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Abstract. Basic processes responsible for the formation of quantum dot (QD) nanos-
tructures occur on a large range of length and time scales. Understanding this com-
plex phenomenon requires theoretical tools that span both the atomic-scale details
of the first-principles methods and the more coarse-scale continuum approach. By
discussing the time scale hierarchy of different elementary kinetic processes we em-
phasize several levels of constraint equilibrium of the system and elucidate path-
ways to reach corresponding stable or metastable states. Main focus is given to the
InAs/GaAs material system which is the most advanced one for applying QDs in
optoelectronics. First principles calculations of the potential energy surfaces by the
density functional theory (DFT) gain the knowledge about potential minima corre-
sponding to the preferred adsorption sites and barriers that govern the rates of dif-
fusion, desorption, and island nucleation in both unstrained and strained systems.
Based on these ab initio parameters, kinetic Monte Carlo (kMC) simulations have
allowed a detailed theoretical description of GaAs/GaAs and InAs/InAs homoepi-
taxial growth and elucidated the nucleation and evolution of InAs islands on GaAs.
A hybrid approach combining DFT calculations of the surface energies and con-
tinuum elasticity theory for the strain relaxation energy has given the equilibrium
shape of InAs/GaAs QDs as a function of volume and explained the observed shape
transitions. For the ensembles of strained QDs, the Fokker-Planck evolution equa-
tion has explained the formation of different types of metastable states in sparse and
dense arrays, and the kMC simulations have proposed a tool to distinguish kineti-
cally controlled and thermodynamically controlled QD growth. By continuum elas-
ticity theory in elastically anisotropic semiconductor systems, transitions between
vertically correlated and vertically anticorrelated growth of QD stacks has been ex-
plained, and yet another approach has been proposed to control the formation of
complex nanoworlds.
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1.1 Introduction

Data transmission, processing and storage form the backbone of the modern infor-
mation society. At the beginning of 1990s, a few outstanding discoveries concerning
self-organization phenomena on crystal surfaces marked a change of major para-
digms in semiconductor physics and technology. The new approach in epitaxy en-
ables fast parallel fabrication of large densities of quantum dots and wires for almost
unlimited material combinations and has become the basis for the powerful new
branch of nanotechnology [1, 2].

Quantum dots (QDs), nanometer-scale coherent inclusions showing a discrete
atom-like electronic spectrum up to room temperature and above, have major advan-
tages for applications as an active medium of optoelectronic devices. These proper-
ties have already resulted in many breakthroughs in the field of semiconductor lasers.
QD lasers, based on the most-studied three-dimensional In(Ga)As/GaAs QDs, have
shown superior performance with respect to conventional quantum well lasers re-
garding the following parameters [3, 4]: i) higher characteristic temperature T0 re-
ferring to the thermal stability of the threshold current density; ii) higher robustness
against structural defects; iii) better beam quality and effective suppression of fil-
amentation, etc. Combining self-organization phenomena and nanoengineering, in-
cluding a defect-reduction technique that enables selective elimination of dislocated
QDs [4, 5], has allowed fabrication of top performance GaAs-based QD lasers for
the practical 1300 nm spectral range. Further advances in nanoengineering include
a defect-reduction technique in thick metamorphic layers that has allowed blocking
the propagation of extended defects in the GaInAs films grown on GaAs substrates
to the upper layers. This enables fabrication of high-performance degradation-robust
InAs/GaInAs QD lasers for the spectral range of 1460–1500 nm [6–8]. Using two-
dimensional InAs/GaAs QDs obtained in the submonolayer deposition mode results
in an ultra-high volume density of QDs. This method enables the ultrahigh frequency
(20 GB/s) thermally insensitive (up to 85◦C) operation of a vertical cavity surface
emitting laser (VCSEL) [9–11].

A complementary field of exciting QD applications requires, on the contrary,
an ultra-low QD density which allows access to single dots. The QD-based sources
of linearly polarized single photons [12, 13] as well as a source of entangled pho-
tons [14] have been realized. These sources form an element basis for the emerging
field of quantum cryptography and have potential use in future quantum computing
systems.

The progress in the area of epitaxial nanostructures and, in particular, the de-
velopment of quantum dot- and quantum wire-semiconductor technology employ-
ing self-organization phenomena requires a profound understanding of the basic
physics behind the spontaneous formation of nanostructures. The progress can only
be reached and has been actually reached by combined efforts in

(i) Designing growth experiments
(ii) Developing theory of spontaneous nanostructuring

(iii) Performing precise structural and optical characterization of the grown objects
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(iv) Developing experimental tools that allow for controlling and tuning of geomet-
rical parameters and electronic spectra of the nanostructures

(v) Optimizing growth techniques to meet device requirements; and
(vi) Fabricating novel nanostructure-based devices that, in fact, fuel the research

area

1.1.1 Length and Time Scales

This chapter focuses on the theoretical modeling of the basic processes responsi-
ble for the formation of QD nanostructures. The processes underlying nanostruc-
ture formation occur over a large range of length and time scales. One can mention
deposition/evaporation of atoms on/from the surface, chemical reactions, diffusion
hopping of adatoms over the surface, nucleation of islands, attachment/detachment
of adatoms to/from islands, evolution of an island ensemble towards equilibrium/
ripening, intermixing/segregation, etc.

A complete understanding of the behavior of materials requires theoretical tools
that span both the atomic-scale details of the first-principles methods and the more
coarse-grained description by a continuum approach. An overview of various com-
putational strategies focused on combining traditional methods—density functional
theory,
molecular dynamics, Monte Carlo (MC) methods and continuum description—within
a unified multiscale approach is given in [15].

Figure 1.1(a) illustrates physical times and sizes of QD nanostructures that are
accessible by different methods within tc = 24 h computational time of a central
processor unit of a computer (CPU time). Within an overall CPU time of tc one can
perform n steps of CPU time τc, and thereby advance the physical time by tp in
steps of the physical time increment τp, i.e. tc = nτc and tp = nτp. The best known
scaling of the numerical effort with the number of atoms N is linear (see, e.g. [16]).
The physical time reachable in a given CPU time for a system with characteristic
length L and characteristic density ρ = N/V = NL−3 is then

tp = Ctcτp · L−3, (1.1)

with a prefactor C depending on the underlying method for the force evaluation. Dif-
ferent gray levels in Fig. 1.1(a) indicate accessible time scales and sizes that can be
modeled by ab initio molecular dynamics, or many-body potential (MBP) molecu-
lar dynamics, or by ab initio or MBP kinetic Monte Carlo (kMC) simulations. The
regime of continuum-elasticity theory (CET) is shown as being independent from the
physical time as it is primarily a static approach.

Apart from computational feasibility, one should emphasize that each of the the-
oretical tools has its own advantages. Thus, ab initio methods give an exact ultimate
answer for a given materials system. On the other hand, continuum theory is able
to describe different material systems on a coarse scale, predicting different scenar-
ios that depend on the material parameters. A multiscale modeling of nanostructure
formation allows us to combine the advantages of several of the more traditional
methods.
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Fig. 1.1. Physical times and sizes of QD nanostructures that are accessible by different meth-
ods within a CPU time of tc = 24 h and a time increment of τp = 1 fs (a). The computational
effort of a typical relaxation with a many-body potential is indicated by a dashed line. The
regions of QD growth (rectangle) can be deduced from the experimentally observed QD den-
sities (gray area in (b)), the relation between QD density and QD–QD distance is shown by a
solid line in (b), and the reported typical formation times of a few seconds. From [16], with
permission

1.1.2 Multiscale Approach to the Modeling of Nanostructures

For assessing the thermodynamic stability of semiconductor nanostructures in vari-
ous stages during their preparation, the thermodynamics of semiconductor surfaces
is obviously a very important factor. In this context it is important to emphasize sev-
eral levels of partial, or constraint equilibrium. For example, if the diffusion of atoms
over the island facets is faster than the attachment/detachment of adatoms to/from an
island, an island can form an equilibrium island shape at a given volume. On the time
scale where attachment/detachment processes are fast, and migration of adatoms be-
tween the islands is slow, a local surface equilibrium between an island and the
wetting layer (adatom sea) can form. On the time scale where material exchange
between islands mediated by the wetting layer occurs, the system evolves towards a
global surface equilibrium provided the deposition is stopped (growth interruption);
evaporation of atoms and intermixing/segregation processes which would occur via
bulk migration are negligible.

Most semiconductor surfaces are reconstructed, therefore first-principles calcu-
lations using realistic atomic structures are crucial to gain knowledge about the sur-
face free energies and surface stresses of the surfaces and interfaces that are being
formed. In the preparation of self-assembled quantum dots by Stranski–Krastanow
growth, examples are the wetting layer, the interfaces between a quantum dot and
the capping layer, or the side facets of free-standing quantum dots. By combining
density-functional theory (DFT) calculations using detailed surface atomic structure
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with thermodynamic considerations, i.e. by ab initio thermodynamics, valuable in-
sight can be gained into the thermodynamics of surface and interface formation.

As a basis for the understanding of possible kinetic limitations that could oc-
cur during the growth of quantum dots, it is important to have detailed information
not only about thermodynamics, but also about the growth kinetics, both of pure
semiconductors and heterostructures. For applying quantum dots in optoelectronic
devices, InAs/GaAs is the most advanced material system where numerous exper-
iments have been performed and suitable growth conditions are best understood.
Therefore most of the theoretical work presented in the following focuses on this sys-
tem. Understanding growth kinetics from an atomistic perspective starts with DFT
calculations of potential-energy surfaces (PESs) for the relevant molecular processes.
From the PES, knowledge can be gained both about the energy minima correspond-
ing to the preferred adsorption sites of Ga or In atoms or arsenic molecules, as well
as knowledge about the energy barriers that govern the rates of diffusion, desorp-
tion and island nucleation. For homoepitaxy of GaAs on a GaAs(001) substrate, an
extensive set of DFT calculations has been performed in order to obtain these data.
Although the heteroepitaxial system InAs/GaAs is clearly much more complicated
to describe on the atomic level, in this case the atomistic approach using DFT cal-
culations has succeeded in elucidating several structures and processes relevant to
quantum dot growth.

1.2 Atomistic Aspects of Growth

1.2.1 Diffusion of Ga Atoms on GaAs(001)

For epitaxy on the frequently used GaAs(001) substrate, the most important surface
reconstructions are the β2(2 × 4) and the c(4 × 4) reconstructions. These are most
stable under the moderately arsenic-rich or very arsenic-rich conditions typical for
molecular beam epitaxy at 500–600◦C and 400–500◦C, respectively. For Ga adatom
diffusion on the GaAs(001)β2(2 × 4) surface, density-functional theory calculations
[17] have shown that the surface diffusion is highly anisotropic, with energy barriers
of 1.2 eV and 1.5 eV in the [1̄10] direction (along the trenches) and the [110] direc-
tion, respectively. Remarkably, this study showed that Ga adatoms are able to split
the surface arsenic dimers that are part of the β2(2×4) reconstruction, and find their
most favorable binding sites in this position. The same holds true for In adatoms
on various (001) surfaces [18, 19]. However, other binding sites for In (outside As
dimers) exist that are more favorable. For both Ga or In deposition, the ability of
these adatoms to break up As dimers is an important atomistic step for growth on
arsenic-rich (001) surfaces. Figure 1.2 shows, for the case of In/GaAs(001)c(4 × 4),

the potential energy surface that governs the insertion of the In atom into an As
dimer.

1.2.2 Energetics of As2 Incorporation During Growth

In molecular-beam epitaxy (MBE), both As4 or As2 molecules (obtained by crack-
ing As4) can be used as sources of arsenic. Density-functional theory calculations



6 V. Shchukin et al.

Fig. 1.2. (a) Binding energy of an In adatom interacting with the center As dimer in the
GaAs(001)c(4 × 4) reconstruction as a function of the As–As distance d and the In height
above the midpoint of the dimer zIn, as indicated in the inset. (b, c) Bonding configuration
and valence electron density in the plane containing the In adatom and the As dimer for two
minima of Eb

performed for the case of As2 have shown that As2 molecules bind only weakly on
perfect GasAs(001)β2(2 × 4) or GaAs(001)c(4 × 4) surfaces. A similar behavior
is expected for As4 molecules, since they are less reactive than As2. According to
these DFT calculations [20, 21], the As2 molecules find sufficiently strong binding
sites (binding energy > 1.5 eV) only after overcoming high energy barriers, or if
additional Ga adatoms are already present on the surface, e.g. from previous Ga de-
position. The latter finding is in accordance with the experimental observation that
the sticking coefficient of an As2 molecular beam on GaAs(001)β2(2 × 4) is mea-
surably different from zero only if a Ga evaporation source is operative at the same
time [22].

1.2.3 Kinetic Monte Carlo Simulation of GaAs Homoepitaxy

The data about binding energies of Ga adatoms and As2 molecules and the energy
barriers for desorption, diffusion and island nucleation obtained from the DFT cal-
culations were combined in a kinetic Monte Carlo (kMC) study of GaAs homoepi-
taxy [23]. With this technique, it is possible to overcome the huge gap between the
time scales of molecular processes (picoseconds) and the relevant time scales for
growth experiments (several seconds up to minutes). As a result of these simula-
tions, it was possible to predict the GaAs island density as a function of temperature
and flux [23, 25, 26]. Particularly advantageous is the adatom-density kinetic Monte
Carlo method [27] that speeds up the simulations for large sample areas.



1 Thermodynamics and Kinetics of Quantum Dot Growth 7

Fig. 1.3. Schematic representation of the growth mechanism in GaAs homoepitaxy on the
GaAs(001)-β2 surface (side view). (a) The substrate is corrugated on the atomic scale, with
“hills” of As dimers (open circles, dimer axis perpendicular to the plane of the graph) and
“trenches”. Ga atoms (filled circles) with dangling bonds appear at the “sidewalls” of the
trenches. (b) Left: Attachment of material in the trench, yielding a local β1-reconstruction;
right: Ga dimer as a metastable growth intermediate. (c) Formation of a Ga dimer adjacent to
locally filled trench. (d) The island extends into a new layer after As2 adsorption

With the kMC simulations, we managed to pinpoint a sequence of processes that
give rise to island growth on the GaAs(001)-β2 substrate [23]. Some metastable in-
termediates are shown in Fig. 1.3. By attachment of material in the trenches of the
β2-reconstruction, two Ga atoms are incorporated into the surface, and a third As
dimer is added to the two top-level As dimers of the β2-reconstruction, yielding
a unit cell with local β1-reconstruction (Fig. 1.3(b), left part). If the rate of des-
orption of arsenic exceeds the rate of adsorption (i.e., when growing at high tem-
peratures and under low As fluxes), mobile Ga adatoms may agglomerate into Ga
dimers (Fig. 1.3(b), right part). The formation of these Ga dimers occurs preferen-
tially near sites where material has already filled the trenches, i.e., where the local
β1-reconstruction has appeared (Fig. 1.3(c)). Finally, if two or more such Ga dimers
have formed at sites adjacent in the [1̄10] direction, these offer favorable adsorption
sites for As2 molecules. Adsorption of As2 on these sites results in a small island
that extends into a new layer (Fig. 1.3(d)). Experimental studies in combination with
modeling have demonstrated that these islands, once they grow larger, redevelop the
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Fig. 1.4. Island number density for GaAs homoepitaxy after deposition for 1 s, using a Ga
flux of 0.1 ML/s and an effective As2 flux of 100 ML/s. (This rather high value is used to take
into account the effect of multiple bounces of As2 molecules on the surface.) The filled circles
are results of kMC simulations ([23]), the open square symbol is the measured island density
from [24], at a Ga flux of 0.1 ML/s and a (direct) As2 flux of 0.8 ML/s

well-known β2-reconstruction pattern [28]. As a result of this growth mechanism,
such islands are elongated along the [1̄10] direction. One can get a good idea about a
typical growth sequence by looking at animated snapshots taken in millisecond time
intervals of the atomic configurations obtained from the kMC simulations. Such a
“movie” is available from the Web [29].

Already after depositing a fraction of a monolayer of GaAs, the island density
reaches a saturation value. At the most frequently used growth temperature of 580◦C,
the kMC simulations predict an island density of 7 × 1011 cm−2, in good agreement
with experiments using molecular beam epitaxy followed by an analysis of the island
density in scanning tunneling microscopy images, yielding 6.6×1011 cm−2, see [24,
30]. Simulations of hypothetical growth at widely different temperatures, 500 K <

T < 900 K, assuming that the β2-reconstruction could be stabilized over the whole
temperature range, show a remarkable temperature dependence of the island density
(see Fig. 1.4). While at low temperature the island density decreases with increasing
temperature, as expected from nucleation theory, the experimentally relevant growth
regime is on the rising slope of the island density at high growth temperatures. This
growth regime is a unique feature of a two-component system: At T ∼ 800 K,
desorption of As2 sets in; therefore the attachment of material to the edges of existing
islands (that requires permanent arsenic incorporation) becomes reversible above this
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temperature. This leads to the observed change in growth kinetics and to an increase
in the nucleation of new islands with increasing temperature [23, 26]. Around its
minimum at ∼800 K, the island density in the kMC simulations is found to be an
increasing function of As2 flux, again in agreement with experiment [24].

In a similar spirit, kMC simulations were performed for the interaction of As2
with the InAs(001) surface, and for island growth in homoepitaxy on InAs(001).
Interestingly, the (2 × 4)-reconstructed InAs(001) surface undergoes a reversible
phase transition between the β2(2×4) and the α2(2×4) reconstruction as a function
of both temperature and arsenic flux [31, 32]. Both experiment and kMC simulations
find that the saturation island density after deposition of a fraction of a monolayer
is slightly lower for InAs as compared to GaAs. While InAs epitaxy is done at a
lower substrate temperature compared to GaAs epitaxy, the effect of temperature is
overcompensated by the generally lower energy barriers for In atoms, and higher
rate constants for both In diffusion and As2 desorption on InAs(001). Despite the
strong similarities between InAs and GaAs, there are some differences in details of
the growth scenario: For InAs, the island density in InAs homoepitaxy was found to
be a decreasing function of As2 flux (from 5.6 × 1011 cm−2 to 2.5 × 1011 cm−2),
both in experiments and in kMC simulations [33].

For the self-assembled growth of quantum dots, heteroepitaxy of InAs on GaAs
is most relevant. Therefore, it is important to discuss whether the findings for ho-
moepitaxy are transferable to the situation in heteroepitaxy. Experimentally, it has
been demonstrated that MBE growth of InAs on the GaAs(001)-β2(2 × 4) substrate
can be performed in such a way that the resulting morphology of two-dimensional
(2D) islands is qualitatively similar to homoepitaxy of GaAs [34, 35]. However, this
submonolayer growth regime is not typical for quantum dot growth, because the lat-
ter requires deposition of 1.5 to 3 monolayers (ML) of InAs. For deposition of 1 ML
of InAs or more, a wetting layer with a surface reconstruction substantially different
from the substrate is formed (see Sect. 1.2.4). Furthermore, not all of the 2D islands
develop into quantum dots, since typically observed quantum dot densities (between
1010 cm−2 and 1011 cm−2) are about one order of magnitude lower than the nucle-
ation density of the 2D islands (between 1011 cm−2 and 1012 cm−2). Nevertheless, it
has been found experimentally that the scaling properties of island size distributions
carry over from 2D to 3D island formation driven by heteroepitaxial strain [36–38].
While such a scaling behavior is supported by theoretical arguments for 2D islands,
the reason for its validity for the 3D case is not yet fully understood by theory.

1.2.4 Wetting Layer Evolution

For MBE growth of InAs quantum dots on GaAs, typically somewhat lower tem-
peratures (400–550◦C) are used than for homoepitaxy of GaAs (550–600◦C). Under
the commonly used As flux, the c(4 × 4) reconstruction of GaAs(001) appears. The
energy barriers for diffusion of single Ga [39] or In [18] atoms on this surface have
been determined by density-functional theory. It is found that surface diffusion is
close to being isotropic, with energy barriers of 0.94 eV for Ga and 0.67 eV for In
atoms.
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However, small amounts of In deposited on GaAs(001)c(4×4) strongly affect the
surface morphology. First “incomplete” c(4 × 4) reconstruction patterns develop, in
which part of the As atoms in the surface As dimers are replaced by cations [40–42],
followed by a new phase that starts developing at surface steps [43]. Upon further In
deposition, the formation of a wetting layer with both commensurate and incommen-
surate (1 × 3) and (2 × 3) reconstruction patterns has been observed by reflection
high-energy electron diffraction (RHEED) measurements [44].

Since growth of InAs quantum dots on GaAs(001) proceeds in the presence of
this wetting layer, it is important to understand its atomic structure and the ther-
modynamic driving force for its formation. With the help of DFT calculations, it is
possible to investigate the formation energy of the wetting layer as a function of its
thickness (= indium deposition) and of variations of the growth conditions. The lat-
ter are reflected in the calculations by the choice of the arsenic chemical potential
μAs. Both a segregated film of pure InAs, with either β2(2 × 4) or α2(2 × 4) recon-
struction, and formation of an alloyed wetting layer have been considered. For the
latter alternative, an As-terminated (2×3) reconstruction was selected, motivated by
X-ray diffraction experiments [45] on InxGa1−xAs surface alloy films that observe
this reconstruction at x = 2/3, along with a triple-period ordering of In and Ga on
the cation sublattice sites. For very As-rich conditions, as shown in Fig. 1.5, the al-
loyed (2 × 3)-reconstructed wetting layer is found to be most favorable. Both for
less As-rich conditions and thicker films, the α2(2 × 4) reconstruction is found to be
lower in energy, and to extend its range of stability at the expense of the (2 × 3) re-
construction. The β2(2 × 4) reconstruction that had been studied previously [46, 47]

Fig. 1.5. Formation energy γf of the InAs wetting layer on GaAs as a function of indium
deposition θ at very arsenic-rich conditions, μAs = μAs(bulk). The inset shows the cation
sites included in the calculation of γf(θ) for the (2 × 3) structure
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is found to occur in an intermediate regime of moderately As-rich conditions. The
strain energy stored in the wetting layer in all cases shows up as a linear increase of
the formation energy with the thickness, as seen in Fig. 1.5.

1.3 Size and Shapes of Individual Quantum Dots

1.3.1 Hybrid Approach to Calculation of the Equilibrium Shape of Individual
Quantum Dots

While quantum dots display electronic properties different from bulk materials due
to the confinement of electrons and holes on the nanometer scale, their structural
and elastic properties are less affected by the physics on the nanoscale. Typical InAs
quantum dots of 10 nm to 20 nm base length consist of the order of 104 atoms. If
an InAs island of this size is grown pseudomorphically on GaAs, the elastic energy
introduced both in the island and in the substrate due to the mismatch of the lattice
constants of the two materials can be well described by classical elasticity theory.
Deviations from the classically expected behavior, e.g. due to surface stress, are lim-
ited to relatively small regions of space and can be treated separately if required. This
can be done, e.g., by taking into account modifications of the surface energies due to
surface stress. Therefore it is possible to separate the total energy associated with the
formation of strained free-standing islands into the energy gain from partial strain
relief, and the energy cost due to the formation of side facets and edges. Knowing
the total formation energy, the shape of such an island can be determined under the
assumption of thermal equilibrium, by minimizing the formation energy for a fixed
amount of material in the island.

In order to calculate the contributions to the formation energy, a hybrid approach
has been devised [48, 49] that allows us to employ specific methods most suitable for
calculating each contribution separately. The energy gain due to strain relaxation is
calculated according to continuum elasticity theory, e.g. by a finite-element method,
while surface energies and surface stresses are calculated using density functional
theory. The edge energies can be estimated from DFT calculations as well. They
become less important for larger islands, and have therefore been neglected in most
studies.

Applying the hybrid approach, the equilibrium quantum dot shape has been de-
termined for InAs on GaAs(001) [48, 49], using low-index facets as boundaries of the
InAs islands (see Fig. 1.6(a)). A similar study was performed for InP quantum dots
on GaP(001) [50]. These studies showed that the equilibrium shape of quantum dots
depends both on the chemical environment during quantum dot growth, and on the
size of the dots. For InAs quantum dots grown on GaAs, the shapes predicted by the
hybrid approach for very arsenic-rich growth conditions are shown in Fig. 1.6(c,d).
For example, the InAs(1̄1̄1̄) facet, for which a low-energy As-rich reconstruction ex-
ists, becomes very prominent in the quantum dot shape for As-rich conditions (see
Fig. 1.6(c,d)). The equilibrium shape results from an optimization process that al-
lows us to continuously change the shape (and thus the fraction of total surface area
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Fig. 1.6. (a) Island shapes for InAs quantum dots on GaAs considered in [49], consisting
of low-index facets. The basic shapes are pyramids oriented in two different ways relative
to the substrate. Further shapes are generated by cutting off the top of the pyramid, or by
cutting off the apices at its base, leading to multifaceted islands. (b) The elastic energy per
volume Eelastic/V versus the surface energy per area Esurface/V 2/3 for InAs islands. The
symbols refer to the shapes displayed in (a): Square: square-based pyramid with four {101}
facets. Diamond: square-based pyramid with two {111} and two {1̄1̄1̄} facets. Triangles up:
huts with two {111} and two {1̄1̄1̄} facets. Triangles down: square-based {101} pyramids with
{1̄1̄1̄} truncated edges. Circles: islands with four {101}, two {111}, and two {1̄1̄1̄} facets. The
small dots denote the corresponding truncated islands that are connected by the full lines. The
dashed line is the curve of constant total energy Eelastic + Esurface that selects the equilib-
rium shape for the volume V = 2.14 × 105 Å3. (c)–(d) The equilibrium shape of a strained
coherent InAs island in an As-rich environment at two different volumes, (c) V ≈ 2 × 105 Å3

(∼ 10 000 atoms), (d) V ≈ 4 × 105 Å3 (∼ 20 000 atoms). From [49], with permission

contributed by each side facet) as a function of quantum dot size. The principle of the
optimization process is illustrated in Fig. 1.6(b). For the balance between the energy
gain due to elastic relaxation, and the energy cost of forming the side facets, the size
of the quantum dot is crucial: Each quantum dot size corresponds to a straight line
with a specific slope in the diagram of Fig. 1.6(b), where the dimensionless elastic
energy and the surface energy (both normalized with the appropriate power of the
quantum dot volume) are plotted on the axes. Varying the size of a quantum dot with
given shape shows up in Fig. 1.6(b) as a curve labeled by a specific symbol. The
locus where the straight line becomes tangent to the lower envelope of all curves de-
fines the optimum island shape for a given volume. Larger quantum dots correspond
to a smaller slope, and therefore touch the envelope at a different point. While the
quantum dots grow, the magnitude of the elastic energy relief (which is proportional
to the quantum dot volume) increases more strongly, compared to the surface en-
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ergy contribution. Therefore, large quantum dots show a higher aspect ratio (defined
as height-to-base ratio) than small ones. The top facet is predicted to contribute a
smaller fraction of the overall surface area for the bigger quantum dots. Again, this
can be seen by inspecting the equilibrium shapes in Fig. 1.6(c,d).

For InAs quantum dots grown on GaAs, the typically observed shapes have a
smaller aspect ratio (between 0.2 and 0.3) compared to the prediction of the hybrid
approach for quantum dots bounded exclusively by low-index facets (aspect ratio 0.3
to 0.5). Only for quantum dots grown with an unusually small growth rate at rather
high temperatures [51], a shape has been observed that is qualitatively similar to
the one theoretically predicted. This can be interpreted as a hint that even the shape
of quantum dots is not fully determined by thermal equilibrium for MBE growth
of InAs quantum dots under typical conditions. Another indication for a kinetically
determined shape comes from InAs quantum dots grown on the GaAs(113) substrate,
where very elongated islands have been observed in STM studies [52]. From the
(calculated) surface energies of various InAs surface orientations, which deviate only
in a range of ±10% from their mean value of ∼40 meV/Å2, one would not expect
the equilibrium shape to be so strongly elongated. On the other hand, the shapes
predicted by the hybrid approach in [50] for InP quantum dots were found to be in
good agreement with those observed for large MOCVD-grown dots [53].

1.3.2 Role of High-Index Facets in the Shape of Quantum Dots

For a more refined understanding of the shape of quantum dots, knowledge about the
atomic structure and surface energies of high-index surfaces turned out to be impor-
tant, since they play a role as side facets of the quantum dots. With this motivation,
both the GaAs(114) [54, 55] and the GaAs(2 5 11) [56, 57] surfaces were investi-
gated in combined experimental and theoretical studies. By growing thin films of
GaAs on specially cut wafers, it has been demonstrated that both the (114) and the
(2 5 11) surfaces are stable under the conditions of molecular beam epitaxy. Struc-
tural models for the As-rich GaAs(2 5 11) reconstruction, and for both the Ga-rich
ω(2 × 4) [54] and As-rich α(2 × 4) reconstructions [55] of GaAs(114) were pro-
posed on the basis of STM images. Density-functional theory calculations of the
surface energies showed that these reconstructions are indeed low in energy (within
their respective range of stability). Analogous results were obtained for InAs by cal-
culating the surface energies for these high-index orientations, see Fig. 1.7(a). Com-
paring the observed STM images for GaAs with calculated images using the Tersoff–
Hamann approach, further support for the proposed structural models could be ob-
tained. While the newly proposed surface reconstructions for the (114) and (2 5 11)

surfaces fulfill the electron-counting rule, the calculations also demonstrated that this
rule becomes less important if the size of the unit cell of the reconstruction is large.
As a result, the (137) and (3 7 15) reconstructions of GaAs and InAs, which are built
up from similar structural elements (As dimers, three-fold coordinated As and Ga
surface atoms) as the (2 5 11) surface, but do not comply with the electron counting
rule, are similarly low in surface energy (see Fig. 1.7(a)).
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Fig. 1.7. (a) Calculated surface energies as a function of the chemical potential of arsenic for
the InAs(2 5 11) surface with three As dimers per unit cell (solid line), for the InAs(3 7 15)
surface with two As dimers per unit cell (dashed line), and for the InAs(137) surface with
one As dimer per unit cell (dotted line). For comparison, surface energies of the InAs(001)
β2(2 × 4), α2(2 × 4) and ζ(4 × 2), which have the lowest energies of the presently known
reconstructions of InAs(001), are indicated by the shaded region. (b) Surface energy γ of the
InAs(137) surface as a function of strain, ε, per unit surface area (of the unstrained material)

1.3.3 Shape Transition During Quantum Dot Growth

The improved understanding of high-index facets, together with the concept of con-
strained equilibrium in which the base area occupied by a quantum dots remains
fixed during the advanced stages of growth, gave rise to a refined scenario for shape
evolution: The quantum dots undergo a shape transition after exceeding a specific
size, accompanied by an abrupt drop in the chemical potential for the In adatoms
to be incorporated in the dot [58]. In theoretical support of this growth scenario, a
detailed discussion of the energetic contributions from elastic relaxation and from
the surface energy terms within the hybrid approach has been worked out for the
sequence of shapes shown in Fig. 1.8. First, flat islands are formed that are bounded
predominantly by high-index facets from the families of {137}, {2 5 11} or {3 7 15}
orientations. In accordance with the experimental observations [59], the simplest
case of {137} facets is considered in the following. The initial formation of flat is-
lands is also supported by theoretical considerations, since it was shown by a DFT
calculation [58] (cf. Fig. 1.7(b)) that the surface energy of InAs(137) is lowered con-
siderably by compressive strain, as is present on the facets of small flat quantum
dots. In the course of growth, the occurrence of low-index facets from the {110} and
{111} families (that form a steeper angle with the substrate) may become energet-
ically favorable at some point. This is plausible because the steeper quantum dot
shape allows for an improved strain relaxation. However, the cost of creating the ex-
tra low-index facets pays off only if the quantum dot has already reached a certain
minimum size. (Recall that strain relaxation dominates over the surface contributions
for large quantum dots.) If we consider the base area of the islands as fixed (which is
reasonable since it is a slowly varying quantity), it can be shown that the transition
between the island shapes is abrupt. Considering equilibrium among the atoms of an
island with the constraint of a fixed base area allows us to define a chemical potential
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Fig. 1.8. Proposed sequence of shapes for the growth of InAs quantum dots on GaAs(001).
Small quantum dots, (a), are bounded by {137} and {1̄1̄1̄} facets. Growth proceeds mostly
through layer-by-layer growth on the {137} facets; however, the newly grown layers do not
make contact with the (001) substrate (b). As a result, {110} and {111} facets develop at the
lower end of the added layers, giving the quantum dot an increasingly steeper appearance (c)–
(e). Eventually, a sharp tip could possibly develop if growth of the {110} facets extends to the
top (f)

for the In atoms in the island. Since the free energy of the island as a function of
island size has a cusp at the volume of the shape transition, the so-defined chemical
potential is discontinuous (see Fig. 1.9). The influx of In adatoms from the wetting
layer into the quantum dot is driven by the chemical potential difference between
the outside and the inside region. For this reason, the discontinuity of the chemical
potential has important consequences for the growth kinetics: it has been shown that
it leads to so-called anomalous coarsening [60, 61]. As a result, bimodal island size
distributions are to be expected, and the width of the smaller size component may be
rather narrow. Hence the anomalous coarsening, in addition to the delaying effect of
strain on the growth of larger quantum dots (to be described in the following), could
explain the frequently obtained narrow size distribution that is desirable for many
applications of quantum dots. Moreover, it is noteworthy that the shape evolution
suggested by Fig. 1.8 results in an aspect ratio of the islands of ∼ 0.3, in satisfactory
agreement with the majority of experiments on InAs quantum dots.

1.3.4 Constraint Equilibrium of Quantum Dots with a Wetting Layer

Another important outcome of first-principles calculations was the active role played
by the wetting layer during quantum dot growth. The growing quantum dots consume
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Fig. 1.9. Chemical potential of In atoms in quantum dots of various fixed base areas, as a
function of the dot volume. The curves, from upper left to lower right, correspond to quantum
dots with a base diameter in [110] direction of 19.8, 24.7, 39.6, and 56.6 nm, respectively.
The symbols along the curves refer to the different shapes shown in Fig. 1.8. For quantum
dots of small base area, adding material on top of the pyramid (Fig. 1.8(a)) would result
in an increase of chemical potential and hence does not occur spontaneously. For quantum
dots with a base length larger than 30 nm, however, a transition from the shape Fig. 1.8(a)
to Fig. 1.8(b) becomes a spontaneous process accompanied by a lowering of �μIn (dotted
lines). The unconstrained chemical potential (solid line) shows an abrupt drop at the growth
transition

material from the wetting layer. Consequently, the thickness of the wetting layer after
completed quantum dot growth is typically smaller than its critical thickness required
for the onset of quantum dot nucleation [46, 47]. This phenomenon is clearly observ-
able for SiGe quantum dots on Si, where STM images show a ring-shaped depleted
zone around the quantum dots [62]. For InAs quantum dots on GaAs, experimen-
tal evidence for material uptake has been found as well (following its theoretical
prediction in [47]), both indirectly (from an analysis of the total volume of the is-
lands formed [63]), and directly from inspection of STM images of quantum dots
grown near steps [64–66]. For the modeling, this means that another energy contri-
bution stemming from the thinning of the wetting layer has to be added to the energy
balance of the hybrid approach, if we are to correctly describe the evolution of a
quantum dot ensemble. This third contribution—that adds to the elastic and the sur-
face energy contribution—rises as the quantum dots grow larger (see Fig. 1.10(a)).
Consequently, there is a minimum in the energy per volume for an ensemble of iden-
tical quantum dots in equilibrium with the wetting layer. In [47], an identical shape
(a truncated pyramid) and size of the quantum dots has been assumed for the sake
of simplicity. With the density of 3D island nucleation n3D as input, this theory en-
ables us to predict the size reached by the quantum dots for any given amount θ0 of
deposited material. As shown in Fig. 1.10(b), the results are in good agreement with
experimental observations.
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Fig. 1.10. (a) Total energy gain per volume due to island formation for an ensemble of identical
islands in equilibrium with a wetting layer, according to the hybrid approach. Various energy
contributions (solid lines) are shown for an island density of n3D = 1010 cm−2 and indium
deposition θ0 = 1.8 ML. The dashed line is the total energy gain for n = 1010 cm−2, θ0 =
1.5 ML. (b) Dependence of the final size of the quantum dots, expressed by half of their
base length, on the amount of InAs deposited (coverage θ0) assuming various island densities
(labels in cm−2). The experimental values are taken from [67] (•) and estimated from [68] (◦)

For unequal sizes of the quantum dot nuclei, the theory needs to be extended
to include the kinetics of quantum dot growth. It can be shown (see Sect. 1.4.4) that
dense metastable arrays of quantum dots kinetically evolve into a sharply peaked size
distribution due to the repulsive interaction between quantum dots. Direct insight
into the temporal evolution of quantum dots can be obtained from kMC simulations.
This requires us to include the effect of strain on the interaction between islands and
adatoms in the energy functional governing the kMC simulations. In this way, it has
been possible to follow the evolution of 2D platelets that can be considered the start-
ing point of subsequent 3D island growth [69, 70]. As a result of these simulations,
it has been observed that the narrow size distribution of the platelets is accompanied
by spatial ordering, where platelets align either in chains [71] or arrays [72] oriented
along elastically soft directions. These growth simulations have been used as input
for a realistic modeling of transport features like capacitance-voltage characteris-
tics [73]. Another example for the use of kMC simulations is the investigation of Si
micro-crystal nucleation inside droplets of liquid indium [74] where micro-crystals
of pyramidal shape develop. Transitions between vertically correlated and anticorre-
lated growth of self-organized quantum dot stacks have also been studied by kMC
simulations [75].

Studies of the growth of quantum dots by material transport on the wetting layer
require detailed knowledge about the underlying microscopic diffusion processes.
With this motivation, the energy barriers for hopping of In adatoms have been inves-
tigated by DFT calculations, both for the GaAs(001)c(4 × 4) surface [18] initially
present before In deposition, as well as for an alloyed wetting layer surface, termi-
nated by an In2/3Ga1/3As layer in (2 × 3) or (1 × 3) reconstruction [19].
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Fig. 1.11. (a) Binding energy Eb as a function of isotropic strain ε for an indium adatom at
the stable binding site A1, and at the energy barrier for surface hopping, T 1. (b) Diffusion
barrier �E ≡ Eb(T 1) − Eb(A1) as a function of ε. Full curves on both panels represent
least-squares polynomial fits to the calculated points. (c) Binding energy of an indium adatom
for the depicted bonding configurations, inside or outside As dimers, as a function of strain

Fig. 1.12. Energy profile (oscillating curve) for an In adatom approaching perpendicular to
a very long, coherently strained InAs island (of width s and height h) on the c(4 × 4)-
reconstructed GaAs(001) surface. Superimposed on the diffusion potential due to the atomic
structure of the surface, the strain field in the substrate induced by the island has a repulsive
effect that lifts both the binding energies (thick lower line) and transition state energies (thick
upper line) close to the island

It was found that even at low island density, when the quantum dots are far apart
and do not interact directly, the strain field induced in the substrate may affect ma-
terial transport. This, in turn, leads to an indirect interaction between growing quan-
tum dots competing for deposited adatoms. For the example of In diffusion on the
GaAs(001)c(4×4) surface, DFT calculations could show that the compressive strain
induced by the quantum dot in the surrounding substrate may hinder material trans-
port considerably [18, 25], because compressive strain lowers the binding energy of
In adatoms and raises the energy barrier for diffusion (at least for moderately nega-
tive strain values, see Fig. 1.11(b)). By combining the DFT results with information
about the local strain field around an island obtained from elasticity theory within the
flat-island approximation, it is possible to map out the potential energy profile for In
diffusion on length scales that are large compared to the atomic scale. As shown in
Fig. 1.12, a repulsive wall is built up around the island. If two islands compete for
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deposited material, this strain effect on the diffusion will allow the smaller island to
collect more adatoms and thus to catch up with the larger island when further ma-
terial is deposited. This mechanism offers an explanation for the narrow island size
distributions attainable experimentally even for low island densities that preclude
direct elastic interactions between the islands.

1.4 Thermodynamics and Kinetics of Quantum Dot Ensembles

1.4.1 Equilibrium Volume of Strained Islands versus Ostwald Ripening

Growth interruption or annealing is frequently used as a part of the technological
process to let a system come to—or at least closer to—equilibrium. Under typical
experimental conditions, evaporation of atoms and intermixing/segregation are negli-
gible, and the heteroepitaxial system evolves toward a constraint surface equilibrium.
This is the equilibrium theory of heteroepitaxial growth. The latter traditionally dis-
tinguishes three growth modes: i) Frank–van-der-Merwe, or layer-by-layer growth;
ii) Volmer–Weber, or three-dimensional (3D) island growth; and iii) Stranski–Krasta-
nov growth, where a flat wetting layer is formed first and 3D islands are formed when
the wetting layer reaches a critical thickness.

Here we focus on the Stranski–Krastanow growth regime, which is realized in
semiconductor systems of major interest, like Ge/Si and InAs/GaAs. If the amount
of deposited material is below 1 monolayer, an array of monolayer-high, two-di-
mensional islands forms. For a dilute array of islands, the energy of formation of a
single island consisting of N atoms is given by

E(N) = −WN + C1
√

N − C2
√

N ln
(√

N
)
. (1.2)

The first term is the binding energy between the atoms in the adsorbate layer, and
the second term is the island edge energy due to broken chemical bonds. The third
term is the elastic relaxation energy associated with the discontinuity of the surface
stress tensor at the island boundaries [76–79].

The energy per atom, ε(N) = E(N)/N is plotted in Fig. 1.13(a). It always has
a minimum at the optimum size N0 = exp[2(C1/C2) + 1] at which the energy per
atom is lower than in a fully ripened island (N → ∞) by the quantity ε0 = C2N

−1/2
0 ,

which demonstrates the existence of an equilibrium volume of a 2D island.
Direct experimental proofs of quantum-dot behavior of flat monolayer-high is-

lands have been obtained for 1–2 monolayer-high CdSe insertions in ZnSSe matrix
from spot-focused cathodoluminescence studies [80] as well as from photolumines-
cence studies of the islands in small etched mesas [81]. One of the key advantages
of submonolayer QDs is a possibility to obtain arrays of islands with an ultra-small
size and ultra-high density. Thus, an array of submonolayer InAs/GaAs QDs has
been used as an active medium in vertical-cavity surface emitting lasers (VCSELs)
allowing the ultrahigh frequency (20 GB/s) thermally insensitive (up to 85◦C) oper-
ation [9–11].



20 V. Shchukin et al.

Fig. 1.13. (a) The energy per atom versus the volume of a 2D strained island, E(N)/E0.
(b) The chemical potential of a 2D strained island, μ(N) = dE/dN . Arrows point on the
characteristic volumes of islands, N0, and N1, respectively

If the amount of the deposited material exceeds the critical thickness of the wet-
ting layer, three-dimensional islands form. Let N atoms from the wetting layer form
an islands. Then the formation energy of the island can be written as follows [82]

E(N) = −�EelastN + �EsurfN
2/3 + �EedgesN

1/3

− �E
edges
elast N1/3 ln

(
N1/3). (1.3)

The first term in (1.3) is the energy of the volume elastic relaxation due to the tran-
sition of the material from a highly strained flat wetting layer to a partially relaxed
3D strained island. The second term is the change of the total surface energy of the
system due to the formation of tilted facets of the island and disappearance of the
wetting layer surface beneath the island. The third term is the short-range contri-
bution to the energy of the edges. The last, fourth term is the energy of the elastic
relaxation due to surface stress tensor discontinuity at the edges [83, 84].

The first and the fourth terms in (1.3) are always negative, and the third term is al-
ways positive. The second term, the change of the surface energy given by the second
term, can be written for a particular square-base pyramidal shape as follows [85]

�Esurf = (6 cot θ0v)2/3[γ (θ0) sec θ0 − γWL − g1(θ0)τε0 − g2(θ0)Sε2
0

]
. (1.4)

Here ϑ0 is the tilt angle of the side facets, v is the unit cell volume, γ (θ0) is the
surface energy of the side facets, γWL is the surface energy of the wetting layer, ε0 is
the lattice mismatch between the deposited material and the substrate, the third and
the fourth terms are strain-induced renormalization terms in the surface energy, τ is
a typical value of the surface stress, S is a typical value of the second-order elastic
moduli of the surface, and g1 and g2 are geometrical factors. A key point is that
�Esurf can be both positive and negative.

In an array of 3D islands, the substrate-mediated elastic interaction energy con-
tributes to the total energy of the island array. To address the question of the minimum
energy state of an array of 3D islands on a wetting layer surface, it is convenient
to consider an array of equal-volume and equal-shape pyramids. Assume the total
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number of atoms in the islands is fixed and the island shape is fixed, then seek the
minimum energy per atom. The energy per atom versus the island volume N equals

E(N)

N
= −�Eelast + E0

[
2α

e1/2

(
N0

N

)1/3

− 2

3

(
N0

N

)2/3

ln

(
e3/2N0

N

)

+ 4β

e3/4

(
N0

N

)1/2]
. (1.5)

Here N0 = exp[3(�Eedges/�E
edges
elast + 1/2)] is the equilibrium island volume

for the particular case �Esurf = 0. The value E0 = (1/2)�E
edges
elast N

−2/3
0 . The value

α = e1/2�Esurf/�E
edges
elast is the ratio of the change of the surface energy due to

the formation of islands, �Esurf, and of the contribution of the edges to the elastic
relaxation energy. The value β is the ratio of the average interaction energy between
the islands, and �E

edges
elast , it increases upon coverage q as q3/2 [82].

Figure 1.14(a) shows the energy per atom, E′(N) = E(N)/N + �Eelast versus
the island volume N in a dilute limit, where the elastic interaction between islands
is neglected. For clarity, the energy versus N1/3 is plotted. It can be seen that, if
α < 0, there exists a finite island size corresponding to the minimum of the energy
per atom; the minimum is governed by the strain-induced renormalization of the
surface energy. An interval of α where 0 < α < 1, the energy per atom minimum at
a finite island size is due to the surface stress relaxation at the island edges. If α > 1,

Fig. 1.14. (a) Energy per atom versus island volume in a dilute array of 3D strained islands.
(b) Phase diagram of an array of elastically interacting 3D strained islands. The parameter α

is the ratio of the change of the surface energy due to the formation of islands, �Esurf, and of

the contribution of the edges to the elastic relaxation energy, |�E
edges
elast |. The parameter β is

the ratio Einter/|�E
edges
elast |
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the island array exhibits a thermodynamic driving force to Ostwald ripening, where
all material should be ultimately collected in one huge island. Practically ripening
results in the formation of huge islands, where defects form. If the density of islands
increases, the elastic interaction between islands mediated by the substrate becomes
an important contribution to the energy per atom in the array of islands. This is a
positive energy of elastic repulsion that favors ripening. Figure 1.14(b) shows an
equilibrium phase diagram. A stability region implies that an array of equal-size
islands is the minimum energy state of the system. In a region of metastability a
thermodynamic driving force to ripening exists, but an array of equal-size islands
may occur as a metastable state. In a region of instability no metastable state is
possible, and an array of islands will ripen.

In a real system, the constraint surface equilibrium implies, that islands and the
wetting layer can exchange atoms, and the total number of atoms is fixed in the
combined system “islands plus wetting layer”. The equilibrium phase diagram is
more complex but still contains parameter regions of equal-volume islands, where
ripening is not thermodynamically favorable [86]. This conclusion persists [87] if
one also takes into account the change of the island shape upon volume increase,
similar to one discussed earlier in Sects. 1.3.1 and 1.3.2.

By changing control parameters of a system, it is possible to drive an array of
islands from a stable state to an unstable one which results in ripening. For III–V
heteroepitaxial systems, such control can be realized, e.g., by changing the arsenic
pressure in the vapor [88–90]. Existence of thermodynamically stable ensembles of
the islands can be confirmed by reversible changes of islands density, volume and
the wetting layer thickness upon cycled temperature ramping and cooling [91, 92].
At the same time an array of islands can also be formed as an intermediate state
of the ripening process. Experimental tools that allow us to distinguish kinetically
dominated arrays of islands from thermodynamically dominated ones are discussed
in detail in [87]. One of the tools is described in Sect. 1.4.2.

The minimum energy per atom (MEA) attained for islands of a certain finite vol-
ume corresponds to the equilibrium volume at T = 0. Upon temperature increase,
the equilibrium distribution of islands shows broadening and a shift of the distribu-
tion function maximum toward smaller volumes [93]. At higher temperatures, a sec-
ond maximum evolves in the distribution function due to the gas of single adatoms.
Finally, the distribution function maximum corresponding to nanoscale islands dis-
appears and the distribution function becomes monotonically decreasing. A key fea-
ture of the equilibrium island distribution that can be observed experimentally is a
decrease of the average island volume upon temperature increase.

1.4.2 Crossover from Kinetically Controlled to Thermodynamically
Controlled Growth of Quantum Dots

As a relatively narrow volume distribution of the islands can be both a thermodynam-
ically stable state of the system and an intermediate kinetically controlled state, it is
of major interest to establish experimental tools that would allow us to distinguish
between the two cases.
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To address this issue, a kinetic Monte Carlo (kMC) simulation of the formation of
two-dimensional strained islands upon growth interruption has been carried out. The
growth simulations of [94] use an event-based algorithm applied to a solid-on-solid
model with deposition and diffusion as the relevant processes. Diffusion of adatoms
occurs on a square lattice by nearest neighbor hopping. Atoms can cross island edges
by surmounting a Schwöbel barrier. The relevant energies in our simulations are the
binding energy to the surface Es = 0.7 eV and the strength of the n ≤ 4 nearest
neighbor bonds Eb = 0.3 eV that influence the time scale for diffusion and island
formation, respectively. Existing islands generate an elastic strain field caused by the
lattice mismatch. This strain field influences detachment from island boundaries and
the motion of adatoms in the vicinity of islands through a position-dependent energy
correction term Estr.

The hopping rate for a single atom is then given by an Arrhenius law

p = ν exp

[
−Es + nEb − Estr

kBT

]
, (1.6)

with the attempt frequency ν = 1013 s−1, and the strain energy density has been
calculated using Green’s function approach and the normalized per atomic bond.

The simulations have been performed on a lattice of 250 × 250 atomic sites. As
an initial step a coverage of 4% was deposited randomly on the surface at a flux of
1 ML/s. Every 0.01 s a histogram of the island size distribution is recorded. To reduce
the noise, ten simulations with different initial conditions have been used to calculate
an average. Figure 1.15 displays the simulation results for the temporal evolution of
an average island size <

√
N > for temperatures of T = 675 K, 700 K and 725 K.

From Fig. 1.15 it is evident that in the initial stages of island growth the size dis-
tribution is clearly kinetically controlled. At lower temperatures many small islands
are formed whereas at higher temperatures fewer and larger islands emerge.

Fig. 1.15. Temporal evolution of the average island size for T = 675 K, T = 700 K, and
T = 725 K. Monte Carlo simulations have been performed on a 250 × 250 grid and averaged
over ten runs with the same set of parameters
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On short time scales of a few seconds the islands do not grow by a consider-
able amount and the scaling of the island size with temperature is still kinetically
controlled.

At lower temperatures the nucleation of islands is the dominant process. Since
the adatom mobility is low, the density of single adatoms increases fast during the
deposition and pairs of atoms are formed randomly. Those act as nuclei for islands.
Consequently, one observes many small islands for low temperatures.

With increasing temperature the adatoms become more and more mobile. A sin-
gle adatom in a hot system can travel a long distance until it finds an existing island
to which it will attach. The adatom density therefore decreases and nucleation of
new islands is suppressed. The final spatial configuration in the kinetically controlled
regime exhibits few large islands.

Right after the deposition, however, the islands begin to equilibrate. The system is
now in an intermediate state between kinetically and thermodynamically controlled
growth conditions. The slow increase of island sizes and a crossover of the average
island size for systems of different temperatures is a characteristic of this regime.

For low temperatures the growth process is the slowest and the higher the temper-
ature becomes the faster the islands approach their average equilibrium size. Once
the equilibrium size distribution is reached, the average island diameter remains con-
stant. In the course of equilibration the islands in the low temperature systems con-
tinue to grow until they reach their equilibrium size at an average diameter above
that of the islands of the hotter systems, as is expected for islands grown under equi-
librium conditions.

From the results of the thermodynamic theory and of the kinetic simulations,
an experimental tool emerges that allows us to distinguish between kinetically con-
trolled islands and thermodynamically controlled islands. If, upon increase of the
substrate temperature, an average number of atoms in the islands, or the average
island volume increases, the island formation is controlled predominantly by the
growth kinetics. If, with increasing of the substrate temperature, the average island
volume decreases, the island formation is controlled predominantly by thermody-
namics. For submonolayer islands, the height is fixed, and the island volume is pro-
portional to the square of the island lateral size, thus the above arguments apply to
the dependence of the lateral size vs. temperature.

This developed method has been used to analyze an array of submonolayer
(0.3 ML) InAs islands on GaAs substrate. Two structures of InAs islands deposited
at two different substrate temperatures, 350◦C and 480◦C have been capped by
GaAs and studied by cross-section high-resolution transmission electron microscopy
(HRTEM) and photoluminescence (PL) [95], see also [2]. Cross-sectional HRTEM
images processed by using DALI (digital analysis of lattice images) evaluation pro-
gram (see, e.g. [96]) have revealed local map of the vertical lattice parameter, show-
ing higher values of the latter in the regions with higher In content. HRTEM has
indicated smaller islands in the sample grown at the higher temperature. PL spectra
referring the entire ensemble of islands have revealed a blue shift of the QD peak in
the sample grown at a higher temperature confirming a larger volume of the islands.
Thus, the higher the substrate temperature during island formation, the smaller the
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average volume, which indicates that the array of strained islands is predominantly
thermodynamically controlled.

1.4.3 Tunable Metastability of Quantum Dot Arrays

The energetics of an array of strained islands, namely the existence of an energet-
ically preferred island volume, makes a strong impact on the ensemble evolution
kinetics even at island volumes far below the preferred one. The behavior is similar
for 2D (monolayer-high) islands and for 3D islands with a strain-renormalized sur-
face energy. For simplicity 2D islands have been considered in detail. For a dilute
array of islands, the energy of formation of a single island consisting of N atoms is
given by (1.2). The chemical potential of the island is given by μ = dE(N)/dN ,
which is displayed in Fig. 1.13(b) and has a minimum at N1 = N0/e

2 ≈ 0.14N0.
The time evolution of the island volume distribution function f (t, N) can be

described by a Fokker–Planck equation,

∂

∂t
f (t, N) = − ∂

∂N
J(t, N), (1.7)

where the flux in the configurational space of island volume is

J (t, N) = ω(N)

[
μ̄ − μ(N)

kBT
f (t, N) − ∂

∂N
f (t, N)

]
. (1.8)

Here the typical case is considered where the kinetics are limited by attachment (de-
tachment) process to (from) island perimeter and the kinetic factor ω(N) = N1/2.
The first term in (1.8) is conventionally referred to as the drift contribution and is
proportional to the difference between the chemical potential μ(N) of an island hav-
ing N atoms and that of the adatom sea, μ̄. The second term is known as the diffusion
contribution. The time-dependent, mean field chemical potential μ̄ is determined by
the mass conservation law which, in the absence of nucleation of new islands, yields
the relationship between the island flux J (t, N) integrated over all islands, and the
deposition flux Φ,

∫ ∞

0
J (t, N) dN = Φ. (1.9)

Figures 1.16(a) and (b) show the results [61, 97] of the numerical solution of (1.7)–
(1.9) under conditions of annealing, or growth interruption. The temperature is de-
fined in units of Θ = C2

√
N0/kB corresponding to the energy of an island contain-

ing N0 atoms of energy per atom ε0. In all calculations we use T/Θ = 10−3 and
C1/C2 = 3.27 diving N0 = 5.1 × 103. The initial distribution of islands is below
the value N1, and the initial evolution shown in Fig. 1.16 is governed by the negative
gradient in μ(N) and, as such, is similar to conventional capillarity-driven ripening,
in which the chemical potential decreases monotonically. Small islands with a chem-
ical potential above μ̄ shrink, and large islands, with a chemical potential below μ̄,
grow. The island distribution broadens and evolves to larger volumes as shown in
Fig. 1.16(b).
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Fig. 1.16. (a) Early and (b) late evolution of the island volume distribution function f (t, N)

with time (scaled units) for a Gaussian initial distribution located below N1. The solid arrow
indicates the chemical potential minimum at N1

Figure 1.16(b) shows the same island distribution evolved to larger times. The
distribution passes the volume of the minimum chemical potential N1 and at later
times (say, at t = 5 × 105) lies essentially above N1. The following evolution of the
island distribution is governed by a positive chemical potential gradient, dμ/dN > 0.
Then small islands with a chemical potential below μ̄ grow, and large islands, with
a chemical potential above μ̄, shrink. The drift term in (1.7) is responsible to in-
verse ripening narrowing the island distribution. The narrowing is opposed by the
diffusion term, and the two contributions to the flux J nearly cancel each other. This
cancellation of terms produces a metastable state which can effectively suppress the
evolution of f (t, N) on experimentally relevant time scales.

Metastable states should play an important role in any kinetics of the surface
nanostructures provided that positive gradients in chemical potential exist with re-
spect to island size. Therefore, if material is deposited such that μ̄ is only slightly
enhanced by the deposition flux, the island size distribution will be dominated by the
metastable state at that particular coverage. In regions of positive chemical poten-
tial gradient, the size distribution can then be tuned to a desired size by depositing
material for a required time. This “close-to-equilibrium” procedure is illustrated in
Fig. 1.17 in which a uniform initial distribution of the islands between N = 0 and
N = 0.07N0 (< N1) is chosen to mimic the early stages of island nucleation. For
times smaller than t = 103, the deposition has little effect and the evolution is similar
to the annealing case (Fig. 1.17(a)). The distribution becomes metastable as it passes
above N1 and further flux causes the Gaussian-like state to drift to higher volumes
with only a slight broadening of the profile (Fig. 1.17(b)).

Within the interval of island volumes with a positive chemical potential gradient
leads, many metastable states are possible with a different average volume. Deposit-
ing material by a small flux or using a two-stage (growth and annealing) procedure,
it is possible to effectively tune metastable states. Similar behavior occurs for 3D
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Fig. 1.17. (a) Early and (b) late evolution of the island volume distribution function f (t, N)

with time (scaled units) for a uniform initial distribution located below N1 in the presence of
a small deposition flux. The solid arrow indicates the chemical potential minimum at N1

strained islands with the strain-renormalized surface energy, which have the mini-
mum energy per atom volume [98]. The predicted kinetics of the ensemble evolution
is in agreement with the experimental observations of Fe islands on NaCl(001) sub-
strate (magnetic quantum dots) performed by atomic force microscopy (AFM) [99].

1.4.4 Evolution Mechanisms in Dense Arrays of Elastically Interacting
Quantum Dots

In dense arrays of islands, where the average distance between islands is comparable
with their base length, the elastic interaction energy between the islands becomes
important. As discussed Sect. 1.4.1, the elastic interaction energy on the average is
the positive energy of elastic repulsion. Therefore it reduces the domain of the phase
diagram [82] corresponding to a stable array of the equal-size islands and favors
ripening, or coarsening.

Elastic interaction takes on a completely different role with local variations in the
strain field in dense arrays of islands. This role can be most easily elucidated on a
model example of an array of strained islands having a conical shape [61, 100]. The
total energy of the island array is then given by the formula

Etotal = 3

2
βV

2/3
a − wJ tan ϑVa + w

π

∑

b �=a

VaVb

R3
ab

F

(
ρa

Rab

,
ρb

Rab

)
, (1.10)

where the first term represents the additional surface energy associated with the is-
land formation. The second term is the elastic self-relaxation energy of the island,
and the third term represents the elastic interaction energy between the ath island
and all other islands. Here Va and ρa are the respective volume and the base radius
of the ath cone and Rab is the distance between the basal centers of islands a and b.
In the coefficient w = (1+ν)(1−ν)−1Yε2

0, where ε0 is the lattice mismatch between
the deposit and the substrate, Y and ν are Young’s modulus and Poisson’s ratio, re-
spectively, assuming both materials are equal, and the numerical factor J = 1.059.
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The coefficient β = 2π1/33−1/3(cot ϑ)2/3(�Γ ), where �Γ = γ (ϑ) sec ϑ − γ (0)

and γ (ϑ) and γ (0) are the surface energies of the tilted surface of the island and of
the flat surface of the wetting layer, respectively. The role of local elastic interac-
tions is more pronounced in the case where �Γ > 0 so that, even without elastic
interactions, islands would tend to ripen to reduce the overall surface energy.

Now we can discuss the evolution of an array of islands in the regime of attach-
ment-limited kinetics. Islands can attach atoms from the adatom sea and detach
atoms which go to the adatom sea. The local flux of atoms to/from each island is
governed by the local difference between the chemical potential of an atom, μa and
the adatom sea, μ̄,

dVa

dt
= V

1/3
a [μ̄ − μa], (1.11)

where the chemical potential of an island is defined as μa = ∂Etotal/∂Va . The elas-
tic interaction energy between the two conical islands has been calculated exactly
in [102]. The key feature of this energy is that its contribution to the chemical poten-
tial diverges as two islands nearly contact each other.

To emphasize the impact of the elastic interaction on the evolution of a dense
array of islands, an initially hexagonal array of identical conical islands was con-
sidered, and an initial perturbation in island volumes and positions was introduced.
Figures 1.18(a) and 1.18(b) compare the evolution of island radii without strain and
with strain included. The evolution of a dense array of islands without strain is dom-
inated by the coalescence events, when two islands touch each other and form a
single island by adding up their volumes. The coalescence events manifest them-
selves as abrupt jumps in island radii. When the strain is included, no abrupt jumps
occur. The latter means that no coalescence on impact occur in an array of strained
islands, and the coarsening proceeds via the Ostwald ripening mechanism. Thus,

Fig. 1.18. Time evolution for the scaled radii ρ for the initial arrays shown in (a) for zero strain
and (b) with strain included
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a dramatic increase of the chemical potential of a strained island in the vicinity of
another strained island due to local strain fields suppresses the coalescence. In addi-
tion, the elastic interaction alters the temporal behavior of the average density and
radius of the islands, which is in agreement with the experimental data on dense
arrays of GeSi/Si islands [103].

In ultra-dense arrays, where islands nearly touch each other, a metastable state
may occur, which is stable against small perturbations in island volumes and po-
sitions [100, 104]. Thus, surprisingly, a positive elastic energy of elastic repulsion
between islands can stabilize ultra-dense arrays.

1.5 Quantum Dot Stacks

Combining on the one hand self-organization phenomena providing quantum dots
and quantum wires, and nanoengineering on the other, allows us to extend substan-
tially the variety of nanostructures as well as to control their geometry and electronic
spectrum. A straightforward way is to grow a multisheet array of quantum dots sep-
arated by spacers. This eventually results in the formation of multisheet arrays of
quantum dots.

The growth of typical multilayer arrays of quantum dots, e.g. InAs/GaAs, Ge/Si,
etc. often exhibits the formation of vertically correlated arrays, wherein the dots
of the next layer are located above the dots of the previous layer forming vertical
columns (see, e.g. [2] and the references therein). The vertical columns with a thin
spacer result in electronic coupling of the neighboring QDs.

The advantages of using QD stacks include i) an enhanced volume density of
QDs, resulting in a higher performance of optoelectronic devices; ii) engineering
of electronic states in coupled QDs; and iii) enhancement of size homogeneity and
spatial ordering.

The theoretical understanding of spatial correlation in QD stacks is based on
the arguments of constraint thermodynamics. As bulk diffusion in semiconductors
at typical growth temperatures is negligibly slow, the structure of the buried islands
does not change during the formation of every next sheet of the islands. The islands
on the surface are formed in the static strain field created by the buried islands. It
has been conventionally believed that the islands of the next layer are formed at the
positions of the minimum elastic energy density. This approach has explained the
formation of vertical columns of QDs [105] and the enhancement of ordering in the
upper layers [106].

1.5.1 Transition between Vertically Correlated and Vertically Anticorrelated
Quantum Dot Growth

Surprisingly, the growth of multisheet arrays of CdSe submonolayer islands sepa-
rated by ZnSe spacers has revealed anticorrelated growth, wherein the islands of the
next sheet form over the spacings between the islands of a previous sheet [107].
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Fig. 1.19. Structure of multilayer arrays of 2D islands. (a)–(b) Processed cross-sectional high-
resolution transmission electron microscopy (HRTEM) images of CdSe/ZnSe multilayer is-
land structure. White arrows: a guide to the eye. (a) Spacer thickness 15 Å, vertically corre-
lated array. (b) Spacer thickness 30 Å, vertically anticorrelated array. (c) Schematic structure
of a two-layer array. (d) A single atom in a buried island as a dipole force source. (e) Dia-
gram of a two-layer structure of 2D islands, “C” refers to a correlated array, “A” stands for an
anticorrelated array, and “I” means an intermediate one

This phenomena has been explained and the theory of the formation of a multi-
sheet array of the islands has been developed [108]. The key point is the elas-
tic anisotropy of the semiconductors, characterized by the dimensionless parameter
ξ = (c11 − c12 − 2c44)/c44, where c11, c12, and c44 are elastic moduli in the Voigt
notation. In Si, Ge and III–V semiconductors having the zinc-blend, structures are
cubically anisotropic medium, with ξ < 0 and elastically soft directions 〈100〉. As a
consequence of the anisotropy, the elastic strain field created on the surface by a peri-
odic array of buried islands (Fig. 1.19(c)) on the surface exhibits an oscillatory decay
as a function of the spacer thickness, z0. If each of the atoms constituting a buried
island is presented as an elastic dipole (Fig. 1.19(d)), the resulting structure of the
surface islands depends on two parameters, the ratio of the spacer thickness to the
lateral period, z0/D, and the parameter Fz/Fx which characterizes an elementary
elastic dipole. Figure 1.19(e) shows a diagram of the parameter regions, in which
the two layers are either correlated or anticorrelated. For a small spacer thickness
an intermediate structure is also possible. The main feature of Fig. 1.19(e) is that,
with an increase of the spacer thickness, the relative structure of a double-sheet array
changes from correlated to anticorrelated and back.

After the theory of transition between correlated and anticorrelated arrangement
had been developed, the same material system of CdSe submonolayer islands in ZnSe
matrix has revealed vertical correlation at a thinner spacer (Fig. 1.19(a)) [109]. Tran-
sition between vertically correlated and vertically anticorrelated arrangements has
an important implication on the optical properties of the nanostructures. In the case
of a small spacer thickness and vertically correlated arrangement, the wave function
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of a localized exciton is cigar-like extended in the vertical direction; the photolumi-
nescence from the coupled quantum dots is TM-polarized [110]. If the islands in the
neighboring sheets are anticorrelated, no electronic coupling between the dots occurs
and the excitons are localized in separate dots. The wave function is then extended
in the lateral direction, and the photoluminescence is TE-polarized.

1.5.2 Finite Size Effect: Abrupt Transitions between Correlated and
Anticorrelated Growth

Further theoretical studies—focused on the elastic interaction of buried and surface
point inclusions via an elastically anisotropic matrix [111]—have shown that the
minimum interaction energy occurs at a certain angle of inclination α with respect
to the vertical direction, whereas α = 19◦ for Si, α = 25◦ for GaAs, and α = 33◦
for ZnSe. However, these values do not explain the experimental observations of
anticorrelated arrangement of GaAlAs QDs in GaAs matrix at much larger angles of
inclinations [112].

The exact theoretical consideration of the arrangements in stacks of 3D QDs was
carried out in [113]. Figure 1.20 emphasizes a drastic difference in the elastic strain
fields created on the surface by an array of buried point-like QDs, on the one hand,
and an array of finite-size QDs on the other hand, as opposed to a single point-like
QD [111]. Figure 1.20(a) shows the minima (black) and the maxima (white) of the
elastic interaction energy E in the relaxed surface for a single buried point-like QD.
Figures 1.20(b)–(d) refer to a periodic quadratic array of QDs with a lateral spacing
of l = 25 l.s. (lattice sites). In a neighborhood of approximately l/2 around each QD
the elastic properties are governed by the single point defect. Outside this region,
the strain fields are overlapping. Starting with a spacer thickness of d ≈ 14 l.s.,
the inclination angle α increases more and more until at d ≈ 17 l.s. the two minima
induced by two neighboring QDs meet and form a flat double minimum exactly in the
middle between these QDs (Fig. 1.20(c)). With further increasing spacer thickness,
the position of the double minimum remains stable and unchanged for a considerable
range of d values. Finally, at d = 31 l.s. the minimum starts moving back to a
position vertically above the QDs.

The transition of the minima from a position close to vertically above the QDs
to in between the QDs is also visible in the elastic energy density profiles at d =
10 l.s. and d = 25 l.s. in Fig. 1.20(d). This indicates a transition from correlated
to anticorrelated growth. From Fig. 1.20(c) one infers an inclination angle for the
alignment of QDs of about α ≈ 45◦ for GaAs which is in reasonable agreement with
the experimentally observed value of 50◦ [112].

Figures 1.20(e)–(g) illustrate the influence of the shape and finite volume of the
QDs. A square array of pyramids, each with a base length of 20 l.s. × 20 l.s. and
a height of 5. l.s. positioned with a lateral distance of l = 40 l.s. is considered.
Compared with an array of point-like elastic defects, there are significant differences.
The inclination angle α remains unchanged. But the finite volume of the Qds results
in a large range of spacer thicknesses d where the minimum is directly located above
the buried structures. At a spacer thickness of about 20 l.s. the energy minimum
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Fig. 1.20. Elastic strain field of buried strained islands in a GaAs matrix. The figure represents
the strain field of one single point-like inclusion (a), a periodic array of point defects (b)–(d),
and a periodic array of finite-size pyramids (e)–(g). (a), (c) and (f) show the minima (black)
and maxima (white) of the elastic energy E per unit area in the [110] direction of the relaxed
surface vs. spacer thickness d. (c) and (f) show E < 0 additionally in gray scale coding.
(b) The density plot E in the [100]–[010] surface plane at d = 25. (d) E for d = 10 and
d = 25. (e) The density plot at d = 35 (inset: 3D view). (g) E for d = 10 and d = 35.
The positions and sizes of the buried islands are indicated by triangles [(a), (c), (d), (f), and
(g)] and by boxes [(b) and (e)], respectively. All lengths are in units of the lattice parameter
aGaAs = 0.565 nm.

splits and moves towards the anticorrelated positions between the QDs. Due to the
finite size effects, the transition from the correlated to anticorrelated growth happens
much more abruptly than in an array of point defects (Fig. 1.20(c)). Such an abrupt
transition is indeed observed experimentally [112]. Also the double minimum of the
energy profile is replaced by a single minimum (Fig. 1.20(g)). Note that the transition
occurs at larger spacer thickness d for the array of QDs with a larger lateral distance
of l = 40 l.s., and this ratio should scale for arrays with even larger lateral distance
at fixed angle α. This is consistent with the experiment [112], where the transition is
observed at a spacer thickness of 150 monolayers for an in-plane nearest-neighbor
distance of 80–100 nm.

1.5.3 Reduction of a Size of a Critical Nucleus in the Second Quantum Dot
Layer

The arguments of constraint thermodynamics that favor the formation of the QDs
in the minima of the elastic energy density have allowed us to explain the spatial
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Fig. 1.21. The energy gain δE due to stacking arrangement reduces both the nucleation barriers
and the size of the critical nucleus and leads to preferred nucleation above the overgrown QDs.
The value of δE depends on QD shape, spacer thickness, and lateral positions with respect to
overgrown QD (Fig. 1.19, Fig. 1.20)

correlations and anticorrelations in QD stacks. This approach, however, does not
quantify the energetic gain for nucleation in the elastic energy density minima as
compared to other nonpreferred sites. To judge the impact of the strain tensor on the
surface arising from the overgrown QD as compared to possible kinetic effects, a
quantitative calculation has been undertaken [114, 115] of the size reduction of the
critical nucleus and lowering the nucleation barrier in the preferred nucleation site.

To consider the nucleation barrier, we focus again on the InAs/GaAs system
and compare the formation energies γf of homogeneous InAs films of increasing
thickness with QDs of increasing volume on a wetting layer of a constant thickness.
The formation energy of the upper QD is lowered in the strain field

γf(QD, N, x, y) ≈ E(N)

A
+ δEelast(N, x, y) · N

A
. (1.12)

Here �E(N) is the energy of the free-standing QD with no overgrown QD beneath
given by (1.3), N is the number of In atoms in a QD, A is the area of the referred sim-
ulation cell, where one QD per cell is assumed. The volume dependence of δEelast ·N
is well described by a proportionality to the base area of the upper QD (inset in
Fig. 1.21(a)) that senses the strain due to the overgrown QD beneath. With this re-
sult, the formation energies of hut-shaped QDs for different energy gains due to the
stacking arrangement can be calculated. The obtained difference between the forma-
tion energy of a homogeneous film and a hut-shaped QD for different energy gains
due to different stacking arrangements is shown in Fig. 1.21(a). The energy gain
reduces the energy barrier for nucleation �γc and the size of the critical nucleus Nc.

Numerical calculations have revealed a linear relationship between the two y

axes in Fig. 1.21(b). The critical nucleus of a free-standing QD of approximately 70
In atoms is reduced by the elastic interaction in the QD stack by up to a factor of 3
to approximately 25 In atoms (Fig. 1.21(b)) in the investigated range of energy gains
δE. The energy barrier for forming the critical nucleus is lowered from ≈ 5.3 eV
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to ≈ 3.5 eV. The resulting increase in the nucleation rate above the overgrown QDs
can thus quantitatively explain the strong tendency of the experimentally observed
correlations in QD stacks. Note that the above change of �γc by ≈ 2 eV would
increase the nucleation rate at a temperature of 750 K by several orders of magnitude
if we assume that the rate is proportional to exp(−�γc/kBT ). A weakening of the
preference for perfect correlations can be due to a reduced energy gain because of,
e.g., intermixing of Ga and In, or the formation of defects.

1.6 Summary and Outlook

Multiscale modeling of semiconductor nanostructures’ self-organized formation has
provided us with a deep insight into this broad class of exciting phenomena. Based on
combination of density functional theory, multibody potentials, kinetic Monte Carlo
simulations, and static continuum elasticity theory, an understanding of key aspects
of the quantum dot growth has been gained.

Conclusions have been theoretically established and confirmed by careful analy-
sis of experimental data in the following aspects of quantum dot growth.
Our investigations into quantum dots as self-organized nanostructures have revealed
that:

• Gross features of quantum dot evolution are captured theoretically by constraint
thermodynamic equilibrium.

• Cross-over from nucleation kinetics to thermodynamics occurs in early stages of
2D island growth.

From our study of the shape of free-standing (MBE-grown) quantum dots, we learned
that:

• Shape is dominated by high-index (low-energy) facets.
• Transition to dome shape occurs due to incomplete facet growth.

Finally, our look at in-plane ordering of quantum dots led us to conclude that:

• Substrate-mediated elastic repulsion between QDs leads to ordering.
• Kinetics in dense arrays of elastically interacting QDs hinders coalescence on

impact in favor of Ostwald ripening.
• Kinetics in ultra-dense arrays of elastically interacting QDs defies ripening.

Regarding 3D ordering in QD stacks:

• Alternation of vertical correlation and anti-correlation can be explained by elastic
anisotropy of the matrix.

A few aspects of QD growth are still poorly understood and represent real chal-
lenges for further theoretical investigations. First, these are alloy-based QDs, like
GaInAs/GaAs, SiGe/Si, etc. An alloy manifests itself not only as a material with a
reduced lattice mismatch with respect to the substrate, but also represents an addi-
tional degree of freedom connected with a possible strongly inhomogeneous alloy
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composition profile. The impact of possible alloy phase separation on QD formation
has been pointed out in a few theoretical works (see, e.g. [116, 117]) though the
understanding is far from being complete.

Second, the overgrowth (capping) of strained islands that can impose a strong
change on island volume, shape, and alloy composition, is very poorly understood.
Atomistic simulations of strain relaxation at different stages of InAs/GaAs QD over-
growth [118] may be considered as a first step, but more extended studies are needed.

Third, and of great technological importance, is the physics behind the defect-
reduction technique, allowing efficient manipulation with threading dislocations, al-
lowing their bending and complete blocking thus enabling growth of practically
dislocation-free layers on top of heavily dislocated films [4]. Development of an
adequate theory is mandatory for further technology optimization and for bringing
the first examples of optoelectronic devices for the spectral region around 1550 nm
on GaAs substrate to a required level for practical applications.

The authors acknowledge support from the Deutsche Forschungsgemeinschaft in
the frame of the Sonderforschungsbereich 296 “Wachstumskorrelierte Eigenschaften
niederdimensionaler Halbleiterstrukturen”.
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