Chapter 2
The Metaplectic and Anaplectic Representations

In this chapter, we briefly review some basic aspects of the metaplectic representa-
tion, especially in the one-dimensional and two-dimensional cases. Then, we shall
introduce the new anaplectic analysis on the real line, in which the spectrum of the
harmonic oscillator is Z rather than % +N. The basic space 2 substituting for L?(R)
consists of functions on the line extending as entire functions, typically increasing
like “bad” Gaussian functions at infinity. Nevertheless, there is on 2 a well-defined
translation-invariant concept of integral, and (in place of the scalar product of
L?(R)) a pseudoscalar product reminiscent of indefinite forms occurring in Physics.
All symmetries of usual analysis expressing themselves by means of such objects
as the Heisenberg representation, the Fourier transformation, and, more generally,
the metaplectic representation, have counterparts in anaplectic analysis. Note that in
Sect. 4.1, we shall have to consider the parameter-dependent v-anaplectic analysis.
The one considered in the present chapter (in Sect.2.2) corresponds to Vv = —%: it
will also be shown in Sect. 4.2 that the case when v = 0 yields an analysis containing
the usual one.

2.1 The Metaplectic Representation

In this book, we are only interested in the case when the dimension 7 is 1 or 2: it
will save space and add to the understanding, not to specify n from the start.

The symplectic group Sp(n,R) is the group of linear transformations g of
R" x R", in block-form g = (A 5), which preserve the canonical symplectic
form: this means that, if one sets [(x, &), (v, )] = —{(x, n) + (v, &), the equation

[(x, &), (y,n)] = [g(x, &), g(y, n)] holds for any pair of points (x, &) and (y, ) in
R" x R". In other words, one should have

CA=A'C, DB=BD, D'A-BC=I, (2.1.1)
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12 2 The Metaplectic and Anaplectic Representations

the accent denoting the transposition map. The symplectic group is connected but its
fundamental group is Z: in particular, it has a (unique, up to isomorphism) twofold
cover, called the metaplectic group, here denoted as §B(n, R): note that Sp(1,R) =
SL(2,R).

It is a fundamental fact [41] that there exists a unique unitary representation
Met™ — the metaplectic representation — of §f)(n,R) in L?(R"), satisfying the fol-
lowing properties:

(i) if C is a real symmetric n X n-matrix, and if the identity (2n) x (2n)-matrix
is connected to the block-matrix g = (£ 9) by means of the path r — (,L9),
finally if g is the end of the path, in the metaplectic group, originating at the
identity and covering the path within Sp(n,R) just defined, then the transfor-
mation Met") (g) is the multiplication by the function x — exp (i (Cx, x));

(ii) if one considers the path, in the metaplectic group, originating at the identity
(cost)I (sinz)l

sint)] (cost) ,) in the symplectic group, then the el-

and covering the path t — ( (

ement g reached for 7 = 7 gives rise to the transformation Met ") (g)=e * F,
where F is the usual Fourier transformation:

(Fu)(&) = / u(x) e 2m08) dx; 2.12)

Rﬂ

(iii)) if A € GL™(n,R) and g = (g e ) finally if g € Sp(n,R) is the end of a path

originating at the identity of that group and covering a path ¢ — (%’ A/O_1 ) with
A; € GL(n,R) for all £, then Met") (g) is the transformation u — u;, u;(x) =
(det A)~2 u(A'x).

The two metaplectic transformations associated with distinct points of ﬁ)(n, R)
above the same point of Sp(n,R) differ only by the factor —1. The metaplectic
representation is unitary in L2(R"); each transformation Met(") () preserves the
Schwartz space S(R”") and has a unique extension as a (weakly) continuous linear
automorphism of &’ (R"). The metaplectic representation is reducible: its irreducible
subspaces are the two subspaces of L?(IR") characterized by parity.

To understand fully the metaplectic representation in a way not making it neces-
sary to decompose symplectic matrices as products of the generators just defined, it
is useful to characterize a function u € L? (R™) or, more generally, a distribution in
S'(R"), by its quadratic transform. Denote as Sym the set of symmetric matrices
with complex entries. The quadratic transform of a function u € L*>(R") is the pair
((Mu)o, (Mu);) of functions defined on the (Siegel) domain (Sym), consisting
of all matrices o € Symf with a positive definite real part, defined as follows:

(Mu)o(c) = / =05 4 () dix,

n

(Mu) (o) = /n (I+i0)x.e ™% y(x)dx. (2.1.3)
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Note that the function (Mu); is vector valued: it is not necessary to bother with
it if interested only in even functions u. The metaplectic representation Met™ of
Sp(n,R) in L2(IR") can be traced on the M-transform as follows. For every element
g of the metaplectic group §f)(n,R) above some element g = (é g) of the sym-
plectic group, there is a continuous choice of a determination of the square root of
det(iB' 6+ D') for o € (SymY) . such that, for every u € L*(R"), the following pair
of equations holds:

(MMet™ (§)u)o(c) = [det (iB' o +D')] "2 (Mu)o((A' 6 —iC') (iB' o +D')~)),

(MMet™ (§)u);(c) = [det(iB' o +D')] 2 (I+ic)
x[iBo+D +i(Ac—iC)| "' x (Mu)((A'c—iC')(iB'o+D)71).
(2.1.4)

Quadratic transforms will again, in Sects. 2.2 and 4.1, facilitate our understanding
of the anaplectic and v-anaplectic representations. This characterization, up to a
sign £ depending only on g, not on o, of the metaplectic transformation associated
with g can be found in [38, p. 100]. The sign can be obtained as soon as g has been
defined in full (i.e., as soon as the homotopy class of a path linking, in the group
Sp(n,R), the identity to the element g above which g is lying has been specified) by
continuity.

We shall be especially interested in the subgroup of Sp(n,R), which is the image
of SL(2,R) under the embedding (%) +— (40 21). There is no harm in denoting
this group simply as SL(2,IR), which we shall do from now on: when dealing with
such a matrix, the superscript of the expression Met™ will make it clear whether
we have in mind the image, under the metaplectic representation of the appropriate
dimension, of the first 2 x 2-matrix or of the associated (2n) x (2n)-matrix. As it
turns out, if the dimension 7 is even, every loop within SL(2,R) lifts as a loop in
%(n, R). Indeed, since R” ~ R?> ® RR2, it entails no loss of generality to prove this
(cost)I (—sint)l
(sint)I (cost)l
this is a loop in Sp(2,R), the image of a loop in SL(2,R) generating the fundamental
group of that space. Consider the two symplectic matrices

only in the case when n = 2. Set R, = ( ): when ¢ moves on [0,27],

cost 0 —sint 0 (1)888
— 01 0 0 — .
K = (sint 0 cost 0) and J= (000 1> : (2.1.5)
00 0 1 0010

one may verify that R, = K;JK;J~!. Connecting J to the identity matrix within
Sp(2,R), one sees that the loop R, is equivalent to the loop  — K? = K, which lifts
as a loop in the twofold cover of that group. This implies that, when the dimension n
is even, one can, for any g € SL(2,R), define Met(") (g) without any sign ambiguity,
a fact which we shall take advantage of, presently, in the case when n = 2.

In this case, the definition of Met(>) on generators of SL(2,R) simplifies as fol-

lows (recall that (%) is to be identified with (¢ 21)):
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. "
(i) (Met? ((19) w)(x) = u(x) TR x e R?

(i) Met? ((91 (1))) u=—iFu,

(iii) (Met® ((309.)) W) =alu(a'x), xeR® a>0.  (2.1.6)

Recall the following formula, due to Hecke or Bochner [29]: if a function
u € S(R") is the product of some “solid” spherical harmonic of degree m (i.e., a
homogeneous polynomial on R" of degree m, harmonic in the usual sense) by a ra-
dial function U = U(r), the Fourier transform of u has the same property, with the
same spherical harmonic, the function U being replaced by the function V defined
by the equation

V(r) =2mi "y / U@ s, (27 di. 2.1.7)
0

Given m € Z, we shall denote as L2 (R?) the subspace of L?(R?) consisting of
functions % — the change from u to & at this point, in the two-dimensional case, is
deliberate, in view of future use — satisfying the equation (in which the matrix is of
course to be identified with the corresponding linear automorphism of R?)

cos@ —sin@\ ;.0
ho (sin@ cos 0 > =e h (2.1.8)

for every 6 € R mod 27: the spaces L%(]RZ) are called the isotypic subspaces
of L*(R?). As indicated by (2.1.6), the Hilbert space decomposition L?(R?) =
OmezL2, (R?) is preserved under the restriction of the two-dimensional metaplec-
tic representation to the image of SL(2,R) in §f)(2, R). Variants of Proposition 2.1.1
have been known for a long time (cf. for instance [39]), even though the metaplec-
tic representation had not yet been given a formal definition. As mentioned in the
introduction, it also fits with the simplest case of Howe’s duality.

m—1

Proposition 2.1.1. Ifm=1,2,... setc,, = 2w) = ((m—1) !)’%. For any function
h € L2 (R?) and 7 in the upper half-plane, set

(®im h) (Z) = Zimil /

(i ix)” e TP p)dx,  Imz>0. (2.1.9)
R

The map ¢, O+, is an isometry from the Hilbert space Lim(Rz) onto the Hilbert
space Hpyy1 consisting of all holomorphic functions ¥ in the upper half-plane T1
satisfying the condition

12 B = [ 12@)P (m 2" dp(z) < o (2.1.10)
IT

we have denoted as dy the usual invariant measure di(x+iy) = y~>dxdy on IL
Moreover, denote as D,,+1 the representation (taken from the so-called holomorphic
discrete series) of SL(2,R) in Hy,+1 defined by
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(Du1 ((44)) 0)(@) = (—ez+a) ™" g (_d;ba> . @.1.11)

Then, the operator ®.,, intertwines the restriction to the space L%, (R?) of the
representation Met\?) of SL(2,R) in L*(R?) with the representation Dy, .

For m = 0, the same conclusion holds provided one defines the space H; as
the Hardy space consisting of holomorphic functions x such that sup,,_, o I (x+

iy)|?dx < oo, and one takes co = (271)—%.

Proof. Consider first the case when m > 1. In view of (2.1.8), one has if 7 € L2 (R?)
the equation

(©®,,h) (—1> =21 (—z)""! / P T (1,0 dr. (2.1.12)
Z 0

One may then write, setting z = s+ if,

1 o
|Onh i = [ 1(©uh) (Z) 2 22 (1m " d(2)
:47:2/ tm_ldt/ ds
0 —oo
:nz/ t'”*ldt/ ds
0 —oo

:27:2/0 tm_ldt/o p"e 2P |h(p, 0)[>dp

2

/m L g pimsr? h(r,0)dr
0

2

/ p%efﬂtp eiﬂ.’Sp h(p%; O)dp
0

— 272 % (21) " (m—1)! /M|h(p%70)|2dp, 2.1.13)
0

from which it is immediate to conclude that c,,,®,, is an isometry. We may dispense

with the proof that ®,, is onto with the help of an irreducibility argument, after we

have proved the intertwining properties (i), (ii), (iii). The first one is immediate,

since ¢ — L = —[2-]"Vand z7"! x [{£-]"! = (1 —¢z)™™"!; the third one is
; zZ cz . l=cz

obtained after a change of variable. Starting from

0, (W) =" [

h(x) F ((x1+ix2)’”e*%”‘x|2) dx, (2.1.14)
JR2

one obtains the second one, namely

(O (—iFR)) () =z (@) (—1) , 2.1.15)

Z

with the help of (2.1.7) and of the equation [21, p. 93]

oo . . —m—1 )
/ Tn(2m|E|t) e T T dr = (2| E])™ (2’”> el (2.1.16)
0 Z
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The situation obtained when changing m to —m can be reduced to the preceding
one by means of the intertwining operator & — hy, hy(x1,x2) = h(x;, —x2). Finally,
when m = 0, only the norm computation has to be reconsidered. It follows the same
lines (with a slight simplification), starting from the remark that

1
Jounly =lle = @) (<1 I e.L1)

a consequence of the unitarity of the representation D;. O

Remark 2.1.1. The fact that the parameter m used in L2 (R?) corresponds to the
space H,,+1 may often be felt as an inconvenience: however, there is nothing we
can do about it.

We close this section with urging newcomers to pseudodifferential analysis to
have another look at (1.1.1) and (1.1.2), now that their familiarity with the metaplec-
tic representation may have been refreshed. Our aim in Chap. 3 (cf. introduction) is
to introduce a new symbolic calculus, or “pseudodifferential analysis,” for which a
covariance formula somewhat similar to (1.1.2), but involving on the phase space
RR? the representation Met? in place of the quasiregular action g.& =& o g~ ! of
that group, would hold; at the same time, we want (1.1.3) to generalize too. The
difficulty, as will be seen, is that everything has to be invented from scratch: as a
space of possible functions u of one variable, we cannot use a space even remotely
resembling L?(R); also, the one-dimensional metaplectic representation cannot play
any role here. Then, Weyl’s definition (1.1.1) has to be replaced by a new one.

The analysis to be developed in Sect. 2.2, rather than being regarded as an exten-
sion of the usual analysis, should be considered as alien to it. In Sect. 4.1, however,
we shall imbed this analysis into a one-parameter v-series: the case when v =0 will
then be shown to contain the part of usual analysis on the line centered around such
objects as the Fourier transformation, the metaplectic representation, and Hermite
functions.

2.2 Anaplectic Analysis

This section starts with a crash course on one-dimensional anaplectic analysis, a
much more detailed version of which is to be found in [38]. Anaplectic analysis is
just what is needed in the present context because we want to consider the inverse
of the “annihilation” operator A (a name soon to be changed to that of “lowering”
operator). In anaplectic analysis, the spectrum of the harmonic oscillator is Z rather
than % + N, and taking the inverse of A is all right, as will be recalled.

The basic difference between usual analysis and anaplectic analysis is the fol-
lowing. In the first one, there is a considerable supply (take for instance the Hermite
functions) of functions on the line which extend as entire functions in the complex
plane, while being simultaneously very rapidly decreasing at infinity. In anaplec-
tic analysis, these two desirable properties have to be split between the function
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u under consideration and other functions obtained from u, in a very specific way,
with the help of the complex continuation process. This leads to the following defin-
ition, summed up, like a greater part of this short section, from the first two sections
of [38].

Definition 2.2.1. Let us say that an entire function f of one variable is nice if on
one hand f(z) is bounded by a constant times some exponential exp (7R|z|?), on
the other hand the restriction of f to the positive half-line is bounded by a constant
times some exponential exp (—7&x?): here, R and € are assumed to be positive. The
space 2{ consists of all entire functions u of one variable with the property that there
exists a 4-tuple

f:(f07flafi.,0afi,1) (22])

of nice functions such that

o) =15 (i) +fo(~i2))

fir(z) = 1; (f1(iz) =i fi(—iz)), (2.2.2)

and such that the even part ueyen of u coincides with the even part of fj, and the odd
part uoqq of u coincides with the odd part of f;.

It can be proved, as a consequence of the Phragmén-Lindel6f lemma, that the
vector-valued function f associated to u € 2 is necessarily unique. We shall call it
the C*-realization of u. Here is a basic example.

Proposition 2.2.2. Set, for x real,

0(x) = (xlx|)? 1y (x2), (223)

with [21, p. 66]
B (%)VJer o4
IV(I)’EOm!F(me) 24

fort > 0. The function ¢ lies in . Its C*-realization is the function f = (y, 0, y, 0),
with
1 1 1

() =22 a3 Ky (1) = (10} [y () -1y ()|, x>0 225)

1
I

The space 2 is stable under the usual operators Q and P such that (Qu)(x) =
xu(x) and (Pu)(x) = - u/ (x). If the C*-realization f of u is the one given in (2.2.1),
those of Qu and Pu are, respectively,

h(z) = (zfi(2), z2fo(z), 2 fi1(z), =z fio(2)) (2.2.6)
and

1 / / / /
h:%(fhfo,*fi,lvfi,o)- (2.2.7)
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One may introduce, in the usual way, the harmonic oscillator and the operators

1 d 1 d
(X—de), A=m <x+). (2.2.8)

27 dx
In usual analysis, these two operators would be called the creation and annihilation
operators: however, for reasons to be seen immediately, they are to be called, now,
the raising and lowering operators instead.

=
=

A =nm

Theorem 2.2.3. The spectrum of the harmonic oscillator
L=n(Q*+P? (2.2.9)

in the space 2 is Z, and for every j € 7 the eigenspace corresponding to the eigen-
value j is generated by the function ¢/, with

o/ =A"¢ ifj>0, ¢/=Allp ifj<o. (2.2.10)

There is on the space 2( a useful nondegenerate pseudoscalar product ( | )
(this is the same as a scalar product, except for positivity) defined in terms of the
C*-realizations of the two functions involved as

(h|f)=
22 /Om(f_lo(x)fo(x)+711(x)f1(x)+7li,o(x)fi,o(x)*f_li,l(x)fi,l(x))dx- (2.2.11)

The operators Q and P are self-adjoint on 2 with respect to this pseudoscalar
product. The functions ¢/, j € Z, are pairwise orthogonal with respect to it.
The function ¢ is normalized and one has (¢*F!|¢*+!) = (k+ 1)(¢¥|¢*) and
(0% ¢~k = (—1)*(¢* | ¢*) for k > 0. Consequently,

-2k 2K k>0,

(919" = {(1),(’;_2’,( Q) i (2.2.12)

In anaplectic analysis, the Heisenberg representation, as defined in a way formally
identical to the usual one, preserves the anaplectic space 2.

Theorem 2.2.4. Given u € A and (y,n) € C?, the function exp (2ix (N Q —yP))u
such that ' .
(exp (2im (N Q—yP))u)(x) = u(x—y) X™=2)n (2.2.13)

lies in A too. If one restricts (y,n) to the space R?, the representation of
Heisenberg’s group (or, in an equivalent way, the projective representation of
R?) so defined preserves the pseudoscalar product.

Of course, a function such as ¢, an eigenfunction of the harmonic oscillator
for a classically forbidden eigenvalue, cannot be integrable on the real line. How-
ever, there is on 2( a substitute for the notion of integral, still a translation-invariant
linear form.
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Proposition 2.2.5. If f = (fo, fi, fio, fi1) is the C*-realization of some function
u € set

Tnt[u] = 2} /0 (o) + fiolx)) dx. 2.2.14)
For every y € C, with (e *™" u)(z) = u(z—y), one has
Int[e 27 4] = Int [u]. (2.2.15)

This concept of integral makes the definition of an anaplectic Fourier transfor-
mation possible.

Proposition 2.2.6. Given x € R, define the function e, as e (y) = e ™. For any
u € 2, the anaplectic Fourier transform Fynau of u defined as

(Fanau)(x) = Int [e, u] (2.2.16)

lies in A too. A fully developed version of the preceding definition, in terms of the
C*-realization of u, is

(Fanat) () =2 [ " fol3) cos2mxy dy—241 [ fi(y) sin2mey dy
0 0
122 / fio(y) cosh2mxy dy — 27 i / fir(y) sinh2mxy dy.  (2.2.17)
0 0

The function ¢ introduced in (2.2.3) is invariant under Fyna.

It is essential to recall here the definition of the anaplectic representation (the
substitute, in anaplectic analysis, of the metaplectic representation).

Theorem 2.2.7. There is a unique representation Ana of SL(2,R) in the space
with the following properties:

(i)ifg= (1Y), one has (Ana(g) u)(x) = u(x) eimer;
(ii) ifg = ((“) agl) with a > 0, one has (Ana(g)u)(x) = a? u(a='x);
(iii) one has Ana (( %, ) = Fana.
This representation is pseudo-unitary, i.e., it preserves the scalar product introduced

in (2.2.11). It combines with the (anaplectic) Heisenberg representation in the way
characterized by the equation

Ana(g) 2T (M2YP) Apa(g~1) = X (M'Q-Y'P) (2.2.18)

e (ab yy_ (Y
ifg=(9%) €SL2,R) and g () = (7}7,)

There is an extra benefit in anaplectic analysis: one can extend the anaplectic
representation to that of the subgroup SL;(2,R) of SL(2,C) generated by SL(2,RR)
and by the matrix g = (7 9), defining Ana(g), in this case, as the transformation
(which preserves ) u — u;, u;(x) = u(ix). However, pseudo-unitarity is then lost.
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Note that (in contradiction to the case of the one-dimensional metaplectic represen-
tation) one has a genuine representation of SL(2,IR), without it being necessary to
use a twofold cover.

The infinitesimal version of (2.2.18) is the following: if (y, 1) € C? and if g =
(¢b) € SL(2,R), one has

Ana(g)(nQ—yP)Ana(g"')=n'Q—)y'P (22.19)

with (Z /,) = (? 2) (%,) It is used in the elementary proof of the proposition that
follows.

Proposition 2.2.8. Given z € I1, the hyperbolic (Poincaré) upper half-plane, set

A, =m1(Q—ZP), Al=A:=m?(Q—zP), (2.2.20)
and define
I I
LZ:AZAj—% :A;fAz—k% 2221)

One then has the identities

Ana ((21)) A: Ana (4, ) = (2 d) A
b
d

Ana((?%)) L. Ana(( 4 7)) = |cz+d|2Lm. (2.2.22)
by
If one takes in particular g, = <y J lx) if z=x+1y, the function
0 y 2
¢/ = Ana(g.) ¢/, (2.2.23)

with ¢ as defined in Theorem 2.2.3, is a basis of the (one-dimensional) eigenspace
of L, in A corresponding to the eigenvalue jlm z.

In anaplectic analysis, it is often necessary to go back to the C*-realizations of
functions. We shall have to use, later, the following, the proof of which is immediate:

ifg= (g a(,), ) with a > 0, Ana(g) acts on C*-realizations as f — h, with

h(x) = (@ fola '), a 2 fila %), a 2 fiola™'x),a 2 fir(a'x)): (2.2.24)

if g=(19), Ana(g) acts as f — h, with

h(x) = (fo(x) €™, fi(x) €™, fio(x)e ™, fii(x)e ™). (22.25)

It is also necessary to examine the infinitesimal operators of the anaplectic rep-
resentation, defined by the formula

1 d
dAna(X) = im Ana(exp 1X), X esl(2,R). (2.2.26)
=0
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o
0e

Taking first exp £X = (1 9), next exp tX = (
and (ii) of Theorem 2.2.7 the relations

0, ), one obtains from the cases (i)

dana(()) =3 0%

2
dAna(($ %)) L4 +l):—%(QP+PQ). (2.2.27)

Yt

Taking the conjugate of the first relation under the anaplectic Fourier transformation,

one finds {

dAna((5')) =P (2.2.28)
Asa consequence,
aana((})) =5 (@*+7) (2229)
so that
exp(—iL) = Ana < (_C(S’lslf . ngltt) > . (2.2.30)

Of course, no Stone’s theorem is available in 2!, a space with a pseudoscalar product
only: what is meant by the equation that precedes is that, if one defines exp (—if L)
by this equation, one obtains a one-parameter group of operators satisfying the right
differential equation. Since L¢$ = 0, this equation proves the invariance of ¢ under
the operator in (2.2.30). One may note the equation Fp, = exp (f%rL): in usual

analysis, there is an extra factor e~ T on the left-hand side, of course linked to the
shift by % of the spectrum of the harmonic oscillator.

A useful corollary of (2.2.30), together with Theorem 2.2.3, is the following
generalization of (2.2.23):if z € I1, g = (¢4 and j € Z, one has

; cz+d \’
Ana(g) ¢! = (|CZ n d|) éfif?' (2.2.31)

ai+b

e write

The proof in the case when z = i goes as follows: assuming that z =

c

1 4 T — 1
ab\ _ (y2y ix) [ (@4a®)7 (422
cd 0 y—% < d .

1
(24+d?)2  (c2+d?)2

1 1 )
_ [ yry 2x cost sint
; (0 y*% ) <— sint cost> ’ (2.2.32)

finding, as a result of (2.2.30),

, j
Ana(g) ¢/ = e /' Ana(g,) ¢/ = (;i:;l') 0J. (2.2.33)
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1o
The general case then follows from the equation (’; g) (y : yy 2x> = (‘Cll Zi) with

clitd =y 2 (cz+d).
Lemma 2.2.9 will be necessary in Sects. 3.1 and 3.2.

Lemma 2.2.9. One has

1o « 1
A pf =n(Imz)2 S~ AZ¢f = (Imz)2 o/, (2.2.34)
with
k—1 ifk>1 1 ifk>0
= 2 = * = = . 2235
T {1 ifk<0 T {k+é ifk<—1 (2235

One has the relations
. J o j—2
4i (Im z)a—Z—J ¢ =—%v-19/77,
ad . . ;
[41' (Im z) 3 —J} o) =7 v ¢ (2.2.36)

Proof. Relations (2.2.34) are a consequence of (2.2.21) and (2.2.22) together with
the fact, also indicated in Proposition 2.2.8, that q)zk is an eigenfunction of L, corre-
sponding to the eigenvalue kIm z.

With J = (% }) and z = x+ iy, set, recalling that the matrix g, has been intro-
duced in Proposition 2.2.8,

1
G =g = (19) <>’ : 0,); (2.237)
0 y2
it follows that, for every u € 2,
(Ana(g.)u)(r) = e ™ y5 u(y?s). (2.2.38)

On the other hand, from (2.2.30) and Theorem 2.2.3, we obtain
Ana(J) ¢’ = (—i)/ ¢/, (2.2.39)

so that
¢J = (—i)’ Ana(J ") Ana(g) ¢/. (2.2.40)

Next, using the fact that 77 (Q* + P?) ¢/ = j¢/ and Heisenberg’s relation [P, Q] =

l .
57> ONE obtains

A9/ =210 (0 +iP)¢ + (5~ )¢,
A*2¢jZZEQ(Q*iP)¢j*(%+j)¢j~ (2.241)

On the other hand, a direct computation, starting from (2.2.38), shows that
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[Ana(z:) (0] () = — - y 2 (Ana(:) ) (1),
(Ana(g) P10 = (y5 -1 ) (@) @242

for every function u € 2. It follows that
S\ A2 .d . N
Ana(g;)A%¢7 = | 4iy 5~ —j | Ana(g:) ¢,

Ana(g.)A** ¢/ = (4iy§Z j) Ana(g;) ¢’. (2.2.43)

Equations (2.2.36) follow if one uses (2.2.40) and (2.2.34). O

We need to introduce some Hilbert space methods in anaplectic analysis. True,
(2.2.11) only introduces a pseudoscalar product on 2(: however, its restriction to the
even part of 2 is positive definite while, on the odd part, one may take advantage
of the linear isomorphism provided by an operator changing the parity, for instance
the canonical lowering operator. The following is taken from [38, p. 154].

Proposition 2.2.10. Let (¢;) jcz, be the sequence of eigenfunctions of the anaplectic
harmonic oscillator introduced in Theorem 2.2.3. Given any function u € 2, the set
of scalar products of u against the functions @; satisfies for some constants C > 0
and O €]0, 1] the estimate

; j Ll
@Wwi<chyest, ez (22.44)
Conversely, given any sequence (a;)jcz of complex numbers satisfying for some
C > 0 and o €]0, 1] the inequality

j Ll
lajl <C [%} 1(28)%, jez, (2.2.45)
there exists a unique function u € A such that a; = (¢’ |u) for all j.

Recalling (2.2.12), one sees that the orthogonal set (V) jc2z, with

(N

vl = 21l e 07, (2.2.46)
(2[iN!

consists of normalized functions. It was actually shown in loc.cit. that this set con-

stitutes a Hilbert basis of the completion of 2.y, under the norm associated with

the restriction to this space of the scalar product (2.2.11). Hence, if u € 2A¢yen, One

has the expansion, convergent in the Hilbert sense,

220 )1
u= -
L

(¢7u) ¢ : (2.2.47)
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one can of course verify that the condition (2.2.44) makes the series ¥ |(y/|u)|?
convergent.
When u € 2 is odd, we can write instead

220 )1
u—= -
L

With the help of (2.2.34) and of the equation

(¢7|Au)A~" ¢/, (2.2.48)

. . . 1 .
Al =9/ ifj >0, AT/ = (j+§)¢1+l if j <0, (2.2.49)

this can be written as

- ¥

227 j1

2L b 0
j even>0 :

72 _ s ) '
Tk z—jéj)]!)!(”;) (¢ fuyp’™". (2.2.50)

Jj even<0 (

The general formula, whether u € %A has any definite parity or not, is thus

u="Y c; (¢"|u)9", (2.2.51)
el
with
ZZZLZM,! if ¢ is even
= z(z‘ljl)‘w_”)' L o (2.2.52)
W (6 — i)*Slgn, if é is odd.
Note that, if £ > 1, one has ¢y = % in both cases. Since the anaplectic representa-
tion is pseudo-unitary, one can also write
u=Y co (¢! u)¢! (2.2.53)
LT

for any z € I, as a consequence of (2.2.23).

We end this section with another useful characterization, taken from [38, p.7,
188-190] of the space 2. The introduction of the quadratic transform ((Qu)o, (Qu)1)
of u will be found more natural if compared with (2.1.3).

Proposition 2.2.11. Let u be an entire function of one variable satisfying for some
. . 2
pair of constants C, R the estimate | f(z)| < Ce™ ", Set, for & real and large,

(Qu)o(c) = /m e yxe~ T dx,
(Qu)i(o) = /oo (1 Jri(i))ce_m”‘2 u(xe_%n)dx, (2.2.54)

—o0
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and, for z on the unit circle, 7 = e~ with 6 > 0 and small,

(Ku)o(z) = [1—2| 2 (Qu)o ( 1+Z), (2.2.55)

llfz

finally introducing a function (Ku); linked to (Qu)| by the same transformation
as the one giving (Ku)o in terms of (Qu)o. The following three conditions are
equivalent:

(i) u lies in the space 2;

(ii) each of the two functions (Qu)y and (Qu)| extends as an analytic function
on the real line, admitting for large |G| a convergent expansion (Qu);(c) =
Lroa 0" |o] 7%

(iii) each of the two functions (K u)o and (K u)1, initially defined in a neighborhood
of the point 7 = 1 of the unit circle, extends as an analytic function to the full
circle.

The Q-realization of 2 is especially useful when dealing with certain
representation-theoretic aspects. Set

og' P =1lo[""",  ol;' " =|o| """ xsigno, o eR\{0},peR.
(2.2.56)

Define the representation 7, (0 < |[p| < 1, & =0 or 1) of SL(2,R), acting on
functions defined on the real line, by the equation

(Roe((£5))w) (c)|bo+d|£"’w(_";;cd>; (2.2.57)

when € = 0, this is a representation taken from the complementary series of
SL(2,R); when € = 1, it is a signed version, non unitarizable, of the same. More
details can be found in [38, Sect. 2], with the same notation.

Proposition 2.2.12. Under the map u — ((Qu)o, (Qu)1), the anaplectic represen-
tation transfers to the representation (f_ 100 7 1 1)

Proof. Though it is contained in the above given reference, let us at least give
a short indication about one of the possible proofs of the proposition. When
g= (l (1)), Ana(g) is the multiplication by ¢, and it is trivial to verify that

(QAna(g)u)j(c) = (Qu)j(c —c); when g = (8091) with a > 0, so that
1

(Ana(g)u)(x) = az u(a™"x), one verifies just as easily that

(QAna(g)u)(o) = (a% (Qu)o(a* o), a? (Qu)i(a® 0')) . (2.2.58)
The case when g = (91 (1)) is of course more complicated, but there are several
ways of dealing with it. Considering, say, the first component of the Q-realization,
one may prove instead the more general formula
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. t+sint
(QAna(( <t gg;f,))u)o(o)z|cost—osim|%(Qu)()( O cost+sin );

—0 sint + cost
(2.2.59)

the advantage is that it is equivalent to its infinitesimal version, which takes (2.2.29)
into account

Q@ +P))y(0)] = 5= [ 3 (Qu)(o) +(1+0%) (Qu(0)

_ 1 [7
T 2m L2
(2.2.60)
now, the left-hand side of (2.2.60), to wit

w ;2 . .
i 1 T
/ e [U; u(xe4)+8ﬂzu”(xe4)] dx, o large, (2.2.61)

can be written, after an integration by parts, as

1 . —nox? iz { 2n.2, 9 }
— ) |l—n(1 = 2.2.62
in /_me u(xe 4) | —m(l+0)x —1—2 dx, (2.2.62)
which is the right-hand side of the desired formula (2.2.60). O

Remark 2.2.1. As is well known, the representation 7 _ 10 taken from the comple-
mentary series of SL(2,R), is unitary for the scalar product associated to the norm
such that -
1
||IWHIZ,%70:/ w(o)(|D|?w)(c) do, (22.63)

1 . .
where |D|2 stands for the operator of convolution by the Fourier transform of the

function s — |s] 3. Then, if u € Aeyen, (u|u), as defined in (2.2.11), coincides with
I(Qu)oll|? | o Something similar holds with the odd part of 2 — but one is then
1

only dealing with a pseudoscalar product — trading the integral on the right-hand
side of (2.2.63) for the one obtained when replacing \s|% by |s|’% signs.

In anaplectic analysis, however, one cannot do much with the Hilbert completion
of the space even: it is, indeed, essential to use only functions on the line extend-
ing as entire functions, so as to take advantage of the relation (2.2.2) between the
components of the C*-realization of u.
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