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Summary. The commonly applied rule of thumb to use a fixed number of elements per wave-
length in linear time–harmonic acoustics is discussed together with the question of using either
continuous or discontinuous elements for collocation. Continuous interpolation of the sound
pressure has been favored in most applications of boundary element methods for acoustics.
Only a few papers are known where discontinuous elements are applied because they guaran-
tee C1 continuity of the geometry at element edges. In these cases, it was assumed that the
same number of elements as for continuous elements is required for the same numeric error.
Of course this implies a larger degree of freedom. An effect of superconvergence is known for
boundary element collocation on discontinuous elements. This effect is observed if the collo-
cation points are located at the zeros of orthogonal functions, e.g. at the zeros of the Legendre
polynomials. We start with a review of continuous and discontinuous boundary elements us-
ing constant, linear and quadratic interpolation on triangular and quadrilateral elements. Major
part of this contribution consists of the investigation of the computational example of a long
duct. For that, the numeric solution is compared with the analytic solution of the corresponding
one–dimensional problem. Error dependence in terms of frequency, element size and location
of nodes on discontinuous elements is reported. It will be shown that the zeros of the Legendre
polynomials account for an optimal position of nodes for this problem of interior acoustics.
Similar results are observed for triangular elements. It can be seen that the error in the Eu-
clidean norm changes by one or two orders of magnitude if the location of nodes is shifted
over the element. The irregular mesh of a sedan cabin compartment accounts for the second
example. The optimal choice of node position is confirmed for this example. It is one of the
key results of this paper, that discontinuous boundary elements perform more efficiently than
continuous ones, in particular for linear elements. This, however, implies that nodes are lo-
cated at the zeros of orthogonal functions on the element. Furthermore, there is no indication
of a similarity to the pollution effect which is known from finite element methods.

11.1 Introduction

It is widely accepted that the element size in element–based acoustic computations
should be related to the wavelength. Often, the element size is measured in a certain
(fixed) number of elements per wavelength. In many cases, this number of elements
per wavelength is given for constant or linear/bilinear elements. It varies between six
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and ten. Obviously, this number is closely related to a certain desired accuracy. Often
the error is of an acceptable magnitude which depends on the user and which meets
certain technical requirements.

The idea of using a fixed number of elements per wavelength is most likely a
consequence of Shannon’s sampling theorem [14]. This theorem is of fundamental
importance in vibration and acoustics for experimental measurements and frequency
detection. It states that at least two points per wavelength (or period of oscillating
function) are necessary to detect the corresponding frequency. However, a simple
detection cannot be sufficient to approximate the function. Schmiechen [29] inves-
tigates discretization of axisymmetric structures for modal analysis. He states that
two points per wavelength are strictly sufficient, but would still not lead to accurate
mode shapes. Another factor of 3 to 5 is advised. This is equivalent to the number
of six to ten nodes per wavelength. We mention that the number of nodes was given
for bilinear shell elements. A similar result can be extracted from the author’s pa-
per [19]. There, the eigenvalues of a one–dimensional problem are shown for linear
and quadratic finite elements. The eigenvalue distribution can be easily related to the
Shannon frequency. For linear and quadratic elements, the largest eigenfrequency is
slightly larger than the frequency which corresponds to two points per wavelength.
For quadratic elements, a gap of eigenfrequencies occurs beyond frequencies of two
(quadratic) elements per wavelength. This, however, is equivalent to four points per
wave. Although done for finite elements these investigation will most likely hold for
boundary element methods as well.

The common rule of using six linear boundary elements per wavelength (or, more
general, six points per wavelength) are investigated in the author’s papers [18, 22].
Therein, performance of constant elements, of linear and quadratic boundary ele-
ments are compared. The results of these papers are summarized in this article.

In boundary element methods, it is quite common to use Lagrangian elements [7,
8,15,36]. In contradiction to finite element methods, the basis functions of the bound-
ary element method underly lower continuity requirements, i.e. there is no particu-
lar reason of demanding continuity at element edges for boundary element colloca-
tion methods. Consequently, the elements can be either continuous or discontinuous.
This means that the physical quantity, i.e. the sound pressure may be either contin-
uous or discontinuous at element edges but the geometry remains continuous. There
are numerous examples of the use of discontinuous boundary elements in literature,
cf. [1, 2, 9–12, 16, 17, 20, 23, 25–28, 30, 32, 33, 35, 37–40]. In many cases, discon-
tinuous boundary elements have been used for collocation only because the normal
derivative integral equation which requires C1−continuity in the collocation point.
This is relevant for methods such as the one by Burton and Miller [4,24,27]. Wu and
Seybert [38, 39] proposed a discontinuous variant of using continuous interpolation
while the collocation points were located inside the elements. This resulted in an
overdetermined system of equations for the hypersingular formulation. In their re-
view paper on DtN–methods for acoustic scattering and radiation, Harari et al. [11]
mentioned that the hypersingular formulation of the boundary element method for
wave scattering and radiation would be inefficient since necessity of discontinuous
elements would require much more memory and computational time than conven-
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tional boundary element methods that encounter the problem of the so–called irreg-
ular frequencies. This remark presupposes that the numeric error of discontinuous
elements is about the same as for continuous elements while the degree of freedom
is much higher for discontinuous interpolation. Similarly, same accuracy was pre-
sumed for continuous and discontinuous boundary elements in an older paper of
Harari and Hughes [12] where efficiency of finite and boundary element methods
was compared.

There are a number of papers in which discontinuous elements are compared with
continuous elements. Often, continuous elements are considered advantageous, espe-
cially because they physical continuity condition at element edges is fulfilled [17,40].
For that reason, discontinuous elements were considered as an alternative to contin-
uous elements if either higher continuity in the collocation point is required (see
above) or if boundary conditions are discontinuous [17, 26]. In the paper [40] per-
formance of discontinuous elements is evaluated based on the element–to–element
jump of the physical quantity. Many authors (of engineering) conclude that they
recommend the use of mixed continuous/discontinuous elements, i.e. discontinuous
elements only where they are really required, but an overall mesh of discontinuous
elements would supply too many degrees of freedom. The idea of using these mixed
meshes is nicely worked out and presented in detail by do Rego Silva et al. [27, 28].
The element definitions given are will be reviewed here.

Herein, we will compare meshes of continuous and discontinuous elements based
on the overall error arising due to a certain element size. It will be shown that discon-
tinuous elements may give much smaller errors even for the same degree of freedom
as a mesh of continuous elements. This is due to a superconvergence effect which
has been well–known in mathematical literature.

Atkinson [2] reviewed this effect of superconvergence for error dependence upon
element size for discontinuous boundary elements for the case that collocation points
are located at the zeros of orthogonal functions for the standard interval. This effect
had been discovered earlier by Chandler [5] and Chatelin and Lebbar [6]. Although
this superconvergence effect was studied well, discontinuous boundary elements
with nodes at zeros of orthogonal functions, in particular of Legendre polynomials
as the simplest case, have hardly been used for practical applications. The authors
have found very few papers that described this technique for the Helmholtz equa-
tion. A similar idea was proposed by Branski [3] who applied Čebyčev polynomials
for acoustic source modeling. Tadeu and Antonio [32] found for the axisymmetric
case that linear discontinuous elements are substantially influenced by position of
collocation points whereas quadratic elements showed marginal dependence upon
their locations. Extended investigations on continuous and discontinuous elements
were presented in the aforementioned papers [18, 22]. The dependence on location
of the collocation points on the element shows a clear optimum.

This paper is organized as follows: We start with the review of continuous and
discontinuous Lagrangian boundary elements. These elements are compared with
respect to two examples. The first considers traveling waves in a long duct. The nu-
merical solution of the 3d–problem is compared with the simple analytic solution of
the 1d–problem. A sedan cabin compartment is investigated as the second example.
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11.2 Continuous and Discontinuous Boundary Elements

11.2.1 Quadrilateral Elements

Quadrilateral boundary elements are usually transformed from a standard interval
−1 ≤ η1 ≤ +1 and −1 ≤ η2 ≤ +1 to an arbitrary piecewise smooth surface. Thus,
the geometry is approximated by shape functions. It is not the subject of this paper
to investigate the influence of these shape functions. It is assumed that all shape
approximations in this paper are exact or include an error which may be neglected.
In the practical application, this is ensured by using linear or quadratic polynomial
shape functions. In general, an element with constant interpolation may be defined
on a parabolic surface (superparametric approximation of the geometry). In other
cases, a subparametric approximation is suitable, especially on plane surface areas.

Continuous elements account for the most commonly used types of boundary
elements. Most likely, this is due to the experiences which users have made in the
context of finite elements and, also, due to the misunderstanding that a continuous
physical quantity, e.g. the sound pressure, should be approximated by continuous
functions. Most popular elements are constructed by (bi)linear and (bi)quadratic La-
grangian interpolation functions.

Interpolation functions of continuous quadrilateral surface elements are easily
constructed by multiplying two one–dimensional polynomials ψ1 and ψ2, cf. [27].
Introducing the notation of upper indices l and q for linear and quadratic polynomi-
als, respectively, these linear polynomials are formulated as

ψl1(ηk) =
1
2
(1 − ηk) and

(11.1)
ψl2(ηk) =

1
2
(1 + ηk)

whereas quadratic polynomials are given by

ψq1(ηk) =
1
2
ηk(1 − ηk) ,

ψq2(ηk) =
1
2
ηk(1 + ηk) and (11.2)

ψq3(ηk) = (1 − η2
k) .

Interpolation functions of discontinuous quadrilateral elements are constructed
in a similar way. The simplest discontinuous elements use constant interpolation.
Hence we write constant interpolation function as

ψc1(ηk) = 1 . (11.3)

For linear and quadratic discontinuous elements, we assume that the distance be-
tween the element edge and the closest nodal point on the standard element is given
by the value of a with 0 < a < 1. Introducing the constant ζ = 1 − α, we write the
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Fig. 11.1 Linear (left) and quadratic (right) continuous quadrilateral elements.

ψl1(ηk) =
1
2ζ

(ζ − ηk) and
(11.4)

ψl2(ηk) =
1
2ζ

(ζ + ηk)

whereas quadratic polynomials are given by

ψq1(ηk) =
1

2ζ2
ηk (ηk − ζ) ,

ψq2(ηk) =
1

2ζ2
ηk (ηk + ζ) and (11.5)

ψq3(ηk) =
1
ζ2

(ζ − ηk) (ζ + ηk) .

The actual interpolation functions ϕl on the quadrilateral element are evaluated
by multiplying the two one–dimensional polynomials ψi(η1) and ψk(η2), cf. [27].
This gives the polynomials for constant quadrilaterals as

ϕc1 = ψc1(η1)ψ
c
1(η2) = 1 , (11.6)

for linear elements as

ϕl1 = ψl1(η1)ψ
l
1(η2) , ϕl2 = ψl2(η1)ψ

l
1(η2) ,

ϕl3 = ψl2(η1)ψ
l
2(η2) , ϕl4 = ψl1(η1)ψ

l
2(η2) ,

(11.7)

and analogously for quadratic quadrilateral elements as

ϕq1 = ψq1(η1)ψ
q
1(η2) , ϕq2 = ψq2(η1)ψ

q
1(η2) , ϕq3 = ψq2(η1)ψ

q
2(η2) ,

ϕq4 = ψq1(η1)ψ
q
2(η2) , ϕq5 = ψq3(η1)ψ

q
1(η2) , ϕq6 = ψq2(η1)ψ

q
3(η2) ,

ϕq7 = ψq3(η1)ψ
q
2(η2) , ϕq8 = ψq1(η1)ψ

q
3(η2) , ϕq9 = ψq3(η1)ψ

q
3(η2) .

(11.8)

Figures 11.1 and 11.2 show the locations of nodes on continuous and discontin-
uous quadrilateral elements, respectively. Throughout the computational examples
we will indicate different polynomial degree and element types for quadrilaterals as
follows:
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Fig. 11.2 Constant (left), linear (middle) and quadratic (right) discontinuous quadrilateral
elements.

P0 constant (discontinuous)
P1c linear continuous
P1e linear discontinuous,

equidistant distribution of nodes (α = 0.5)
P1L linear discontinuous,

nodes at zeros of Legendre polynomials (α = 0.4226)
P2c quadratic continuous
P2e quadratic discontinuous,

equidistant distribution of nodes (α = 0.3333)
P2L quadratic discontinuous,

nodes at zeros of Legendre polynomials (α = 0.2254)
Note that linear elements are actually bilinear elements since they involve a nonlin-
ear term. Similarly, quadratic elements are actually biquadratic elements since higher
order terms occur. The configurations of P1e and P2e produce an equidistantly dis-
tributed pattern of nodes on a regular mesh. In literature, this was recommended as a
reasonable configuration for discontinuous elements, cf. [27, 28].

11.2.2 Triangular Elements

For triangular elements we use transformation from the standard interval 0 ≤ γ1 ≤ 1
and 0 ≤ γ2 ≤ γ1 to an arbitrary smooth triangular surface element. Coordinate trans-
formation and interpolation are done in an analogous way to quadrilateral elements.
The details are different though. The parameter which is used to define the position
of nodes on the element is called β.

In a similar way as for the quadrilateral elements, we start with introduction
of one–dimensional polynomials. In contradiction to quadrilateral elements, at this
stage, we will not distinguish between linear and quadratic elements. We introduce
γ3 = 1 − γ1 − γ2 and

ψk(γk) =
γk − β

1 − 3β
for k = 1, 2, 3 . (11.9)

The interpolation functions, however, require distinction into constant elements

ϕc1 = 1 , (11.10)

linear elements
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Fig. 11.3 Linear (left) and quadratic (right) continuous triangular elements.

Fig. 11.4 Constant (left), linear (middle) and quadratic (right) discontinuous triangular ele-
ments.

ϕl1 = ψ3(γ3) ,

ϕl2 = ψ1(γ1) ,

ϕl3 = ψ2(γ2)

(11.11)

and quadratic elements as

ϕq1 = ψ3(γ3) [2ψ3(γ3) − 1] , ϕq4 = 4ψ1(γ1)ψ3(γ3) ,

ϕq2 = ψ1(γ1) [2ψ1(γ1) − 1] , ϕq5 = 4ψ1(γ1)ψ2(γ2) ,

ϕq3 = ψ2(γ2) [2ψ2(γ2) − 1] , ϕq6 = 4ψ2(γ2)ψ3(γ3) .

(11.12)

The node of a constant element is defined at the centroid of triangle, i.e. (γ1, γ2) =
(1/3, 1/3). The nodes of linear elements are located at (β, β) (1), (1 − 2β, β) (2)
and (β, 1 − 2β) (3), whereas for quadratic elements, nodes 4–6 are assumed half
way between the two nodes of 1–3 respectively, e.g. node 4 half way between 1 and
3. The nodal configurations of continuous and discontinuous triangular elements are
shown in Figures 11.3 and 11.4 respectively. In a similar way as for the quadrilateral
elements we use P0, P1c and P2c, whereas linear and quadratic discontinuous ele-
ments require further specifications as
P1e linear discontinuous,

equidistant distribution of nodes (β = 0.25)
P1L linear discontinuous,

nodes at zeros of Legendre polynomials (β = 0.1667)
P2e quadratic discontinuous,

equidistant distribution of nodes (β = 0.1667)
P2L quadratic discontinuous,

nodes at zeros of Legendre polynomials (β = 0.0916)
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Note that orthogonal polynomials with respect to the weighting function 1 on a tri-
angular domain are not called Legendre polynomials. We just keep this notation to
compare with quadrilateral elements. Furthermore, note that the zeros of second or-
der orthogonal polynomials with respect to the weighting function 1 on a triangular
domain do not form a triangle. Actually, nodes 1–3 and 4–6 describe two triangles
according to Figure 11.4. However, their location is well approximated by one tri-
angle. To be exact [31], two values of β are required, i.e. for nodes 1–3 we have
β = 0.0916 whereas nodes 4–6 require β = 0.1081.

11.3 Error Measures

We define an error function eΓ for the surface error as

eΓ (x) = p̄(x) − p(x) x ∈ Γ (11.13)

where p̄(x) represents the approximate solution yielded by using the boundary
element formulation and p(x) represents either the analytic solution of the one–
dimensional duct problem or, in case of the sedan cabin, the solution which is ob-
tained by the finest discretization using quadratic elements P2L. An error eΩ is de-
fined analogously in the interior domain, i.e. for x ∈ Ω.

The discrete error function is evaluated in discrete points, i.e. all collocation
points for the surface error and 33 internal points for the error in the cavity, i.e.
all points located in centroid of the cross section and equidistantly distributed along
the length. Then, the discrete surface error is determined as

||eΓ ||m =

(
1
Nn

Nn∑
i=1

‖e(xi)‖m
) 1

m

(11.14)

where Nn represents the number of nodes and m the specific norm, the Euclidean
norm (rms) for m = 2 and the maximum norm for m → ∞.

Further, we use relative errors eΓm for the sound pressure error

eΓm =
||eΓ ||m
||pΓ ||m

(11.15)

where ||pΓ ||m accounts for the discrete norm of the exact sound pressure. Analo-
gously, eΩm accounts for the sound pressure error at 33 equally spaced points inside
the duct.

An iterative solver is used for the linear system of equations. The residuum of
10−8 which is demanded guarantees that the iterative solver does not essentially
influence the error functions.
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Fig. 11.5 BE mesh of duct end, h8.

11.4 Computational Example: Long Duct

11.4.1 Model Description and Error Measures

We consider an air–filled duct of length l = 3.4 m and a 0.2m×0.2m square cross
section. Material data of air being ρ = 1.3 kg/m3 and c = 340 m/s, we expect one
wave over the length at f = 100 Hz. We assume Y = 0 on the entire surface with
the exception of Y (l) = (ρc)−1. Furthermore, for the particle velocity we use vs =
0 with the exception vs(x = 0) = 1 m/s where the coordinate x is used in the
interval of 0 ≤ x ≤ l. Since we want to compare solutions of the three–dimensional
method with the analytical solution of the corresponding one–dimensional problem,
it is necessary to apply zero boundary conditions for the boundary admittance and
the particle velocity at all other surfaces.

The exact solution of the corresponding one–dimensional problem is given by

p(x) = − vs(0) ρc eikx . (11.16)

The sound pressure magnitude is constant in the duct and over the entire frequency
range. The solution may be considered as waves traveling through the duct. The
boundary condition at x = l ensures that the wave is fully absorbed.

Although, a smooth solution is expected over the entire frequency range, the
numeric solution is unstable if modes perpendicular to the traveling waves occur.
For the above given cross section, these modes occur for frequencies of 850, 1700,
2550, 3400 Hz and higher. To present a smooth solution for higher frequencies, we
compare with the additional example of a particular thin duct of 0.025m×0.025m
square cross section. There, perpendicular modes may be expected from 6800 Hz
on. This corresponds to a wavenumber kl = 136π.

Several different meshes are considered. In what follows, we will use hn to in-
dicate element size. Subscript n counts the number of elements over the width of
the duct. Figure 11.5 shows the h8–mesh of the duct end. More detailed information
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Table 11.1 Comparison of mesh sizes (number of nodes and elements) for different element
sizes, for continuous and discontinuous quadrilateral elements and for different polynomial
degree of interpolation.

number of ref. edge–length polynomial number number of nodes

elements per to of element degree of for elements

length width h in [m] p elements contin. discontin.

0 70
17 1 h1 0.2 1 70 72 280

2 282 630

0 280
34 2 h2 0.1 1 280 282 1120

2 1122 2520

0 630
51 3 h3 0.0667 1 630 632 2522

2 2522 5670

0 1120
68 4 h4 0.05 1 1120 1122 4480

2 4482 10080

0 2520102 6 h6 0.0333 25201 2522

0 4480136 8 h8 0.025 44801 4482

(thin) 0 546
136 1 0.025 1 546 548 2184

2 2186 4914

about mesh size, number of nodes and elements for different types of elements can
be found in Table 11.1.

11.4.2 Error in Terms of Location in the Duct

We start with investigating the error along the length of the duct. In Figure 11.6, we
compare one line in models of P0, P1c and P2c elements. Using constant elements,
we observe that the approximate solution of the sound pressure magnitude under-
estimates the exact solution over the whole length of the duct. The deviation varies
rather little. In contrast to the solution with constant elements, linear elements pro-
vide a solution where the sound pressure magnitude is somewhat overestimated at
one end and clearly underestimated at the other. Obviously, the ratio between maxi-
mum norm and Euclidean norm is greater for linear elements compared to constant
elements.

Moreover, Figure 11.6 illustrates the difference between edges and smooth sur-
faces. Although, the problem is essentially one–dimensional, the sound pressure
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Fig. 11.6 Sound pressure magnitude along lines on surface over the length of duct (colloca-
tion points marked) at f = 500 Hz: Comparison of exact and numerical solutions using P0,
P1c and P2c elements.

magnitude at collocation points on smooth surfaces is significantly smaller that at
edge points. This observation holds for continuous elements only since discontinu-
ous do not allow collocation points at edges. In Figure 11.6, this effect is only shown
for linear elements since it is less significant for quadratic elements, cf. [18].

11.4.3 Error in Terms of Frequency

Figure 11.7 shows the error eΓ2 for different meshes in terms of frequency. We ob-
serve similar errors and slopes for P0 and P1c elements. It is common to write the
error in the form

eΓ (h, k) ∼ C(h, . . .) kα . (11.17)

For the P1L elements, the error is much lower than for P0 and P1c elements. How-
ever, we observe that for P1L the error functions are quite flat up to a certain fre-
quency. Above that frequency, these curves increase drastically. Most likely, the error
dependence cannot be written in the form of Equation (11.17).

For P2c elements, the error curves in terms of k are much steeper. Functions of
error show lower rise for elements P2L, especially if the error is of low level. In
general, the error level is very low for elements P1L and P2L. This indicates that the
theoretical prediction that collocation at the zeros of Legendre polynomials causes
an effect of superconvergence, cf. Atkinson [2], seems to hold. Actually, it is just
possible to identify a very low error but the superconvergence effect is not confirmed
at this point.

In the lower right subfigure of Figure 11.7 the smoother functions of error
of the thin duct are collected. All of these models consist of the same number
of elements while the number of nodes differs significantly. It can be seen that
more or less straight lines represent the error dependence upon k for the elements
P0, P1c, P1e, P2c and P2e provided that the error is less than 20 . . . 30%. When look-
ing at the error dependence forP1L andP2L straight lines are observed for low errors.
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Fig. 11.7 Long duct: Surface error in Euclidean norm in terms of frequency and wave number;
resp., Lower right subfigure: Surface error for thin duct and different element types.

To our surprise, the error decreases significantly beyond 2000 Hz in the case of linear
elements P1L, whereas the error stagnates in a frequency range between 3500 and
6000 Hz for elements P2L. These phenomena will be discussed later in this section
when looking for an optimal location of nodal points on the element.

Efficiency of element types is compared for surface error in Euclidean norm and
in maximum norm in Figure 11.8 and Figure 11.9, respectively. Based on the assump-
tion that the number of nodes mainly controls the computational costs (memory and
CPU time), we compare different meshes of the same degree of freedom being 2520
or 2522, cf. Table 11.1. When considering the error in the Euclidean norm, quadratic
elements P2L prove to be most efficient. Quadratic elements P2c and P2e perform
well too. However, linear elements P1L prove to perform efficiently if very low er-
rors are desired. Furthermore, it can be seen that constant elements are as efficient
as discontinuous linear elements P1e and provide lower errors than continuous linear
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Fig. 11.8 Long duct, surface error in Euclidean norm: Comparison of different element types.
Note, that all models have the same degree of freedom of approx. 2520.

elements P1c. We observe a slightly different behaviour when the error is measured
in the maximum norm, cf. Figure 11.9. Then, quadratic elements P2L and P2c give
about the same error, whereas elements P2e come out with larger errors. Again, lin-
ear elements P1L give very low errors compared with linear elements P1e and P1c.
The latter have larger errors than constant elements P0.

Based on the results of this chapter there is no indication of a pollution effect for
boundary element collocation method. We will review this problem in the subsequent
subsection again.

In the papers [18, 22], the reader finds additional graphs on error in terms of
frequency. These include comparisons of quadrilaterals and triangles, where hardly
any difference could be observed. Further, the differences of errors in Euclidian and
in maximum norms are compared. More detailed comparisons of surface error and
field point errors are shown.

11.4.4 Error in Terms of Element Size

The computational example in Ref. [18] confirmed the effect of superconvergence for
regular meshes and even polynomial degree of the interpolation functions. Following
Atkinson’s prediction [2] we should expect an error dependence as

eΓ (h, k) ∼ C(k, . . .) hp+1 (11.18)

where p is the polynomial degree. For a regular mesh of constant or continuous
elements of even number of polynomial degree of the interpolation functions, we
can expect an additional factor of h in the error dependence as



322 S Marburg

Fig. 11.9 Long duct, surface error in maximum norm: Comparison of different element types.
Note, that all models have the same degree of freedom of approx. 2520.

eΓ (k, h) ∼ Ch(k, . . .)hp+2 , p = 0, 2, 4, . . . (11.19)

The higher exponents β for regular meshes of constant or continuous elements of
even polynomial degree are valid for the Euclidean norm measured in the discrete
collocation points only. If we consider the error measured in the Euclidean norm
over the entire surface we would observe an error behaviour as given in (11.18).

The effect of superconvergence at collocation points is well documented in the
literature, see for example Hackbusch [10]. There, the superconvergence effect is
reported for arbitrary meshes of constant elements. This coincides with the obser-
vation [2, 5, 6] indicating that the effect of superconvergence may be achieved on
arbitrary meshes of discontinuous Lagrange elements with nodal point at the zeros
of orthogonal polynomials, e.g. Legenndre polynomials.

Error dependence in terms of the element size is presented for two different fre-
quencies in Figure 11.10. We easily realize that different functions of error occur
for different frequencies. For 500 Hz, lines for P0, P1e, P1c and P1L are almost par-
allel but on different levels. The remaining three functions are almost parallel too
but much steeper. For 1500 Hz, the lines for P0, P1e are P1c parallel. The error for
elements P1L, however, is now parallel to the lines of quadratic elements which in-
dicates higher convergence rate for these higher frequencies. Note, that functions of
error for P1L and P2e coincide!

So we realize that slopes of error for P1L are about the same as for other linear or
for constant elements at the low frequency of 500 Hz but much greater for the higher
frequency of 1500 Hz. A similar behaviour is assumed for quadratic elements P2L.
The frequency is not large enough to confirm. (Solutions at higher frequencies are
perturbed due to the ill–conditioning of perpendicular modes.)
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Fig. 11.10 Long duct, surface error in Euclidean norm, error in terms of element size.

Since the error functions in terms of mesh size show the same slopes at least for
the P0, P1e, P1c, P2c and P2e elements, we assume that an occurrence of a pollution
effect which is well–known from finite elements [13] is very unlikely. In the subse-
quent subsection, we will discuss why the slopes of error functions of P1L and P2L

elements show or may show a dependence on frequency.

11.4.5 Error in Terms of Location of Collocation Points

In this subsection, the location of nodal points is investigated. It became obvious in
the previous subsections that location of nodes at the zeros of Legendre polynomials
provides lower errors compared to an equidistant distribution of nodes on the sur-
face. According to Atkinson, it is not required to put nodes at the zeroes of Legendre
polynomials. More general, nodes should be located at zeroes of orthogonal func-
tions being defined on the standard interval [−1, 1]. Legendre polynomials account
for the simplest selection of orthogonal functions since they are well–known and par-
ticularly designed for the interval [−1, 1]. In what follows, it will be investigated if
the zeros of the Legendre polynomials actually account an optimal position of nodes.

Figure 11.11 contains the errors eΓ2 and eΩ2 in terms of α. Our test model h2 con-
sists of 280 elements. We expect the lowest error at α = 0.4226 for linear elements
and at α = 0.2254 for quadratic elements. Although not exactly fulfilled we see that
an optimal location of nodal values is very close to the zeros of the Legendre polyno-
mials. The optimal value varies with frequency. For low frequencies and low error,
lower values of α account for an optimal position, for higher frequencies and, con-
sequently, higher errors an α greater than that providing the zeros of the Legendre
polynomials is required for optimal elements. In between, a large frequency range is
observed where nodal points are optimally placed as predicted [2, 5, 6].

Actually, the optimal location of nodes at the zeros of Legendre polynomials
refers to pure Neumann problems using the double layer potential operator. Herein,
a mixed problem is considered because a Robin boundary condition is applied at one
end of the duct. Apparently, the choice of nodes at the zeros of the Legendre poly-
nomials is a good approximation of the optimal location. In case of other operators,
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Fig. 11.11 Long duct, quadrilateral elements, surface error and error at internal points in
Euclidean norm, error in terms of the position of nodal points on elements.

i.e. the hypersingular operator, and other boundary conditions, the optimal position
of nodes may differ from the one identified here.

It shall be mentioned at this point that for certain frequencies extremely low
errors are gained for field points compared to surface error. The most remarkable
example is found for quadratic elements at 1500 Hz. However, significant differences
can be found at 500 and 1000 Hz for both, linear and quadratic elements. The error
of the solution at the surface and at internal points is almost the same for very low
and for higher frequencies.

The fact that the optimal location of nodal points varies with frequency explains
the error behaviour for the thin duct, cf. lower right subfigure of Figure 11.7. There,
we have observed decreasing error for increasing frequency in certain ranges. It does
further explain why error dependence upon element size changes with frequency.

In Table 11.2, the error eΓ2 is compared for continuous and discontinuous ele-
ments. The third column contains the numeric error of the h2 discretization of con-
tinuous elements which is the same element size as for the discontinuous elements.
The fourth column contains the error of the h4 discretization of continuous elements
which results in (approximately) the same degree of freedom as for the discontinu-
ous elements. These results confirm that the node location at the Legendre zeros and,
even better, the optimal location give much more accuracy for linear elements and,
mostly, better accuracy for quadratic elements.

By now, our considerations were limited to quadrilateral elements. When looking
at the error in terms of node position it is necessary to investigate triangles separately.
For that, we create a mesh of triangles simply by dividing each quadrilateral into two
triangles. Starting with the element size h = 0.1m we yield 560 triangles. Linear
and quadratic discontinuous elements give 1680 and 3360 nodes, respectively.
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Fig. 11.12 Long duct, triangular elements, surface error and error at internal points in Eu-
clidean norm, error in terms of the position of nodal points on elements.

Table 11.2 Long duct, quadrilateral elements, eΓ
2 in %, comparison between continuous (dif-

ferent element size) and discontinuous elements (different location of nodes).

f continuous elements discontinuous elements h2, location of nodes

p [Hz] h2 h4 equidistant Legendre zeros best solution

100 4.1 1.2 0.82 0.11 0.032
500 25.6 8.2 5.3 0.49 0.25

1 1000 51.3 18.5 10.5 1.24 1.16
1500 68.7 28.8 12.7 6.04 5.0
2000 — 39.3 26.0 100 24.2

100 0.0024 0.0002 0.0017 0.0004 0.0003
500 0.35 0.024 0.17 0.021 0.021

2 1000 3.2 0.23 1.55 0.15 0.145
1500 11.1 0.85 5.49 0.51 0.446
2000 37.3 2.1 28.7 4.66 3.37

Figure 11.12 supplies estimates for optimal location of nodal points in triangles.
The results confirm the prediction that the optimal position is at β = 0.1667 on
linear elements and in the interval 0.0916 ≤ β ≤ 0.1081. A value of β ≈ 0.098 is
identified as the optimum. Similar to quadrilateral elements, we observe a particular
gain in accuracy for internal points at certain frequencies. These frequencies coincide
with those reported for quadrilateral elements.

As a conclusion for this subsection we want to emphasize that the position of
nodal points on the element can influence the accuracy of the solution by one to two
orders of magnitude.
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Table 11.3 Comparison of mesh sizes (number of nodes and elements) for different element
sizes, triangular and quadrilateral elements and for different polynomial degree of interpola-
tion.

maximum polynom. number number number of nodes

elem. size degree of of elements

h in [m] p elem. triang. quadril. contin. discontin.

0 258
0.4 1 258 104 154 208 928

2 826 2010

0 604
0.2 1 604 128 476 542 2288

2 2162 5052

0 1774
0.1 1 1774 74 1700 1739 7022

2 6950 15744

0 5738
0.05 5738 24 5714

1 5728

11.5 Computational Example: Sedan Cabin Compartment

This example is chosen to examine an irregular mesh which is the result of an au-
tomatic mesh generation. Four meshes are investigated. The meshes contain quadri-
laterals and triangles. Their detailed data are given in Table 11.3. A more vivid de-
scription of these models is shown in Figure 11.13. For discontinuous elements with
nodes at zeroes of the Legendre polynomials, P1L and P2L, we distinguish between
triangles and quadrilaterals as discussed in the previous section.

A fictitious excitation with uniform normal particle velocity v̄s = 1 mm/s at the
lower left front area is applied, cf. Figure 11.13. A uniform boundary admittance of

Y =
1
ρc

f

f0
(f0 = 2800 Hz) (11.20)

is applied to simulate the absorbing behaviour of the surfaces inside the cabin [21].
This value corresponds to experimental measurements of the reverberation time and
a corresponding average absorption coefficient. The sound pressure is computed at
ten points inside the cabin.

It shall be mentioned that the author is aware that realistic calculations of cabin
noise problems are done for frequencies up to (max.) 150. . .200 Hz. However, the
major uncertainty of these calculations are structural transfer functions and realistic
distributions of the boundary admittance values. We will show that even a coarse
boundary element mesh for the fluid can give an excellent approximation of the
sound pressure field over the entire frequency range.

Our reference solution is computed by using discontinuous quadratic elements of
size h ≤ 0.1 m. As indicated by Table 11.3, the associated system of equations has



11 Discretization requirements 327

Fig. 11.13 Four meshes of sedan cabin compartment, element size with upper limits, indica-
tion of excitation area by particle velocity v̄s.

15744 unknowns. In what follows, we will call this solution our reference solution
and all errors are evaluated with respect to this reference.

The left subfigure of Figure 11.14 shows the sound pressure level at an arbi-
trarily chosen internal point for different meshes. All transfer functions are in good
agreement for frequencies lower than 100 Hz. Above that, the solution of p = 0
deviates from the others but maxima and minima of the transfer functions are found
at correct frequencies up to about 350 Hz. Unlike the case of uniform mesh, linear
elements provide a better approximation of the sound pressure level in the present
application. However, even by using such a coarse mesh, the general approximation
is good. Quadratic elements hardly allow us to find differences between the different
solutions. In the right subfigure of Figure 11.14, we observe hardly any differences
between the different sound pressure level curves.

Looking at the error at internal points in terms of element size, Figures 11.15
and 11.16 show the error functions for different types of elements and different fre-
quencies. Most of these functions are virtually linear but not necessarily parallel
for the same element type, cf. Figure 11.15. The comparison of different element
types confirms excellent performance of discontinuous elements, cf. Figure 11.16.
So, we realize that, in this example, constant elements give lower error than contin-
uous linear elements. Furthermore, discontinuous linear elements give lower error
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Fig. 11.14 Sound pressure level inside the cabin, location: passenger ear in the rear, different
meshes, different polynomial degree of interpolation.

Fig. 11.15 Sedan cabin, error at ten internal points in terms of element size for different
frequencies, subfigures show behaviour for different types of elements.

than continuous quadratic elements. Note, that this presumes that a solution using
discontinuous quadratic elements provides the lowest error.

In the next step, we investigate the error in terms of location of nodal points.
For that, we use the parameter α for quadrilaterals, Figure 11.2, and β for triangles,
Figure 11.4. To use only one variable, it is assumed that α = 2β. The model for
h ≤ 0.2m consists of 476 quadrilaterals and 128 triangles. As we have seen for
the duct’s regular meshes either consisting of quadrilaterals or of triangles, optimal
values of α and 2β are different. Figure 11.17 shows that significant improvements
can be reported in the vicinity of 0.35 ≤ α ≤ 0.42 for linear and α ≈ 0.2 for
quadratic elements.



11 Discretization requirements 329

Fig. 11.16 Sedan cabin, error at ten internal points in terms of element size for different
element types, subfigures show behaviour for different frequencies.

For linear elements, a discontinuity is observed at lower frequencies at about
α = 0.35. The author could not find a reasonable explanation for this phenomenon.
Originally thought to be caused by the integration scheme, integration was performed
extremely accurate, i.e. number of integration points for Gauss–Legendre quadrature
controlled by distance between element and source point varied between 8 × 8 and
30×30 on single element. Polynom transformation [34] is applied for nearly singular
integrals.

Another unexpected result is found for quadratic elements at 250 Hz. There, the
error appears virtually insensitive with respect to the location of nodes.

11.6 Conclusions

This paper has reviewed the results of two former papers [18, 22]. Continuous
and discontinuous Lagrangian boundary elements are compared for the collocation
method.

It could be shown for these low order elements that discontinuous elements per-
form more efficient than continuous ones if nodal points are located at the zeros
of the Legendre polynomials. To achieve very low errors, the use of discontinuous
quadratic elements is recommended. If a larger error is accepted, discontinuous linear
or even constant elements can be efficiently used. The most commonly used linear
continuous elements seem to be the most unreliable and inefficient element type of
those which have been tested here.

The author has presented tables for the long duct example. These tables show
how many elements P0, P1c and P2c are required to remain below a certain error.
They confirm that six linear boundary elements correspond to 10...15 percent error
whereas the same number of constant elements correspond to approximately 10 per-
cent error. The same result is achieved when using approximately two P2c elements
per wavelength. However, the author recommends to use finer meshes in particular if
the mesh is not regular and if it contains edges and corners with geometric or other
singularities.
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Fig. 11.17 Sedan cabin, error at ten internal points in terms of location of nodes.

In the example of the long duct and, in particular, in the example of the thin
duct, we could not find any indication of a pollution effect in the frequency range
of 0 ≤ kl ≤ 160π. Consequently, a discretization rule of using a fixed number of
elements per wavelength remains acceptable for the boundary element collocation
method. When looking at the error in terms of location of the nodes on the elements,
we found that this can influence the error by one or two orders of magnitude. This
could even be shown for the irregular mesh of the sedan cabin compartment.

In addition to the remarkable gain in efficiency for discontinuous elements, it
shall be mentioned that they possess a number of interesting features as

• they are well suited for adaptive mesh refinement,
• they fulfill C1 continuity condition at collocation points which is required for the

hypersingular formulation,
• they simplify construction of mesh dependent preconditioners for iterative sol-

vers, and
• they are well suited for development of parallel codes.

Finally concluding, we strongly recommend the use of discontinuous boundary el-
ements with nodes located at the zeros of the Legendre polynomials provided our
problem is essentially related to inversion of the double layer potential operator. In
case of mixed problems and when using the hypersingular operator, it is likely that
other optimal locations of nodes will be found.
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