g2)

H(g1, g2), (1.38)

will yield the constrained minimum of J(., .) as (w1, w2) = (E1g
∗
1 , E2g

∗
2). Thus,

once g∗1 and g∗2 have been determined by minimizing H(·, ·), the desired local
solutions will satisfy wi ≡ Eig

∗
i for 1 ≤ i ≤ 2. Such unconstrained minimization

does not require Lagrange multipliers.
The unknown control data g1 and g2 can be determined by solving the

system of equations which result from the application of first order stationarity
conditions δH = 0 at the minimum of H(·). We shall omit the derivation of
these equations, except to note that the calculus of variations may be applied
to (1.38), or such equations may be derived by heuristic analogy with the
associated discrete saddle point problem, as described in Chap. 6.

The resulting first order stationarity equations will be of the form:

δH (g1, g2) = 0 ⇔
{

v1(x) = 0, for x ∈ B(1)

v2(x) = 0, for x ∈ B(2)
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where v1(x) and v2(x) are defined in terms of g1(x) and g2(x) as follows. Solve:⎧⎪⎨
⎪⎩

−∇ · (a∇wi) + b · ∇wi + cwi = f(x), in Ω∗
i

wi = 0, on B[i]

ni · (a∇wi) = gi(x), on B(i)

for i = 1, 2

for w1(x) and w2(x) using g1(x) and g2(x). Next, compute:

r(x) ≡
{

w1(x) − w2(x), for x ∈ Ω∗
12

0, for x 
∈ Ω∗
12.

Then, v1(x) and v2 are defined as the solutions to:⎧⎪⎨
⎪⎩

−∇ · (a∇vi) −∇ · (b vi) + c vi = r(x), in Ω∗
i

vi = 0, on B[i]

ni · (a∇vi + b vi) = 0, on B(i)

for 1 ≤ i ≤ 2.

The control data g1(x) and g2(x) must be chosen to ensure that vi(x) = 0 on
B(i) for i = 1, 2. Later, we shall outline a gradient method to determine g1 and
g2 iteratively. When (1.35) is discretized, an explicit matrix representation can
be derived for H(·) and its gradient, see Chap. 6. In this case, a preconditioned
CG method can be employed to solve the resulting linear system.

Remark 1.35. If Ω is decomposed into non-overlapping subdomains Ω1 and Ω2

with common interface B = ∂Ω1 ∩ ∂Ω2, a least squares-control formulation
may be constructed as follows [GU3, GU2]. Seek (w1, w2) which minimizes:

J(w1, w2) = min
(v1,v2)∈K

J(v1, v2),

where
J(v1, v2) ≡

1
2
‖v1 − v2‖2

L2(B),

and K consists of all (v1, v2) satisfying the following constraints:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lv1 = f(x), in Ω1

v1 = 0, on B[1]

n1 · (a∇v1) = µ(x), on B

Lv2 = f(x), in Ω2

v2 = 0, on B[2]

n2 · (a∇v2) = −µ(x), on B.

Here µ(x) is a flux variable on the interface B (which can be eliminated). The
above constraints will ensure that the original elliptic equation is solved on
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each subdomain, and that the Neumann fluxes of the two subdomain solutions
match on B. In this case, the feasible set K can be parameterized in terms
of the flux µ(x) = n1 · (a∇v1) on B. In applications, an alternative choice
of objective functional J(v1, v2) ≡ 1

2‖v1 − v2‖2

H
1/2
00 (B)

may also be employed,

where H
1/2
00 (B) denotes a fractional Sobolev norm (defined in Chap. 3).

1.5.2 Iterative Methods

The solution to (1.33) can be determined iteratively, by formally applying a
steepest descent method to the unconstrained minimization problem (1.38),
with sufficiently small step size τ > 0. Such an algorithm can be derived
formally using calculus of variations, or by analogy with the discrete version
of this algorithm described in Chap. 6.

Algorithm 1.5.1 (Gradient Least Squares-Control Algorithm)
Let g

(0)
1 (x) and g

(0)
2 (x) denote starting guesses and τ > 0 a fixed step size.

1. For k = 0, 1, · · · until convergence do:
2. For i = 1, 2 in parallel solve:⎧⎪⎨

⎪⎩
−∇ · (a∇vi) + b · ∇vi + c vi = f(x), in Ω∗

i

vi = 0, on B[i]

ni · (a∇vi) = g
(k)
i (x), on B(i).

3. Endfor
4. Compute:

r(x) ≡
{

v1(x) − v2(x), for x ∈ Ω∗
12

0, for x 
∈ Ω∗
12

5. For i = 1, 2 in parallel solve the adjoint problems:⎧⎪⎨
⎪⎩

−∇ · (a∇wi) −∇ · (bwi) + cwi = r(x), in Ω∗
i

wi = 0, on B[i]

ni · (a∇wi + bwi) = 0, on B(i).

6. Endfor
7. Update: {

g
(k+1)
1 (x) = g

(k)
1 (x) − τ w1(x), for x ∈ B(1)

g
(k+1)
2 (x) = g

(k)
2 (x) + τ w2(x), for x ∈ B(2).

8. Endfor

Output: (g(k)
1 , g

(k)
2 )
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Alternative divide and conquer iterative algorithms can be formulated
for (1.33) using its saddle point formulation. However, the resulting algorithm
may require more computational resources. For instance, suppose that:

J(v1, v2) =
1
2
‖v1 − v2‖2

L2(Ω∗
12)

,

and that Neumann boundary conditions are imposed on B(i). Then, as de-
scribed in Chap. 10, a constrained minimization problem such as (1.35)
with (1.36), can be equivalently formulated as a saddle point problem, and
saddle point iterative algorithms can be formulated to solve it.

Indeed, if λ1 and λ2 denote the Lagrange multipliers, then the saddle point
problem associated with (1.35) would formally be of the form:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

χΩ12 (w1 − w2) + L∗
1λ1 = 0,

−χΩ12 (w1 − w2) + L∗
2λ2 = 0,

L1w̃1 = f1,

L2w̃2 = f2.

(1.39)

Here Liw̃i = fi formally denotes the operator equation associated with
Lwi = f in Ω∗

i with Neumann conditions ni ·(a∇wi)−gi = 0 on B(i) and ho-
mogeneous Dirichlet boundary conditions wi = 0 on B[i], with w̃i = (wi, gi).
The operator L∗

i formally denotes the adjoint of Li. Here, χΩ∗
12

(x) denotes
the characteristic (indicator) function of Ω∗

12. We omit elaborating on such a
saddle point problem here, except to note that, it may be obtained by heuris-
tic analogy with the discrete saddle point problems described in Chap. 10.
The λi(x) corresponds to Lagrange multiplier functions, see [GL, AT]. In this
saddle point problem, the Lagrange multiplier variables will not be unique,
and an augmented Lagrangian formulation would be preferable.

1.5.3 Global Discretization

Hybrid formulation (1.35) or (1.38) can, in principle, be employed to dis-
cretize (1.33) on a nonmatching grid such as in Fig. 1.10. Such discretizations
have not been considered in the literature, however, a heuristic discussion of
such a discretization is outlined here for its intrinsic interest, employing for-
mulation (1.38). We employ finite element discretizations on the subdomains.

A nonmatching grid discretization of (1.38) will require discretizing J(·):

J(v1, v2) =
1
2
‖v1 − v2‖2

H1(Ω∗
12)

,

and this will involve two overlapping non-matching grids. In the following, we
heuristically outline a mortar element discretization of J(v1, v2) on Ω∗

12, and
employ this to construct a global non-matching grid discretization of (1.33),
with Dirichlet boundary controls on each subdomain boundary B(i). Each
subdomain problem will involve only a conforming grid.
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Th1(Ω
∗
1 )
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2 )

Fig. 1.10. Overlapping nonmatching grids

Remark 1.36. If J(v1, v2) is replaced by JB(v1, v2) ≡ 1
2‖v1 − v2‖2

B where B =
∂Ω1 ∩ ∂Ω2 and Ω∗

i is an extension of a non-overlapping decomposition Ωi,
such a discretization would be considerably simpler.

Local Triangulation. For 1 ≤ i ≤ 2 triangulate each subdomain Ω∗
i by a

grid Thi
(Ω∗

i ) according to the local geometry and regularity of the solution,
see Fig. 1.10. We shall assume that at least one of the local grids triangulates
the region of overlap Ω∗

12. For definiteness assume that triangulation Th1(Ω
∗
1)

triangulates Ω∗
12. Let ni and mi denote the number of nodes of grid Thi

(Ω∗
i )

in the interior of Ω∗
i and on B(i), respectively. Additionally, let li denote the

number of nodes of triangulation Thi(Ω
∗
i ) in Ω

∗
12.

Local Discretizations. For 1 ≤ i ≤ 2, employ Dirichlet boundary conditions
on B(i) in (1.36) and discretize the resulting local problems using a finite
element space Xhi

⊂ Xi based on triangulation Thi
(Ω∗

i ):

Xi ≡
{
vi ∈ H1(Ω∗

i ) : vi = 0 on B[i]

}
.

Block partition the unknowns whi
= (w(i)

I ,w(i)
B )T according to the interior

unknowns and the unknowns on the boundary B(i) respectively. Denote the
block partitioned linear system for the discretized Dirichlet problem as:{

A
(i)
II w(i)

I + A
(i)
IBw(i)

B = f (i)
I ,

w(i)
B = g(i)

B .

Weak Matching on Ω∗
12. Choose a finite element space:

Yh(Ω∗
12) ⊂ L2(Ω∗

12)
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based on the triangulation of Ω∗
12 inherited from Th1(Ω

∗
1), of dimension l1.

Define the weak matching condition on Ω∗
12 as:∫

Ω∗
12

(wh1 − wh2) µh1 dx = 0, for µh1 ∈ Yh1(Ω
∗
12),

enforced using the subspace Yh1(Ω
∗
12). Denote its matrix form as:

M11wh1 − M12wh2 = 0,

where M11 is invertible of size l1. Define an oblique projection P1 ≡ M−1
11 M12.

Discrete Functional J(·, ·). Let A(12) be the stiffness matrix associated
with J(·) on the triangulation Th1(Ω

∗
12). The quadratic functional J(·) can be

discretized using A(12) and the projection P1 as follows:⎧⎪⎨
⎪⎩

J (vh1 , vh2) ≡ 1
2 ‖vh1 − vh2‖2

H1(Ω∗
12)

≈ 1
2 (vh1 − P1vh2)

T
RT

12A
(12)R12 (vh1 − P1vh2)

≡ Jh (vh1 ,vh2) .

Here R12 is a restriction map onto the nodes of Ω
∗
12 from Ω∗

1 , see Chap. 6.
The reduced functional Hh(·) can be discretized using:

Hh (gh1 ,gh2) ≡ Jh (vh1 ,vh2) ,

where

vhi
=

[
A

(i)−1

II (f (i)
I − A

(i)
IBg(i)

B )

g(i)
B

]
for 1 ≤ i ≤ 2.

Stationarity Condition. The first order derivative conditions for the mini-
mum of Hh(·) will yield the following equations for (g(1)

B ,g(2)
B ):[

ET
1 RT

12A
(12)R12E1 − ET

1 RT
12A

(12)R12P1E2

− ET
2 PT

1 RT
12A

(12)R12E1 ET
2 PT

1 RT
12A

(12)R12P1E2

] [
g(1)

B

g(2)
B

]
=

[
γ

(1)
B

γ
(2)
B

]

(1.40)
where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ
(1)
B ≡ ET

1 RT
12A

(12)R12

(
−µ

(1)
I + P1µ

(2)
I

)
,

γ
(2)
B ≡ ET

2 PT
1 RT

12A
(12)R12

(
−µ

(1)
I + P1µ

(2)
I

)
,

Ei ≡
[
−A

(i)−1

II A
(i)
IB

I

]
,

µ
(i)
I ≡

[
A

(i)−1

II f (i)
I

0

]
,

w(i)
I = A

(i)−1

II

(
f (i)
I − A

(i)
IBg(i)

B

)
, for i = 1, 2.
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Thus, a non-matching grid discretization of (1.33) based on the subdomains
involves solving system (1.40) for the control boundary data g(1)

B and g(2)
B .

Subsequently, the subdomain solution w(i)
I can be determined as:

w(i)
I = A

(i)−1

II

(
f (i)
I − A

(i)
IBg(i)

I

)
, for 1 ≤ i ≤ 2.

Remark 1.37. General results on the stability and convergence properties of
such discretizations are not known. However, when both local grids match on
Ω∗

12, projection P1 = I and the global discretization will be equivalent to a
traditional discretization of (1.33) on the global triangulation.

1.5.4 Heterogeneous Approximations

The least square-control formulation (1.35) provides a flexible framework for
constructing heterogeneous approximations of general systems of partial dif-
ferential equations of heterogeneous character [AT, GL13]. We illustrate here
how an elliptic-hyperbolic approximation can be constructed for the following
singularly perturbed elliptic equation:{

Lε u ≡ −ε∆u + b(x) · ∇u + c(x) u = f, on Ω
u = 0, on ∂Ω,

(1.41)

where 0 < ε � 1 is a perturbation parameter. Suppose Ω∗
1 and Ω∗

2 form an
overlapping covering of Ω such that:

|ε∆u| � |b(x) · ∇u + c(x) u| , in Ω∗
1 .

We may then heuristically approximate Lε u = f in Ω∗
1 by L0u = f where

L0 u ≡ b(x) · ∇u + c(x) u. To construct an elliptic-hyperbolic approximation
of (1.41), replace the elliptic problem Lε v1 = f on Ω∗

1 by the hyperbolic prob-
lem L0 v1 = f within the least squares-control formulation (1.35) of (1.41).
The resulting heterogeneous problem will seek (w1, w2) which minimizes:

Ĵ(w1, w2) = min
(v1,v2)∈K̂

Ĵ(v1, v2),

where
Ĵ (v1, v2) ≡ 1

2
‖v1 − v2‖2

L2(Ω∗
12)

,

and K̂ consists of (v1, v2) which satisfy the constraints:⎧⎪⎨
⎪⎩

L0 v1 = f, on Ω∗
1

v1 = g1, on B
(1)
in

v1 = 0, on B[1],in

and

⎧⎪⎨
⎪⎩

Lε v2 = f, on Ω∗
2

v2 = g2, on B(2)

v2 = 0, on B[2].

(1.42)
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Here the inflow boundary segments of B(1) and B[1] are defined by:{
B

(1)
in ≡

{
x ∈ B(1) : n1(x) · b(x) < 0

}
B[1],in ≡

{
x ∈ B[1] : n1(x) · b(x) < 0

}
,

where n1(x) is the unit outward normal to B1 at x.

Remark 1.38. The admissible set K̂ may be parameterized in terms of the local
boundary data. An equivalent unconstrained minimization problem may then
be obtained analogous to (1.37) and (1.38). See also Chap. 12.

Remark 1.39. The solution (w1, w2) to the above heterogeneous model may
not match on Ω∗

12 and the minimum value of Ĵ(·) within the class K̂ may no
longer be zero. A continuous global solution, however, may be obtained by
employing a partition of unity χ1(x) and χ2(x) subordinate to the cover Ω∗

1

and Ω∗
2 and by defining:

w(x) ≡ χ1(x) w1(x) + χ2(x) w2(x).

Remark 1.40. Rigorous results are not known on the well posedness of the
above heterogeneous model. The above procedure has been generalized and
employed to construct heterogeneous approximations to the Boltzmann,
Navier-Stokes and Euler equations [AT, GL13].



http://www.springer.com/978-3-540-77205-7


