2

General Thermodynamic Formalism

A. Entropy

In Section D of Chapter 1, we defined the number h,(7,D) when T is an
endomorphism of a probability space and D a finite measurable partition. We
now define the entropy of u w.r.t. T by

hu(T) = sup h, (T, D),
D
where D ranges over all finite partitions. We will now turn to some computa-

tional lemmas.
We define

H,(€[D) = H, (€ D) — H,(D)
L 4 w(C; N D) o 1(Cj N Dy)
= 2P 2 o (S

>0.

Lemma 1.17 says that H,(C|D) < H,(C). We write € C D if each set in €

is a union of sets in D.

2.1. Lemma.

(a) H,(CD) < H,(ClE) if DD E.

(b) H, (@|®)—02f®38

(c) H(GvD\é’) < H,(C|&) + H,(DIE).
(d)H.(€

un(€) < Hu(D )+H(@\D)

Proof. Letting () = —zlogz, H,(CD) = ;> n(Di) ¢ (%)
Since € C D, one can rewrite this as

i~ 5 8804550

Jj Ee€& D; CE‘
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By the concavity of ¢ (see the proof of Lemma 1.17) one has ¢(>_ a;2;) >
> aip(x;) where

o = D) G NDy)
op(E) w(D;)
Hence CnE
e <Y Y u(m) o (ST —nepe).

j Ee€&

To see (b) one notes that €V D =D when D D €. For (c) one writes

H,(evD|E)=H,(CVDVE)—H,(DVE)+H,(DVE)—H,LE)
= H,(C|DV &) + H,(D€)
< Hu(C[€) + Hu(DIE)

by (a). Finally

H,(€) = H,(CV D) — H,(D|C)
< H,(CVD)=H,(D)+ H,€D). O

2.2. Lemma. Let T' be an endomorphism of a probability space (X, A, u), C
and D finite partitions. Then

(a) H,(T~*€|T~*D) = H,(C|D) for k >0,
(b) hu(T',€) < (T, D) + H,(€|D),
(c) hy(T,€V--- VT~ "C) = h,(T,0C).

Proof. As p is T-invariant,

H,(T*€|T7*D) = H,(T~*Cv T *D) - H,(T*D)
= H,(CVvD)—H,(D)=H,(C|D).

Using Lemma 2.1

H,(CV.---vT e < H,(DV---vT "D)

+H,(CV---vT DV v T D)
<H,(DV---vT ™D)
1

+ H,(T7*¢|Dv...vT~™D)

m—1

< H,(DV---VT"D) + " H,(T~*C|T~*D)
k=0

=H,(DV--- VT "™1D)+mH,(CD).

Dividing by m and letting m — oo,
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Set D=CV---VT "C. Then

1 1
ZH(DV-.-vT MDY= —_H (CV ...y T M ntley.
m N( ) m u( )

m
m—+n

Letting m — oo, (as — 1) we get
hu(T,D) = h,(T,€). O

2.3. Lemma. Let X be a compact metric space, p € M (X), € >0 and C a
finite Borel partition. There is a 6 > 0 so that H,(C|D) < e whenever D is a
partition with diam(D) < §.

Proof. Let C={C4,...,Cy}. In Lemma 1.23 we showed that, for any a > 0,
one could find § > 0 such that whenever D satisfies diam(D) < § there is a
€ ={Ey,...,E,} C D with

,u(EZ-ACi) <.

The expression

w(C; N Ei))

H(ele) = (e o (M

depends continuously upon the numbers
wCyNE) and p(E) =Y u(C;NE)
J
and vanishes when ;(C; N E;) = 6;; u(E;). Hence, for o small, H,(C|E) < e.
Then H,,(C|D) < H,(C|E) <e by 2.1 (a). O

2.4. Proposition. Suppose T : X — X is a continuous map of a com-
pact metric space, p € Mr(X) and that D, is a sequence of partitions with
diam(D,,) — 0. Then

Proof. Of course h,(T) > limsup,, h,(T,D,,). Consider any partition C. By
Lemmas 2.2 (b) and 2.3

hu(T,€) < liminf h, (T, D,) .
Varying C, h,(T) < liminf, h,(T,D,). O

A homeomorphism 7" : X — X is called expansive if there exists € > 0 so
that
d(T*z, TFy) <e forallkeZ = z=y.
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2.5. Proposition. Suppose T : X — X is a homeomorphism with erpansive
constant €. Then h,(T) = h,(T, D) whenever p € M7 (X), and diam(D) < e.

Proof. Let D,, =T"DV ---VDV--- VT "D. Then diam(D,,) — 0 using
expansiveness. Hence h,(T) = lim,, h,(T,D,,). But h,(T,D,) = h,(T,D) by
Lemma 2.2 (c). O

Consider the case of 0 : ¥4 — X4 and standard partition U={Uq,...,U,}
where U; = {z € X4 : 9 = i}. Then o is expansive and 2.5 gives that
hyu(o) = hu(o,U) for p € A;(X4). Now h,(o,U) is what we denoted by
s(u) in Chapter 1. That s(u) = h,(o) implies that the number s(u) does
not depend on the homeomorphism ¢ and partition U, but only on ¢ as an
automorphism of the probability space (X4, %, 1) (because of the definition
of h,(a)).

2.6. Lemma. h,(T") = nh,(T) for n > 0.

Proof. Let € be a partition and € = CV --- VT~ "T1C. Then

nhu(T’ C) = lim l]{M(G VeV Tfnerle)

m—oc MM
= lim_ %HH(E VT eV -y TEmEne)
= h,(T", €) < hu(Tn) = nhu(T)-

Varying €, nh,(T) < h,(T™). On the other hand

hu(T™,€) < hy (T, €)
by 2.2 (b) and 2.1 (b). Hence

h(T") =sup h,(T",€C) < nsuph,(T,C) =nh,(T). O
e e

B. Pressure

Throughout this section T': X — X will be a fixed continuous map on the
compact metric space X. We will define the pressure P(¢) of ¢ € ¥(X) in a
way which generalizes Section D in Chapter 1.

Let U be a finite open cover of X, W,,,(U) the set of all m-strings

U =Us,Us, - Us

m—1
of members of U. One writes m = m(U),

XU)={reX:TrzcU, fork=0,...,m—1}
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m—1
Smé(U) = sup { > o(Thz)xe X(g)} :

k=0

In case X(U) =0, we let S;,¢p(U) = —co. We say that I' C W, (U) covers X
if X =Uyer X(U). Finally one defines

Zun(9,U) = inf Y exp(Sme(U)),
Uer

where I" runs over all subsets of W,,,(U) covering X.

2.7. Lemma. The limit
P60 = Tim_ - log Z,(6,10)
exists and is finite.
Proof. If I, € W, (W) and I, C W,,(U) each cover X, then
Lyl ={UNV:Ue€ L}y, Ve I} CWiin(U)
covers X. One sees that

Smind(UV) < Spo(U) + Sno(V)

> exp(Smind(UV) < Y exp(Smo(U) > exp(Sns(V)).

uver,r, Uerly, ver,

and Z,, (¢, U) > eIl Hence a,, = log Z,,(¢, U) satisfies the hypotheses of
Lemma 1.18. O

2.8. Proposition. The limit

P@)= lm  P(o.1)

exists (but may be +00).

Proof. Suppose V is an open cover refining U, i.e., every V € 'V lies in some
UV)eU. ForVeW,WMletUN)=UWV;,) - UWV;,_,). If I, CW,(V)
covers X, then U(I,,) ={U(V):V € I,,} C W,,,(U) covers X.

Let v = v(¢,U) = sup{|p(x) — ¢(y)| : x,y € U for some U € U}.

Then Spd(U(V)) < Spn¢(V) + my and so Z,,(¢,U) < €™ Z,,(4,V), which
gives
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P(o,U) < P(6,V) +7.
Now for any U, all V with small diameter refine U and so

P(¢,U) —v(o,U) < minf P(g, V).

Letting diam(U) — 0, y(¢,U) — 0 and

limsup P(¢,U) < liminf P(¢,V).
diam(U)EO (@0 diam(V)—0 (@)

We are done. 0O

In cases where confusion may arise we write the topological pressure P(¢)
as Pr(¢).

2.9. Lemma. Let S,é(z) = Y.p—o ¢(T*z). Then
Prn(Sn¢) = nPr(¢) forn > 0.
Proof. Let V. = UV --- VT~ "1, Then W,,(V) and W,,,(U) are in one-
to-one correspondence; for U = U; U;, ---U;, ., let V=V, ---V; | where
Vi =U;,, NT7U;,, ., NI, . One sees that X (U) = X (V)
and ST $(U) = ST"(S,¢)(V). Thus one gets
Zh (0. W) = ZL" (S,0,V) and nPr(¢,U) = Pr«(S.4,V).
As diam(U) — 0, diam(V) — 0 and so nPr(¢) = Pra(Sp¢). O
We now come to our first interesting result about the pressure P(¢).

2.10. Theorem. Let T : X — X be a continuous map on a compact metric
space and ¢ € €(X). Then

hu(T) +/¢ du < Pr(¢),

for any p € Mr(X).
We will first need a couple of lemmas.

2.11. Lemma. Suppose D is a Borel partition of X such that each r € X is
in the closures of at most M members of D. Then

h(T.D)+ [ 6 du < Pr(o) +1og M.
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Proof. Let U be a finite open cover of X each member of which intersects
at most M members of D. Let I, C W,,,(U) cover X. For each B € D,,, =
DV--- VT ™D pick 2 € B with [, Sp¢ dp < p(B) Spup(a). Now

(T, D) /¢du<( /Sm(bdu)

*ZM (—log u(B) + Smo(as))

| A

< E log Z exp(Sme(2s))
B

by Lemma 1.1. For each z; pick U, € I, with z; € X(U,). This map
B — U, is at most M™ to one. As Sy, ¢(x5) < Spmé(U,), one has

hu(T, D) +/¢ dp < %log > M™ exp(Smo(U))

Uel,,

<logM + — logZ (o, U) .

Letting m — oo and then diam(U) — 0, we obtain the desired inequality. O

2.12. Lemma. Let A be a finite open cover of X. For each n > 0 there is a
Borel partition D,, of X so that

(a) D lies inside some member of T~FA for each D € D,, andk =0,...,n—1,
(b) at most n|A| sets in D,, can have a point in all their closures.

Proof. Let A = {A;,...,An} and ¢1,...,gm be a partition of unity subor-
dinate to A. Then G = (g1,-..,9m) : X — Sm—1 C R™ where s,,_1 is an
m — 1 dimensional simplex. Now U = {Uy,...,U,} is an open cover where
U = {z € 5,1 : x; > 0} and G7'U; C A;. Since (5,,_1)" is nm — n
dimensional, there is a Borel partition D of (s,,-1)" so that

(a’) each member of D} lies in some U;, X --- x U, , and

(b’) at most nm members of D} can have a common point in all their closures.

Then D,, = L~'D? works where
L=(G,GoT,....,GoT" M : X — (5,_1)". O

Proof of 2.10. Let C be a Borel partition and € > 0. By Lemma 2.3 find an
open cover A so that H,(C|D) < ¢ whenever D is a partition every member of
which is contained in some member of A. Fix n > 0,let € = CVv ... v T "+1E
and D,, as in Lemma 2.12. Then (see the proof of 2.6)
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<hH(T”,8) + / S du>

(hM(T",Qn) + /sn¢ du> + %HM(EVDn)

hu(T.€)+ [ 6 dn <

INA
SI— 3= 3=

IN

(Pra(506) + log(nA) +  H, (E[D,)

by Lemma 2.11. Now
n—1
H,(E|Dy) <Y H,(T7F€D,).
k=0

Since D,, refines T~FA for each k, one has H,(T~*€|D,) < e (since u is
T-invariant, T~*A bears the same relation to T-*€ as A to €). Hence, using
2.9,

1
m(T,€)+ [ 6 du < Pr(o) + - log(ald]) +<.
Now let n — oo and then e — 0. O

2.13. Proposition. Let Ty : X1 — X4, Ts : Xo — X5 be continuous maps on
compact metric spaces, w : X1 — Xo continuous and onto satisfying wo T} =
T om. Then

PT2(¢) < PT1(¢O7T)
for ¢ € €(Xs).

Proof. For U an open cover of Xo one sees that
Pr,(6,W0) = Pr (9o m,m~'10).
As in the proof of 2.8
Pr(¢om W) < Pr,(¢om) +(domn ).

But y(gom, 7 1U) = v(¢,U) — 0 as diam(U) — 0. Hence, letting diam(U) —
0 we get Pr,(¢) < Pr,(pom). O

C. Variational Principle

Let U be a finite open cover of X. We say that I" ¢ W*(U) = |J Wi (W)

m>0 """ m

covers K C X if K C Jyep X(U). For A >0 and I" € W*(U) define

Z(0A) = > A exp(S,.0$(U)).
Uer
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2.14. Lemma. Let P = P(¢,U) and X\ > 0. Suppose that Z(I',\) < 1 for
some I' covering X. Then X\ < e~ .

Proof. As X is compact we may take I" finite and I" < (J¥_, W,,,(U). Then
Z(I, ) < Z(I'\)" where I'" = {U;U,---U, : U, € I'}. Letting I'* =
U,—, I'™, one has

o0
Z(I*\) =Y Z(I'",\) < .
n=1
Fix N and consider x € X. Since I" covers X, one can find U =U,U,---U,, €
I'* with

(a) z € X(U), and
(b) N <m(U) < N+ M.

Let U* be the first N symbols of U. Then

Sno(U") < Sy d(U) + Mo

For I'N the set of U* so obtained,

AN ZexpSNgb(Q*) < max{l,)\*M} Mol z(r* X),
I'N

or AN Zxn(¢,U) < constant. It follows that A < e F. O

Let 0, be the unit-measure concentrated on the point x. Define

6w,n = n_1<5a: + 6Tw + -+ 5T"*1x)
and V(z)={pe€ #(X):yn, — p for somen, — oo}.

V(xz) # 0 as 4 (X) is a compact metric space. Now T8, ,, = dr,,, and for
f € FX), IT*60n(F)—b0n(F)] = 01| f(T"2)— f(2)] < 20" ]| . This shows
Vz) C M (X).

Let E be a finite set, a = (ao, . .., ax_1) € E*. One defines the distribution
e O E by

fta(€) = k™ (number of j with a; = e)
and  H(a) =~ pa(€)log jra(e)

eckl

2.15. Lemma. Let © € X, p € V(z), U a finite open cover of X and ¢ > 0.
There are m and arbitrarily large N for which one can find U € Wy (U)
satisfying the following

(a) z € X(U),
(b) Sno(U) < N([ ¢pdp+~(U) +¢),
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(¢) U contains a subword of length km > N — m which, when viewed as a =
ao,...,ap_1 € (W™)* satisfies

%H(@) < h(T) + .

Proof. Let U= {Ux,...,U,}. Recall that

Y(W) = sup{|o(y) — ¢(2)| : y, z € U; for some i} .

Pick a Borel partition € = {C1,...,C,} with C; C U;. There is an m so that

1
—H,(CVv.--vT~™He) < h,(T,€) +

<
o <)+

N | ™
| ™

Let 64, — p. For n’ > n one has

n n' —n

6aj,n’ = W 6w,n + n 6T"w,n’—n .

If we replaced nj by the nearest multiple of m, this formula shows that pu
would still be the limit. Thus we assume n; = mk;.

Let D1, ..., D; be the nonempty members of CV---VT~™+1€ and for each
D; find a compact K; C D; with u(D;\K;) < 8 (8 > 0 small). Each D; is
contained in some member of UV --- VT~ and one can find an open set
Vi O K, for which this is still true. Furthermore we may assume V; NV, = 0
for i # j. Now enlarge each V; to a Borel set V;* still contained in a member
of UV -+ VT~ and so that {V}*,...,V;*} is a Borel partition of X.

Now fix n; = mk;. Let M; be the number of s € [0,n;) with T%z € V*
and M; , the number of such s = r (mod m).
Define

Pir = i,r/kj

and p; = M;/n; = %(pi,o 4+ 4+ Pim-1). As 0z n; — i, one has

liminf p; > p(K;) > p(D;) — 6,

J—00

and limsup; _, .. pi < p(K;)+t8 < p(D;) +13. For 3 small enough and j large
enough one has

1 €
— (—;pilogpi> ( ZM /) log (D )> +5
< h”(T)—i-s.

By the concavity of ¢(x) = —xlogz (see 1.17)

;-.

m—

1
ZE pzr

r=0
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and so )
> o) > % > epir)-
7 r=0 1

For some r € [0,m) one must have >, o(pir) <>, ¢(p;) and so
1
mii)p(p, ) < hy(T) +e

For N = n; +r with j large we form U = UgU; ---Un—_1 € UN as follows. For
s < r pick Ug € U containing T*xz. For each V;* we choose Uy ; N T_lUM N
- N T‘m‘HUm_l,i D V. For s > r we write s = r + mp + ¢ with p > 0,
m > q > 0, pick i with TPy € V;* and let Us; = Uy ;. Letting

ap = UO,iUl,i T Umfl,i

we have
U=Up--Up—rapay - ag,;—1-

Now a = (apay - --ax;—1) has its distribution yq on U™ given by the proba-
bilities {p; . }!_; and some zeros.

So
—H(@) = — 3 plpir) < hulT) +2.

We have yet to check (b). Since 6,,,; — p, for j large we will have |%5E’N(¢) —
[ du| <cor Sné(z) < N([¢du+e). As z € X(U), Sno(U) < Syo(z) +
N~UW). O

2.16. Lemma. Fiz a finite set E and h > 0. Let R(k,h)={a € E* : H(a)<h}.
Then

1
lim sup Z log |R(k,h)| < h.

k—o0

Proof. For any distribution v on E and « € (0,1) consider
Ri(v) ={a € E* : |ua(e) —v(e)| < a Ve € E}.
Let p be the Bernoulli measure on X' = [[°, E with the distribution
ue) = (1 — ay(e) + /| Bl.

Each a € Rj(v) corresponds to a cylinder set C, of X. Since each e € E
occurs in a at most k(v(e) + a) times,

pu(Co) = [T eyt

As the C, are disjoint and have total measure 1,
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1> [Ri()| [T sle)* 1),
€

1
or %log|Rk |<Z e) + «)log u(e)
< H(w) + Y 30/ log u(e)].
As p(e) > a/|E|, we get

1
= log [Re(v)| < H(u) + 30| F|(log |E| ~ log ).

When o — 0, the second term on the right approaches 0 and H () — H(v)
uniformly in v. Hence, for any € > 0 one can find o small enough that

1
Elogle(V)l < H(p) +e,

for all £ and v.
Once « is so chosen, let N be a finite set of distributions on E so that

(a) H(v) < h for v € N/, and
(b)if H(v") < h then for some v € N one has

|V/(e) —v(e)] < a forall e.

Then R(k,h) C U, cn Be(v),

log|R(k‘,h)| < - log NI +h+e

and  limsup — - log |R(k,h)| < h+e.
k—o0
Now let e = 0. O

2.17. Variational Principle. Let T : X — X be a continuous map on a
compact metric space and ¢ € €(X). Then

Pr(¢) = Sup ( / ¢ du)

where (1 runs over Mr(X).

Proof. Let U be a finite cover of X and € > 0. For each m > 0 let X,,, be the
set of points « € X for which 2.15 holds with this m and some p € V(). By
2.15 X =J,,, Xin since V(z) # 0. For u € R let Y, (u) be the set of z € X,,
for which 2.15 holds for some p € V(x) with [ ¢du € [u — e, u + £]. Set
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¢=sw <hH(T) +/¢ du> .

For x € Y, (u) the p satisfies h,(T) < c—u+e.

The a € (U™)* appearing in 2.15 (c) for € Y;,(u) lie in R(k, m(c —u +
2¢),U™). The number of possibilities for U for any fixed N = km is hence at
most

b(N) = |B™ |R(k, m(c — u+22), ™)
By 2.16
1
limsuleogb(N) <c—u+2e.

N —oo
Let I' = I}, be the collection of all U showing up in the present situation
for some N greater than a fixed Ny. Then I' covers Y, (u) and

Z(I\) < i MV B(N) exp(N(u + 2 +y(U))).
N=Ng

For large enough Ny, b(N) < exp(N(c —u + 3¢)) and

Z([\) < f: MV exp(N(c+ 5e +y(W))) .

N=N,
[e'e} /BNO
< N_ 7
<> 8 =5
N=N,

where = Aexp(c+ 5e +~(U)) < 1.

We have seen that for A < exp(—(c + 5 + v(U))) any Y;,(u) can be
covered by I' C W*(U) with Z(I',\) as small as desired. As X = [J°_; X,
and X,,, = Y, (u1)U---UY,, (u,) where uy, ..., u, are e-dense in [—||o|, [|#]|],
taking unions of such I''s we obtain a I' covering X with Z(I',\) < 1. By
Lemma 2.14, A < e LW op

P(p,U) <c+5e+~(U).

As e was arbitrary, P(¢,U) < ¢+ v(U).
Finally

P@) < lm  P.)

< I U) =c.
- diaml(I'thl)HO(c + 7( )) ¢
The inequality ¢ < P(¢) follows from Theorem 2.10. O

2.18. Corollary. Suppose { X} aeca is a family of compact subsets of X and
TX, C X, for each . Then

Pr(¢) = sup Pry,_ (¢

Xo) -
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Proof. It p € Mr(X,), then p € Ar(X) and

Hence

Pr(g)>  sup (hM(T>+ / ¢du):PTxﬂ<¢

pEMT(Xa)
If x € X,, then V(z) C #r(X,) and so

c/:sup{hu(T)—i—/quﬂ TS U V(x)}

zeX

Xo) -

< sup Pri, (¢]x..)-

In the proof of 2.17 what was actually used about the number ¢ was ¢ >
hu(T) + [ ¢ dp for p € V(z). So ¢ would work just as well there to yield
Pr(¢)<d. O

D. Equilibrium States

If p € M (X) satisfies hy,(T)+ [ ¢ du = Pr(¢), then p is called an equilibrium
state for ¢ (w.r.t. T'). The Gibbs state uy of ¢ € F# 4 in Chapter 1 was shown
to be the unique equilibrium state for such a ¢.

2.19. Proposition. Suppose that for some € > 0 one has h,(T,D) = h,(T)
whenever y € Mp(X) and diam(D) < e. Then every ¢ € €(X) has an
equilibrium state.

Proof. We show that p +— h,(T) is upper semi-continuous on .#p(X). Then
w— h,(T) + [ ¢dp will be also, and the proposition follows from 2.17 and
the fact that an u.s.c. function on a compact space assumes its supremum.

Fixing p € Ar(X), a >0, and D = {Dy,..., D, } with diam(D) < ¢, one
has LH,(DV---VT~™D) < h,(T) + « for some m. Let 3> 0 and pick a
compact set K, ;. C ﬂkm:_ol T-*D;, with

L (ﬂ TkDik\Kio,...,im_1> <p.

k

Then D; D L; = U;n;Ol U{T?Ks,....i,, , : i; = i}. As the L; are disjoint
compact sets, one can find a partition D’ = {D1,..., D} } with diam(D’) < e
and L; C int(D}). One then has

Ky, i, Cint (ﬂ Tkng> .

k
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If v is close to u in the weak topology, one will have

v <ﬂ T’“ng> 2 W Kig,..ii) = B
k

and ’1/ (ﬂk T”“ng) — i (ﬂk T”“Dik) | < 26n™. For (8 small enough, this
implies

hu(T) = hV(T, D’) < lHV('D/ VIRV, T—m+1.D/)
m

1
< aHu@ Ve VTTHD) o < hy(T) + 2. O

2.20. Corollary. If T is expansive, every ¢ € € (X) has an equilibrium state.
Proof. Recall 2.5. O

One notices that the condition in 2.19 has nothing to do with ¢. Taking
¢ = 0, one defines the topological entropy of T by

h(T) = Pr(0).

The motivation for this chapter comes from two places: the theory of Gibbs
states from statistical mechanics and topological entropy from topological dy-
namics (see references). Conditions on ¢ become important for the uniqueness
of equilibrium state and then only after stringent conditions have been placed
on the homeomorphism 7'. The Axiom A diffeomorphisms will be close enough
to the subshifts o : X4 — X4 so that one can prove uniqueness statements.
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Ruelle [15] showed that for expansive T" a Baire set of ¢ have unique equilibrium
states. Goodman [9] gives a minimal subshift where ¢ = 0 has more than one
equilibrium state. I believe mathematical physicists know of specific ¢ on X,
which do not have unique equilibrium states; in statistical mechanics one looks at
Z™ actions instead of just homeomorphisms and gets nonuniqueness for m > 2
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