
Chapter 2
Fractal Classification of Typical Meteorological
Days from Global Solar Irradiance: Application
to Five Sites of Different Climates

Samia Harrouni

1 Introduction

To electrify remote areas, the use of solar energy is the best economical and techno-
logical solution. The choice of the sites for the installation of photovoltaic systems
and the analysis of their performances require the knowledge of the solar irradiation
data. To meet these requirements, we have to classify the days into typical cases for
a given site.

Many studies have investigated the problem of typical day’s classification. These
studies differ by the parameters used as criterion for the classification. This chapter
presents a classification method of daily solar irradiances which is mainly based
on fractals.

Fractals are objects presenting high degree of geometrical complexity, their
description and modeling is carried out using a powerful index called fractal di-
mension. This later contains information about geometrical irregularities of fractal
objects over multiple scales. The fractal dimension of a curve, for instance, will
lie between 1 and 2, depending on how much area it fills. The fractal dimension
can then be used to compare the complexity of two curves (Dubuc et al. 1989).
In solar field, the fractal dimension is directly related to the temporal fluctuation
of the irradiance signals. We can then quantify the solar irradiance fluctuations
in order to establish a classification according to the atmospheric state (Maafi and
Harrouni 2000, 2003; Harrouni and Guessoum 2003; Harrouni and Maafi 2002).

Our classification method defines two thresholds of the fractal dimensions using
first a heuristic method then a statistical one. This allows determining three classes
of days: clear sky day, partially clouded sky day and clouded sky day.
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This chapter is devoted to the fractal classification of typical meteorological days
from global solar irradiances. We start in Section 2 with generalities on the solar
radiation especially the most commonly used models to estimate the amount of ra-
diation falling on a tilted plane. Then, we deal in the Section 3 with the problem
of the fractal dimension estimation giving a short survey of existing methods. In
Section 4, we present a new method to evaluate the fractal dimension of discrete
temporal signals or curves with an optimization technique: the “Rectangular cov-
ering method”. To evaluate its accuracy, the proposed method is applied to fractal
signals whose theoretical fractal dimensions are known: Weierstrass function (WF)
and fractional Brownian motion (FBM). Section 5 focuses on the classification of
irradiances into typical days. This section begins with a survey of existing methods,
and then the “Rectangular covering methods” is presented. Thereafter, we will be
interested in the application of this method to five sites of different climates. Finally,
in Section 6, we give a conclusion and discuss experimental results.

2 Solar Radiation

This section reviews the properties of solar radiation on Earth and summaries
well-known models which are used to estimate the amount of radiation falling on a
tilted plane.

Extraterrestrial solar radiation falling on a surface normal to the sun’s rays at the
mean sun earth distance is given by solar constant (Isc). The current accepted value
of Isc is 1367 W/m2.

When solar radiation enters the Earth’s atmosphere, a part of the incident energy
is removed by scattering or absorption by air molecules, clouds and particulate mat-
ter usually referred to as aerosols. The radiation that is not reflected or scattered and
reaches the surface straight forwardly from the solar disk is called direct or beam
radiation. The scattered radiation which reaches the ground is called diffuse radia-
tion. Some of the radiation may reach a panel after reflection from the ground, and
is called the ground reflected irradiation. In the Liu and Jordon approach the dif-
fuse and ground reflected radiations are assumed to be isotropic. The total radiation
consisting of these three components is called global or total radiation as shown in
Fig. 2.1.

In many cases it is necessary to know the amount of energy incident on tilted
surface, as shown in Fig. 2.1. However, measured total and diffuse radiation on
horizontal surface are given in most available solar radiation databases. There are
many models to estimate the average global radiation on tilted surfaces.

In this section we present the isotropic model developed by Liu and Jordan (Liu
and Jordan 1963) which also estimates the average hourly radiation from the average
daily radiation on a tilted surface.

The daily total radiation incident on a tilted surface HT can be written as

HT = Hb,T +Hd,T +Hr,T (2.1)
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Fig. 2.1 Solar radiation components

where HT , Hb,T , Hd,T and Hr,T are daily total, beam, diffuse and ground reflected
radiation, respectively, on the tilted surface.

In this model, (Liu and Jordan 1963) assumed that the intensity of diffuse ra-
diation is uniform over the sky dome. Also, the reflected radiation is diffuse and
assumed to be isotropic. Consequently, the daily total radiation on a tilted surface is
given by

HT = HbRb +Hd

(
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)
+Hρ
(

1− cosβ
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)
(2.2)

where Hb, Hd and H are daily beam, diffuse, total radiation, respectively, on a hori-
zontal surface. β represents a tilt angle, ρ the ground albedo and Rb the ratio of the
daily beam radiation incident on an inclined plane to that on horizontal plane. For
the northern hemisphere and south facing surfaces Rb is given by

Rb =
cos(φ −β )cosδ sinω ′

s +ω ′
s sin(φ −β )sinδ

cosφ cosδ sinω ′
s +ωs sinφ sinδ

(2.3)

where ϕ , δ and ωs are the latitude, the declination and the sunset hour angle for the
horizontal surface, respectively. ωs is given by

ωs = cos−1 (− tanφ tanδ ) (2.4)

ω ′
s is the sunset hour angle for the tilted surface; it is given by

ω ′
s = min

{
cos−1 (− tanφ tanδ ) ,cos−1 (− tan(φ −β ) tanδ )

}
(2.5)

In the relation (2.3) ωs and ω ′
s are given in radian.

The daily clearness index KT is defined as the ratio of the daily global radiation
on a horizontal surface to the daily extraterrestrial radiation on a horizontal surface.
Therefore,

KT =
H
H0

(2.6)
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where H0 is the daily extraterrestrial radiation on a horizontal surface. H0 is given
by (Sayigh 1977; Kolhe et al. 2003)

H0 =
24
π

Hsc

[
1+0.033cos

(
2π jd
365

)]
(cosφ cosδ sinωs +ωs sinφ sinδ ) (2.7)

where jd is the Julian day of the year.
Outside the atmosphere there is neither diffuse radiation nor ground albedo. H0

is then assumed to be composed only of the beam radiation. Similarly, for tilted
surfaces, the daily extraterrestrial radiation above the location of interest HT 0 is
constituted only of direct component. Then, according to the relation

HbT = HbRb (2.8)

HT 0 can be computed as follows

HT 0 = H0Rb (2.9)

3 Fractal Dimension Estimation

3.1 Preliminaries

Mathematically, any metric space has a characteristic number associated with it
called dimension, the most frequently used is the so-called topological or Euclidean
dimension. The usual geometrical figures have integer Euclidean dimensions. Thus,
points, segments, surfaces and volumes have dimensions 0, 1, 2 and 3, respectively.

But what for the fractals objects, it is more complicated. For an example, the
coastline is an extremely irregular line in such way that it would seem to have a
surface, it is thus not really a line with a dimension 1, nor completely a surface with
dimension 2 but, an object whose dimension is between 1 and 2. In the same way,
we can meet fractals whose dimension ranges between 0 and 1 (Like the Cantor
set which will be seen later) and between 2 and 3 (surface which tends to fill out
a volume), etc. So, fractals have dimensions which are not integer but fractional
numbers, called fractal dimension.

In the classical geometry, an important characteristic of objects whose dimensions
are integer is that any curve generated by these elements contours has finite length.
Indeed, if we have to measure a straight line of 1 m long with a rule of 20 cm, the
number of times that one can apply the rule to the line is 5. If a rule of 10 cm is used,
the number of application of the rule will be 10 times, for a rule of 5 cm, the number
will be 20 times and so on. If we multiply the rule length used by the number of its
utilization we will find the value 1 m for any rule used.

This result if it is true for the traditional geometry objects, it is not valid for
the fractals objects. Indeed, let us use the same way to measure a fractal curve,
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with a rule of 20 cm, the measured length will be underestimated but with a rule of
10 cm, the result will be more exact. More the rule used is short more the measure
will be precise. Thus, the length of a fractal curve depends on the rule used for the
measurement: the smaller it is, the more large length is found.

It is the conclusion reached by Mandelbrot when he tried to measure the length of
the coast of Britain (Mandelbrot 1967). He found that the measured length depends
on the scale of measurement: the smaller the increment of measurement, the longer
the measured length becomes.

Thus, fractal shapes cannot be measured with a single characteristic length, be-
cause of the repeated pattern we continuously discover at different scale levels.

This growth of the length follows a power law found empirically by Richardson
and quoted by Benoı̂t Mandelbrot in his 1967 paper (Richardson 1961)

L(η) ∝ η−α (2.10)

where L is the length of the coast, η is the length of the step used, the exponent α
represents the fractal dimension of the coast.

Other main property of fractals is the self-similarity. This characteristic means
that an object is composed of sub-units and sub-sub-units on multiple levels that re-
semble the structure of the whole object. So fractal shapes do not change even when
observed under different scale, this nature is also called scale-invariance. Mathe-
matically, this property should hold on all scales. However, in the real world the
self-similarity is only observed over some scales the objects are then statistically
self-similar or self-affine.

3.2 Experimental Determination of the Fractal Dimension
of Natural Objects

Fractal dimension being a measurement in the way in which the fractal occupies
space, to determine it we have to draw up the relationship between this way of
occupation of space and its variation of scale. If a linear object of size L is measured
with a self-similar object of size l, then number of self similar objects within the
original object N(l) is related to L/l as

N =
(

L
l

)D

(2.11)

where D is the fractal dimension. From where

D =
ln(N)
ln
(

L
l

) (2.12)

For the self-similar fractals, L/l represents the magnification factor and l/L the
reduction factor. Nevertheless, when one tries to determine fractal dimension of
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natural objects, one is often confronted with the fact that the direct application of
Eq. (2.12) is ineffective. In fact, the majority of the natural fractal objects existing
in our real world are not self-similar but rather self-affine. The magnification factor
and the reduction factor are thus difficult to obtain since there is not an exact self-
similarity. Other methods are then necessary to estimate the fractal dimensions of
these objects.

In practice, to measure a fractal dimension, several methods exist, some of which
are general, whereas others are applicable only to special classes of fractals. This
section, focuses on the more commonly used methods namely, Box-counting di-
mension and Minkowski–Bouligand dimension which are based on the great works
of Minkowski and Bouligand (Minkowski 1901; Bouligand 1928) and from which
derive several other algorithms.

Box–counting dimension: This method is based upon a quantization of the space
in which the object is imbedded by a grid of squares of side ε . The number N(ε) of
squares that intersect the fractal object is then counted. The Box-counting dimension
is then defined by

DB = lim
ε→0

ln [N (ε)]
ln
(

1
ε
) (2.13)

If one plots ln(N(ε)) versus ln(1/ε), the slope of the straight line gives the esti-
mate of the fractal dimension DB in the box-counting method.

Figure 2.2 gives an example illustrating this method. The object E (a curve) is
covered by a grid of squares of side ε1 = 1/20, and for this value of ε total number
of squares contained in the grid is 202 = 400 and the number of squares intersecting
the curve E is 84 (Fig. 2.2a). In Fig. 2.2b, which is obtained using different values
of ε , the slope of the straight line fitted by a linear regression constitutes the fractal
dimension of the curve E.

Minkowski–Bouligand dimension: This method is based on Minkowski’s idea of
dilating the object which one wants to calculate the fractal dimension with disks
of radius ε and centered at all points of E. The union of these disks thus creates a
Minkowski cover.

Let S(ε) be the surface of the object dilated or covered and DM the Minkowski–
Bouligand dimension. Bouligand defined the dimension DM as follows

Fig. 2.2 Example illustrating the Box -counting method a) Covering the curve by a grid of squares
b) The log-log plots
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DM = 2−λ (S) (2.14)

where λ (S) is the similarity factor and it represents the infinitesimal order of S(ε).
It is defined by

λ (S) = lim
ε→0

ln [S (ε)]
ln(ε)

(2.15)

Inserting Eq. (2.15) in Eq. (2.14) we obtain

D = lim
ε→0

[
2− ln [S (ε)]

ln(ε)

]
(2.16)

The properties of the logarithm permit us to rewrite the relation (2.16) in the
following form

D = lim
ε→0

ln
[

S(ε)
ε

]
ln
(

1
ε
) (2.17)

or, rearranged

ln

(
S (ε)

ε

)
= D ln

(
1
ε

)
+ constant, as ε → 0 (2.18)

The fractal dimension can then be estimated by the slope of the log–log plot:
ln(S (ε)/ε) = f (ln(1/ε)) fitted by the least squares method. Figure 2.3a shows the
Minkowski covering E(ε) composed of the union of disks of radius ε .

3.3 Discussion of the Two Methods

According to the analysis of Dubuc et al. (Dubuc et al. 1989), the Box–counting
dimension and the Minkowski–Bouligand dimension are mathematically equivalent

Fig. 2.3 Example illustrating the Minkowski–Bouligand method a) The Minkowski covering
b) The log–log plots
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in limit thus, DB = DM . However, they are completely different in practice because
of the way that limits are taken, and the manner in which they approach zero.

Experimental results published in the literature (Dubuc et al. 1989; Maragos and
Sun 1993; Zeng et al. 2001) showed that these two methods suffer from inaccu-
racy and uncertainty. Indeed, according to Zeng et al. (2001) the precision of these
estimators are mainly related to the following aspects:

– Real Value of the Fractal Dimension D: With big values of D, the estima-
tion error is always very high. This can be explained by the effect of resolution
(Huang et al. 1994). When the value of D increases, its estimates can not reflect
the roughness of the object and higher resolution is then needed.

– Resolution: In the case of the temporal curves, the resolution consists of obser-
vation size of the curve (minute, hour, day. . .). According to Tricot et al. (1988)
estimated fractal dimension decreases with the step of observation. This is due to
the fact that a curve tends to become a horizontal line segment and appears more
regular.

– Effect of Theoretical Approximations: Imprecision of the Box-counting and
the Minkowski-Bouligand methods is also related to constraints occurring in
theoretical approximations of these estimators. For example, the Box-counting
dimension causes jumps on the log-log plots (Dubuc et al. 1989) which generate
dispersion of the points of the log-log plots with respect to the straight line ob-
tained by linear regression. Moreover, the value of N(ε) must be integer in this
method. The inaccuracy of the method of Minkowski-Bouligand is due to the
fact that the Minkowski covering is too thick.

– Choice of the Interval [εεε0, εεεmaxmaxmax]: The precision of the estimators is influenced
much by the choice of the interval [ε0, εmax] through which the line of the log-log
plots is adjusted. εo is the minimum value that can be assigned to the step. When
ε0 is too large, the curve is covered per few elements (limp or balls). Conversely,
when the value εmax is too small, the number of elements which cover the curve
is too large and each element covers few points or pixels. Some researchers tried
to choose this “optimal” interval in order to minimize the error in estimation
(Dubuc et al. 1989; Huang et al. 1994). For example, Liebovitch and Toth (1989)
proposed a method for determining this interval, Maragos and Sun (1993) used an
empirical rule to determine εmax for temporal signals. In practice, these optimal
intervals improve considerably the precision of the fractal dimension estimate for
special cases but not in all cases.

4 Measuring the Fractal Dimension of Signals

4.1 A Survey of Existing Methods

Many natural processes described by time series (e.g., noises, economical and de-
mographic data, electric signals. . . etc.) are also fractals in the sense that their graph
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is a fractal set (Maragos and Sun 1993). Thus, modeling fractal signals is of great
interest in signal processing.

Considering the importance of this index and the impact of its use in practice, the
precision of its estimate is necessary. Methods of Box–counting and of Minkowski–
Bouligand prove then ineffective due to the fact that they suffer from inaccuracy
as we already mentioned. Inspired by the Minkowski–Bouligand method, a class of
approaches to compute the fractal dimension of signal curves or one-dimensional
profiles called “covering methods” is then proposed by several researchers.

These methods consist in creating multiscale covers around the signal’s graph.
Indeed, each covering is formed by the union of specified structuring elements. In
the method of Box–counting, the structuring element used is the square or limp, that
of Minkowski–Bouligand uses the disk.

Dubuc et al. (1989 and Tricot et al. (1988) proposed a new method called “Varia-
tion method”. This one criticizes the standard methods of fractal dimension estima-
tion namely: Box–counting and Minkowski–Bouligand. Indeed, “Variation method”
applied to various fractal curves showed a high degree of accuracy and robustness.

Maragos and Sun (1993) generalized the method of Minkowski–Bouligand by
proposing the “Morphological covering method” which uses multiscale morpholog-
ical operations with varying structuring elements. Thus, this method unifies and im-
proves other covering methods. Experimentally, “Morphological covering method”
demonstrated a good performance, since it has experimentally been found to yield
average estimation errors of about 2%–4% or less for discrete fractal signals whose
fractal dimension is theoretically known (Maragos and Sun 1993). For determinis-
tic fractal signals (these signals will be detailed further in this chapter) Maragos and
Sun developed an optimization method which showed an excellent performance,
since the estimation error was found between 0 % and 0.07 %.

4.2 New Method for Estimating the Fractal Dimension
of Discrete Temporal Signals

In order to contribute in improving the accuracy of fractal dimension estimation of
the discrete temporal signals we developed a simple method based on a covering by
rectangles called Rectangular Covering Method.

Presentation of the Method

The method based on Minkowski–Bouligand approach consists in covering the
curve for which we want to estimate fractal dimension by rectangles. The choice
of this type of structuring element is due to the discrete character of the studied
signals.

From the mathematical point of view, the use of the rectangle as structuring
element for the covering is justified. Indeed, Bouligand (1928) showed that DM
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(Minkowski–Bouligand dimension) can be obtained by also replacing the disks in
the previous covers with any other arbitrarily shaped compact sets that posses a
nonzero minimum and maximum distance from their center to their boundary.

Thus, as shown in Fig. 2.4, for different time intervals Δτ , the area S(Δτ) of this
covered curve is calculated by using the following relation

S (Δτ) =
N−1

∑
n=0

Δτ | f (tn +Δτ)− f (tn)| (2.19)

where N denotes the signal length, f (tn) is the value of the function representing
the signal at the time tn and | f (tn + Δτ)− f (tn)| is the function variation related to
the interval Δτ . The fractal dimension is then deduced from Eq. (2.20) where ε is
replaced by the time interval Δτ . Hence

ln

(
S (Δτ)

Δτ

)
= D ln

(
1

Δτ

)
+ constant, as Δτ → 0 (2.20)

Thus, to determine the fractal dimension D which represents the slope of the
straight line of Eq. (2.20), it is necessary to use various time scales Δτ and to mea-
sure the corresponding area S(Δτ). We then obtain several points (Δτi, S(Δτi)) con-
stituting the line.

A good estimation of the fractal dimension D requires a good fitting of the log-
log plot defined by Eq. (2.20). Therefore, the number of points constituting the plot
is important. This number is fixed by Δτmax which is the maximum interval through
which the line of the log-log plots is fitted.

Fig. 2.4 An example of temporal curve covered by rectangles
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As mentioned above, to estimate the fractal dimension most of methods deter-
mine Δτmax experimentally. This procedure requires much time and suffers from
precision. Also, we developed an optimization technique to estimate Δτmax.

Optimization Technique

Experience shows that Δτmax required for a good estimation of D depends on several
parameters, especially the time length of the signal N. Δτ should not be too weak,
in order not to skew the fitting of the line, and it must not exceed N/2. Δτ must also
satisfy the condition of linearity of the line.

Our optimization technique (Harrouni et al. 2002) consists first in taking a Δτmax

initial about 10, because the number of points constituting the plot should not be
very small as signaled above; then, Δτmax is incremented by step of 1 until N/2. We
hence obtain several straight log-log lines which are fitted using the least squares
estimation. The Δτmax optimal is the one corresponding to the log-log straight line
with the minimum least square error. This later is defined by the following formula

Equad =

n
∑

i=1
di

n
(2.21)

In this relation n denotes the number of points used for the straight log–log line
fitting, di represents the distance between the points

(
ln(1/Δτ) , ln

(
S (Δτ)/Δτ2

))
and the fitted straight log–log line.

Validation of the Method

In order to test the validity and the accuracy of the rectangular covering method, we
applied it to two different types of parametric fractal signals whose theoretical frac-
tal dimension is known, these test signals are the Weirstrass function (WF) which
is a deterministic signal and the random signal of the fractional Brownian motion
(FBM). These fractal signals that will be briefly defined below are most commonly
used in various applications.

The Weierstrass Function (FW): It is defined as (Hardy 1916; Mandelbrot 1982;
Berry and Lewis 1980)

WH (t) =
∞

∑
k=0

y−kH cos
(

2πykt
)
, as 0 < H < 1 (2.22)

This function is continuous but nowhere differentiable; γ is an integer such as γ > 1.
This parameter is fixed by the experimenter so that he can choose the shape of the
signal, the fractal dimension of this function is D = 2−H. In our experiments, we
synthesized discrete time signals from WF’s by sampling t ∈ [0,1] at N+1 equidis-
tant points, using γ = 2.1 and truncating the infinite series so that the summation is
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done only for 0 ≤ k ≤ kmax. The kmax is determined by the inequality 2πγk ≤ 1012

established by Maragos and Sun (1993).

Fractional Brownian Motion (FBM): It is one of the most mathematical models
used to describe self-affine fractals existing in nature. Mandelbrot and Wallis pro-
posed an extension of this motion: the fractional Brownian motion. The function
of the Brownian fractional motion BH(t) with parameter 0 < H < 1 is a time vary-
ing random function with stationary, Gaussian distributed, and statically self-affine
increments. So 〈

[BH (t)−BH (t0)]
2
〉

= 2D(t − t0)
2H , as 0 < H < 1 (2.23)

The fractal dimension D of BH(t) is D = 2−H. To synthesize FBM signals, sev-
eral methods exist (Mandelbrot and Wallis 1969; Voss 1988; Lundahl and all. 1986)
the most known are: Choleski decomposition method, Durbin–Levinson algorithm,
FFT method and circulant matrix method. In our experiments we synthesized FBM
signals via the Durbin–Levinson method.

To validate our rectangular covering method we applied it to these synthesized
test signals. For this purpose, the error between the theoretical fractal dimension
and the estimated one is used. The experimental results indicate that, for the two
fractal signals WF and FBM, the rectangular covering method performs well in
estimating dimensions D ∈ [1.1,1.9], since the estimation error is less than or equal
6 % for the WF signals and 7 % for FBM signals (Harrouni and Guessoum 2006). By
varying the signals’ length N ∈ [100,1000] with a step of 100 we have also observed
similar performance of this method. Over 99 different combinations of (D, N) the
average estimation error of the rectangular covering method was 4 % for both WF’s
and FBM’s.

5 Classification of the Solar Irradiances to Typical Days

5.1 A Survey of Existing Methods

Modeling random fluctuations of the solar irradiance has already been the object
of several studies published in the literature. These are based mostly on the ran-
dom processes. The Markovian approaches in particular, contributed extensively to
this modeling. One can see for example, the works of Brinkworth (1977), Bartoli
et al. (1981), Lestienne et al. (1979), Aguiar et al. (1988) and Maafi (1991). This
last reference treated the problem of the classification of the insolation and the daily
irradiation indirectly by joining them to the states of the sky: clear sky, covered sky,
etc. (Maafi 1991, 1998).

Other statistical methods were used for classification of typical meteorological
days such as automatic classification (Bouroubi 1998), the analysis of the correla-
tions (Louche and al. 1991) and the Ward’s method (Muselli et al. 1991).
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More recent studies are interested by the modeling of the random character of the
solar radiation using neural networks (Guessoum et al. 1998; Sfetsos and Coonick
2000). In addition to the originality of these new approaches, these studies aim to
value the contribution of their formalisms in the description of the solar radiation
fluctuating character.

However, very few works treating the classification of the solar radiation signals
using the fractal analysis were published (Maafi and Harrouni 2000, 2003; Harrouni
and Guessoum 2003; Harrouni and Maafi 2002; Louche et al. 1991). In this section
the contribution of the fractal analysis to the classification of the solar irradiance sig-
nals is given. This examination leads to the determination of different sky types in a
given time interval as: clear sky, partially covered sky, covered sky etc. which is use-
ful for planning and analyzing solar energy systems. Hence, a classification method
is proposed which allows the categorization of the solar radiation fluctuations based
on the fractal dimension (Harrouni et al. 2005).

5.2 Fractal Classification of Solar Irradiance

Methodology

Our method classification uses the fractal dimension as a basic criterion to achieve
the classification of the solar irradiance and to yield different types of days, i.e., clear
sky day, covered sky day, a cloudy day, etc. Our research reveals that some daily
solar irradiance signals have the same fractal dimension but corresponding to days
with different weather conditions. Indeed, a uniformly cloudy day and a sunny one
have regular irradiance shapes and practically the same value for D but have daily
different clearness indexes. That is why the daily clearness index KT is calculated
along with D as a second criterion in the categorization algorithm which allows
sorting daily irradiances into three classes according to the following classification:

Class I: Clear sky day
1 ≤ D ≤ DI and KT ≥ (KT )I

Class II: Partially cloudy sky
DI < D ≤ DII and KT ≥ (KT )I

Class III: Completely cloudy sky
D > DII or D ≤ DII and KT < (KT )I

DI , DII , are the thresholds for D and (KT )I is the one for KT for the different classes.
The thresholds for D and KT are new parameters to be determined in order to

achieve the classification of the irradiances. The value 0.5 is chosen for (KT )I ; this
value permits to distinguish the covered sky day class from the one of clear sky day.
Indeed, experimental results reveals that for some days of class III (covered sky
day), the fractal dimension D is closer to 1, this is due to the fact that these days are
so covered that the corresponding irradiance curve is regular but the clearness index
is very low (lower than 0.5).
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To determine the thresholds of the fractal dimension DI and DII we first used a
heuristic approach then a statistical one. The heuristic approach consists in analyz-
ing all daily solar irradiances shapes and their corresponding fractal dimension. For
each day of the year the histograms of the irradiance signals are constructed. These
histograms are built by class of 100W/m2. By observing their various forms, i.e.
preponderance of low or high frequencies, we noted that there were three kinds of
histograms (Maafi and Harrouni 2003):

• Histograms in the shape of J
• Histograms in the shape of U
• Histograms in the shape of L

By identifying the relations of classification established above with these three types
of histograms, we can determine the D thresholds correspondent to the three classes.
(An example of these histograms is given for Tahifet on the accompanying CD).

The statistical method is based on the cumulative distribution function (CDF)
FX (x). This latter describes the probability distribution of a real-valued random vari-
able X . For every real number x, the CDF of X is the probability that the random
variable X takes on a value less than or equal to x. Thus, the two thresholds of D
correspond respectively to the fractal dimension whose the cumulative distribution
function FX (x) are:

Fx (x) =
max(Fx (x))−min(Fx (x))

3
and (2.24)

Fx (x) =
2(max(Fx (x))−min(Fx (x)))

3

Data Bank

The experimental database contains global irradiance data measured at five sites
of different climates. Two south Algerian sites: Tahifet (Tamanrasset) and Imehrou
(Illizi), two sites of Colorado: Golden and Boulder and the last site is Palo Alto lo-
cated in California.The geographical coordinates of these sites are given in Table 2.1.

Algerian sites data are recorded from the operation of two stand-alone photo-
voltaic power installations during 1992-year on a 10◦-tilted surface with a time step
of 10 minutes. These systems have been installed by the National Company from

Table 2.1 Geographical coordinates of the studied sites

Site Latitude Longitude Altitude (m)

Tahifet 22◦53′N 06◦00′E 1400
Imehrou 26◦00′N 08◦50′E 600
Golden 39◦74′N 105◦18′W 1829
Boulder 39◦91′N 105◦25′W 1855
Palo alto 37◦42′N 122◦.15′W 12.192
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Electricity and Gaz (SONELGAZ). For Colorado sites the irradiance data have been
collected during the year 2003 on a horizontal surface. These data are provided by
MIDC (Measurement and Instrumentation Data Center) (MIDC, 2007). Data at Palo
Alto have been recorded from the operation of one grid-connected system during
2003-year on a 30◦-tilted surface with a time step of 15 minutes. This PV system
was installed in May 2000 by CPAU (City of Palo Alto utilities) (CPAU, 2007).

By integrating the measured irradiances we determined the daily irradiation.
Then, we calculated the daily clearness index KT using Eq. (2.6). The measured
daily global and extraterrestrial irradiation together with daily clearness index for
all studied sites are included on the accompanying CD.

H0 is calculated by using Eq. (2.7) for irradiations received on horizontal surface
(Boulder and Golden) and Eq. (2.9) for irradiations on tilted plane (Tahifet, Imehrou
and Palo Alto).

Fractal Treatment of Solar Irradiances

Figure 2.5 presents two examples of the log–log lines permitting the estimation of
the fractal dimension of irradiance curves. This figure shows that the log–log points
are grouped around the fitting line which demonstrates the self affinity of the studied
solar irradiances.

The fractal dimensions obtained from the slopes of the log–log lines for all sites
are given in the accompanying CD. Figure 2.6 gives representative examples for
the daily irradiation values corresponding to different fractal dimensions from three
classes. As can be observed there is good correspondences between the shapes of
the signals and the corresponding fractal dimensions.

Figure 2.7 gives the annual evolution of the monthly average of D for the studied
sites. This figure shows clearly that D fluctuates.

In order to quantify this fluctuation we calculated the annual average <D> of the
fractal dimension and the corresponding standard deviation σ which are tabulated
in Table 2.2. These values suggest that the solar irradiances of Tahifet and Boulder
exhibit the similar fluctuations (<D> = 1.16 for Tahifet and 1.13 for Imehrou).

Fig. 2.5 Two examples (Golden site) of log–log plots fitted by the least-squares estimation with
their slopes which represent the estimated fractal dimension
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Fig. 2.6 Typical daily irradiance values for the three classifications and fractal dimensions for the
sites under consideration a) Golden, b) Boulder, c) Tahifet, d) Imehrou, e) Palo Alto

This is also observed for Golden and Boulder (<D> = 1.38 for Golden and 1.39
for Boulder). To compare the degree of fluctuation of the solar irradiances of the
different sites we can refer to the values of <D>. Hence, the two sites of Colorado
are fluctuating, those of the Algerian sites fluctuate slightly, they are practically
regular, and in Palo Alto irradiances are fairly fluctuating. However, the analysis of
D month by month permits the detection of the months where the fluctuations of the
irradiances are most intense – June and December for Tahifet, March and June for
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Fig. 2.7 Annual variation of the monthly means of the estimated fractal dimension D, the straight
solid line represents the annual mean of the fractal dimension <D>



46 S. Harrouni

Table 2.2 Annual averages <D> and standard deviations σ of the estimated fractal dimensions

Site <D> σ(%)

Tahifet 1.16 19
Imehrou 1.13 17
Golden 1.38 18
Boulder 1.39 18
Palo alto 1.23 20

Imehrou, May and June for Golden and Boulder, January and December for Palo
Alto – and those where these irradiances are very regular – October for the two sites
Tahifet and Imehrou, September for Golden and Boulder, June for Palo Alto. These
informations are very useful to refine the sizing of photovoltaic systems. Indeed,
the anomalies in the operating of the photovoltaic systems installed in these sites
appear during these months. There is for example for Tahifet excess of energy in
October and storage is requested in June and December much more than in other
months.

5.2.1 Annually and Monthly Classification Analysis

The thresholds DI and DII have first been determined for the sites of Tahifet and
Imehrou. For this purpose, the heuristic method and the statistical one has been used,
Table 2.3 gathers the thresholds obtained with the two methods. We notice that the
empirical and statistical thresholds are very close. Since the empirical approach is
very expensive in time to build histograms and to carry out their meticulous exam-
ination, we chose the statistical thresholds to classify the days of the studied sites.
The obtained thresholds for all sites are illustrated by Table 2.4.

Table 2.5 gives the distribution of the probability of occurrence of daily solar
irradiances for each class obtained from our classification. For Tahifet and Imehrou
daily irradiances of class I have the largest probability of occurrence as compared to
irradiances of the two other classes. These results confirm the pre-eminence of days
with clear sky for the two sites; this is due to the climate of the south Algerian which
is characterized by irradiances rarely fluctuated. However Class III (completely cov-
ered sky) is preponderant for the Californian sites. Class I is also important, whereas
class II has less frequency of occurrence. These results demonstrate that the two

Table 2.3 Fractal dimension thresholds obtained with the two methods: heuristic and statistic for
Tahifet and Imehrou sites

Site DI (heuristic) DI (statistic) DII (heuristic) DII (statistic)

Tahifet 1.14 1.10 1.34 1.25
Imehrou 1.12 1.10 1.27 1.25
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Table 2.4 Statistical Fractal dimension thresholds for all studied sites

Site DI DII

Tahifet 1.14 1.34
Imehrou 1.12 1.27
Golden 1.35 1.49
Boulder 1.35 1.50
Palo Alto 1.19 1.37

Table 2.5 Probability of occurrence of daily solar irradiance shapes of each class

Site Class I (%) Class II (%) Class III(%)

Tahifet 58 16 26
Imehrou 62 16 21
Golden 24 22 53
Boulder 26 22 52
Palo Alto 49 17 34

studied sites are characterized by disturbed climate since the overcast sky days are
preponderant at the two sites. At Palo Alto, classes I and III are pre-eminent which
demonstrate that this site has a climate fairly disturbed.

On the accompanying CD, Tables of day’s class are included for each studied site.
To validate the classification results, the average of the fractal dimension <D>,

of clearness index <KT > and their standard deviations σ(D) and σ(KT ) have been
computed for each class. They are summarized by Table 2.6.

These statistical properties show that our classification method leads to homo-
geneous groupings of the studied days since the standard deviations of D and KT

are weak compared to their averages. Indeed, in all the sites σ(KT ) is lower than
10% for all classes and except for Golden and Boulder we note the same thing for
σ(D) but only for classes I and II. The more important value of this standard devi-
ation for class III (upper than 10%) is due to the fact that this class contains rainy
days whose irradiance signals have a regular form thus a fractal dimension near to 1
like already explained. For example, the shape of solar daily irradiance of class III

Table 2.6 Mean value and standard deviation of D and KT for the different classes of days

Site Golden Boulder Tahifet Imehrou Palo Alto

Class I II III I II III I II III I II III I II III

Average <D> 1.15 1.43 1.47 1.17 1.43 1.48 1.03 1.24 1.42 1.02 1.19 1.40 1.06 1.27 1.46
<KT > 0.70 0.63 0.46 0.69 0.64 0.47 0.66 0.60 0.45 0.69 0.62 0.50 0.70 0.61 0.33

Standard
deviation

σ(D) 0.12 0.03 0.14 0.12 0.04 0.13 0.04 0.05 0.13 0.03 0.04 0.14 0.06 0.05 0.15
σ(KT ) 0.07 0.07 0.18 0.08 0.08 0.12 0.04 0.04 0.12 0.04 0.04 0.13 0.07 0.05 0.17
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(see Fig. 2.8) corresponds to a rainy day in Golden. Its fractal dimension is equal to
1.11 and its related KT is 0.47. Using D, this daily irradiance should be classified
in class II. But, when using D and KT together it is categorized as class III. The
fairly high values of σ(D) for the class I in the two sites of Colorado is explained
by the high value of DI due to the irradiances character of these sites which is very
fluctuating.

In order to better characterize the three classes obtained our statistical analysis
was refined by carrying out it on a monthly scale. In Table 2.7 monthly results of
the frequency of each class, averages and standard deviations of the two parameters:
D and KT are presented. Table 2.7 shows that the distribution of the classes differs
from a site to another.

As it can be observed from Table 2.7, Class III days have high frequency of oc-
currence for the sites Golden and Boulder, reaching a maximum in May and June.
Only for the month September for Golden and February for Boulder class I have
higher frequency of occurrences which are 51.6% and 39.3%, respectively. How-
ever, in Tahifet and Imehrou class I has higher frequency of occurrences for all the
months, reaching maximum values in October and minimum in May and June.

In Palo Alto on the other hand we notice a seasonal distribution of the days.
Indeed, class I presents high values in winter (January, February, November and
December) where the maximum is detected in December and class III high values
in summer (June–September).

These results are confirmed by the transition probabilities between two consec-
utive days having the same or different classes. For the two sites of Algeria, while
transition probabilities from class I to the same class were quite high (65% and
40%), all other transitions were low. However for Golden and Boulder all transition
probabilities are quite close in the ranges of 5 to 20%.

Fig. 2.8 An example of a rainy day with an enough regular shape, D = 1.11 and KT = 0.47
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6 Conclusions

In this chapter, a classification procedure for solar irradiances is presented and dis-
cussed for five locations. This procedure uses fractal dimension analysis. A new
method of estimating fractal dimensions is utilized which gives satisfactory results.
This method based on covering multi scale, using rectangles as the structuring el-
ement. The method is tested for two well-known functions and an average error of
3.7% is obtained for over 180 tests.

The validation of the classification method is carried out by annual and monthly
analysis using the fractal dimension and the clearness index of the daily irradiances.
Three different classes of the days are determined to be a reasonable classification.
Results for the sites with similar climates give the same type of classifications of the
days as it is observed from their annual and monthly average classification parame-
ters. Observed standard deviations of the monthly parameters from an annual mean
value are relatively small.

Classification of the daily solar irradiance is important in design and installation
of solar energy systems, especially PV arrays. Trends in the patterns of daily solar
irradiance became significant information due to the recent interests in renewable
technologies. This interest is essentially due to global warming and other negative
effects to our environment. Such analyses presented in this chapter are of great in-
terest as they reduce the initial costs by appropriate design and construction of solar
energy systems suitable to the climate of the site of interest.
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signaux: Application aux éclairements solaires. SNAS’02, Université d’Annaba
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