Chapter 1
Introduction

Then a minstrel and loremaster stood up and named all the names of the

Lords of the Mark in their order. . .. And when Théoden was named, Eomer

drained the cup. Then Eowen bade those that served to fill the cups, and

all there assembled rose and drank to the new king, crying: ‘Hail, Eomer,
King of the Mark!”

“The Return of the King”

J. R. R. Tolkien.

A protocol is a set of rules which have to be followed in the course of some ac-
tivity. Originally, the term was used solely of human activities, especially those of
a somewhat formal kind, such as the state funeral for King Théoden described in
the quotation at the start of this chapter. The chef de protocole for a Head of State
sets formal rules for how activities take place according to the niceties of diplomatic
practice. But protocols must also be followed in less elevated spheres, such as games
of all kinds, the way in which conversations are conducted, and in fact all activities
which are governed by custom and convention. If the protocol is not followed, the
activity will not be successful.

In this book we shall consider communication protocols, and in particular those
which regulate communication between computers. The characteristics of protocols
mentioned above are equally evident in this case: A set of formal rules governs the
exchange of information, and the communication activity fails if the protocol is not
correctly followed.

1.1 What is a Protocol?

In the general sense, communication between computers takes place by the ex-
change of data — information encoded in some way which depends on the system
concerned. We can consider this exchange as taking place in discrete steps, which
we shall call elementary communications, in each of which a message is transferred.
Again depending on the system, a message may be a single electronic signal, or a

2 1 Introduction

Sender Receiver

\
P

\
-
\

Fig. 1.1 Exchange of mes-
sages in a simple protocol.

larger amount of data. For generality, we shall use the term the type of the message
to cover both the general content and the detailed encoding.

A common definition of a communication protocol [133] is thus that it is a set of
rules for the order in which messages of particular types are exchanged. With our
definition of message type, this also implies a set of rules for the encoding of the
various types of message.

The exchange of data may take place between two or more parties. When there
are N parties to the exchange, we shall talk of N-peer communication, and speak of
the protocol as an N-peer protocol.

For each of the N parties to an N-peer communication, the protocol defines a
language, whose sentences are the legal sequences of messages received by that
party, and whose alphabet of symbols is the set of all possible messages. A machine
to obey the rules of the protocol must thus essentially be a recogniser for the pro-
tocol language. For simple protocols, this is a useful abstraction, as the language
is regular or at most context-free, and standard compiler techniques [124] can be
used to implement the machine as a finite state machine or push-down automaton
respectively.

A trivial example of a simple protocol described in this way is given below. Itis a
type of stop-and-wait protocol. The sender requests the receiver to indicate when it
is ready to receive data, and waits for this indication. On receipt of the indication, the
sender sends the data and waits for an acknowledgment. The exchange of messages
is as shown in Figure 1.1. The languages to be recognised by the sender and receiver

1.2 Protocols as Processes 3

respectively (and of course to be generated by the receiver and sender respectively)
are defined by the BNF:

sender ::= readyindication acknowledge sender
receiver ::= requesttoaccept data receiver

Each party must generate and recognise sentences of a regular language. This is a
simple task for a finite state machine.

Unfortunately, there are some important objections to this language-oriented
view of a protocol. The first is a practical objection: Simple languages generally
do not correspond to protocols which can tolerate faults, such as missing or du-
plicated messages. Protocols which are fault-tolerant often require the use of state
machines with enormous numbers of states, or they may define context-dependent
languages.

A more radical objection is that classical analysis of the protocol language from
a formal language point of view traditionally concerns itself with the problems of
constructing a suitable recogniser, determining the internal states of the recogniser,
and so on. This does not help us to analyse or check many of the properties which we
may require the protocol to have, such as the properties of fault-tolerance mentioned
above. To be able to investigate this we need analytical tools which can describe the
parallel operation of all the parties which use the protocol to regulate their commu-
nication.

1.2 Protocols as Processes

A radically different way of looking at things has therefore gained prominence
within recent years. This involves considering the protocol as being defined, not
so much by the internal states of the protocol machine, but rather by the observ-
able external behaviour of a process. The external behaviour is defined as the set of
all possible traces — sequences of elementary communications in which the process
takes part. The work of Hoare, Milner and others ([64], [128], [19], [94]) has shown
how the behaviour of combinations of processes can be deduced from the behaviours
of the individual component processes through the use of a calculus or algebra, and
how it is possible to prove properties of processes starting from certain axioms about
the behaviours of their component parts. Chapter 2 gives a short introduction to the
method used in this book and the required notation.

This type of approach makes it possible to specify and analyse complex proto-
cols. In particular, the rules for the composition of processes make it possible to
analyse protocols which rely on the the use of other protocols in some layered man-
ner, as is commonly the case in communication systems. A well-known example
of this is seen in the OSI standard architecture for communication systems [133].
Some simple illustrations of the approach and an introduction to the OSI Reference

4 1 Introduction

Model will be given in the Chapter 3, where we also consider the general properties
which might be desirable for services in distributed systems.

1.3 Techniques for Actual Protocols

The central chapters of the book are devoted to a presentation of techniques for
providing particular types of service by the use of appropriate protocols. This pre-
sentation is illustrated by theoretical analysis of some of the protocol techniques,
and by a classification of some protocols used in practice today, according to the
techniques on which they are based.

The presentation falls into four parts. In Chapter 4 we discuss a number of basic
mechanisms for use in 2-peer point-to-point communication protocols, and the rela-
tion of these mechanisms to required properties of the service, particularly resilience
to simple faults such as corruption or loss of messages.

Chapter 5 considers the problems associated with providing a service to more
than two parties, and in particular the problem of getting several parties to agree
in the presence of faults. Here we shall extend our repertoire of permitted faults to
include arbitrary, possibly malicious faults — the so-called Byzantine errors.

In Chapter 6 we turn our attention to another form of malicious attack to which
distributed systems are exposed — attempts by unauthorised persons to read or alter
information to which they are not supposed to have access. This is the problem of
computer security, whose solution, as we shall see, requires special protocols and a
careful use of cryptographic methods.

Finally, in Chapter 7 we consider what techniques are available for locating an
intended participant within a distributed system, and for organising transmission of
messages so that they reach the recipient reliably and with a minimum of delay.
This is the problem of naming, addressing and routing, which is interesting not only
because it is a real, practical problem to be solved, but also because the solutions
illustrate many of the strategic choices to be taken when decisions have to be made
in distributed systems.

1.4 Real Protocols

After considering in a rather abstract manner the techniques available for construct-
ing protocols with particular properties, the final chapters of the book will be de-
voted to looking at a selection of real protocols, and to analysing how the general
techniques are deployed in them.

We start this part of the book by looking, in Chapter 8, at principles used for en-
coding the messages used in protocols. Then we go on to look at each of the layers
of the OSI Reference Model in turn, presenting commonly used protocols, many
of them internationally standardised, and classifying them according to the type of

1.5 Reader’s Guide 5

service which they support and the protocol mechanisms used in order to supply this
service. Chapter 9 deals with the so-called OSI Lower Layers, which are the layers
up to and including the Transport layer. Chapter 10 describes protocols in the OSI
Upper Layers — the Session, Presentation and Application layers of the Reference
Model — which provide general support for applications. And finally, Chapter 11
presents a number of important protocols associated with specific applications, in-
cluding file transfer, mail transfer, transaction processing, document access via the
World Wide Web and Web services.

This book is not a catalogue of standards, and many protocols of potential in-
terest, particularly in the Application layer, have had to be left out. Even so, the
bibliography at the end of the book contains references to more than 130 national
and international standards, chosen because they illustrate interesting principles of
design. On the other hand, we do not discuss any of the multitude of commercially
available protocols from specific suppliers, nor do we enter into detailed presenta-
tions of particular protocols. For this kind of specific information, you will need to
read the original descriptions of the protocols concerned.

1.5 Reader’s Guide

This book deals with both theory and practice, and some readers may prefer to omit
one or other of these subjects on the first reading. If you prefer to omit as much
theory as possible, you can skip Sections:

e 2.1.2, which deals with process algebra,

e 2.2 and 2.3, which deal with the logic used to prove properties of systems of
processes,

e 3.1, which gives an example of a proof that a protocol enjoys a particular prop-
erty,

e 6.4.3, which deals with the logic used to prove the correctness of authentication
protocols.

If on the other hand you prefer to think about the theory and are not much concerned
with practice, then you can skip:

o Chapter 8, which deals with encoding of protocols, and
e Chapters 9, 10 and 11, which deal with real protocols used in the various layers
of the OSI Reference Model.

2 Springer
http://www.springer.com/978-3-540-77540-9

Principles of Protocol Design
Sharp, R

2008, XlI, 402 p. 172 illus., Hardcover
ISBEMN: @78-3-540-77540-9

