
1

Appetizer: Integer Arithmetics

An appetizer is supposed to stimulate the appetite at the beginning of a meal. This is
exactly the purpose of this chapter. We want to stimulate your interest in algorithmic1

techniques by showing you a surprising result. The school method for multiplying in-
tegers is not the best multiplication algorithm; there are much faster ways to multiply
large integers, i.e., integers with thousands or even millions of digits, and we shall
teach you one of them.

Arithmetic on long integers is needed in areas such as cryptography, geometric
computing, and computer algebra and so an improved multiplication algorithm is not
just an intellectual gem but also useful for applications. On the way, we shall learn
basic analysis and basic algorithm engineering techniques in a simple setting. We
shall also see the interplay of theory and experiment.

We assume that integers are represented as digit strings. In the base B number
system, where B is an integer larger than one, there are digits 0, 1, to B− 1 and a
digit string an−1an−2 . . .a1a0 represents the number ∑0≤i<n aiBi. The most important
systems with a small value of B are base 2, with digits 0 and 1, base 10, with digits 0
to 9, and base 16, with digits 0 to 15 (frequently written as 0 to 9, A, B, C, D, E, and
F). Larger bases, such as 28, 216, 232, and 264, are also useful. For example,

“10101” in base 2 represents 1 ·24 +0 ·23 +1 ·22 +0 ·21 +1 ·20 = 21,

“924” in base 10 represents 9 ·102 +2 ·101 +4 ·100 = 924 .

We assume that we have two primitive operations at our disposal: the addition
of three digits with a two-digit result (this is sometimes called a full adder), and the

1 The Soviet stamp on this page shows Muhammad ibn Musa al-Khwarizmi (born approxi-
mately 780; died between 835 and 850), Persian mathematician and astronomer from the
Khorasan province of present-day Uzbekistan. The word “algorithm” is derived from his
name.

2 1 Appetizer: Integer Arithmetics

multiplication of two digits with a two-digit result.2 For example, in base 10, we
have

3
5
5

13

and 6 ·7 = 42 .

We shall measure the efficiency of our algorithms by the number of primitive opera-
tions executed.

We can artificially turn any n-digit integer into an m-digit integer for any m≥ n by
adding additional leading zeros. Concretely, “425” and “000425” represent the same
integer. We shall use a and b for the two operands of an addition or multiplication
and assume throughout this section that a and b are n-digit integers. The assumption
that both operands have the same length simplifies the presentation without changing
the key message of the chapter. We shall come back to this remark at the end of the
chapter. We refer to the digits of a as an−1 to a0, with an−1 being the most significant
digit (also called leading digit) and a0 being the least significant digit, and write
a = (an−1 . . .a0). The leading digit may be zero. Similarly, we use bn−1 to b0 to
denote the digits of b, and write b = (bn−1 . . .b0).

1.1 Addition

We all know how to add two integers a = (an−1 . . .a0) and b = (bn−1 . . .b0). We
simply write one under the other with the least significant digits aligned, and sum
the integers digitwise, carrying a single digit from one position to the next. This digit
is called a carry. The result will be an n+1-digit integer s = (sn . . .s0). Graphically,

an−1 . . . a1 a0 first operand
bn−1 . . . b1 b0 second operand

cn cn−1 . . . c1 0 carries
sn sn−1 . . . s1 s0 sum

where cn to c0 is the sequence of carries and s = (sn . . .s0) is the sum. We have c0 = 0,
ci+1 ·B+ si = ai +bi + ci for 0 ≤ i < n and sn = cn. As a program, this is written as

c = 0 : Digit // Variable for the carry digit
for i :=0 to n−1 do add ai, bi, and c to form si and a new carry c
sn := c

We need one primitive operation for each position, and hence a total of n primi-
tive operations.

Theorem 1.1. The addition of two n-digit integers requires exactly n primitive oper-
ations. The result is an n+1-digit integer.

2 Observe that the sum of three digits is at most 3(B−1) and the product of two digits is at
most (B−1)2, and that both expressions are bounded by (B−1) ·B1 +(B−1) ·B0 = B2−1,
the largest integer that can be written with two digits.

1.2 Multiplication: The School Method 3

1.2 Multiplication: The School Method

We all know how to multiply two integers. In this section, we shall review the “school
method”. In a later section, we shall get to know a method which is significantly
faster for large integers.

We shall proceed slowly. We first review how to multiply an n-digit integer a by
a one-digit integer b j. We use b j for the one-digit integer, since this is how we need
it below. For any digit ai of a, we form the product ai · b j. The result is a two-digit
integer (cidi), i.e.,

ai ·b j = ci ·B+di .

We form two integers, c = (cn−1 . . .c0 0) and d = (dn−1 . . .d0), from the c’s and d’s,
respectively. Since the c’s are the higher-order digits in the products, we add a zero
digit at the end. We add c and d to obtain the product p j = a ·b j. Graphically,

(an−1 . . .ai . . .a0) ·b j −→
cn−1 cn−2 . . . ci ci−1 . . . c0 0

dn−1 . . . di+1 di . . . d1 d0

sum of c and d

Let us determine the number of primitive operations. For each i, we need one prim-
itive operation to form the product ai ·b j, for a total of n primitive operations. Then
we add two n+1-digit numbers. This requires n+1 primitive operations. So the total
number of primitive operations is 2n+1.

Lemma 1.2. We can multiply an n-digit number by a one-digit number with 2n + 1
primitive operations. The result is an n+1-digit number.

When you multiply an n-digit number by a one-digit number, you will probably
proceed slightly differently. You combine3 the generation of the products ai ·b j with
the summation of c and d into a single phase, i.e., you create the digits of c and d
when they are needed in the final addition. We have chosen to generate them in a
separate phase because this simplifies the description of the algorithm.

Exercise 1.1. Give a program for the multiplication of a and b j that operates in a
single phase.

We can now turn to the multiplication of two n-digit integers. The school method
for integer multiplication works as follows: we first form partial products p j by mul-
tiplying a by the j-th digit b j of b, and then sum the suitably aligned products p j ·B j

to obtain the product of a and b. Graphically,

p0,n p0,n−1 . . . p0,2 p0,1 p0,0

p1,n p1,n−1 p1,n−2 . . . p1,1 p1,0

p2,n p2,n−1 p2,n−2 p2,n−3 . . . p2,0

. . .
pn−1,n . . . pn−1,3 pn−1,2 pn−1,1 pn−1,0

sum of the n partial products

3 In the literature on compiler construction and performance optimization, this transforma-
tion is known as loop fusion.

4 1 Appetizer: Integer Arithmetics

The description in pseudocode is more compact. We initialize the product p to zero
and then add to it the partial products a ·b j ·B j one by one:

p = 0 : N
for j :=0 to n−1 do p := p+a ·b j ·B j

Let us analyze the number of primitive operations required by the school method.
Each partial product p j requires 2n + 1 primitive operations, and hence all partial
products together require 2n2 + n primitive operations. The product a · b is a 2n-
digit number, and hence all summations p + a · b j ·B j are summations of 2n-digit
integers. Each such addition requires at most 2n primitive operations, and hence all
additions together require at most 2n2 primitive operations. Thus, we need no more
than 4n2 +n primitive operations in total.

A simple observation allows us to improve this bound. The number a ·b j ·B j has
n + 1 + j digits, the last j of which are zero. We can therefore start the addition in
the j +1-th position. Also, when we add a ·b j ·B j to p, we have p = a · (b j−1 · · ·b0),
i.e., p has n+ j digits. Thus, the addition of p and a ·b j ·B j amounts to the addition
of two n + 1-digit numbers and requires only n + 1 primitive operations. Therefore,
all additions together require only n2 + n primitive operations. We have thus shown
the following result.

Theorem 1.3. The school method multiplies two n-digit integers with 3n2 +2n prim-
itive operations.

We have now analyzed the numbers of primitive operations required by the
school methods for integer addition and integer multiplication. The number Mn of
primitive operations for the school method for integer multiplication is 3n2 + 2n.
Observe that 3n2 + 2n = n2(3 + 2/n), and hence 3n2 + 2n is essentially the same as
3n2 for large n. We say that Mn grows quadratically. Observe also that

Mn/Mn/2 =
3n2 +2n

3(n/2)2 +2(n/2)
=

n2(3+2/n)
(n/2)2(3+4/n)

= 4 · 3n+2
3n+4

≈ 4 ,

i.e., quadratic growth has the consequence of essentially quadrupling the number of
primitive operations when the size of the instance is doubled.

Assume now that we actually implement the multiplication algorithm in our fa-
vorite programming language (we shall do so later in the chapter), and then time the
program on our favorite machine for various n-digit integers a and b and various n.
What should we expect? We want to argue that we shall see quadratic growth. The
reason is that primitive operations are representative of the running time of the al-
gorithm. Consider the addition of two n-digit integers first. What happens when the
program is executed? For each position i, the digits ai and bi have to be moved to the
processing unit, the sum ai +bi + c has to be formed, the digit si of the result needs
to be stored in memory, the carry c is updated, the index i is incremented, and a test
for loop exit needs to be performed. Thus, for each i, the same number of machine
cycles is executed. We have counted one primitive operation for each i, and hence
the number of primitive operations is representative of the number of machine cy-
cles executed. Of course, there are additional effects, for example pipelining and the

1.2 Multiplication: The School Method 5

n Tn (sec) Tn/Tn/2

8 0.00000469
16 0.0000154 3.28527
32 0.0000567 3.67967
64 0.000222 3.91413

128 0.000860 3.87532
256 0.00347 4.03819
512 0.0138 3.98466

1024 0.0547 3.95623
2048 0.220 4.01923
4096 0.880 4
8192 3.53 4.01136

16384 14.2 4.01416
32768 56.7 4.00212
65536 227 4.00635

131072 910 4.00449

 100

 10

 1

 0.1

 0.01

 0.001

 0.0001

216214212210282624
tim

e
[s

ec
]

n

school method

Fig. 1.1. The running time of the school method for the multiplication of n-digit integers. The
three columns of the table on the left give n, the running time Tn of the C++ implementation
given in Sect. 1.7, and the ratio Tn/Tn/2. The plot on the right shows logTn versus logn, and we

see essentially a line. Observe that if Tn = αnβ for some constants α and β , then Tn/Tn/2 = 2β

and logTn = β logn+ logα , i.e., logTn depends linearly on logn with slope β . In our case, the
slope is two. Please, use a ruler to check

complex transport mechanism for data between memory and the processing unit, but
they will have a similar effect for all i, and hence the number of primitive operations
is also representative of the running time of an actual implementation on an actual
machine. The argument extends to multiplication, since multiplication of a number
by a one-digit number is a process similar to addition and the second phase of the
school method for multiplication amounts to a series of additions.

Let us confirm the above argument by an experiment. Figure 1.1 shows execution
times of a C++ implementation of the school method; the program can be found in
Sect. 1.7. For each n, we performed a large number4 of multiplications of n-digit
random integers and then determined the average running time Tn; Tn is listed in
the second column. We also show the ratio Tn/Tn/2. Figure 1.1 also shows a plot
of the data points5 (logn, logTn). The data exhibits approximately quadratic growth,
as we can deduce in various ways. The ratio Tn/Tn/2 is always close to four, and
the double logarithmic plot shows essentially a line of slope two. The experiments

4 The internal clock that measures CPU time returns its timings in some units, say millisec-
onds, and hence the rounding required introduces an error of up to one-half of this unit. It
is therefore important that the experiment timed takes much longer than this unit, in order
to reduce the effect of rounding.

5 Throughout this book, we use logx to denote the logarithm to base 2, log2 x.

6 1 Appetizer: Integer Arithmetics

are quite encouraging: our theoretical analysis has predictive value. Our theoretical
analysis showed quadratic growth of the number of primitive operations, we argued
above that the running time should be related to the number of primitive operations,
and the actual running time essentially grows quadratically. However, we also see
systematic deviations. For small n, the growth from one row to the next is less than by
a factor of four, as linear and constant terms in the running time still play a substantial
role. For larger n, the ratio is very close to four. For very large n (too large to be timed
conveniently), we would probably see a factor larger than four, since the access time
to memory depends on the size of the data. We shall come back to this point in
Sect. 2.2.

Exercise 1.2. Write programs for the addition and multiplication of long integers.
Represent integers as sequences (arrays or lists or whatever your programming lan-
guage offers) of decimal digits and use the built-in arithmetic to implement the prim-
itive operations. Then write ADD, MULTIPLY1, and MULTIPLY functions that add
integers, multiply an integer by a one-digit number, and multiply integers, respec-
tively. Use your implementation to produce your own version of Fig. 1.1. Experiment
with using a larger base than base 10, say base 216.

Exercise 1.3. Describe and analyze the school method for division.

1.3 Result Checking

Our algorithms for addition and multiplication are quite simple, and hence it is fair
to assume that we can implement them correctly in the programming language of our
choice. However, writing software6 is an error-prone activity, and hence we should
always ask ourselves whether we can check the results of a computation. For multi-
plication, the authors were taught the following technique in elementary school. The
method is known as Neunerprobe in German, “casting out nines” in English, and
preuve par neuf in French.

Add the digits of a. If the sum is a number with more than one digit, sum its
digits. Repeat until you arrive at a one-digit number, called the checksum of a. We
use sa to denote this checksum. Here is an example:

4528 → 19 → 10 → 1 .

Do the same for b and the result c of the computation. This gives the checksums
sb and sc. All checksums are single-digit numbers. Compute sa · sb and form its
checksum s. If s differs from sc, c is not equal to a · b. This test was described by
al-Khwarizmi in his book on algebra.

Let us go through a simple example. Let a = 429, b = 357, and c = 154153.
Then sa = 6, sb = 6, and sc = 1. Also, sa · sb = 36 and hence s = 9. So sc �= s and

6 The bug in the division algorithm of the floating-point unit of the original Pentium chip
became infamous. It was caused by a few missing entries in a lookup table used by the
algorithm.

1.4 A Recursive Version of the School Method 7

hence sc is not the product of a and b. Indeed, the correct product is c = 153153.
Its checksum is 9, and hence the correct product passes the test. The test is not fool-
proof, as c = 135153 also passes the test. However, the test is quite useful and detects
many mistakes.

What is the mathematics behind this test? We shall explain a more general
method. Let q be any positive integer; in the method described above, q = 9. Let sa

be the remainder, or residue, in the integer division of a by q, i.e., sa = a−�a/q� ·q.
Then 0 ≤ sa < q. In mathematical notation, sa = a mod q.7 Similarly, sb = b mod q
and sc = c mod q. Finally, s = (sa · sb) mod q. If c = a · b, then it must be the case
that s = sc. Thus s �= sc proves c �= a ·b and uncovers a mistake in the multiplication.
What do we know if s = sc? We know that q divides the difference of c and a · b.
If this difference is nonzero, the mistake will be detected by any q which does not
divide the difference.

Let us continue with our example and take q = 7. Then a mod 7 = 2, b mod 7 = 0
and hence s = (2 ·0) mod 7 = 0. But 135153 mod 7 = 4, and we have uncovered that
135153 �= 429 ·357.

Exercise 1.4. Explain why the method learned by the authors in school corresponds
to the case q = 9. Hint: 10k mod 9 = 1 for all k ≥ 0.

Exercise 1.5 (Elferprobe, casting out elevens). Powers of ten have very simple re-
mainders modulo 11, namely 10k mod 11 = (−1)k for all k ≥ 0, i.e., 1 mod 11 = 1,
10 mod 11 =−1, 100 mod 11 = +1, 1000 mod 11 =−1, etc. Describe a simple test
to check the correctness of a multiplication modulo 11.

1.4 A Recursive Version of the School Method

We shall now derive a recursive version of the school method. This will be our first
encounter with the divide-and-conquer paradigm, one of the fundamental paradigms
in algorithm design.

Let a and b be our two n-digit integers which we want to multiply. Let k = �n/2�.
We split a into two numbers a1 and a0; a0 consists of the k least significant digits and
a1 consists of the n− k most significant digits.8 We split b analogously. Then

a = a1 ·Bk +a0 and b = b1 ·Bk +b0 ,

and hence
a ·b = a1 ·b1 ·B2k +(a1 ·b0 +a0 ·b1) ·Bk +a0 ·b0 .

This formula suggests the following algorithm for computing a ·b:

7 The method taught in school uses residues in the range 1 to 9 instead of 0 to 8 according to
the definition sa = a− (a/q
−1) ·q.

8 Observe that we have changed notation; a0 and a1 now denote the two parts of a and are
no longer single digits.

8 1 Appetizer: Integer Arithmetics

(a) Split a and b into a1, a0, b1, and b0.
(b) Compute the four products a1 ·b1, a1 ·b0, a0 ·b1, and a0 ·b0.
(c) Add the suitably aligned products to obtain a ·b.

Observe that the numbers a1, a0, b1, and b0 are 	n/2
-digit numbers and hence the
multiplications in step (b) are simpler than the original multiplication if 	n/2
 < n,
i.e., n > 1. The complete algorithm is now as follows. To multiply one-digit numbers,
use the multiplication primitive. To multiply n-digit numbers for n ≥ 2, use the three-
step approach above.

It is clear why this approach is called divide-and-conquer. We reduce the problem
of multiplying a and b to some number of simpler problems of the same kind. A
divide-and-conquer algorithm always consists of three parts: in the first part, we split
the original problem into simpler problems of the same kind (our step (a)); in the
second part we solve the simpler problems using the same method (our step (b)); and,
in the third part, we obtain the solution to the original problem from the solutions to
the subproblems (our step (c)).

..

..

a0

a0

a0

a1

a1

a1 b0b0 b0

b1b1 b1

Fig. 1.2. Visualization of the school method and
its recursive variant. The rhombus-shaped area
indicates the partial products in the multiplication
a · b. The four subareas correspond to the partial
products a1 ·b1, a1 ·b0, a0 ·b1, and a0 ·b0. In the
recursive scheme, we first sum the partial prod-
ucts in the four subareas and then, in a second
step, add the four resulting sums

What is the connection of our recursive integer multiplication to the school
method? It is really the same method. Figure 1.2 shows that the products a1 · b1,
a1 ·b0, a0 ·b1, and a0 ·b0 are also computed in the school method. Knowing that our
recursive integer multiplication is just the school method in disguise tells us that the
recursive algorithm uses a quadratic number of primitive operations. Let us also de-
rive this from first principles. This will allow us to introduce recurrence relations, a
powerful concept for the analysis of recursive algorithms.

Lemma 1.4. Let T (n) be the maximal number of primitive operations required by
our recursive multiplication algorithm when applied to n-digit integers. Then

T (n) ≤
{

1 if n = 1,

4 ·T (n/2
)+3 ·2 ·n if n ≥ 2.

Proof. Multiplying two one-digit numbers requires one primitive multiplication.
This justifies the case n = 1. So, assume n ≥ 2. Splitting a and b into the four pieces
a1, a0, b1, and b0 requires no primitive operations.9 Each piece has at most 	n/2

9 It will require work, but it is work that we do not account for in our analysis.

1.5 Karatsuba Multiplication 9

digits and hence the four recursive multiplications require at most 4 ·T (n/2
) prim-
itive operations. Finally, we need three additions to assemble the final result. Each
addition involves two numbers of at most 2n digits and hence requires at most 2n
primitive operations. This justifies the inequality for n ≥ 2. ��

In Sect. 2.6, we shall learn that such recurrences are easy to solve and yield the
already conjectured quadratic execution time of the recursive algorithm.

Lemma 1.5. Let T (n) be the maximal number of primitive operations required by
our recursive multiplication algorithm when applied to n-digit integers. Then T (n)≤
7n2 if n is a power of two, and T (n) ≤ 28n2 for all n.

Proof. We refer the reader to Sect. 1.8 for a proof. ��

1.5 Karatsuba Multiplication

In 1962, the Soviet mathematician Karatsuba [104] discovered a faster way of multi-
plying large integers. The running time of his algorithm grows like nlog3 ≈ n1.58. The
method is surprisingly simple. Karatsuba observed that a simple algebraic identity al-
lows one multiplication to be eliminated in the divide-and-conquer implementation,
i.e., one can multiply n-bit numbers using only three multiplications of integers half
the size.

The details are as follows. Let a and b be our two n-digit integers which we want
to multiply. Let k = �n/2�. As above, we split a into two numbers a1 and a0; a0

consists of the k least significant digits and a1 consists of the n− k most significant
digits. We split b in the same way. Then

a = a1 ·Bk +a0 and b = b1 ·Bk +b0

and hence (the magic is in the second equality)

a ·b = a1 ·b1 ·B2k +(a1 ·b0 +a0 ·b1) ·Bk +a0 ·b0

= a1 ·b1 ·B2k +((a1 +a0) · (b1 +b0)− (a1 ·b1 +a0 ·b0)) ·Bk +a0 ·b0 .

At first sight, we have only made things more complicated. A second look, how-
ever, shows that the last formula can be evaluated with only three multiplications,
namely, a1 · b1, a1 · b0, and (a1 + a0) · (b1 + b0). We also need six additions.10 That
is three more than in the recursive implementation of the school method. The key
is that additions are cheap compared with multiplications, and hence saving a mul-
tiplication more than outweighs three additional additions. We obtain the following
algorithm for computing a ·b:

10 Actually, five additions and one subtraction. We leave it to readers to convince themselves
that subtractions are no harder than additions.

10 1 Appetizer: Integer Arithmetics

(a) Split a and b into a1, a0, b1, and b0.
(b) Compute the three products

p2 = a1 ·b1, p0 = a0 ·b0, p1 = (a1 +a0) · (b1 +b0).

(c) Add the suitably aligned products to obtain a ·b, i.e., compute a ·b according to
the formula

a ·b = p2 ·B2k +(p1 − (p2 + p0)) ·Bk + p0.

The numbers a1, a0, b1, b0, a1 + a0, and b1 + b0 are 	n/2
+ 1-digit numbers and
hence the multiplications in step (b) are simpler than the original multiplication if
	n/2
+ 1 < n, i.e., n ≥ 4. The complete algorithm is now as follows: to multiply
three-digit numbers, use the school method, and to multiply n-digit numbers for n ≥
4, use the three-step approach above.

 10

 1

 0.1

 0.01

 0.001

 0.0001

 1e-05

214212210282624

tim
e

[s
ec

]

n

school method
Karatsuba4

Karatsuba32

Fig. 1.3. The running times of implemen-
tations of the Karatsuba and school meth-
ods for integer multiplication. The run-
ning times for two versions of Karatsuba’s
method are shown: Karatsuba4 switches to
the school method for integers with fewer
than four digits, and Karatsuba32 switches
to the school method for integers with
fewer than 32 digits. The slopes of the
lines for the Karatsuba variants are approx-
imately 1.58. The running time of Karat-
suba32 is approximately one-third the run-
ning time of Karatsuba4.

Figure 1.3 shows the running times TK(n) and TS(n) of C++ implementations
of the Karatsuba method and the school method for n-digit integers. The scales on
both axes are logarithmic. We see, essentially, straight lines of different slope. The
running time of the school method grows like n2, and hence the slope is 2 in the
case of the school method. The slope is smaller in the case of the Karatsuba method
and this suggests that its running time grows like nβ with β < 2. In fact, the ratio11

TK(n)/TK(n/2) is close to three, and this suggests that β is such that 2β = 3 or

11 TK(1024) = 0.0455, TK(2048) = 0.1375, and TK(4096) = 0.41.

1.6 Algorithm Engineering 11

β = log3 ≈ 1.58. Alternatively, you may determine the slope from Fig. 1.3. We
shall prove below that TK(n) grows like nlog3. We say that the Karatsuba method has
better asymptotic behavior. We also see that the inputs have to be quite big before the
superior asymptotic behavior of the Karatsuba method actually results in a smaller
running time. Observe that for n = 28, the school method is still faster, that for n = 29,
the two methods have about the same running time, and that the Karatsuba method
wins for n = 210. The lessons to remember are:

• Better asymptotic behavior ultimately wins.
• An asymptotically slower algorithm can be faster on small inputs.

In the next section, we shall learn how to improve the behavior of the Karatsuba
method for small inputs. The resulting algorithm will always be at least as good as
the school method. It is time to derive the asymptotics of the Karatsuba method.

Lemma 1.6. Let TK(n) be the maximal number of primitive operations required by
the Karatsuba algorithm when applied to n-digit integers. Then

TK(n) ≤
{

3n2 +2n if n ≤ 3,

3 ·TK(n/2
+1)+6 ·2 ·n if n ≥ 4.

Proof. Multiplying two n-bit numbers using the school method requires no more
than 3n2 + 2n primitive operations, by Lemma 1.3. This justifies the first line. So,
assume n ≥ 4. Splitting a and b into the four pieces a1, a0, b1, and b0 requires no
primitive operations.12 Each piece and the sums a0 + a1 and b0 + b1 have at most
	n/2
+ 1 digits, and hence the three recursive multiplications require at most 3 ·
TK(n/2
+ 1) primitive operations. Finally, we need two additions to form a0 + a1

and b0 + b1, and four additions to assemble the final result. Each addition involves
two numbers of at most 2n digits and hence requires at most 2n primitive operations.
This justifies the inequality for n ≥ 4. ��

In Sect. 2.6, we shall learn some general techniques for solving recurrences of
this kind.

Theorem 1.7. Let TK(n) be the maximal number of primitive operations required by
the Karatsuba algorithm when applied to n-digit integers. Then TK(n) ≤ 99nlog3 +
48 ·n+48 · logn for all n.

Proof. We refer the reader to Sect. 1.8 for a proof. ��

1.6 Algorithm Engineering

Karatsuba integer multiplication is superior to the school method for large inputs.
In our implementation, the superiority only shows for integers with more than 1 000

12 It will require work, but it is work that we do not account for in our analysis.

12 1 Appetizer: Integer Arithmetics

digits. However, a simple refinement improves the performance significantly. Since
the school method is superior to the Karatsuba method for short integers, we should
stop the recursion earlier and switch to the school method for numbers which have
fewer than n0 digits for some yet to be determined n0. We call this approach the
refined Karatsuba method. It is never worse than either the school method or the
original Karatsuba algorithm.

 0.4

 0.3

 0.2

 0.1

 1024 512 256 128 64 32 16 8 4

recursion threshold

Karatsuba, n = 2048
Karatsuba, n = 4096

Fig. 1.4. The running time of the Karat-
suba method as a function of the recursion
threshold n0. The times consumed for mul-
tiplying 2048-digit and 4096-digit integers
are shown. The minimum is at n0 = 32

What is a good choice for n0? We shall answer this question both experimentally
and analytically. Let us discuss the experimental approach first. We simply time the
refined Karatsuba algorithm for different values of n0 and then adopt the value giving
the smallest running time. For our implementation, the best results were obtained for
n0 = 32 (see Fig. 1.4). The asymptotic behavior of the refined Karatsuba method is
shown in Fig. 1.3. We see that the running time of the refined method still grows
like nlog3, that the refined method is about three times faster than the basic Karatsuba
method and hence the refinement is highly effective, and that the refined method is
never slower than the school method.

Exercise 1.6. Derive a recurrence for the worst-case number TR(n) of primitive op-
erations performed by the refined Karatsuba method.

We can also approach the question analytically. If we use the school method
to multiply n-digit numbers, we need 3n2 + 2n primitive operations. If we use one
Karatsuba step and then multiply the resulting numbers of length 	n/2
+ 1 using
the school method, we need about 3(3(n/2 + 1)2 + 2(n/2 + 1))+ 12n primitive op-
erations. The latter is smaller for n ≥ 28 and hence a recursive step saves primitive
operations as long as the number of digits is more than 28. You should not take this
as an indication that an actual implementation should switch at integers of approx-
imately 28 digits, as the argument concentrates solely on primitive operations. You
should take it as an argument that it is wise to have a nontrivial recursion threshold
n0 and then determine the threshold experimentally.

Exercise 1.7. Throughout this chapter, we have assumed that both arguments of a
multiplication are n-digit integers. What can you say about the complexity of mul-
tiplying n-digit and m-digit integers? (a) Show that the school method requires no

1.7 The Programs 13

more than α · nm primitive operations for some constant α . (b) Assume n ≥ m and
divide a into 	n/m
 numbers of m digits each. Multiply each of the fragments by b
using Karatsuba’s method and combine the results. What is the running time of this
approach?

1.7 The Programs

We give C++ programs for the school and Karatsuba methods below. These programs
were used for the timing experiments described in this chapter. The programs were
executed on a machine with a 2 GHz dual-core Intel T7200 processor with 4 Mbyte
of cache memory and 2 Gbyte of main memory. The programs were compiled with
GNU C++ version 3.3.5 using optimization level -O2.

A digit is simply an unsigned int and an integer is a vector of digits; here, “vector”
is the vector type of the standard template library. A declaration integer a(n) declares
an integer with n digits, a.size() returns the size of a, and a[i] returns a reference to the
i-th digit of a. Digits are numbered starting at zero. The global variable B stores the
base. The functions fullAdder and digitMult implement the primitive operations on
digits. We sometimes need to access digits beyond the size of an integer; the function
getDigit(a, i) returns a[i] if i is a legal index for a and returns zero otherwise:

typedef unsigned int digit;
typedef vector<digit> integer;
unsigned int B = 10; // Base, 2 <= B <= 2^16

void fullAdder(digit a, digit b, digit c, digit& s, digit& carry)
{ unsigned int sum = a + b + c; carry = sum/B; s = sum - carry*B; }

void digitMult(digit a, digit b, digit& s, digit& carry)
{ unsigned int prod = a*b; carry = prod/B; s = prod - carry*B; }

digit getDigit(const integer& a, int i)
{ return (i < a.size()? a[i] : 0); }

We want to run our programs on random integers: randDigit is a simple random
generator for digits, and randInteger fills its argument with random digits.

unsigned int X = 542351;
digit randDigit() { X = 443143*X + 6412431; return X % B ; }
void randInteger(integer& a)
{ int n = a.size(); for (int i=0; i<n; i++) a[i] = randDigit();}

We come to the school method of multiplication. We start with a routine that
multiplies an integer a by a digit b and returns the result in atimesb. In each itera-
tion, we compute d and c such that c ∗B + d = a[i] ∗ b. We then add d, the c from
the previous iteration, and the carry from the previous iteration, store the result in
atimesb[i], and remember the carry. The school method (the function mult) multi-
plies a by each digit of b and then adds it at the appropriate position to the result (the
function addAt).

14 1 Appetizer: Integer Arithmetics

void mult(const integer& a, const digit& b, integer& atimesb)
{ int n = a.size(); assert(atimesb.size() == n+1);

digit carry = 0, c, d, cprev = 0;

for (int i = 0; i < n; i++)
{ digitMult(a[i],b,d,c);

fullAdder(d, cprev, carry, atimesb[i], carry); cprev = c;
}

d = 0;
fullAdder(d, cprev, carry, atimesb[n], carry); assert(carry == 0);

}
void addAt(integer& p, const integer& atimesbj, int j)
{ // p has length n+m,

digit carry = 0; int L = p.size();
for (int i = j; i < L; i++)

fullAdder(p[i], getDigit(atimesbj,i-j), carry, p[i], carry);
assert(carry == 0);

}
integer mult(const integer& a, const integer& b)
{ int n = a.size(); int m = b.size();

integer p(n + m,0); integer atimesbj(n+1);
for (int j = 0; j < m; j++)

{ mult(a, b[j], atimesbj); addAt(p, atimesbj, j); }
return p;

}

For Karatsuba’s method, we also need algorithms for general addition and sub-
traction. The subtraction method may assume that the first argument is no smaller
than the second. It computes its result in the first argument:

integer add(const integer& a, const integer& b)
{ int n = max(a.size(),b.size());

integer s(n+1); digit carry = 0;
for (int i = 0; i < n; i++)
fullAdder(getDigit(a,i), getDigit(b,i), carry, s[i], carry);
s[n] = carry;
return s;

}
void sub(integer& a, const integer& b) // requires a >= b
{ digit carry = 0;

for (int i = 0; i < a.size(); i++)
if (a[i] >= (getDigit(b,i) + carry))

{ a[i] = a[i] - getDigit(b,i) - carry; carry = 0; }
else { a[i] = a[i] + B - getDigit(b,i) - carry; carry = 1;}

assert(carry == 0);
}

The function split splits an integer into two integers of half the size:

void split(const integer& a,integer& a1, integer& a0)
{ int n = a.size(); int k = n/2;

for (int i = 0; i < k; i++) a0[i] = a[i];
for (int i = 0; i < n - k; i++) a1[i] = a[k+ i];

}

1.7 The Programs 15

The function Karatsuba works exactly as described in the text. If the inputs have
fewer than n0 digits, the school method is employed. Otherwise, the inputs are split
into numbers of half the size and the products p0, p1, and p2 are formed. Then p0 and
p2 are written into the output vector and subtracted from p1. Finally, the modified p1
is added to the result:

integer Karatsuba(const integer& a, const integer& b, int n0)
{ int n = a.size(); int m = b.size(); assert(n == m); assert(n0 >= 4);

integer p(2*n);

if (n < n0) return mult(a,b);

int k = n/2; integer a0(k), a1(n - k), b0(k), b1(n - k);

split(a,a1,a0); split(b,b1,b0);

integer p2 = Karatsuba(a1,b1,n0),
p1 = Karatsuba(add(a1,a0),add(b1,b0),n0),
p0 = Karatsuba(a0,b0,n0);

for (int i = 0; i < 2*k; i++) p[i] = p0[i];
for (int i = 2*k; i < n+m; i++) p[i] = p2[i - 2*k];

sub(p1,p0); sub(p1,p2); addAt(p,p1,k);

return p;
}

The following program generated the data for Fig. 1.3:

inline double cpuTime() { return double(clock())/CLOCKS_PER_SEC; }

int main(){

for (int n = 8; n <= 131072; n *= 2)
{ integer a(n), b(n); randInteger(a); randInteger(b);

double T = cpuTime(); int k = 0;
while (cpuTime() - T < 1) { mult(a,b); k++; }
cout << "\n" << n << " school = " << (cpuTime() - T)/k;

T = cpuTime(); k = 0;
while (cpuTime() - T < 1) { Karatsuba(a,b,4); k++; }
cout << " Karatsuba4 = " << (cpuTime() - T) /k; cout.flush();

T = cpuTime(); k = 0;
while (cpuTime() - T < 1) { Karatsuba(a,b,32); k++; }
cout << " Karatsuba32 = " << (cpuTime() - T) /k; cout.flush();

}
return 0;
}

16 1 Appetizer: Integer Arithmetics

1.8 Proofs of Lemma 1.5 and Theorem 1.7

To make this chapter self-contained, we include proofs of Lemma 1.5 and Theo-
rem 1.7. We start with an analysis of the recursive version of the school method.
Recall that T (n), the maximal number of primitive operations required by our recur-
sive multiplication algorithm when applied to n-digit integers, satisfies

T (n) ≤
{

1 if n = 1,

4 ·T (n/2
)+3 ·2 ·n if n ≥ 2.

We use induction on n to show that T (n) ≤ 7n2 −6n when n is a power of two. For
n = 1, we have T (1) ≤ 1 = 7n2 −6n. For n > 1, we have

T (n) ≤ 4T (n/2)+6n ≤ 4(7(n/2)2 −6n/2)+6n = 7n2 −6n ,

where the second inequality follows from the induction hypothesis. For general n, we
observe that multiplying n-digit integers is certainly no more costly than multiplying
2	logn
-digit integers and hence T (n) ≤ T (2	logn
). Since 2	logn
 ≤ 2n, we conclude
that T (n) ≤ 28n2 for all n.

Exercise 1.8. Prove a bound on the recurrence T (1) ≤ 1 and T (n) ≤ 4T (n/2)+ 9n
when n is a power of two.

How did we know that “7n2−6n” was the bound to be proved? There is no magic
here. For n = 2k, repeated substitution yields

T (2k) ≤ 4 ·T (2k−1)+6 ·2k ≤ 42T (2k−2)+6 · (41 ·2k−1 +2k)

≤ 43T (2k−3)+6 · (42 ·2k−2 +41 ·2k−1 +2k) ≤ . . .

≤ 4kT (1)+6 ∑
0≤i≤k−1

4i2k−i ≤ 4k +6 ·2k ∑
0≤i≤k−1

2i

≤ 4k +6 ·2k(2k −1) = n2 +6n(n−1) = 7n2 −6n .

We turn now to the proof of Theorem 1.7. Recall that TK satisfies the recurrence

TK(n) ≤
{

3n2 +2n if n ≤ 3,

3 ·TK(n/2
+1)+12n if n ≥ 4.

The recurrence for the school method has the nice property that if n is a power of two,
the arguments of T on the right-hand side are again powers of two. This is not true
for TK . However, if n = 2k + 2 and k ≥ 1, then 	n/2
+ 1 = 2k−1 + 2, and hence we
should now use numbers of the form n = 2k +2, k ≥ 0, as the basis of the inductive
argument. We shall show that

TK(2k +2) ≤ 33 ·3k +12 · (2k+1 +2k−2)

for k ≥ 0. For k = 0, we have

1.9 Implementation Notes 17

TK(20 +2) = TK(3) ≤ 3 ·32 +2 ·3 = 33 = 33 ·20 +12 · (21 +2 ·0−2) .

For k ≥ 1, we have

TK(2k +2) ≤ 3TK(2k−1 +2)+12 · (2k +2)

≤ 3 ·
(

33 ·3k−1 +12 · (2k +2(k−1)−2)
)

+12 · (2k +2)

= 33 ·3k +12 · (2k+1 +2k−2) .

Again, there is no magic in coming up with the right induction hypothesis. It is
obtained by repeated substitution. Namely,

TK(2k +2) ≤ 3TK(2k−1 +2)+12 · (2k +2)

≤ 3kTK(20 +2)+12 · (2k +2+2k−1 +2+ . . .+21 +2)

≤ 33 ·3k +12 · (2k+1 −2+2k) .

It remains to extend the bound to all n. Let k be the minimal integer such that
n ≤ 2k +2. Then k ≤ 1 + logn. Also, multiplying n-digit numbers is no more costly
than multiplying (2k +2)-digit numbers, and hence

TK(n) ≤ 33 ·3k +12 · (2k+1 −2+2k)

≤ 99 ·3logn +48 · (2logn −2+2(1+ logn))

≤ 99 ·nlog3 +48 ·n+48 · logn ,

where the equality 3logn = 2(log3)·(logn) = nlog3 has been used.

Exercise 1.9. Solve the recurrence

TR(n) ≤
{

3n2 +2n if n < 32,

3 ·TR(n/2
+1)+12n if n ≥ 4.

1.9 Implementation Notes

The programs given in Sect. 1.7 are not optimized. The base of the number system
should be a power of two so that sums and carries can be extracted by bit operations.
Also, the size of a digit should agree with the word size of the machine and a little
more work should be invested in implementing primitive operations on digits.

1.9.1 C++

GMP [74] and LEDA [118] offer high-precision integer, rational, and floating-point
arithmetic. Highly optimized implementations of Karatsuba’s method are used for
multiplication.

18 1 Appetizer: Integer Arithmetics

1.9.2 Java

java.math implements arbitrary-precision integers and floating-point numbers.

1.10 Historical Notes and Further Findings

Is the Karatsuba method the fastest known method for integer multiplication? No,
much faster methods are known. Karatsuba’s method splits an integer into two parts
and requires three multiplications of integers of half the length. The natural exten-
sion is to split integers into k parts of length n/k each. If the recursive step requires �
multiplications of numbers of length n/k, the running time of the resulting algorithm
grows like nlogk �. In this way, Toom [196] and Cook [43] reduced the running time
to13 O

(
n1+ε) for arbitrary positive ε . The asymptotically most efficient algorithms

are the work of Schönhage and Strassen [171] and Schönhage [170]. The former
multiplies n-bit integers with O(n logn log logn) bit operations, and it can be imple-
mented to run in this time bound on a Turing machine. The latter runs in linear time
O(n) and requires the machine model discussed in Sect. 2.2. In this model, integers
with logn bits can be multiplied in constant time.

13 The O(·) notation is defined in Sect. 2.1.

http://www.springer.com/978-3-540-77977-3

	Appetizer: Integer Arithmetics
	Addition
	Multiplication: The School Method
	Result Checking
	A Recursive Version of the School Method
	Karatsuba Multiplication
	Algorithm Engineering
	The Programs
	Proofs of Lemma 1.5 and Theorem 1.7
	Implementation Notes
	Historical Notes and Further Findings

