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General Thermodynamic Formalism

A. Entropy

In Section D of Chapter 1, we defined the number hµ(T,D) when T is an
endomorphism of a probability space and D a finite measurable partition. We
now define the entropy of µ w.r.t. T by

hµ(T ) = sup
D

hµ(T,D),

where D ranges over all finite partitions. We will now turn to some computa-
tional lemmas.

We define

Hµ(C|D) = Hµ(C ∨ D) − Hµ(D)

= −
∑

i

µ(Di)
∑

j

µ(Cj ∩ Di)
µ(Di)

log
(

µ(Cj ∩ Di)
µ(Di)

)

≥ 0 .

Lemma 1.17 says that Hµ(C|D) ≤ Hµ(C). We write C ⊂ D if each set in C

is a union of sets in D.

2.1. Lemma.

(a) Hµ(C|D) ≤ Hµ(C|E) if D ⊃ E.
(b) Hµ(C|D) = 0 if D ⊃ C.
(c) Hµ(C ∨ D|E) ≤ Hµ(C|E) + Hµ(D|E).
(d) Hµ(C) ≤ Hµ(D) + Hµ(C|D).

Proof. Letting ϕ(x) = −x log x, Hµ(C|D) =
∑

j

∑
i µ(Di) ϕ

(
µ(Cj∩Di)

µ(Di)

)
.

Since E ⊂ D, one can rewrite this as

Hµ(C|D) =
∑

j

∑

E∈E

µ(E)
∑

Di⊂E

µ(Di)
µ(E)

ϕ

(
µ(Cj ∩ Di)

µ(Di)

)
·
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By the concavity of ϕ (see the proof of Lemma 1.17) one has ϕ(
∑

aixi) ≥∑
aiϕ(xi) where

ai =
µ(Di)
µ(E)

, xi =
µ(Cj ∩ Di)

µ(Di)
·

Hence

Hµ(C|D) ≤
∑

j

∑

E∈E

µ(E) ϕ

(
µ(Cj ∩ E)

µ(E)

)
= Hµ(C|E) .

To see (b) one notes that C ∨ D = D when D ⊃ C. For (c) one writes

Hµ(C ∨ D|E) = Hµ(C ∨ D ∨ E) − Hµ(D ∨ E) + Hµ(D ∨ E) − Hµ(E)
= Hµ(C|D ∨ E) + Hµ(D|E)
≤ Hµ(C|E) + Hµ(D|E)

by (a). Finally

Hµ(C) = Hµ(C ∨ D) − Hµ(D|C)
≤ Hµ(C ∨ D) = Hµ(D) + Hµ(C|D) . ��

2.2. Lemma. Let T be an endomorphism of a probability space (X,B, µ), C

and D finite partitions. Then

(a) Hµ(T−kC|T−kD) = Hµ(C|D) for k ≥ 0,
(b) hµ(T,C) ≤ hµ(T,D) + Hµ(C|D),
(c) hµ(T,C ∨ · · · ∨ T−nC) = hµ(T,C).

Proof. As µ is T -invariant,

Hµ(T−kC|T−kD) = Hµ(T−kC ∨ T−kD) − Hµ(T−kD)
= Hµ(C ∨ D) − Hµ(D) = Hµ(C|D) .

Using Lemma 2.1

Hµ(C ∨ · · · ∨ T−m+1C) ≤ Hµ(D ∨ · · · ∨ T−m+1D)
+Hµ(C ∨ · · · ∨ T−m+1C|D ∨ · · · ∨ T−m+1D)

≤ Hµ(D ∨ · · · ∨ T−m+1D)

+
m−1∑

k=0

Hµ(T−kC|D ∨ · · · ∨ T−m+1D)

≤ Hµ(D ∨ · · · ∨ T−m+1D) +
m−1∑

k=0

Hµ(T−kC|T−kD)

= Hµ(D ∨ · · · ∨ T−m+1D) + mHµ(C|D) .

Dividing by m and letting m → ∞,
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hµ(T,C) ≤ hµ(T,D) + Hµ(C|D) .

Set D = C ∨ · · · ∨ T−nC. Then

1
m

Hµ(D ∨ · · · ∨ T−m+1D) =
1
m

Hµ(C ∨ · · · ∨ T−m−n+1C) .

Letting m → ∞, (as m
m+n → 1) we get

hµ(T,D) = hµ(T,C) . ��

2.3. Lemma. Let X be a compact metric space, µ ∈ M (X), ε > 0 and C a
finite Borel partition. There is a δ > 0 so that Hµ(C|D) < ε whenever D is a
partition with diam(D) < δ.

Proof. Let C = {C1, . . . , Cn}. In Lemma 1.23 we showed that, for any α > 0,
one could find δ > 0 such that whenever D satisfies diam(D) < δ there is a
E = {E1, . . . , En} ⊂ D with

µ(Ei∆Ci) < α .

The expression

Hµ(C|E) =
∑

i,j

µ(Ej) ϕ

(
µ(Cj ∩ Ei)

µ(Ei)

)

depends continuously upon the numbers

µ(Cj ∩ Ei) and µ(Ei) =
∑

j

µ(Cj ∩ Ei)

and vanishes when µ(Cj ∩ Ei) = δij µ(Ei). Hence, for α small, Hµ(C|E) < ε.
Then Hµ(C|D) ≤ Hµ(C|E) < ε by 2.1 (a). ��

2.4. Proposition. Suppose T : X → X is a continuous map of a com-
pact metric space, µ ∈ MT (X) and that Dn is a sequence of partitions with
diam(Dn) → 0. Then

hµ(T ) = lim
n→∞

hµ(T,Dn) .

Proof. Of course hµ(T ) ≥ lim supn hµ(T,Dn). Consider any partition C. By
Lemmas 2.2 (b) and 2.3

hµ(T,C) ≤ lim inf
n

hµ(T,Dn) .

Varying C, hµ(T ) ≤ lim infn hµ(T,Dn). ��

A homeomorphism T : X → X is called expansive if there exists ε > 0 so
that

d(T kx, T ky) ≤ ε for all k ∈ Z ⇒ x = y .
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2.5. Proposition. Suppose T : X → X is a homeomorphism with expansive
constant ε. Then hµ(T ) = hµ(T,D) whenever µ ∈ MT (X), and diam(D) ≤ ε.

Proof. Let Dn = TnD ∨ · · · ∨ D ∨ · · · ∨ T−nD. Then diam(Dn) → 0 using
expansiveness. Hence hµ(T ) = limn hµ(T,Dn). But hµ(T,Dn) = hµ(T,D) by
Lemma 2.2 (c). ��

Consider the case of σ : ΣA → ΣA and standard partition U={U1, . . . , Un}
where Ui = {x ∈ ΣA : x0 = i}. Then σ is expansive and 2.5 gives that
hµ(σ) = hµ(σ,U) for µ ∈ Mσ(ΣA). Now hµ(σ,U) is what we denoted by
s(µ) in Chapter 1. That s(µ) = hµ(σ) implies that the number s(µ) does
not depend on the homeomorphism σ and partition U, but only on σ as an
automorphism of the probability space (ΣA,B, µ) (because of the definition
of hµ(σ)).

2.6. Lemma. hµ(Tn) = nhµ(T ) for n > 0.

Proof. Let C be a partition and E = C ∨ · · · ∨ T−n+1C. Then

nhµ(T,C) = lim
m→∞

n

nm
Hµ(C ∨ · · · ∨ T−nm+1C)

= lim
m→∞

1
m

Hµ(E ∨ T−nE ∨ · · · ∨ T (−m+1)nE)

= hµ(Tn,E) ≤ hµ(Tn) = nhµ(T ) .

Varying C, nhµ(T ) ≤ hµ(Tn). On the other hand

hµ(Tn,C) ≤ hµ(Tn,E)

by 2.2 (b) and 2.1 (b). Hence

hµ(Tn) = sup
C

hµ(Tn,C) ≤ n sup
C

hµ(T,C) = nhµ(T ) . ��

B. Pressure

Throughout this section T : X → X will be a fixed continuous map on the
compact metric space X. We will define the pressure P (φ) of φ ∈ C (X) in a
way which generalizes Section D in Chapter 1.

Let U be a finite open cover of X, Wm(U) the set of all m-strings

U = Ui0Ui1 · · ·Uim−1

of members of U. One writes m = m(U),

X(U) = {x ∈ X : T kx ∈ Uik
for k = 0, . . . ,m − 1}
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Smφ(U) = sup

{
m−1∑

k=0

φ(T kx) : x ∈ X(U)

}
.

In case X(U) = ∅, we let Smφ(U) = −∞. We say that Γ ⊂ Wm(U) covers X
if X =

⋃
U∈Γ X(U). Finally one defines

Zm(φ,U) = inf
Γ

∑

U∈Γ

exp(Smφ(U)),

where Γ runs over all subsets of Wm(U) covering X.

2.7. Lemma. The limit

P (φ,U) = lim
m→∞

1
m

log Zm(φ,U)

exists and is finite.

Proof. If Γm ⊂ Wm(U) and Γn ⊂ Wn(U) each cover X, then

ΓmΓn = {UV : U ∈ Γm, V ∈ Γn} ⊂ Wm+n(U)

covers X. One sees that

Sm+nφ(UV) ≤ Smφ(U) + Snφ(V)

and so
∑

UV∈ΓmΓn

exp(Sm+nφ(UV)) ≤
∑

U∈Γm

exp(Smφ(U))
∑

V∈Γn

exp(Snφ(V)).

Thus
Zm+n(φ,U) ≤ Zm(φ,U) Zn(φ,U)

and Zm(φ,U) ≥ e−m‖φ‖. Hence am = log Zm(φ,U) satisfies the hypotheses of
Lemma 1.18. ��

2.8. Proposition. The limit

P (φ) = lim
diam(U)→0

P (φ,U)

exists (but may be +∞).

Proof. Suppose V is an open cover refining U, i.e., every V ∈ V lies in some
U(V ) ∈ U. For V ∈ Wm(V) let U(V) = U(Vi0) · · ·U(Vim−1). If Γm ⊂ Wm(V)
covers X, then U(Γm) = {U(V) : V ∈ Γm} ⊂ Wm(U) covers X.
Let γ = γ(φ,U) = sup{|φ(x) − φ(y)| : x, y ∈ U for some U ∈ U}.
Then Smφ(U(V)) ≤ Smφ(V) + mγ and so Zm(φ,U) ≤ emγZm(φ,V), which
gives
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P (φ,U) ≤ P (φ,V) + γ .

Now for any U, all V with small diameter refine U and so

P (φ,U) − γ(φ,U) ≤ lim inf
diam(V)→0

P (φ,V) .

Letting diam(U) → 0, γ(φ,U) → 0 and

lim sup
diam(U)→0

P (φ,U) ≤ lim inf
diam(V)→0

P (φ,V) .

We are done. ��

In cases where confusion may arise we write the topological pressure P (φ)
as PT (φ).

2.9. Lemma. Let Snφ(x) =
∑n−1

k=0 φ(T kx). Then

PT n(Snφ) = nPT (φ) for n > 0 .

Proof. Let V = U ∨ · · · ∨ T−n+1U. Then Wm(V) and Wmn(U) are in one-
to-one correspondence; for U = Ui0Ui1 · · ·Uimn−1 let V = Vi0 · · ·Vim−1 where
Vik

= Uikn
∩ T−1Uikn+1 ∩ · · · ∩ T−n+1Uikn+n−1 . One sees that X(U) = X(V)

and ST
mnφ(U) = ST n

m (Snφ)(V). Thus one gets

ZT
mn(φ,U) = ZT n

m (Snφ,V) and nPT (φ,U) = PT n(Snφ,V) .

As diam(U) → 0, diam(V) → 0 and so nPT (φ) = PT n(Snφ). ��

We now come to our first interesting result about the pressure P (φ).

2.10. Theorem. Let T : X → X be a continuous map on a compact metric
space and φ ∈ C (X). Then

hµ(T ) +
∫

φ dµ ≤ PT (φ),

for any µ ∈ MT (X).

We will first need a couple of lemmas.

2.11. Lemma. Suppose D is a Borel partition of X such that each x ∈ X is
in the closures of at most M members of D. Then

hµ(T,D) +
∫

φ dµ ≤ PT (φ) + log M .
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Proof. Let U be a finite open cover of X each member of which intersects
at most M members of D. Let Γm ⊂ Wm(U) cover X. For each B ∈ Dm =
D ∨ · · · ∨ T−m+1D pick xB ∈ B with

∫
B

Smφ dµ ≤ µ(B) Smφ(xB). Now

hµ(T,D) +
∫

φ dµ ≤ 1
m

(
Hµ(Dm) +

∫
Smφ dµ

)

≤ 1
m

∑

B

µ(B)(− log µ(B) + Smφ(xB))

≤ 1
m

log
∑

B

exp(Smφ(xB))

by Lemma 1.1. For each xB pick U
B

∈ Γm with xB ∈ X(U
B
). This map

B → U
B

is at most Mm to one. As Smφ(xB) ≤ Smφ(U
B
), one has

hµ(T,D) +
∫

φ dµ ≤ 1
m

log
∑

U∈Γm

Mm exp(Smφ(U))

≤ log M +
1
m

log Zm(φ,U) .

Letting m → ∞ and then diam(U) → 0, we obtain the desired inequality. ��

2.12. Lemma. Let A be a finite open cover of X. For each n > 0 there is a
Borel partition Dn of X so that

(a) D lies inside some member of T−kA for each D ∈ Dn and k = 0, . . . , n−1,
(b) at most n|A| sets in Dn can have a point in all their closures.

Proof. Let A = {A1, . . . , Am} and g1, . . . , gm be a partition of unity subor-
dinate to A. Then G = (g1, . . . , gm) : X → sm−1 ⊂ R

m where sm−1 is an
m − 1 dimensional simplex. Now U = {U1, . . . , Um} is an open cover where
Ui = {x ∈ sm−1 : xi > 0} and G−1Ui ⊂ Ai. Since (sm−1)n is nm − n
dimensional, there is a Borel partition D∗

n of (sm−1)n so that

(a’) each member of D∗
n lies in some Ui1 × · · · × Uin

, and
(b’) at most nm members of D∗

n can have a common point in all their closures.

Then Dn = L−1D∗
n works where

L = (G,G ◦ T, . . . , G ◦ Tn−1) : X → (sm−1)n . ��

Proof of 2.10. Let C be a Borel partition and ε > 0. By Lemma 2.3 find an
open cover A so that Hµ(C|D) < ε whenever D is a partition every member of
which is contained in some member of A. Fix n > 0, let E = C∨ · · · ∨T−n+1C

and Dn as in Lemma 2.12. Then (see the proof of 2.6)
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hµ(T,C) +
∫

φ dµ ≤ 1
n

(
hµ(Tn,E) +

∫
Snφ dµ

)

≤ 1
n

(
hµ(Tn,Dn) +

∫
Snφ dµ

)
+

1
n

Hµ(E|Dn)

≤ 1
n

(PT n(Snφ) + log(n|A|)) +
1
n

Hµ(E|Dn)

by Lemma 2.11. Now

Hµ(E|Dn) ≤
n−1∑

k=0

Hµ(T−kC|Dn) .

Since Dn refines T−kA for each k, one has Hµ(T−kC|Dn) < ε (since µ is
T -invariant, T−kA bears the same relation to T−kC as A to C). Hence, using
2.9,

hµ(T,C) +
∫

φ dµ ≤ PT (φ) +
1
n

log(n|A|) + ε .

Now let n → ∞ and then ε → 0. ��

2.13. Proposition. Let T1 : X1 → X1, T2 : X2 → X2 be continuous maps on
compact metric spaces, π : X1 → X2 continuous and onto satisfying π ◦ T1 =
T2 ◦ π. Then

PT2(φ) ≤ PT1(φ ◦ π)

for φ ∈ C (X2).

Proof. For U an open cover of X2 one sees that

PT2(φ,U) = PT1(φ ◦ π, π−1U) .

As in the proof of 2.8

PT1(φ ◦ π, π−1U) ≤ PT1(φ ◦ π) + γ(φ ◦ π, π−1U) .

But γ(φ◦π, π−1U) = γ(φ,U) → 0 as diam(U) → 0. Hence, letting diam(U) →
0 we get PT2(φ) ≤ PT1(φ ◦ π). ��

C. Variational Principle

Let U be a finite open cover of X. We say that Γ ⊂ W ∗(U) =
⋃

m>0 Wm(U)
covers K ⊂ X if K ⊂

⋃
U∈Γ X(U). For λ > 0 and Γ ⊂ W ∗(U) define

Z(Γ, λ) =
∑

U∈Γ

λm(U) exp(Sm(U)φ(U)).
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2.14. Lemma. Let P = P (φ,U) and λ > 0. Suppose that Z(Γ, λ) < 1 for
some Γ covering X. Then λ ≤ e−P .

Proof. As X is compact we may take Γ finite and Γ ⊂
⋃M

m=1 Wm(U). Then
Z(Γn, λ) ≤ Z(Γ, λ)n where Γn = {U1U2 · · ·Un : Ui ∈ Γ}. Letting Γ ∗ =⋃∞

n=1 Γn, one has

Z(Γ ∗, λ) =
∞∑

n=1

Z(Γn, λ) < ∞ .

Fix N and consider x ∈ X. Since Γ covers X, one can find U = U1U2 · · ·Un ∈
Γ ∗ with

(a) x ∈ X(U), and
(b) N ≤ m(U) < N + M .

Let U∗ be the first N symbols of U. Then

SNφ(U∗) ≤ Sm(U)φ(U) + M‖φ‖ .

For ΓN the set of U∗ so obtained,

λN
∑

Γ N

exp SNφ(U∗) ≤ max
{
1, λ−M

}
eM‖φ‖ Z(Γ ∗, λ),

or λNZN (φ,U) ≤ constant. It follows that λ ≤ e−P . ��

Let δx be the unit-measure concentrated on the point x. Define

δx,n = n−1(δx + δTx + · · · + δT n−1x)
and V (x) = {µ ∈ M (X) : δx,nk

→ µ for some nk → ∞} .

V (x) �= ∅ as M (X) is a compact metric space. Now T ∗δx,n = δTx,n and for
f ∈ C (X), |T ∗δx,n(f)−δx,n(f)| = n−1|f(Tnx)−f(x)| ≤ 2n−1‖f‖. This shows
V (x) ⊂ MT (X).

Let E be a finite set, a = (a0, . . . , ak−1) ∈ Ek. One defines the distribution
µa on E by

µa(e) = k−1(number of j with aj = e)

and H(a) = −
∑

e∈E

µa(e) log µa(e) .

2.15. Lemma. Let x ∈ X, µ ∈ V (x), U a finite open cover of X and ε > 0.
There are m and arbitrarily large N for which one can find U ∈ WN (U)
satisfying the following

(a) x ∈ X(U),
(b) SNφ(U) ≤ N(

∫
φdµ + γ(U) + ε),
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(c) U contains a subword of length km ≥ N − m which, when viewed as a =
a0, . . . , ak−1 ∈ (Um)k satisfies

1
m

H(a) ≤ hµ(T ) + ε.

Proof. Let U = {U1, . . . , Uq}. Recall that

γ(U) = sup{|φ(y) − φ(z)| : y, z ∈ Ui for some i} .

Pick a Borel partition C = {C1, . . . , Cq} with Ci ⊂ Ui. There is an m so that

1
m

Hµ(C ∨ · · · ∨ T−m+1C) ≤ hµ(T,C) +
ε

2
≤ hµ(T ) +

ε

2
·

Let δx,nj
→ µ. For n′ > n one has

δx,n′ =
n

n′ δx,n +
n′ − n

n′ δT nx,n′−n .

If we replaced nk by the nearest multiple of m, this formula shows that µ
would still be the limit. Thus we assume nj = mkj .

Let D1, . . . , Dt be the nonempty members of C∨· · ·∨T−m+1C and for each
Di find a compact Ki ⊂ Di with µ(Di\Ki) < β (β > 0 small). Each Di is
contained in some member of U∨ · · · ∨T−m+1U and one can find an open set
Vi ⊃ Ki for which this is still true. Furthermore we may assume Vi ∩ Vj = ∅
for i �= j. Now enlarge each Vi to a Borel set V ∗

i still contained in a member
of U ∨ · · · ∨ T−m+1U and so that {V ∗

1 , . . . , V ∗
t } is a Borel partition of X.

Now fix nj = mkj . Let Mi be the number of s ∈ [0, nj) with T sx ∈ V ∗
i

and Mi,r the number of such s ≡ r (mod m).
Define

pi,r = Mi,r/kj

and pi = Mi/nj = 1
m (pi,0 + · · · + pi,m−1) . As δx,nj

→ µ, one has

lim inf
j→∞

pi ≥ µ(Ki) ≥ µ(Di) − β,

and lim supj→∞ pi ≤ µ(Ki)+ tβ ≤ µ(Di)+ tβ. For β small enough and j large
enough one has

1
m

(
−

∑

i

pi log pi

)
≤ 1

m

(
−

∑

i

µ(Di) log µ(Di)

)
+

ε

2

≤ hµ(T ) + ε .

By the concavity of ϕ(x) = −x log x (see 1.17)

ϕ(pi) ≥
m−1∑

r=0

1
m

ϕ(pi,r)
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and so
∑

i

ϕ(pi) ≥
1
m

m−1∑

r=0

∑

i

ϕ(pi,r) .

For some r ∈ [0,m) one must have
∑

i ϕ(pi,r) ≤
∑

i ϕ(pi) and so

1
m

∑

i

ϕ(pi,r) ≤ hµ(T ) + ε .

For N = nj + r with j large we form U = U0U1 · · ·UN−1 ∈ UN as follows. For
s < r pick Us ∈ U containing T sx. For each V ∗

i we choose U0,i ∩ T−1U1,i ∩
· · · ∩ T−m+1Um−1,i ⊃ V ∗

i . For s > r we write s = r + mp + q with p ≥ 0,
m > q ≥ 0, pick i with T r+mpx ∈ V ∗

i and let Us = Uq,i. Letting

ap = U0,iU1,i · · ·Um−1,i

we have
U = U0 · · ·Ur−1a0a1 · · · akj−1 .

Now a = (a0a1 · · · akj−1) has its distribution µa on Um given by the proba-
bilities {pi,r}t

i=1 and some zeros.
So

1
m

H(a) =
1
m

∑

i

ϕ(pi,r) ≤ hµ(T ) + ε.

We have yet to check (b). Since δx,nj
→ µ, for j large we will have

∣∣ 1
N δx,N (φ)−∫

φ dµ
∣∣ < ε or SNφ(x) ≤ N(

∫
φ dµ + ε). As x ∈ X(U), SNφ(U) ≤ SNφ(x) +

Nγ(U). ��

2.16. Lemma. Fix a finite set E and h ≥ 0. Let R(k, h)={a ∈ Ek : H(a)≤h}.
Then

lim sup
k→∞

1
k

log |R(k, h)| ≤ h .

Proof. For any distribution ν on E and α ∈ (0, 1) consider

Rk(ν) = {a ∈ Ek : |µa(e) − ν(e)| < α ∀e ∈ E} .

Let µ be the Bernoulli measure on Σ =
∏∞

i=0 E with the distribution

µ(e) = (1 − α)ν(e) + α/|E| .

Each a ∈ Rk(ν) corresponds to a cylinder set Ca of Σ. Since each e ∈ E
occurs in a at most k(ν(e) + α) times,

µ(Ca) ≥
∏

e

µ(e)k(ν(e)+α) .

As the Ca are disjoint and have total measure 1,
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1 ≥ |Rk(ν)|
∏

e

µ(e)k(ν(e)+α),

or
1
k

log |Rk(ν)| ≤
∑

e

−(ν(e) + α) log µ(e)

≤ H(µ) +
∑

e

3α| log µ(e)| .

As µ(e) ≥ α/|E|, we get

1
k

log |Rk(ν)| ≤ H(µ) + 3α|E|(log |E| − log α) .

When α → 0, the second term on the right approaches 0 and H(µ) → H(ν)
uniformly in ν. Hence, for any ε > 0 one can find α small enough that

1
k

log |Rk(ν)| ≤ H(µ) + ε,

for all k and ν.
Once α is so chosen, let N be a finite set of distributions on E so that

(a) H(ν) ≤ h for ν ∈ N , and
(b) if H(ν′) ≤ h then for some ν ∈ N one has

|ν′(e) − ν(e)| < α for all e.

Then R(k, h) ⊂
⋃

ν∈N Rk(ν),

1
k

log |R(k, h)| ≤ 1
k

log |N | + h + ε

and lim sup
k→∞

1
k

log |R(k, h)| ≤ h + ε.

Now let ε → 0. ��

2.17. Variational Principle. Let T : X → X be a continuous map on a
compact metric space and φ ∈ C (X). Then

PT (φ) = sup
µ

(
hµ(T ) +

∫
φ dµ

)

where µ runs over MT (X).

Proof. Let U be a finite cover of X and ε > 0. For each m > 0 let Xm be the
set of points x ∈ X for which 2.15 holds with this m and some µ ∈ V (x). By
2.15 X =

⋃
m Xm since V (x) �= ∅. For u ∈ R let Ym(u) be the set of x ∈ Xm

for which 2.15 holds for some µ ∈ V (x) with
∫

φdµ ∈ [u − ε, u + ε]. Set
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c = sup
µ

(
hµ(T ) +

∫
φ dµ

)
.

For x ∈ Ym(u) the µ satisfies hµ(T ) ≤ c − u + ε.
The a ∈ (Um)k appearing in 2.15 (c) for x ∈ Ym(u) lie in R(k,m(c − u +

2ε),Um). The number of possibilities for U for any fixed N = km is hence at
most

b(N) = |E|m |R(k,m(c − u + 2ε),Um)| .
By 2.16

lim sup
N→∞

1
N

log b(N) ≤ c − u + 2ε .

Let Γ = Γm,u be the collection of all U showing up in the present situation
for some N greater than a fixed N0. Then Γ covers Ym(u) and

Z(Γ, λ) ≤
∞∑

N=N0

λN b(N) exp(N(u + 2ε + γ(U))) .

For large enough N0, b(N) ≤ exp(N(c − u + 3ε)) and

Z(Γ, λ) ≤
∞∑

N=N0

λN exp(N(c + 5ε + γ(U))) .

≤
∞∑

N=N0

βN =
βN0

1 − β
,

where β = λ exp(c + 5ε + γ(U)) < 1.
We have seen that for λ < exp(−(c + 5ε + γ(U))) any Ym(u) can be

covered by Γ ⊂ W ∗(U) with Z(Γ, λ) as small as desired. As X =
⋃∞

m=1 Xm

and Xm = Ym(u1)∪ · · · ∪Ym(ur) where u1, . . . , ur are ε-dense in [−‖φ‖, ‖φ‖],
taking unions of such Γ ′s we obtain a Γ covering X with Z(Γ, λ) < 1. By
Lemma 2.14, λ ≤ e−P (φ,U) or

P (φ,U) ≤ c + 5ε + γ(U) .

As ε was arbitrary, P (φ,U) ≤ c + γ(U).
Finally

P (φ) ≤ lim
diam(U)→0

P (φ,U)

≤ lim
diam(U)→0

(c + γ(U)) = c .

The inequality c ≤ P (φ) follows from Theorem 2.10. ��

2.18. Corollary. Suppose {Xα}α∈Λ is a family of compact subsets of X and
TXα ⊂ Xα for each α. Then

PT (φ) = sup
α

PT |Xα
(φ|Xα

) .
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Proof. If µ ∈ MT (Xα), then µ ∈ MT (X) and

PT (φ) ≥ hµ(T ) +
∫

φ dµ .

Hence

PT (φ) ≥ sup
µ∈MT (Xα)

(
hµ(T ) +

∫
φ dµ

)
= PT |Xα

(φ|Xα
) .

If x ∈ Xα, then V (x) ⊂ MT (Xα) and so

c′ = sup

{
hµ(T ) +

∫
φ dµ : µ ∈

⋃

x∈X

V (x)

}

≤ sup
α

PT |Xα
(φ|Xα

) .

In the proof of 2.17 what was actually used about the number c was c ≥
hµ(T ) +

∫
φ dµ for µ ∈ V (x). So c′ would work just as well there to yield

PT (φ) ≤ c′. ��

D. Equilibrium States

If µ ∈ MT (X) satisfies hµ(T )+
∫

φ dµ = PT (φ), then µ is called an equilibrium
state for φ (w.r.t. T ). The Gibbs state µφ of φ ∈ FA in Chapter 1 was shown
to be the unique equilibrium state for such a φ.

2.19. Proposition. Suppose that for some ε > 0 one has hµ(T,D) = hµ(T )
whenever µ ∈ MT (X) and diam(D) < ε. Then every φ ∈ C (X) has an
equilibrium state.

Proof. We show that µ �→ hµ(T ) is upper semi-continuous on MT (X). Then
µ �→ hµ(T ) +

∫
φdµ will be also, and the proposition follows from 2.17 and

the fact that an u.s.c. function on a compact space assumes its supremum.
Fixing µ ∈ MT (X), α > 0, and D = {D1, . . . , Dn} with diam(D) < ε, one

has 1
mHµ(D∨ · · · ∨ T−m+1D) ≤ hµ(T ) + α for some m. Let β > 0 and pick a

compact set Ki0,...,im−1 ⊂
⋂m−1

k=0 T−kDik
with

µ

(
⋂

k

T−kDik

∖
Ki0,...,im−1

)
< β .

Then Di ⊃ Li =
⋃m−1

j=0

⋃
{T jKi0,...,im−1 : ij = i}. As the Li are disjoint

compact sets, one can find a partition D′ = {D′
1, . . . , D

′
n} with diam(D′) < ε

and Li ⊂ int(D′
i). One then has

Ki0,...,im−1 ⊂ int

(
⋂

k

T−kD′
ik

)
.
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If ν is close to µ in the weak topology, one will have

ν

(
⋂

k

T−kD′
ik

)
≥ µ(Ki0,...,im−1) − β

and
∣∣ν

(⋂
k T−kD′

ik

)
− µ

(⋂
k T−kDik

) ∣∣ ≤ 2βnm. For β small enough, this
implies

hν(T ) = hν(T,D′) ≤ 1
m

Hν(D′ ∨ · · · ∨ T−m+1D′)

≤ 1
m

Hµ(D ∨ · · · ∨ T−m+1D) + α ≤ hµ(T ) + 2α . ��

2.20. Corollary. If T is expansive, every φ ∈ C (X) has an equilibrium state.

Proof. Recall 2.5. ��

One notices that the condition in 2.19 has nothing to do with φ. Taking
φ = 0, one defines the topological entropy of T by

h(T ) = PT (0) .

The motivation for this chapter comes from two places: the theory of Gibbs
states from statistical mechanics and topological entropy from topological dy-
namics (see references). Conditions on φ become important for the uniqueness
of equilibrium state and then only after stringent conditions have been placed
on the homeomorphism T . The Axiom A diffeomorphisms will be close enough
to the subshifts σ : ΣA → ΣA so that one can prove uniqueness statements.
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