15 Visibility Graphs

Finding the Shortest Route

In Chapter 13 we saw how to plan a path for a robot from a given start position
to a given goal position. The algorithm we gave always finds a path if it exists,
but we made no claims about the quality of the path: it could make a large
detour, or make lots of unnecessary turns. In practical situations we would
prefer to find not just any path, but a good path.

Figure 15.1
A shortest path

What constitutes a good path depends on the robot. In general, the longer a
path, the more time it will take the robot to reach its goal position. For a mobile
robot on a factory floor this means it can transport less goods per time unit,
resulting in a loss of productivity. Therefore we would prefer a short path. Often
there are other issues that play a role as well. For example, some robots can only
move in a straight line; they have to slow down, stop, and rotate, before they
can start moving into a different direction, so any turn along the path causes
some delay. For this type of robot not only the path length but also the number
of turns on the path has to be taken into account. In this chapter we ignore
this aspect; we only show how to compute the Euclidean shortest path for a
translating planar robot. 323

Chapter 15
VISIBILITY GRAPHS

Figure 15.2

The shortest path does not follow the

324

road map

15.1 Shortest Paths for a Point Robot

As in Chapter 13 we first consider the case of a point robot moving among a
set § of disjoint simple polygons in the plane. The polygons in S are called
obstacles, and their total number of edges is denoted by n. Obstacles are open
sets, so the robot is allowed to touch them. We are given a start position pgrt
and a goal position pge,1, which we assume are in the free space. Our goal is to
compute a shortest collision-free path from pyeart t0 pgoal, that is, a shortest path
that does not intersect the interior of any of the obstacles. Notice that we cannot
say the shortest path, because it need not be unique. For a shortest path to exist,
it is important that obstacles are open sets; if they were closed, then (unless the
robot can move to its goal in a straight line) a shortest path would not exist, as it
would always be possible to shorten a path by moving closer to an obstacle.

Let’s quickly review the method from Chapter 13. We computed a trapezoidal
map T (Cee) of the free configuration space Cgee. For a point robot, Cgee Was
simply the empty space between the obstacles, so this was rather easy. The key
idea was then to replace the continuous work space, where there are infinitely
many paths, by a discrete road map G4, Where there are only finitely many
paths. The road map we used was a plane graph with nodes in the centers of the
trapezoids of T(Cgee) and in the middle of the vertical extensions that separate
adjacent trapezoids. The nodes in the center of each trapezoid were connected
to the nodes on its boundary. After finding the trapezoids containing the start
and goal position of the robot, we found a path in the road map between the
nodes in the centers of these trapezoids by breadth-first search.

real shortest path

shortest path in road map

Because we used breadth-first search, the path that is found uses a minimum
number of arcs in G;y,q. This is not necessarily a short path, because some arcs
are between nodes that are far apart, whereas others are between nodes that
are close to each other. An obvious improvement would be to give each arc
a weight corresponding to the Euclidean length of the segment connecting its
incident nodes, and to use a graph search algorithm that finds a shortest path in
a weighted graph, such as Dijkstra’s algorithm. Although this may improve the
path length, we still do not get the shortest path. This is illustrated in Figure 15.2:

the shortest path from ptare 10 pgoar following the road map passes below the Section 15.1

triangle, but the real shortest path passes above it. What we need is a different ~ SHORTEST PATHS FOR A POINT ROBOT
road map, one which guarantees that the shortest path following the road map is

the real shortest path.

Let’s see what we can say about the shape of a shortest path. Consider some
path from pgeart tO pgoar. Think of this path as an elastic rubber band, whose
endpoints we fix at the start and goal position and which we force to take the
shape of the path. At the moment we release the rubber band, it will try to
contract and become as short as possible, but it will be stopped by the obstacles.
The new path will follow parts of the obstacle boundaries and straight line
segments through open space. The next lemma formulates this observation
more precisely. It uses the notion of an inner vertex of a polygonal path, which
is a vertex that is not the begin- or endpoint of the path.

Lemma 15.1 Any shortest path between pgar and pgo,1 among a set S of disjoint
polygonal obstacles is a polygonal path whose inner vertices are vertices of S.

Proof. Suppose for a contradiction that a shortest path 7 is not polygonal. Since
the obstacles are polygonal, this means there is a point p on 7 that lies in the
interior of the free space with the property that no line segment containing p
is contained in 7. Since p is in the interior of the free space, there is a disc of
positive radius centered at p that is completely contained in the free space. But
then the part of 7 inside the disc, which is not a straight line segment, can be short cut
shortened by replacing it with the segment connecting the point where it enters ‘
the disc to the point where it leaves the disc. This contradicts the optimality of ,
since any shortest path must be locally shortest, that is, any subpath connecting
points g and 7 on the path must be the shortest path from ¢ to r.

Now consider a vertex v of 7. It cannot lie in the interior of the free space:
then there would be a disc centered at p that is completely in the free space,
and we could replace the subpath of 7 inside the disc— which turns at v—Dby
a straight line segment which is shorter. Similarly, v cannot lie in the relative
interior of an obstacle edge: then there would be a disc centered at v such that
half of the disc is contained in the free space, which again implies that we
can replace the subpath inside the disc with a straight line segment. The only
possibility left is that v is an obstacle vertex. H]|

With this characterization of the shortest path, we can construct a road map
that allows us to find the shortest path. This road map is the visibility graph
of S, which we denote by Gyis(S). Its nodes are the vertices of S, and there is an
arc between vertices v and w if they can see each other, that is, if the segment
vw does not intersect the interior of any obstacle in S. Two vertices that can see
each other are called (mutually) visible, and the segment connecting them is
called a visibility edge. Note that endpoints of the same obstacle edge always
see each other. Hence, the obstacle edges form a subset of the arcs of Gyis(S).

By Lemma 15.1 the segments on a shortest path are visibility edges, except
for the first and last segment. To make them visibility edges as well, we add
the start and goal position as vertices to S, that is, we consider the visibility 325

shortest path

Dstart

326

Chapter 15
VISIBILITY GRAPHS

Pgoal

graph of the set §* := SU{Pytart, Pooat }- By definition, the arcs of Gys(S*) are
between vertices—which now include pseart and pgoa—that can see each other.
We get the following corollary.

Corollary 15.2 The shortest path between pstart and pgoa among a set S of
disjoint polygonal obstacles consists of arcs of the visibility graph Gyis(S*),
where S* := SU{ pstart, Pgoal } -

We get the following algorithm to compute a shortest path from pgar 10 pgoal-

Algorithm SHORTESTPATH(S, pstart; Pgoat)
Input. A set S of disjoint polygonal obstacles, and two points pseare and pgoar in
the free space.

Output. The shortest collision-free path connecting psart and pgoal-

1. Gyis < VISIBILITY GRAPH(S U { Pstart, Pgoal })

2. Assign each arc (v,w) in Gyis a weight, which is the Euclidean length of
the segment vw.

3. Use Dijkstra’s algorithm to compute a shortest path between pguar and
Pgoal in Gyis.

In the next section we show how to compute the visibility graph in O(n?logn)
time, where 7 is the total number of obstacle edges. The number of arcs of
Gvis 1s of course bounded by (” erz) Hence, line 2 of the algorithm takes O(nz)
time. Dijkstra’s algorithm computes the shortest path between two nodes in
graph with k arcs, each having a non-negative weight, in O(nlogn + k) time.
Since k = O(n?), we conclude that the total running time of SHORTESTPATH is

O(n?logn), leading to the following theorem.

Theorem 15.3 A shortest path between two points among a set of polygonal
obstacles with n edges in total can be computed in O(n?logn) time.

15.2 Computing the Visibility Graph

Let S be a set of disjoint polygonal obstacles in the plane with n edges in
total. (Algorithm SHORTESTPATH of the previous section needs to compute the
visibility graph of the set S*, which includes the start and goal position. The
presence of these ‘isolated vertices’ does not cause any problems and therefore
we do not explicitly deal with them in this section.) To compute the visibility
graph of S, we have to find the pairs of vertices that can see each other. This
means that for every pair we have to test whether the line segment connecting
them intersects any obstacle. Such a test would cost O(n) time when done
naively, leading to an O(n®) running time. We will see shortly that the test can
be done more efficiently if we don’t consider the pairs in arbitrary order, but
concentrate on one vertex at a time and identify all vertices visible from it, as in
the following algorithm.

Algorithm VISIBILITYGRAPH(S)

Input. A set S of disjoint polygonal obstacles.

Output. The visibility graph Gy (S).

1. Initialize a graph G = (V,E) where V is the set of all vertices of the
polygons in S and E = 0.

2. for all verticesv € V

3 do W « VISIBLEVERTICES(v,S)

4, For every vertex w € W, add the arc (v,w) to E.
5. return §

The procedure VISIBLEVERTICES has as input a set S of polygonal obstacles

and a point p in the plane; in our case p is a vertex of S, but that is not required.

It should return all obstacle vertices visible from p.

If we just want to test whether one specific vertex w is visible from p, there is

not much we can do: we have to check the segment pw against all obstacles.

But there is hope if we want to test all vertices of S: we might be able to use
the information we get when we test one vertex to speed up the test for other
vertices. Now consider the set of all segments pw. What would be a good order
to treat them, so that we can use the information from one vertex when we treat
the next one? The logical choice is the cyclic order around p. So what we will
do is treat the vertices in cyclic order, meanwhile maintaining information that
will help us to decide on the visibility of the next vertex to be treated.

A vertex w is visible from p if the segment pw does not intersect the interior

of any obstacle. Consider the half-line p starting at p and passing through w.

If w is not visible, then p must hit an obstacle edge before it reaches w. To
check this we perform a binary search with the vertex w on the obstacle edges
intersected by p. This way we can find out whether w lies behind any of these
edges, as seen from p. (If p itself is also an obstacle vertex, then there is another
case where w is not visible, namely when p and w are vertices of the same
obstacle and pw is contained in the interior of that obstacle. This case can be
checked by looking at the edges incident to w, to see whether p is in the interior
of the obstacle before it reaches w. For the moment we ignore degenerate cases,
where one of the incident edges of w is contained in pw.)

€6

€l

While treating the vertices in cyclic order around p we therefore maintain
the obstacle edges intersected by p in a balanced search tree T. (As we will see
later, edges that are contained in p need not be stored in J.) The leaves of T
store the intersected edges in order: the leftmost leaf stores the first segment

Section 15.2
COMPUTING THE VISIBILITY GRAPH

Figure 15.3
The search tree on the intersected edges

327

328

Chapter 15
VISIBILITY GRAPHS

intersected by p, the next leaf stores the segment that is intersected next, and
so on. The interior nodes, which guide the search in T, also store edges. More
precisely, an interior node Vv stores the rightmost edge in its left subtree, so that
all edges in its right subtree are greater (with respect to the order along p) than
this segment ey, and all segments in its left subtree are smaller than or equal
to ey (with respect to the order along p). Figure 15.3 shows an example.

Treating the vertices in cyclic order effectively means that we rotate the
half-line p around p. So our approach is similar to the plane sweep paradigm we
used at various other places; the difference is that instead of using a horizontal
line moving downward to sweep the plane, we use a rotating half-line.

The status of our rotational plane sweep is the ordered sequence of obstacle
edges intersected by p. It is maintained in J. The events in the sweep are the
vertices of S. To deal with a vertex w we have to decide whether w is visible
from p by searching in the status structure J, and we have to update T by
inserting and/or deleting the obstacle edges incident to w.

Algorithm VISIBLEVERTICES summarizes our rotational plane sweep. The
sweep is started with the half-line p pointing into the positive x-direction and
proceeds in clockwise direction. So the algorithm first sorts the vertices by the
clockwise angle that the segment from p to each vertex makes with the positive
x-axis. What do we do if this angle is equal for two or more vertices? To be able
to decide on the visibility of a vertex w, we need to know whether pw intersects
the interior of any obstacle. Hence, the obvious choice is to treat any vertices
that may lie in the interior of pw before we treat w. In other words, vertices for
which the angle is the same are treated in order of increasing distance to p. The
algorithm now becomes as follows:

Algorithm VISIBLEVERTICES(p,S)

Input. A set S of polygonal obstacles and a point p that does not lie in the

interior of any obstacle.

Output. The set of all obstacle vertices visible from p.

1. Sort the obstacle vertices according to the clockwise angle that the half-
line from p to each vertex makes with the positive x-axis. In case of
ties, vertices closer to p should come before vertices farther from p. Let
wi,...,wy, be the sorted list.

2. Let p be the half-line parallel to the positive x-axis starting at p. Find

the obstacle edges that are properly intersected by p, and store them in a

balanced search tree 7 in the order in which they are intersected by p.

W—0

fori—1ton

do if VISIBLE(w;) then Add w; to W.
Insert into T the obstacle edges incident to w; that lie on the clock-
wise side of the half-line from p to w;.
7. Delete from T the obstacle edges incident to w; that lie on the
counterclockwise side of the half-line from p to w;.
8. return W

SNk W

The subroutine VISIBLE must decide whether a vertex w; is visible. Normally,
this only involves searching in 7 to see if the edge closest to p, which is stored
in the leftmost leaf, intersects pw;. But we have to be careful when pw; contains
other vertices. Is w; visible or not in such a case? That depends. See Figure 15.4
for some of the cases that can occur. pw; may or may not intersect the interior
of the obstacles incident to these vertices. It seems that we have to inspect
all edges with a vertex on pw; to decide if w; is visible. Fortunately we have
already inspected them while treating the preceding vertices that lie on pw;. We
can therefore decide on the visibility of w; as follows. If w;_; is not visible then
w; is not visible either. If w;_; is visible then there are two ways in which w;
can be invisible. Either the whole segment w;_wj; lies in an obstacle of which
both w;_; and w; are vertices, or the segment w;_jw; is intersected by an edge
in 7. (Because in the latter case this edge lies between w;_; and w;, it must
properly intersect w;—wj;.) This test is correct because pw; = pw;_1 Uw;_w;.
(If i = 1, then there is no vertex in between p and w;, so we only have to look at
the segment pw;.) We get the following subroutine:

VISIBLE(W;)
1. if pw; intersects the interior of the obstacle of which w; is a vertex, locally
at w;

2. then return false

3. else if i =1 or w;_ is not on the segment pw;

4. then Search in T for the edge e in the leftmost leaf.
5. if e exists and pwj; intersects e

6. then return false

7. else return true

8. else if w;_; is not visible

9. then return false

10. else Search in T for an edge e that intersects w;—_w;.
11. if e exists

12. then return false

13. else return true

Section 15.2
COMPUTING THE VISIBILITY GRAPH

Figure 15.4

Some examples where p contains
multiple vertices. In all these cases
w;_ is visible. In the left two cases w;
is also visible and in the right two cases
wj; is not visible.

329

Chapter 15
VISIBILITY GRAPHS

Figure 15.5

Computing a shortest path for a

330

polygonal robot

This finishes the description of the algorithm VISIBLEVERTICES to compute
the vertices visible from a given point p.

What is the running time of VISIBLEVERTICES? The time we spent before
line 4 is dominated by the time to sort the vertices in cyclic order around p,
which is O(nlogn). Each execution of the loop involves a constant number
of operations on the balanced search tree I, which take O(logn) time, plus a
constant number of geometric tests that take constant time. Hence, one execution
takes O(logn) time, leading to an overall running time of O(nlogn).

Recall that we have to apply VISIBLEVERTICES to each of the n vertices of S
in order to compute the entire visibility graph. We get the following theorem:

Theorem 15.4 The visibility graph of a set S of disjoint polygonal obstacles
with n edges in total can be computed in O(n*logn) time.

15.3 Shortest Paths for a Translating Polygonal Robot

In Chapter 13 we have seen that we can reduce the motion planning problem
for a translating, convex, polygonal robot R to the case of a point robot by
computing the free configuration space Cgee. The reduction involves computing
the Minkowski sum of —R, a reflected copy of R, with each of the obstacles, and
taking the union of the resulting configuration-space obstacles. This gives us a

work space configuration space visibility graph

r Al :
| gl 1\l
> 4| P4

—

set of disjoint polygons, whose union is the forbidden configuration space. We
can then compute a shortest path with the method we used for a point robot: we
extend the set of polygons with the points in configuration space that correspond
to the start and goal placement, compute the visibility graph of the polygons,
assign each arc a weight which is the Euclidean length of the corresponding
visibility edge, and find a shortest path in the visibility graph using Dijkstra’s
algorithm.

To what running time does this approach lead? Lemma 13.13 states that
the forbidden space can be computed in O(nlog®n) time. Furthermore, the
complexity of the forbidden space is O(n) by Theorem 13.12, so from the

previous section we know that the visibility graph of the forbidden space can be
computed in O(n*logn) time.
This leads to the following result:

Theorem 15.5 Let R be a convex, constant-complexity robot that can translate
among a set of polygonal obstacles with n edges in total. A shortest collision-
free path for R from a given start placement to a given goal placement can be
computed in O(n*logn) time.

15.4 Notes and Comments

The problem of computing the shortest path in a weighted graph has been studied
extensively. Dijkstra’s algorithm and other solutions are described in most books
on graph algorithms and in many books on algorithms and data structures. In
Section 15.1 we stated that Dijkstra’s algorithm runs in O(nlogn + k) time. To
achieve this time bound, one has to use Fibonacci heaps in the implementation.
In our application an O((n+ k)logn) algorithm would also do fine, since the
rest of the algorithm needs that much time anyway.

The geometric version of the shortest path problem has also received consid-
erable attention. The algorithm given here is due to Lee [247]. More efficient
algorithms based on arrangements have been proposed; they run in O(n?)
time [23, 158, 383].

Any algorithm that computes a shortest path by first constructing the entire
visibility graph is doomed to have at least quadratic running time in the worst
case, because the visibility graph can have a quadratic number of edges. For a
long time no approaches were known with a subquadratic worst-case running
time. Mitchell [281] was the first to break the quadratic barrier: he showed that
the shortest path for a point robot can be computed in O(rn%/3+€) time. Later he
improved the running time of his algorithm to O(n?/?*¢) [282]. In the mean
time, however, Hershberger and Suri [210, 212] succeeded in developing an
optimal O(nlogn) time algorithm.

In the special case where the free space of the robot is a polygon without
holes, a shortest path can be computed in linear time by combining the linear-
time triangulation algorithm of Chazelle [94] with the shortest path method of
Guibas et al. [195].

The 3-dimensional version of the Euclidean shortest path problem is much
harder. This is due to the fact that there is no easy way to discretize the problem:
the inflection points of the shortest path are not restricted to a finite set of points,
but they can lie anywhere on the obstacle edges. Canny [80] proved that the
problem of computing a shortest path connecting two points among polyhedral
obstacles in 3-dimensional space is NP-hard. Reif and Storer [327] gave a single-
exponential algorithm for the problem, by reducing it to a decision problem
in the theory of real numbers. There are also several papers that approximate
the shortest path in polynomial time, for example, by adding points on obstacle
edges and searching a graph with these points as nodes [13, 125, 126, 260, 316].

Section 15.4
NOTES AND COMMENTS

331

332

Chapter 15
VISIBILITY GRAPHS

In this chapter we concentrated on the Euclidean metric. Various papers deal
with shortest paths under a different metric. Because the number of settings is
quite large, we mention only a few, and we give only a few references for each
setting. An interesting metric that has been studied is the link metric, where
the length of a polygonal path is the number of links it consists of [20, 122,
284, 367]. Another case that has been studied extensively is that of rectilinear
paths. Such paths play an important role in VLSI design, for instance. Lee et
al. [253] give a survey of rectilinear path problems. An interesting metric that
has been studied for rectilinear paths is the combined metric, which is a linear
combination of the Euclidean metric and the link metric [56]. Finally, there
are papers that consider paths in a subdivision where each region has a weight
associated with it. The cost of a path through a region is then its Euclidean
length times the weight of the region. Obstacles can be modeled by regions
with infinite weight [113, 283].

While there are many obvious metrics for translating robots—in particular,
the Euclidean metric immediately comes to mind—it is not so easy to give a
good definition of a shortest path for a robot that can rotate as well as trans-
late. Some results have been obtained for the case where the robot is a line
segment [24, 114, 218].

The visibility graph was introduced for planning motions by Nilson [295]. The
O(n?logn) time algorithm that we described to compute it is due to Lee [247]. A
number of faster algorithms are known [23, 383], including an optimal algorithm
by Ghosh and Mount [190], which runs in O(nlogn + k) time, where k is the
number of arcs of the visibility graph.

To compute a shortest path for a point robot among a set of convex polygonal
obstacles, one does not need all the visibility edges. One only needs the visibility
edges that define a common tangent. Rohnert [329] gave an algorithm that
computes this reduced visibility graph in time O(n + c?logn), where c is the
number of obstacles, and # is their total number of edges.

The visibility complex, introduced by Vegter and Pocchiola [319, 320, 376]
is a structure that has the same complexity as the visibility graph, but contains
more information. It is defined on a set of convex (not necessarily polygonal)
objects in the plane, and can be used for shortest path problems and ray shooting.
It can be computed in O(nlogn + k) time. Wein et al. [382] introduced an
interesting variant of this, the visibility—Voronoi complex, which combines the
visibility complex with the Voronoi diagram of the obstacles. This allows one
to find short paths that do not come too close to the obstacles.

15.5 Exercises

15.1 Let S be a set of disjoint simple polygons in the plane with n edges in
total. Prove that for any start and goal position the number of segments
on the shortest path is bounded by O(n). Give an example where it
is O(n).

15.2

15.3

15.4

15.5

15.6

15.7

15.8%

Algorithm VISIBILITY GRAPH calls algorithm VISIBLEVERTICES with
each obstacle vertex. VISIBLEVERTICES sorts all vertices around its
input point. This means that n cyclic sortings are done, one around each
obstacle vertex. In this chapter we simply did every sort in O(nlogn)
time, leading to O(n?logn) time for all sortings. Show that this can be
improved to O(n?) time using dualization (see Chapter 8). Does this
improve the running time of VISIBILITY GRAPH?

The algorithm for finding the shortest path can be extended to objects
other than polygons. Let S be a set of n disjoint disc-shaped obstacles,
not necessarily of equal radius.

a. Prove that in this case the shortest path between two points not seeing
each other consists of parts of boundaries of the discs, and/or common
tangents of discs, and/or tangents from the start or goal point to the
discs.

b. Adapt the notion of a visibility graph for this situation.

c. Adapt the shortest path algorithm to find the shortest path between
two points among the discs in S.

What is the maximal number of shortest paths connecting two fixed
points among a set of n triangles in the plane?

Let S be a set of disjoint polygons and let a starting point pgar be given.
We want to preprocess the set S (and pgar) such that for different goal
points we can efficiently find the shortest path from pg,y to the goal.
Describe how the preprocessing can be done in time O(n?logn) such
that for any given goal point pgoq We can compute the shortest path from
Pstart tO Pgoar in time O(nlogn).

Design an algorithm to find a shortest paths between two points inside a
simple polygon. Your algorithm should run in subquadratic time.

When all obstacles are convex polygons we can improve the shortest

path algorithm by only considering common tangents rather than all

visibility edges.

a. Prove that the only visibility edges that are required in the shortest
path algorithm are the common tangents of the polygons.

b. Give a fast algorithm to find the common tangents of two disjoint
convex polygons.

c. Give an algorithm to compute those common tangents that are also
visibility edges among a set of convex polygons.

If you are familiar with homogeneous coordinates, it is interesting to see
that the rotational sweep that we used in this chapter can be transformed
into a normal plane sweep using a horizontal line that translates over the
plane. Show that this is the case using a projective transformation that
moves the center of the sweep to a point at infinity.

Section 15.5
EXERCISES

333

2 Springer
http://www.springer.com/978-3-540-77973-5

Computational Geometry

Algorithms and Applications

de Berg, M.; Cheong, O.; van Kreveld, M.; Overmars, M.
2008, XlI, 386 p. 370 illus., Hardcover

ISEM: 978-3-5340-77973-5

