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Summary. Infinite systems of ordinary differential equations can describe:

Spatially implicit metapopulation models with discrete patch-size structure
Host-macroparasite models that distinguish hosts by their parasite loads

Prion proliferation models that distinguish protease-resistant protein aggregates
by the number of prion units they contain

It is the aim of this chapter to develop a theory for infinite ODE systems in
sufficient generality (based on operator semigroups) and, besides well-posedness, to
establish conditions for the solution semiflow to be dissipative and have a compact
attractor for bounded sets. For metapopulations, we present conditions for uniform
persistence on the one hand and prove on the other hand that a metapopulation
dies out, if there is no emigration from birth patches or if empty patches are not
colonized.

2.1 Introduction

Infinite systems of ordinary differential equations,

w/ = (t7 w’ x)?

- (2.1)
x;:Zajkxk"‘gj(tawvx)a J=0,12.... .

Jj=0

where z(t) is the sequence of functions (;(t))52,, can describe:
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e Spatially implicit metapopulation models with discrete patch-size struc-
ture [2,5,7,38,42]

e Host-macroparasite models which distinguish hosts by their parasite loads
[6,13,24,25,33,34,48,49]

e Prion proliferation models which distinguish protease-resistant protein ag-
gregates by the number of prion units they contain [41,45]

Spatially Implicit Metapopulation Models

A metapopulation is a group of populations of the same species which occupy
separate areas (patches) and are connected by dispersal. Each separate pop-
ulation in the metapopulation is referred to as a local population. Metapop-
ulations occur naturally or by human activity as a result of habitat loss and
fragmentation.

In system (2.1), z; denotes the number of patches with j occupants and
w the average number of migrating individuals, or wanderers. The coefficients
o, describe the transition from patches with k occupants to patches with
j occupants due to deaths, births and emigration of occupants. The func-
tion f gives the rate of change of the number of dispersers due to patch
emigration, immigration and disperser death. The functions g; describe the
rate of change of the numbers of patches with j occupants due to the im-
migration of dispersers. The coefficients «;;, have the properties typical for
infinite transition matrices in stochastic processes with continuous time and
discrete state (continuous-time birth and death chains, e.g., see [1] and the ref-
erences therein). Since they form an unbounded set, existence and uniqueness
of solutions to (2.1) is non-trivial. It is the aim of this chapter to develop a
this-related theory in sufficient generality and also establish conditions for the
solution semiflow to be dissipative [26], have a compact attractor for bounded
sets [26,52], and be uniformly persistent [5,27,56,58]. We also prove that a
metapopulation dies out, if nobody emigrates from its birth patch or if empty
patches are not colonized.

It is worth mentioning that, though the linear special case z’; = o
oy can be interpreted as a stochastic model for a population that is not
distributed over patches [39], the model (2.1) is a deterministic model. It
inherits the property though that subpopulations on individual patches can
become extinct at finite time which is an important feature of real metapop-
ulations. As a trade-off, the metapopulation model (2.1) is spatially implicit
and not able to take spatial heterogeneities into account. A spatially explicit
metapopulation model would be a finite system of ordinary differential equa-
tions y; = Zjvzl dirye + fi(t,y), j = 1,...,N, where N is the number of
patches and y; the size of the local population on patch j. The coefficients d;y,
would describe the movement from patch k to patch j and the non-linearities
f; the local demographics on patch j due to births and deaths. An example
of a spatially explicit metapopulation model (underlying an epidemic model)
can be found in Chap.4. Spatially explicit models can take account of how
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the patches are situated relatively to each other and of differences between
the patches, but do not have the property that a local population can become
extinct in finite time. The most basic spatially implicit metapopulation model
is the Levins model [36,37] which only considers empty and occupied patches.
Incorporating a structure which distinguishes between patches according to
local population size makes it possible, e.g., to compare emigration strategies
which are based on how crowded a patch is [38].

Alternatively, spatially implicit metapopulation models can be structured
by a continuous rather than a discrete variable. This leads to non-local par-
tial differential equations or integral equations [23]. The partial differential
equations one obtains are similar to those considered in Chap. 1, but have
non-linear terms in the derivative with respect to the size-structure vari-
able. For general information on mathematical metapopulation theory we refer
to [20,28,38].

Host-Macroparasite Models

The connection between metapopulation and host-macroparasite models is
not incidental as a macroparasite population is a metapopulation with the
hosts being the patches and the parasites in single hosts forming the local
populations. In the epidemiology of infectious diseases, the Levins metapopu-
lation model corresponds to a prevalence model that only considers suscepti-
ble and infective individuals. Such models (possibly after adding classes which
take account of incubation and immunity) are quite adequate for micropara-
sitic (viral, bacterial, fungal) diseases where the infectious agents multiply
rapidly and it basically only matters whether a host is infectious or not.
Macroparasitic (worm, e.g.) diseases, however, are characterized by highly
variable parasite loads in individual hosts with very different effects on host
health. Models like (2.1), called density models in [13], can take these into ac-
count with z; denoting the number of hosts with j parasites and w denoting
the average number of free-living parasites. The coefficients o, describe the
transition from hosts with k parasites to hosts with j parasites due to deaths,
births and release of parasites. The function f gives the rate of change of the
number of free-living parasites due to death and the entry into or exit from
hosts. The functions g; describe the rate of change of the numbers of hosts
with j parasites due to the acquisition of parasites from the pool of free-living
parasites.

Since parasite loads often depend on the age of the host, host age has
been included into density models [6, 13,24, 25,34, 49]. This leads to an infi-
nite system of partial differential equations. The analysis of these models uses
moment generating functions. The use of a generating function would convert
the system (2.1) into a single partial differential equation. An infinite system
of partial differential equations incorporating age dependence would also be
converted into a single partial differential equation, however with one more
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variable and partial derivative. This approach yields impressive and illuminat-
ing results, but requires the transition matrix to correspond to a simple birth
and death process (possibly with catastrophes). Levins type metapopulation
models with patch age have been considered in [19].

Models for Prion Proliferation

Prion proteins have been linked to fatal diseases called transmissible spongi-
form encephalopathies (TSE) including Creutzfeldt—Jakob disease (CJD),
kuru, scrapie, and bovine spongiform encephalopathy (BSE, “mad cow dis-
ease”). The prion diseases in an individual host are associated with the
accumulation of single prion proteins (monomers) into prion protein aggre-
gates (polymers). An aggregate is a stringlike formation possibly containing
several thousand units with each unit being a former monomer. Monomers
are considered healthy because they can easily be degraded by proteinase
while polymers are much more proteinase-resistant and are neurotoxic. The
system (2.1), with some modification, covers the models of prion proliferation
suggested in [41,45]. Since a detailed derivation of a special metapopulation
model can already be found in [38] (cf. Sect. 2.12), we explain the prion model
in some more detail here.

The amount of aggregates which contain j prion units (former monomers)
is represented by x; while the amount of (healthy) prion monomers is w. We
assume that aggregates grow by adding one monomer at a time, the respective
rate is o; for an aggregate to grow from j to j + 1 units. This process is
sometimes called polymerization. An aggregate of size k can break into two
pieces of sizes j and k — j: the respective per unit rate is b; if 7 <k —j and
bi—jk if 7 > k — j. Aggregates of size j are chemically degraded at a rate x;
while single monomers are degraded at a rate 0. Monomers are produced at
a constant rate A. The model in [41] has the form

o0
w’:/l—wg oRT) — oW,

k=1
) > it (2.2)
2y = w(ojazjoy = oja) — mjxg+ Y (b + be—j)ee — x5 ) b,
k=j+1 k=1
j=12,..., o0o=0.

Notice that the polymerization rate is of mass action type as it involves the
product of the amount of monomers w and the amount of polymers containing
j — 1 or j units respectively. There is no equation for xy because aggregates
containing 0 units do not exist, differently from empty patches in metapop-
ulations or hosts without worms in macroparasite diseases. To fit (2.2) into
(2.1), without an zgp-equation, we set
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bjk"‘l;kfj,k, 1<j<k-1,
—1
Qi = —KE — Zbik, 1<j=k, (2.3)
0 k>

The model in [45] (see also [41, App.A]) allows for the fact that small
aggregates below a certain minimum size, m, are unstable. So, if an aggregate
splits and one of the pieces has a size less than m, it immediately disintegrates
into monomers,

e’} m—1 00
w =A— wZakazk — dw + Z J Z (bjk + bj,k’k)ib']€7
k=1 j=1 k=m
/ 0 i1 (24)
2y = w(ojazjoy — oja;) — mgxg + Y (b + be—j)er — x5 ) b,
k=j+1 k=1
j=mm+1,..., Om—1 = 0.

The system (2.1) can be adapted to this model by striking the equations
for o, ..., zm—1 and defining the coefficients ()% _,, as in (2.3) with the
modification that j > m and k > m. Analogous models where the amount
of units in an aggregate are modeled by a continuous rather than a discrete
variable have been considered in [15,21, 35,47, 53, 61]. Saturation effects in
polymerization have been incorporated in [22].

The system (2.4) includes the special case that bj; is constant for 1 <
m < j < k which may be a reasonable approximation of reality, while the as-
sumption that bj; is constant for 1 < j < k is clearly unrealistic. This special
case allows a moment closure which reduces the infinite system of ODEs to a
system of three ODEs which can been completely analyzed (cf. [47]). Since we
consider the case of variable bj; here, it is not clear whether to favor system
(2.2) or system (2.4). Notice that there is another conceptual difference be-
tween the systems. System (2.2) distinguishes between monomers which have
been part of an aggregate before (in other words aggregates consisting of one
unit), represented by the variable x1, and the “virgin” monomers represented
by w. Only virgin monomers are attached to the aggregates. Such a distinc-
tion between monomers and single unit aggregates is not made in system
(2.4) where the monomers resulting from aggregate disintegration return to
the monomer class represented by w. A drawback of system (2.4) may be that
it could be very difficult to assign a specific value to m. Thinking along the
lines that polymer splitting can result in complete disintegration, it seems to
be more realistic (and mathematically more difficult) to assume that for each
j € N there is a probability g; € [0, 1] of a piece of j units to disintegrate into
monomers after polymer splitting,
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w=A—-w Z oxTK — 0w + Zij Z (bjk + bj—k k) Tk,
k=1 =1  k=j+1
) = w(0j1Tj-1 — 05T;) = KT, (25)
[e%S) j—1
+(L—q5) Y (bjg+bejn)on —a; by,
k=j+1 k=1

i=1,2,...., ao=0.

Obviously this system encompasses the two previous ones.

Outline of the Mathematical Approach

For the mathematical treatment of (2.1), we choose a somewhat more abstract
approach than the ones in [2] and [5] from which we have received much in-
spiration in order to include a variety of models (in Sect.2.12 and [38] we
assume that only juveniles migrate) and to include state transitions which are
not of nearest-neighbor type like in the prion proliferation models. The biolog-
ical interpretation (restricted here to metapopulation and host-macroparasite
systems) gives us guidance how to choose the appropriate state space. As-
suming that meaningful solutions are non-negative, the number of patches
(hosts) is given by > 72 x; and the number of occupants (in-host parasites)
by Z;’;l jz;. Recall the sequence space

= {20 7 €RY Jayl < o0} (2.6)
j=0
with norm -
lzll =) lagl, @ = ()52 (2.7)
§=0

We introduce the subspace

= {(@))50s 35 € R jlay] < oo (2:8)
j=0

which becomes a Banach space of its own under the norm

o0

Izl =D (LDl 2= (@) (2.9)

Jj=0

Other, equivalent, choices are possible, of course. We treat (2.1) as a semilinear
operator differential equation

w' = f(t,w,x), ¥ = Az +g(t,w,x)
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on the non-negative cone of the Banach space R x ¢!! where A, is the infini-
tesimal generator of a positive Cy-semigroup on /' and the functions f and
g(U) = (g; (I_I));io are locally Lipschitz continuous.

The main body of the chapter is structured as follows.

2.2. The homogeneous linear system: Kolmogorov’s differential equation
2.3. Solution to the semilinear system
2.4. General metapopulation models and boundedness of solutions
2.5. Extinction without migration or colonization of empty patches
2.6. A more specific metapopulation model
2.7. Compact attractors
2.8. Towards the stability of equilibria
2.9. Instability of every other equilibrium: general result
2.10. Existence of equilibria and instability of every other equilibrium
2.11. Stability of the extinction equilibrium versus metapopulation persis-
tence
2.12. Application to special metapopulation models
2.13. Special host-macroparasite models and existence of solutions
2.14. Application to prion proliferation
A. Non-differentiability of the simple birth process semigroup

2.2 The Homogeneous Linear System: Kolmogorov’s
Differential Equation

The linear special case of (2.1),
o= e,  j €Ly, (2.10)
k=0

is known as Kolmogorov’s differential equation [31] and has been widely stud-
ied [17, XVIL.9] [18, XIV.7] [29, Sects.23.10-23.12] [16, 30, 50, 51]. See [4]
and [59] for more references. We write Z, for the set of non-negative inte-
gers and N for the natural numbers starting at 1, Z, = NU {0}. We review
results proved in [39].

Assumption 1 We make the following assumptions concerning the coeffi-
cients o, j, k € Z.

(a) Oéjj SOSO&jk, k?é]

o0
(b) a® :=sup? Zozjk < 0.
3=0
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(c) There exist constants cg,c; > 0, ¢ > 0 such that

o0
Zjajk §60+61k76|0ékk| VkEZ+.
j=1

Notice that the sequence |a;;| may be unbounded and is so in many ap-
plications. Let ¢! denote the Banach space of real sequences z = ()72, with
2] := > pe [wk| < oo. €4 denotes the cone of non-negative sequences in £*.

Recall that a Cy-semigroup on a Banach space X is a family of bounded

linear operators on X, {S(t);t > 0}, such that S(t + s) = S(¢)S(s) for all
t,s > 0 and S(t)x =0y = S(0)x for all z € X. It follows that S(t)z is a
continuous function of t > 0 for all x € X.

The infinitesimal generator of the Cy-semigroup S, A, is defined by

.1
A= hli%l+ }—L(S(h):c —x), x € D(A),

where D(A) is the subspace of elements = where this limit exists. D(A) is dense
in X and A is a closed operator. If x € D(A), then S(¢)x is differentiable in
t >0 and

d
ES(t)x = AS(t)x = S(t)Ax.

Notice that the first equation can be interpreted as an abstract linear differ-
ential equation. For this and more see the textbooks [4,9,14,29,32,40,46,52].

Theorem 2. Let 2" = (J;Bn])?io be the unique componentwise solution of the
(essentially finite) linear system of ordinary differential equations

d n 3 ]

— = QjpTy, 7=0,...,n,

Cizt S (2.11)
Eﬁfg’"] = ajal, j>n,

with initial data x'"(0) = &. Then SM(t)i = 2["(t) defines a sequence of
Co-semigroups S on 1. There exists a Cy-semigroup S on ' such that
Stz — S()7 in €' for every ¥ € 1, t > 0. If € {4, SP(H)z € ¢4,
S(t)# € €1, and the convergence of S ()% to S(t)# as n — oo is monotone
increasing. The domain of the infinitesimal generator A" of S s

D(A[”]) = {x € KI;Z lasi] || < OO} =: Do, (2.12)
§=0
and A"z = (Z ag/bg]xk)o.o

k=0

o x = (x)5rq, with
]:



2 Infinite ODE Systems Modeling Size-Structured Metapopulations 59
ok gk <n
V=S ayj=k>ng, kel (2.13)
0; otherwise
The following estimates hold
ISP < [S@ll < e, t>0.

On the subspace Dy introduced in (2.12) we define a linear operator A,
A{E = (Z ajkack>
k=0

Lemma 1. Let the Assumption 1 be satisfied. T:hen Dy is dense in (1, A
Dy — (% is well-defined and linear and [|[(A — A)z|| > (A — a®)||z|| for all
x € Do, A € R. The closure of A is the infinitesimal generator of the semigroup
S in Theorem 2 and Z;’;O(/ulm)j =>r (Z;io ozjk>:zzk for all x € Dy.

. wzeDy. (2.14)
j=0

Remark 1. That S is generated by the closure of A is proved in [59]. Without
part (c¢) in Assumption 1, the semigroup S still exists and its infinitesimal
generator extends A [59] but it may no longer coincide with the closure of

9

A [4, Theorem 7.11]. Further, without (c), solutions to (2.10) may no longer
be uniquely determined by their initial data [50, Sect. 6].

In our context, the space of main interest is

M= {x € 51;2j|xj| < oo}

=1

with norm [lz[l; = [lz|| + 3272, j|o;| which allows us to address the total
number of patch occupants in the context of metapopulations or the total
number of in-host parasites in the context of macroparasitic diseases.

Theorem 3. Let the Assumption 1 be satisfied. Then the following hold:

(a) The semigroup S in Theorem 2 leaves (' invariant and the restrictions of
S(t) to lill, S1(t), form a Cy-semigroup on (' which is generated by the
part of A in ('', denoted by Ay, i.e. Ay is the restriction of A to

D(Ay) = {x € (** N Dy; Az € 11},

Further ||S1(t)||1 < e®t for allt >0, with w = max{cy,a® + co}.

(b) The semigroups S™ in Theorem 2 leave (' invariant. Their restrictions
to (11, S%"], form Cy-semigroups on (' and also satisfy the estimate
HSE"] (O))l1 < e¥t for all t > 0. Their infinitesimal generators, A[ln], have
the same domain
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D(AM) = {90 €M flagjllesl < 00} =: D;.

Jj=1

Finally, for all ¥ € (*!, Sgn] (t)® — Si(t)x in ('Y, with the convergence
being uniform in bounded intervals in R.

Lemma 2. Let the Assumption 1 be satisfied. Then D; C D(Ap) and
>orco (Z;’;lj\ajk\)kvk\ < oo for all x € D;.

Several other approximations of the semigroups S and S; have been sug-
gested [4, 16, 30, 50, 60]; the one used here has the advantage that it is easy
to show that the approximating semigroups are differentiable. It is closely re-
lated to the approach in [51], but the construction there does not really yield
approximating semigroups on the same Banach space.

Lemma 3. Let the Assumption 1 be satisfied. Then the semigroups S™(t) on

 and Sg"] (t) on £t are differentiable for t > 0. Further there exist constants
cp > 0 such that

IS < e+ (),

H%SW(MM < ¢+ (et) ™! } vt e (0,1). (2.15)

Proof. We only give the proof for S"l; the proof for S{”] is completely anal-
ogous. Equivalently we show that SI"/(#) maps ¢! into D(A). By construc-
tion, (2.11), [S"(t)z]; = e¥iitx; for j > n. Hence, with appropriate constants
cp, >0, for t > 0,

o0 oo

n e 1
> lagl[SMma], < D Jagsle il < -

j=n+1 j=n+1

By (2.12) and (2.13), S(t) maps ¢ into D(A™) for t > 0 and

A ST @)al| < Y JagrllST @]+ Y eyl [ST (@)
Jik=1 j=n+1
< cnllz|l + (et) ||| vt € (0,1),

with appropriate constants ¢, > 0. O

We conjecture that the semigroups in Lemma 3 are analytic, but the esti-
mate in the proof does not completely match [46, Chap. 2, Theorem 5.2(d)].
In general, neither the semigroup S nor the semigroup S; are differentiable
for all ¢ > 0. As an example we consider the simple death process,

ap_1k =k =—apr, keN, ajr =0 otherwise. (2.16)
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Let el = (6;,)72, (the Kronecker symbols) be the sequence where all
terms are 0 except the nth term which is 1. It is well-known [1, 6.4.2] that
[S(t)e)]; =0 for j > n and

[S(t)eln)]; = (”.)e*ﬁu —eH)i j=0,...,n (2.17)
J
Since el is an element of both Dy and D(A;) (notice |lel™|| = 1 and |lel™]|; =

n + 1), we can differentiate S(t)el™ and S;(t)el™ and

d . 0; j>n,
—St)e™| = “t— 2.18
[dt ®) L [S(t)e["]]j nle_ie_tj; j=0,...n (2.18)

We choose t = In 2 such that e~ = 1/2 for t = . As we show in the appendix

d 2
dt d 2n
L Hf Del2 || =2 9—2n 2.1
€2 - dts(ve n<n> (2.19)
>Vn—1le V2, f=1In2,n> 2. (2.20)

This implies that S(¢) is not strongly differentiable at any ¢ < In 2. Otherwise
S'(t) = AS(t) would be a bounded linear operator [46, 2.4] contradicting
this estimate because ||e*™|| = 1. Similarly, S;(¢) is not differentiable at any
t<In2.

2.3 Solution to the Semilinear System

We can formally rewrite (2.1) as a semilinear Cauchy problem

’LU/ = f(tvwax)a

2.21
¥ = Az +g(t,w,x), (2.21)

where
g(t, w, x) = (gj (t’ w, x))})io

and A; is the infinitesimal generator of the semigroup S; considered in
Theorem 3. Since in general the semigroup S; is not differentiable (see the
discussion at the end of the previous section), we cannot expect to find a so-
lution of (2.21) in the strict sense if #(0) = & € ¢3! rather than z(0) € D(A;).
The pair of continuous functions w : [0,7) — Ry and x : [0,7) — ¢} is called
an integral solution of (2.21) with initial condition w(0) = w, x(0) = & if

w/ :f(t7w7x)’ t

S
x(t) =2+ A1/0 x(s)ds + /01 g(s,w(s),z(s))ds, t €1[0,7),

[0,7),  w(0) =w,
(2.22)
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with the understanding that f(f x(s)ds € D(Ay) for all ¢ € [0, 7). Equivalently
to the second equation in (2.22), x is a mild solution of 2’ = Ajx + g(t,w, x),
if it satisfies the integral equation

t
o) =S5+ [ St - gl uha@ds,  teon), (229
0
where S is the Cp-semigroup generated by A; on ¢! [4, Proposition 3.31].

2.3.1 Local Existence

A standard approach to local existence of solutions consists in assuming that
the non-linearities satisfy a Lipschitz condition. We also need assumptions
which make the solutions preserve positivity.

Assumption 4 f: Ri X E}rl — Rand g: Ri X K}rl — (' are continuous and
have the following properties:

(a) f(t,0,z) > 0 for all z € /A, t > 0.
(b) For every j € Z, g;(t,w,z) > 0 whenever w > 0, z € £}, z; =0, ¢t > 0.
(¢c) For every r > 0 there exists a Lipschitz constant A, such that

|f(t,w,a:) - f(t,’Uj),’j')||

0, T <A71,U—QI)+ T—T ’
||9(t77~U,$)—g(t,w,x)1}— (I |+ ] )

whenever ¢ € [0,7],w,w € [0,7],z,Z € (X, ||z, [|2]: <7

Theorem 5. Under the Assumptions 1, and 4, for everyw € Ry and & € EE,
there exists some T € [0,00] and a unique continuous solution w : [0,7) —
[0,00), z : [0,7) — 1} of (2.22).

Remark 2. 7 € [0,00) can be chosen in such a way that the solution (w,x)
cannot be extended to a solution on a larger open interval.

Since we want our solutions to preserve positivity, we do not refer for the
proof to general results which use Banach’s fixed point theorem [46, Chap. 6
Theorem 1.2 [52, Theorem 46.1], but to results which use generalizations of
the explicit Euler approximation to solve ordinary differential equations [11,
Chap. 1 Theorem 1.1].

Proof. We apply [40, VIIL.2, Theorem 2.1] (or [55, Sect.2]). We set D =
R, x ¢3! Notice that (2.23) can be rewritten in terms of y(t) = (w(t), z(t))
and § = (w, I) as

u(t) = ()7 + / 5(t — 5)F(s,y(s))ds
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with the Cp-semigroup S(t)j = (w0, S1(t)Z) on R x ¢! and the non-linearity

f(s, 1) = (f(s,9),9(s,9)). The local existence of solutions with values in D
follows once we have checked the subtangential condition

1 _
Ed(y+hf(t,y)7D) —0, h—0+,y€eD,

where d(z, D) is the distance from the point z to the set D. This subtangential
condition can be broken up into two tangential conditions,

Fd(w+ hf(t,w,z),R;) — 0
h— 0+,w € Ry, x € (11
%d(m + hg(t,w,x),ﬂf) —0

In a Banach lattice Z with positive cone Z,
d(z,Z4) < |lz = 2" = [I=7 1,

where 2T and z~ are the positive and negative part of the vector 2. Since, for
z€Zy, [lz27[1 =0,

lim sup lcl(,z + hz, Z,) <limsup ! |z + Rz~ ||
h—0+ h/

h—ot+ h
. 1 e _
= Jim ([l 427 = 11=71)
= Dy

which is the right derivative of the convex functional z + ||z~ at z in the
direction of Z [40, IL.5]. If Z =R,

= . .1 e
Di||z7|| 2= D4z Z—hlir{)l+ﬁ([z+hz] —z7)

. 1
lim —(0—-0);z>0
h—0+ h 0;2>0
= hli%l+f_1[hz] 12=0p = zi;z:()
1 —z;2<0
lm = (—z — hE + 2);
h_l)r(r)1+h( z—hZ+2z2);2<0

For z e Ry z € R,

0; z >0,

z7; z=0.

1
limsup —d(z + hz,R;) <
h—o+ N

For z,% € (1,

N g - Y N"p s
Dy|z ||z:zohli>l(r)l+ﬁ([zj+hzj] —zj):ZOD+zj Z;.
= =
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For z,% € (11,
(oo}

Dillz7||,2=> (A +4)Dyz; %
j=0

We summarize. For w € R} and x € Zi_l,

1 N 0;w>0
— < _
hli)%l_i_ hd(w—i—hf(t,w,x),R )—{[f(t,w,x)} ;wO}
and
o " i ) 0;2; >0
- < E :
hlgng hd(fc + hg(t,w7$),f+) = j:0(1 +J) { lgj(t,w,x)] s x; = 0}

By Assumption 4 (a) and (b), these expressions are 0 and the subtangential
condition is satisfied. O

2.3.2 Global Existence

In order to establish global existence we make the following additional as-
sumptions. Recall Dy in Theorem 3,

oo
D, = {(E S le;ZﬂOéjﬂ |£C]| < OO}
j=1

Assumption 6 There exist constants co, c3 > 0 such that for all ¢t > 0, w > 0
and z € (1! N D; the following hold:

0o
o Y giltwz) <cslaf.
=0
o
° f(t,w,x)Jijgj(t,w,a:)§62(w+||:c|\1)

j=1

Theorem 7. Let Assumptions 1, 4, and 6 be satisfied. Then, for every w €
[0,00) and & € 1!, there exists a unique continuous solution w : [0,00) — R,
z:[0,00) — 021 of (2.22). The solution satisfies the estimates

v 4 2 v
le@ll < lzlle™,  |Jw®)]+ el <@ + [|2]|)e"
where a° is from Assumption 1 and wo € R is an appropriate constant.

Remark 3. On every bounded subinterval of [0, c0), the solution z is the uni-
form limit of solutions 2™ on [0, c0) with values in 1! which solve the system
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d v
ol =f (@), 2" @), wl(o) =,
- ]y
d in n n QT (t)7 j=0,...,n, 2.24
%xg Jt)—g; (t, 0 (1), 2" (1)) = kZ:O o .
oz (), j>n,
x[n](o) =7,

and satisfy
00 t
Zﬂaﬁ\/ 2 (s)ds < cc. (2.25)
j=1 0

The following estimates will be used frequently for m = 0,1 and 0° := 1,
00 00 00 o] +
S gmal) <3 Y (L) [ ateas
=0 =0 k=0 \j=0 0

t oo
+/ ijgj(s,w["](s),x[”](s))ds.
0=

Proof. In order to derive the estimates which imply global existence of solu-
tions we consider the approximating problems where the infinite matrix (o)

(2.26)

is replaced by the infinite matrices (a%) in (2.13) because this will allow us
to interchange the order of summation freely. The matrices also satisfy the
assumptions of Theorem 5. So, for every n € N, there exists some 7,, € [0, 0]
and a solution on [0, 7,) of

Lol — w2y, Wl (0) = )

dt
t t

M () =& + A[ln]/ 2" (s)ds —|—/ g(s,w[n](s),x["] (s))ds,
0 0

with the understanding that fg 2 (s)ds € D(A™) = Dy. (2.25) follows from
the definition of D;.

Again 7, € [0, 00] can be chosen such that the solution (w!™, z[") cannot
be extended to a solution on a larger interval.

If we spell the equation for z[™ out componentwise for x, we see that
wl™ and xB"] can be differentiated and satisfy (2.24). Since the z["! are non-
negative, for m =0, 1,

> mall)

3=0

= Z]mfj + ij (Z ajk/ z; (s)ds) + Z jmajj/ z;"(s)ds
j=0 =0 k=0 0 j=n+1 0
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We can change the order of summations, use that aj, > 0 for j # k, and
obtain the estimate (2.26) which implies

wl) + 0]

t
<t o+ [ fu(s) el s)ds
t
+Z<Z 1+437) ajk>/ an](s)ds
0
—|—/ Zl—l—j gj(s,w™ z")ds,

By Assumptions 1, 4, and 6,
o)+ 0

t
< w4+ |2 + (@ + o +c3)/ 2 (s)||ds
0

+ t
tes [ wlas + (e er) [ ||x["]<s>|1ds)
0 0

< [ "l (5)ds + / t o (5)aas )

with an appropriate wy > 0. By Gronwall’s inequality,

| t) + Hm[”](t) e‘“Qt(uV) + ||53||1)

I <

Suppose 7, < co. The growth bounds in Assumption 6 imply that g(t,w["],
2l and f(t,wl™, zI") are bounded on [0,7,). It follows from the variation
of parameters formula,

t
w(t) = u“/+/ f(s,w(s), 2" (s))ds,
0
() = SY’] (t)x + / SE"] (t— s)g(s,w["] (s),x["}(s))ds,
0

that wl™ and z[") can be continuously extended to [0, 7,]. By the local exis-
tence theorem they can be extended to an interval larger than [0, 7,,], contra-
dicting the maximality of the solution.

We return to the solution (w,z) in Theorem 5 which, by (2.23), is given
by

w(t) =w Jr/o f(s,w(s),z(s))ds,
z(t) = S1(t)% + /0 Si(t—s)g(s,w(s), z(s))ds.
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We subtract this system of equations from the previous,

|ww—wwansA

f(s,w(s),z(s)) — f(s, wl™ (s), z (3)) ’ds
and

|z(t) — 2" (1)
<[5 - 81 0)) &

1

#1519 - s~ gt wts) 6] s

+/ HSW (t— s)Hng(s, w(s),xz(s)) — g(s,w["] (s), x[”](s)) H1d3'
0

We use ||S£”] (t)|l1 < e*! (Theorem 3) and the Lipschitz conditions for f and
¢ in Assumption 4. For every r € (0,7), we find a Lipschitz constant A, such
that

lw(t) — w™) )+ ||=(t) - z (t)||1
< [18:0) = sz,

+/ [[S1(t — ) — STt — 9)lg(s,w(s), z(s))]||  ds
0
+ AT/O e“’(t_s)(’w(s) — wl (s)] + [J=(s) — m[”](s)Hl)ds.

Since
[[S"™ ) —S@)]#], =0, n—oo, t>0,iel

by Theorem 3, Lebesgue’s theorem of dominated convergence implies that
second summand on the right hand side of the last inequality converges to 0
for all t > 0. A Gronwall argument implies that

|w(t) — (t)| + Ha:(t) — gl (t)H1 — 0, n — 0o,
uniformly for ¢ in every compact subinterval of [0, 7). This implies that
w(t) + [zl < e (w0 + [|2]l1),  te[o,7).

A similar argument as before implies that 7 =oco. O

2.3.3 A Semiflow

Amap @ : Ry x0}! — 011 is called a semiflow on 04 if B(t+s,Z) = B(t, D(s, L))
for all ¢, s > 0 and &(0, %) = & whenever & € ¢}, If & is continuous, it is called
a continuous semiflow. The following theorem is essentially proved in the same
way as the continuous dependence of solutions of ODEs on initial data with
the Gronwall inequality playing a crucial role [52, Theorem 46.4] [55, Sect. 3].
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Theorem 8. Let the assumptions of Theorem 7 be satisfied and f and g; not
depend on time t. Then the map & : Ry x Ry x €48 — Ry x (2! defined by
&(t, (w,2)) = (w(t),z(t)) with x being a solution of (2.22) is a continuous
semiflow.

2.4 General Metapopulation Models and Boundedness
of Solutions

In the following we concentrate on metapopulations to derive boundedness
results. A special feature of a certain class of metapopulation models is that
the number of patches (islands) does not increase.
2.4.1 Decrease or Constancy of Patch Number
We formulate the Assumption that guarantees this feature.

o0
Assumption 9 (a) Z ajr <0forall keZy

j=0

(b) Zgj(t,uux) <Oforalt>0,w>0,xze i
=0

Proposition 1. Let the Assumptions of Theorem 7 and Assumption 9 be sat-
isfied. Then ||x(t)|| < [|Z|| for all t > 0 for every non-negative solution of

Proof. Recall that x solves
t t
x(t) =2+ Al/ x(s)ds —|—/ g(s,w(s),z(s))ds.
0 0

Since z(t) € (4,

lz@®)l = a;(t)
j=0

= [lzl| + 2(141 /Otm(s)ds>j + /Ot igj(s,w(s),x(s))ds.

By Lemma 1 and Assumption 9, ||z(¢)|| < ||Z]] because a® < 0. O
The same proof yields the following result.

Corollary 1. Let the Assumptions of Theorem 7 be satisfied and Z;C:o =0
for all k € Z4 and Z;';Ogj(t,w,x) =0 for all t,w > 0, z € (A'. Then
||| = [|[z(0)|| for all t > 0 and all solutions of (2.22).
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2.4.2 Uniform Eventual Boundedness of Solutions

Assumption 10 There exist constants cq,cs5,€4 > 0 such that, for all w > 0,
ze DN f}&

(o) (o)
ft,w,x +Z(Zjajk)mk+2]gj (t,w,x)

k=0 j=1
< cyllz| +e5 — 64(w + ijj).
j=1

By Lemma 2, the series in the second term exist. If the previous assump-
tions are added, the solutions of the model equations are uniformly eventually
bounded and the solution semiflow is called dissipative.

Theorem 11. Let Assumptions 1, 4, 9, and 10 be satisfied. Then, with the
constants cy, cs, €4 from Assumption 10,

- —eat . CallZl + s
t . 6415 sl Ll | S
)+ 3 (w+23w) I
for all solutions (w,z) of (2.1) with initial data w >0, & € ¢}}.

Proof. The Assumptions 9 and 10 imply Assumption 6, and we have global
solutions for the initial values in question by Theorem 7. By Proposition 1,
llz(t)|| < ||#| for all t > 0. We consider the functions zI™ on [0, 00) in (2.24)
which approximate z by Remark 3. By estimate (2.26),

+§:<§:jajk) /Oth”](s)der/ Zygg s,wl™l(s), 21" (s)) ds

By Lemma 2, the double series exists absolutely. Since the functions xgc " are
non-negative, we can interchange the series and the integral. By Assump-
tion 10 (notice that fotx["](s)ds € Dy),

e} o0 t
Py + 3 jall () <w+ 3 g + c4/ ™ (s)||ds + est
j=1 j=1 0

[ (S0}
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By Gronwall’s inequality,

n E - In —eyt % = 3% C5
wl ](t)—l—jz:;jx[ Ity <e (w—l—;]xj) +a

t
+c4/ ™ (t — s)||e~c4%ds.
0

We take the limit n — oo, use ||z(t)|| < ||Z|| and obtain the statement of this
theorem. 0O

2.5 Extinction Without Migration or Colonization
of Empty Patches

If there is no emigration from the patches, we can assume that the average
number of migrating individuals (wanderers), w(t), is exponentially decreas-
ing, more generally, w is bounded on [0,00), [~ w(t)dt < co. In this section
we derive conditions such that this implies that the solutions of (2.22) satisfy

oo
ijj(t) -0 as t — o0,
j=1

i.e., the occupant part of the population goes extinct together with its migrat-
ing part. We also show that the occupant population goes extinct if empty
patches are not colonized.

Assumption 12 (a) Zajk <0, k=0,1,2,....
§=0

(b) For all k € N there is some j € Z., j < k, such that a;; > 0.
(c) gj(0,2) =0 forall z € £}, 7 =0,1,....

(d) Zgj(w,x) <0 for all w > 0,z € (1.
=0
(e) There exists a constant ¢ > 0 such that

ngj(w,x) < cwl|z|| for all w > 0, x € 1.
j=1

) N jag
)1 JUk .
() lﬂsogp; p

If the Assumptions 1, 4 (for g), 10, and 12 are satisfied, then also the
Assumption 9 is satisfied and unique solutions exist to (2.22) which are defined
and bounded on [0, 00).
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Proposition 2. Let the Assumptions 1, 4, 10, and 12 be satisfied. Let ¢ > 0
be the number in Assumption 12. Then there exist m € N and e; > 0 such
that for every solution x of (2.22) with ¥ € (1},

0 [eS) m—1
> < Y g+ [0S s
j=1 j=1 k=0

t
+ c||Z]] / e_el(t_s)w(s)ds,
0

where &, = Z;’il aji + erk.
Proof. Let [ be the solutions of (2.24) which approximate z. By (2.26),

=" @) < J12l,

[e’e] oo ~ t
S jall( zjwzgk | asas
j=1 =

_/ <ngg (s )))dS-

By part (f) of Assumption 12, ék < —e1k for k > m with appropriate ¢; > 0,
m € N, and, by part (e),

o] m—1 t 00 +
Z]x[n] <3 Y 5k/ 2 (s)ds —er 3 k/ 21" (s)ds

j=1 k=0 0 k=m 0

t , 00
+/ <Z cw(s)x[n](s)>ds

0 \jo0
o) m— o0 t
Z Z / ds — € Z k/ xL"](s)ds
j k=0 k=0 0

"l(s)|\ds,

\&
A
i
B

with &, = & 4 e1k. We take the limit as n — oo, obtain ||z(t)| < ||Z|| and

o0 oo

ijj(t)gz xj—l—mz:lfk/ xp(s ds—el/ kak

j=1 j=1

t
+/ cw(s)||Z]|ds.
0

Gronwall’s inequality implies the assertion. O
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Next we show that the size of the occupant population tends to zero as
t — oo if there is no emigration from patches and the migrating part of the
metapopulation decreases exponentially as a result.

Theorem 13. Let Assumptions 1, 4, 10, and 12 be valid. Further let agg = 0.
Let w,x be a solution of (2.22) on [0,00) such that w is bounded on Ry and
JoS w(t)dt < co. Then

Z k/ xp(s)ds < 0o and Z kxi(t) — 0, t — o0.
k=1 70 k=1

We mention that the assumption agg = 0 together with the other assump-
tions on the coefficients o, implies that ajo = 0 for all j € Z_..

Proof. Recall that x is an integral solution,

z(t) — & = Al/0 x(s)ds—F/O g(w(s), z(s))ds.

For the single terms this means that

00 t t
xj(t) —2; = Zajk./ xr(s)ds —|—/ gj(w(s),z(s))ds.
k=1 0 0
Recall that zj is non-negative, o, > 0 for j # k, and z;(t) < ||Z|. By
Theorem 11, the functions w and z (with values in ¢}') are bounded. Since
g;(0,z) = 0 and g; are locally Lipschitz continuous, there exist constants
A; > 0 such that, for all j,k € Zy, j #k, t >0,

t t t
aLk/ zR(s)ds < |ozjj|/ xj(s)ds + ||z + Aj/ w(s)ds.
0 0 0

Let k € N be arbitrary. By successive application of Assumption 12 (b) we
find numbers ky < --- < k,,, such that ky = 0, k,, = k and oy, ,,, > 0 for
i:O,...,m—l. Since Qo0 :O,

i+1

t

t
Oéom/ T, (8)ds < ||:E||—|—A0/ w(s)ds.
0 0

Since [;° w(s)ds < oo, also [;° x, (s)ds < co. Since ay, k,., > 0, we obtain

step by step that

i+1

o0
/ xg, (s)ds < oo Vi=1,2,...,m,
0

in particular [ z(s)ds < oo where k € N has been arbitrary. The claims
now follow from the inequality in Proposition 2, the first by integrating it,
the second by applying Lebesgue’s theorem of dominated convergence. Notice
that {o = 0 because ajjo =0 for all j € Z. O
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We turn to the case that empty patches are not colonized. This is mathe-
matically captured in the assumption that the function gy is non-negative.

Theorem 14. Let Assumptions 1, 4, 10, and 12 be valid. Further let cog = 0
and go(w,x) > 0 for allw > 0, x € (3}, Let x be a solution of (2.22) on [0, 00)
with values in (3!, Then

[e%S) 00 [e'S)

Z k/ zp(s)ds < o and Z kxp(t) — 0, t — oo.

k=1 70 k=1

Proof. We revisit the proof of Theorem 13. From the integral equation for z,
we obtain the inequality,

t t
- / 1 (s)ds < &) - / go(w(s), x(s))ds < ] V>0,
0 0

Except for this modification, the proof proceeds in exactly the same way. O

2.6 A More Specific Metapopulation Model

For the rest of the chapter we restrict our considerations which concern qual-
itative aspects of metapopulation models (compact attractors, (in)stability of
equilibria, persistence) to a somewhat more specific model framework in order
to cut down on obscuring technicalities,

o0 o0
w' = g NpTp — W g opxE — 0w,
k=1 k=0

- - (2.27)

x;:Zajka:k—I—wZ%-kxk, j=0,1,....
k=0 k=0

The coeflicients «y;;, describe the transition from patches with & occupants

to patches with j occupants due to immigrating dispersers. The terms oy

describe the average loss rate of dispersers due to settlement on a patch with

k occupants. Below we will impose a balance equation or inequality linking

v and oy,. The coefficients 1y, describe the rate at which individuals emigrate

from a patch with k occupants. § > 0 is the per capita mortality rate of

dispersers. We assume the following.

Assumption 15 (a) a;j,7;; < 0 < i, v for j # k, j,k € Z,. Further

(oo}

oo

Zajk <0 and Z’ij <OQforall keZ,.
j=0 Jj=0

(b) There exist constants cg, ¢y > 0,€ > 0 such that
o0

Zjajk §60+Clk—€|akk| Vk € Z,.
j=1
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(c) There exists a constant ¢; > 0 such that 0 < ny, 0 < c7k for all k € N.

(d) There exists a constant cg > 0 such that Zj|’ij| < ¢g(1 + k) for all
j=1

keZ,.

(e) Zj’m <oy forall k € Z;.

j=1

Part (e) of the last assumption expresses a balance law which guarantees
that the rate at which a patch with k£ occupants gains new occupants through
immigration of dispersers does not exceed the rate at which dispersers leave
the disperser pool to settle on a patch with k occupants. A strict inequal-
ity means that some dispersers die during the immigration. Mathematically
part (e), together with part (c¢), implies that the second part of Assumption 6
is satisfied. The first part of that assumption, with ¢35 = 0, is satisfied by
Assumption 15 (a). The other parts of Assumption 15 either repeat the As-
sumption 1 or make sure that the functions f and g in Assumption 4 are
well-defined and satisfy the Lipschitz conditions. Theorem 7 implies the fol-
lowing result.

Theorem 16. Let the Assumption 15 be satisfied. Then, for every w € [0, 00)
and T € E}‘_l, there exists a unique integral solution w : [0,00) — Ry, x :

10,00) — €11 of (2.27),
w' = anxk —w Zakxk — dw,
k=1 k=0

o0 t oo ¢
zj(t) —z; = Z ik / 2k (s)ds + Z Vik / w(s)xg(s)ds,
k=0 0 k=0 0

i=0,1,...

(2.28)

The solution satisfies the estimates

lz@®I < 12l [w®)] + 2@l < (@ + [[2]1)e"

with some wg > 0.

We add an assumption to obtain uniform eventual boundedness of
solutions.

Assumption 17 There exists constants ¢4 > 0 and €4 > 0 such that

oo
77k+Zj04jk <c—ek VEEZ;.
j=1
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In order to check Assumption 10, we observe that, by Lemma 2, for z € Dy,

> ek + Z(Zjajk)xk = Z(Uk + Zjajk)xk
k=0

k=0 j=1 k=0 j=1

o0
<cyllz| — sy k.
k=1

If we combine this inequality with the one in Assumptions 15(e), 10 follows
with ¢; = 0. One readily checks that the other assumptions of Theorem 11
are satisfied.

Theorem 18. Let the Assumptions 15 and 17 be satisfied. Then, with the
constants ¢y and €4 > 0 from Assumption 17,

o0 ) 5 o0 N . c j/,;
wlt)+ 3 o) < (10 37 Je ot + A
j=1 j=1

€4

for all solutions (w,z) of (2.1) with initial data w > 0, & € (%'. Further
[l < [|Z|| for all t > 0.

2.6.1 Extinction Without Migration or Colonization

The metapopulation in system (2.27) dies out, if there is no emigration from
the patches or if empty patches are not colonized.

Corollary 2. Let Assumptions 15 and 17 be valid. Assume that agg = 0 and
that for all k € N there is some j € Z, j < k, such that o, > 0. Further
let (05) be a bounded sequence and limsupy,_, o, >, %% < 0. Finally and
most importantly let yo0 = 0 orn; =0 for all j € N. Then, for model (2.27),

Zk/o zp(s)ds < oo and tlirrolokak(t) = 0.
k=1 k=1

Proof. If voo = 0, the statement follows from Theorem 14. If n; = 0 for all
j €N, then w’ < —dw by (2.27) and [ w(t)dt < oo and w is bounded on
R . The statement now follows from Theorem 13. O

2.6.2 An a Priori Estimate for Equilibria

An equilibrium of (2.27) is a time-independent solution of (2.27). Equivalently
it is a time-independent solution of (2.28). In either case, an equilibrium (w, x),
w >0, x = (z)) € 1! satisfies 2 € D(A;) and
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5w:2nkxk—w20kmk, (2.29)
k=1 k=0 ’
0=Ax+wlx,

where [A1z]; = Y07 ajrxk, © € D(Ay), and [I'z]; = > 5 o viktr, © € (M.
I maps E}ﬁ into E}rl by Assumption 15.

Theorem 19. Let the Assumptions 15 and 17 be satisfied. Then, for every
solution x € D(A1) N EE of 0 = A1x +wl'z, where w > 0 is given, we have

the estimate
oo oo
Z MeTh — W Z TRk < C4,
k=1 k=0

with ¢y from Assumption 17. If (w,x) is an equilibrium of (2.27), we also have
ow < cq4.

Proof. Let x € (3 N D(A;) satisfy Ajz +wl'z = 0. Then
t t
/ Si(s)wlzds = —/ S1(s)Arzds = x — Sy (t)z.
0 0
By Theorem 3, for every ¢t > 0, z = lim,, o, 2™ (t) where
t
zM(t) = Sgn] (t)x + w/ Sw (s)Izds.
0

Since the semigroups SE"] are differentiable (Lemma 3), we can differentiate
" (t) in 011 for ¢ > 0 and

d
dt

By (2.11), Assumptions 15 and 17,
d >
= ng )
(o)

_Z(Zjoz]k) ") + Z jaﬂx +wZ(Z]%k)

— () = A[ln]x["] (t) + wl'z.

k=0 j=1 Jj=n+1 k=0 j=1
o0 o0 oo
< z(zjajk)x%” 0+ 03 o
k=0 j=1 =
<Z (c4 — esk — )z erZkak
k=0 k=0

We integrate this inequality,
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n n i n
Sl <3 jagem e+ 2 - / S ma(t - s)e~ 0 ds
j=1 j=1 €4 [

t oo
+w/
0k

We first take the limit n — oo and then the limit ¢ — oo,

oo o0 oo

. c 1 w
§ J%’S:*;E nkkaF: E kT
j=1 4 4 k=0 4 k=0

oprre “*°ds.
0

In particular,

oo oo
E Nexk — W E orTE < ¢4
k=1 k=0

2.7 Compact Attractors

We continue to study the metapopulation model (2.27) under the Assump-
tions 15 and 17. We now fix the number of initial patches to be N € N and
choose the state space

Xy ={(w,z) € Ry x ZE; llz]] < N}.
We let f and g be independent of time. By Theorems 8 and 16,
é(t (@,.’Z’)) = (w(t)’x(t))> t >0,

is a continuous semiflow on X . In the following it is convenient to introduce
the notation ®;(x) = @(t,x) for t > 0, x € Xy. This way we obtain a family
of maps {®@;;t > 0} on X with the property ®; o ¢, = P, in non-linear
analogy to operator semigroups.

Let B C Xy. A non-empty compact invariant subset C of Xy is called
a compact attractor of B if for every open set U, C C U C Xy, there exists
some r > 0 such that @;(B) C U for all t > r.

Equivalently, d(®,(z),C) — 0 as ¢ — oo, uniformly in z € B. Here
d(y, B) = inf{d(y, z); z € B} is the distance from the point y to the set B.

A non-empty compact invariant subset C' of Xy is called the compact at-
tractor of bounded subsets of X if C is a compact attractor of every bounded
subset B of X . Obviously, by its invariance, a compact attractor of bounded
subsets is uniquely determined.

General results concerning compact attractors of bounded sets can be
found in [26] and [52]. They involve concepts like dissipativity and asymp-
totic smoothness of the semiflow. For this particular semiflow a more direct
approach seems to work better. We need some additional assumptions.
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Assumption 20 (a)sup lasu] <ooforall j€Z,.
keN

(msmﬂ%ﬁw<mfmaujez+
keN
(c) sup oy, < 0.

keN

Our main tool is the separation measure of non-compactness 3, I1.3], as,
which has the following sequential characterization in a metric space (X, d).
Ify C X,

o (Y) = inf{c > 0; each sequence (z,) in Y has a

subsequence (z,,,) with limsup d(z,,,zn,) < c}. (2.30)

J,k—o00

It is related to the Kuratowski and the Hausdorff measures of non-
compactness, ax and ag, by

ag(Y) <as(YV) <ag(Y) <2ap(Y), Y C X. (2.31)
We will use the following two of its properties:

Lemma 4. (a) as(B)=a4(B) for any bounded subset B of X and its closure B.

(b) Let (X,d) be a complete metric space. If By is a family of non-empty,
closed, bounded sets defined fort > r that satisfy By C Bs whenever s <t and
as(B:) — 0 as t — oo, then N>, Bt is a non-empty compact set.

(a) follows from (2.30), while (b) is a consequence of the inequality (2.31)
and the fact that ay and ak satisfy (b) [3, IL.2].

Lemma 5. Let @ be a semiflow and B a bounded set and r > 0 such $,(B) C
B for allt > r, as(P(B)) — 0 forr <t — oo. Then B has a compact

attractor, namely
w(B) = J2:(B).
>0 s>t
This result holds for any measure of non-compactness.

Proof. Let By = |,~, @s(B). Then By C B for t > r. By definition B, is a
decreasing family of subsets of By. For ¢ > r,

By =&, (U ¢5+7-_t(B)) C &, (B).

s>t
By Lemma 4 (a),

as(Bt) < as(Pi—r(B)) — 0, r <t— oo.
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By Lemma 4 (b), w(B) = ;> Bt is non-empty and compact. Suppose that
w(B) does not attract B. Then there exist sequences x,, € B and t,, — oo as
n — oo and € > 0 such that d(@(¢,,x,),w(B)) > €. Define

Co = {P(tn,xn);n > m}.

Then C),11 C C,, for all m € N. Further

Cop =P, »({ Pty + 17—ty xn);n >m}) C Py (B).

By assumption, as(Cy,) — 0 as m — oo. So [),,cny Cm is non-empty and
compact. Choose z in this intersection. Then z € w(B) and d(P(t,, xn),2) < €
for some n € N, a contradiction. Since w(B) is compact and attracts B, it is
invariant [26, Lemma 3.3.1]. O

Theorem 21. Let the Assumptions 15, 17, and 20 be satisfied. Then the semi-
flow @ on Xy induced by the solutions of (2.27) has a compact attractor of
all bounded subsets of Xy .

Proof. Let By be the following bounded set.

ad . C4N
By = ) e X 5 < — 1 )
0 {(w x) N w+ijJ o + }

j=1

where ¢4 and €4 are the constants from Theorem 18. By Theorem 18, for every
bounded set B there exists some r > 0 such that &;(B) C By for all t > r. So
it is sufficient to prove that the set By has a compact attractor. There exists
some r > 0 such that @;(By) C By for all t > ry. By Lemma 5 it is sufficient
to show that as(P;(By)) — 0.

Let y,y € R. Then, for sufficiently small |h|,

hy, y >0,
ly +hgl — |yl = { |hll7g], y =0,
—hy, y <O0.

We divide by h and take the limit h — 0 either from the right or the left,

- g, y>0,
- . y+hy| — |y ’
Dylyly := lim o+ kol =yl h' vl _ +g], y =0,
_ga y < 0.
In particular,
1, y >0,

D_lyly < g signy(y) where signg(y) = < 0, y =0,
-1, y<O0.
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Let #, % € By and 2" and " be the approximating solutions of &L, %) and
&(U, &) as in Remark 3. By [40, VI.4],

L alrla) — 2l 1) = Do) — 20| () — Sl

< (%xﬁ»’”(t) jt ) )signg (e (0) - 2 (1)).

Here (Z—; denotes the left derivative. Notice that y signg(y) = |y|. By (2.24)
and (2.27), for j=1,...,n

el - Za o (0) = 1)
t) Z Yk |x£€n} (t) — JT‘E:] (t)‘
k=0
+wl (t) — @ @) 3 byl 2 ()
k=0

We multiply this inequality by j, add over j = 1,...,n, change the order of
summation and use o, > 0 for j # k,

= Z]’x[] [n] )|

<3 (X dae) el — )|

k=0 j=1
0> (3 )l ) — 2 o)
k=0 j=1
+ [wl e = @ )] > (3 gl ) 2 @)

k=0 j=1

Notice that > 77, j|vjk| < cs(k +1) for all k € Z by Assumption 15(d). By
Assumption 17, we can choose € > 0 and m € N such that Z] L Joge < —ek
for all k > m. Set &, = ijljajk + €k. For n > m,
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<D &lne !—GZM ROl

k=0
[n] Z (Z j%k> ‘xk )’
k=0
+wl () — @ @) 3 es(1 + k)| 2 (1),
k=0

We integrate this differential inequality,

ZE:JIz“” [n] ”

<t Sl o)+ [ e ”Zsm ) — 271 (s) s
j=1

n

+ / ety lol ) i (3 g ) |2l () = 21 (s)] s

k=0 j=1

t
b [ D) - a0 a0
0

The infinite matrices (aﬁ]) satisfy the same assumptions as the infinite ma-
trix (ajz) with the same constants. So wl™ 2" satisfy the estimates in
Theorem 18 with the same constants as w, z. By Lebesgue’s theorem of dom-

inated convergence (first applied to the sum and then to the integral), we can
take the limit as n — oo,

oo

> i) — ()]

j=1

eftij‘xj(O)xJ }Jr/ e(t—s Z§k|xk ) — Zi(s)|ds
Jr/oteE(tS)w(s)i(O_O ’ng>|$k ) — Zk(s)|ds

k=0
t

o [ e I ute) — i) s
0

By Assumptions 15(e) and 20(c), there exists some c¢g > 0 such that
Z;’il Jvik < cg for all k € Z;. We split up the last but one sum in the
last inequality at & = ¢ where ¢ € N is arbitrary. Then
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o0
> i) — 35t
j=1

+ m
< ol0) = 20), + [ S afonts) - ax(o)las
k=0

i

t
+ / e_e(t_s)w(s) Z 09’:10;6(5) — gﬁk(s)|d8
0 k=0
¢

€9 e—f(t_s)w(s)Hﬂf(S) _j(S)HldS

+ =
v Jo

+/0 e~ w(s) — @ (s)|cs || E(s)]| ds.

Let ((w{"}, #{"})) be a sequence in By and (w!™ (¢), ="} (1)) = &(¢, (wi},
#1"h)). Tt follows from (2.28), Assumption 20(a, b), and Theorem 18 that
{n}

wi™ and, for each j € Z,, z; ' are equi-bounded and equi-continuous with

respect to n on every finite interval in Ry. By the Arzela—Ascoli theorem
and a diagonalization procedure, after choosing subsequences, wi™}, x]{n} are
Cauchy sequences for each j uniformly on every finite interval in R . We set
z =z and # = 21"} in the inequality above. Then

1lim suij|x§l}(t) - m]{"}(t)|
,N—00 J=1

< e “lim sup||x{l}(0) — :v{"}(O)H1

l,n—o0

t
+ C—,g limsup/ efé(tis)w{l}(s)Hz{l}(S) - z{”}(s)Hlds.
1

l,n—oo JO

Since this estimate holds for every i € N and each 1"} satisfies the estimates
in Theorem 18, with the same constants, we can take the limit ¢ — oo and

lim sup Zj|x]{l}(t) - x;{n}(t)| <e “lim sup”x{l}(O) - m{"}(O)Hl.

l,n—o00 =1 l,n—o00

Since ||z|1 < |zo| + 22;11jlxj|7

limsup [[@,(#) — @, (@) < 2720 — &) < 467 Bolly

l,n—o00

where [|By|1 = SUDze B, IZ]]1. By (2.30), as(P:(Bo)) < 4e || Bglly — 0 as
t — oo. This finishes the proof. 0O
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2.8 Towards the Stability of Equilibria

83

For the metapopulation model (2.27) we make assumptions which guarantee

that the number of patches does not change in time.

Assumption 22 Assume

(a) For all k € N there is some j € Z,, j < k, with o > 0, agp = 0, and

o o
Yoap=0=) v VkeZy.
=0 =0

Occasionally we will also assume the following.

Assumption 23 (a) The sequence (o,,) is bounded.

(b) There exist positive constants cg, ¢1, € such that

Zﬂjk <o+ 1k — €| yrrl for all k € N.
j=1
By Corollary 1, [|z(¢)|| = ||Z||. We fix the initial patch number to be N

and obtain Z;io xj(t) = N. We will use this equality to eliminate xy. Notice
that Assumption 15(a) and 22(a) imply that ajo = 0 for all j € Z,. We

equivalently rewrite (2.27) as

w' :anxk — wZ(ak —00)T) — (Nao + 6)w,

k=1 k=1
oo o0

¥ = ek + w('YjON +> (vk — "/jo)xk)» J=12...
k=1 k=1

This system can be cast in more condensed notation,
w' = (z,2%) — &w + w(z, y*), ¢’ = Az +wz +wlyz,

with x(t) = (z;(t))32;.

(2.32)

(2.33)

Remark 4. x(t) takes values in £'', the space of sequences & = (z7)52; with

norm ||z||7 = Zj’;lj\mj| Further
£ = Nog+9, u = (70)521, z= Nu,

z* and y* in the dual space of /11,

(z,27) = anﬂfk, (z,y") = Z(Uo — k)T
k=1

k=1
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Finally
o0
Ao = (Y aman) . Tow=Tlo—(e2
x ;a]kxk . 0T x—(z,z")u

with - -
(x,2") = Zmb e = (Z 'yjkxk> ‘
k=1 k=1

j=

2.8.1 Stability of Equilibria

Let (w, ) be an equilibrium, i.e. a constant solution of (2.33). (w, ) = (0,0)
is an equilibrium, e.g., called the extinction equilibrium. Any other equilibrium
in Ry x E}rl is called a persistence equilibrium. To study the stability of the
equilibrium (w, ), we expand the system about the equilibrium. We set w =
w+ v and x = Z 4+ y and obtain the following equation for v and y, where we
have replaced x by x and w by w,

v = (y,2) — §u +ole,y") + wly,yT) + oy y7), (2.34)
Y = Ay + vz + wlyy + vz + vlyy. .

This is an abstract Cauchy problem (evolution equation)

(v, 9)" = A(v,y) + 9(v,y), (2.35)
where A is the linear operator defined in ¢!! by

Av,y) =((y, 2*) — €+ v(z, ") + wly,y"), Ay + vz + wlyy + vlpz),

- 2.36
veR,ye it ( )

and ¢ the non-linear map on ¢! defined by
g9(v.y) = (v{y,y"), vIoy). (2.37)

Proposition 3. Let the Assumptions 15 and 22 be satisfied. Let A and I" be
as in Remark 4. Let w > 0. If w > 0 also assume Assumption 23. Then
Ay = A+ wl, with appropriate domain, is the generator of a positive Cy-
semigroup S on 01 with strictly negative growth bound.

Proof. Define i, = o, + wyi for j,k € Zy. The operator A,, is associated
with the infinite matrix (8;1)3%—;- For k € N,

o0

> Bjk = —aok — wyok

j=1
which is non-positive for £ € N and strictly negative for k& = 1. Also the
other assumptions of [39, Proposition 6.3] are satisfied. It follows that A,
with domain {%c € 511;2;’;1 1Bi5lT;] < oo, Az € 11} is the gener‘iitor of a
Co-semigroup S(t) on 1 and there exist e > 0, M > 1 such that [|S(t)||} <
Me™<t. O
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Proposition 4. Let w > 0 and = € ', Let Toy = Ty + (y, 2*)u with the
ingredients as in Remark 4. Let the Assumptions 15 and 22 be satisfied and,
if w >0, also Assumption 23. Then A is the generator of a Cy-semigroup T
with strictly negative essential growth bound (essential type).

Proof. A = B+ C where

B(U7 y) = (_f’U, Awy)a
Clv,y) = ((y,2") + v{z,y"), vz — wly, 2" )u + vlpx)

By Proposition 3, A,, is the generator of a Cy-semigroup S on /M with strictly
negative growth bound. B is the generator of the semigroup S(¢)(v,y) =
(e‘ftv,g(t)y). S also has a strictly negative growth bound. The linear op-
erator C' on /!! has finite-dimensional range and therefore is compact. The
perturbation A = B + C generates a Cyp-semigroup 7" such that T'(t) — S(t) is
compact for every ¢ > 0. So the essential growth bound of T" does not exceed
the growth bound of S and is strictly negative [14, Chap. 4 Proposition 2.12].

O

Theorem 24. Let the Assumptions 15 and 22 be satisfied and w,T be an
equilibrium of (2.32). If w # 0, also make Assumption 23.

Then the following hold:

(a) If all eigenvalues of A = B + C' have strictly negative real part, then
the equilibrium (w,Z) is locally asymptotically stable in the following sense.
There exist M > 1 and r > 0 such that

vVt >0,

for all solutions of (2.32).

(b) If A = B + C has at least one eigenvalue with strictly positive real
part, then the equilibrium (W, &) is unstable in the following sense: there exist
some € > 0 and a sequence 0 < t, — 0o as n — oo and a Sequence of
solutions w™, x™ of (2.32) such that w™(0) — w,2™(0) — Z as n — oo and
| (W (tn), 2" (tn)) — (@,i)”l > € for allm € N.

Proof. We notice that the non-linearity ¢ in (2.35) and (2.37) satisfies %

— 0asv— 0,y — 0. Let &(¢t,w, ) be the semiflow induced by the solutions
of (2.32) with initial data w and &. It follows from standard arguments (es-
sentially from Gronwall’s inequality, cf. [55, Sect. 3], e.g.) that, for each ¢ > 0,
&(t,-) is differentiable at (w, &) with derivative T'(¢) from Proposition 4. The
results now follow from [12] along the lines of [55, Sect.4]. O

2.9 Instability of Every Other Equilibrium:
General Result

The following derivation of an instability condition for equilibria is more ef-
ficiently done on a somewhat more abstract level and may apply to other
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situations where an unstructured (part of the) population [in our case the
dispersers] is paired with a structured (part of the) population [in our case
the occupants]. We consider the system

w' = f(w,z), ' = Az + g(w, z). (2.38)

Here A is a closed linear operator in an ordered Banach space X with cone
Xiand f:Ry x X1 — R, g: Ry x Xy — X are continuously differentiable.
We assume that R is contained in the resolvent set of A and also in the
resolvent set of A + g,(w,z) for each w > 0 and z € X .
gw and g, denote the partial derivatives of g(w,x) with respect to w and
x. Since A~ exists and is bounded, -1 is in the resolvent set of A~1g,(w,)
and
T+ A gp(w, )P A = (A + go(w, ). (2.39)

2.9.1 The Equilibria

A pair (w,z) is an equilibrium solution of (2.38) if and only if 0 = f(w, z)
and x satisfies the fixed point equation

r=—-A"g(w, ). (2.40)

Assume that for every w > 0 there exists a solution x = ¢(w) of (2.40). If
follows from our assumptions and the implicit function theorem [8, Chap. 2,
Theorem 2.3] that ¢ is differentiable (analytic if ¢ is analytic) and

¢'(w) = =47 (gu(w, 6(w)) + ga(w, o) (w)).  (241)
By our assumptions and (2.39),

¢'(w) = = (I+ A7 go(w, $(w))) -

— (A+ ga(w, o(w)))

We substitute the solution = = ¢(w) of (
0= f(w,p(w)) =: F(w). (2.43)

Theorem 25. A pair (w,z) with w € Ry and © € Xy is an equilibrium
if and only if F(w) = 0 and x = ¢(w). In particular there is a one-to-one
correspondence between equilibria and zeros of F'. F is analytic if f and g are
analytic.

1

A_lgw(w ¢(w))
) gu(w, é(w)).
2.40) into 0 = f(w, ),

(2.42)

For later use we differentiate the function F,

Flw) = fu(w, ¢(w)) + fa(w, ¢(w))¢' (w).
We substitute (2.42),

F'(w) = fulw, ) — falw, 2)(A+ ga(w, 2)) " gu(w, ). (2.44)
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2.9.2 The Eigenvalue Problem of the Linearized System
We linearize (2.38) around an equilibrium (w, z),
V= fo(w,x)o+ fo(w, )y, Y = Ay + gu(w, 2)v + ga(w, x)y.  (2.45)
The associated eigenvalue problem has the form

AV = fw(w, .CE)’U + f’c(wv :c)y,

2.46
Ay = Ay + gu(w, z)v + gz (w, v)y. (2.46)

Consider A > 0. We solve the second equation for y,
Y= (>‘ —A- gﬂc(wv m))ilgw(wv :C)’U = ’U(A —A- gw(wa x)>7lgw(wv 93)

We notice that (v,y) # (0,0) if and only if v # 0. We substitute the expression
for y into the first equation of (2.46) and divide by v,

A= fuw(w,z) + fo(w,2)(A = A - gw(wax))_lgw@)’x)'

This leads to the following characteristic equation,

0=0Q(\) =X— fu(w,z) — fo(w,z)(A— A — gw(w,x))_lgw(w,x).

We evaluate Q(A) for A = 0 and compare it to (2.44),

Q(0) = —fulw,2) + fulw,z) (A + gu(w,2)) " gu(w,z) = —F (w).

Notice that Q(A) — oo as A — oo. If Q(0) < 0, the characteristic equation
has a root A > 0 by the intermediate value theorem.

Theorem 26. Let (w,x) be an equilibrium of (2.38) and F'(w) > 0. Then
the associated linear operator has a strictly positive eigenvalue.

By Theorem 25, we can order the equilibria (w,z) according to their
w-component provided that the zeros of I’ are isolated which is the case,
e.g., if f and g and so F' are analytic.

Corollary 3. Assume that the zeros of F' are isolated and there is no w > 0
with both F(w) = 0 and F'(w) = 0. Then, for every other equilibrium, the
associated linear operator has a strictly positive eigenvalue.

Proof. If the zeros of F are isolated, then, for every b > 0, then we have
finitely many equilibria (w;,z;) with 0 < w; < b and can order them like
wy < wg < ---. Since F'(w;) # 0, F' changes sign at each w;. So F'(w;) >0
for every other j and the associated linear operator has a strictly positive
eigenvalue by Theorem 26. 0O
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2.10 Existence of Equilibria and Instability
of Every Other Equilibrium

After eliminating the equation for the empty patches, our system can be
rewritten in the form (2.32) and then in a more condensed form for w(t) € Ry
and w(t) = (a(1))72, € /11,

w' = (z,2*) —w(z,y") —w(ogN + ),

S ) (2.47)

' =Av+wlz+w(N - (z,2%))u,
which is the same as (2.33). Here u and z*, y*, z* are as in Remark 4 as are
the bounded linear quasi-positive operator I" on /1! and A, the generator of
a positive Cy-semigroup on /", The system (2.33) fits into the framework of
(2.38) by setting A = A and

fw,2) = (@.0%) = wlo.y) — w(oaN + ), o)

g(w,z) =wlz +w(N — (z,2"))u.
For each w > 0, A,, = A+ wI is also the infinitesimal generator of a positive
Co-semigroup S on ¢!, Notice that we obtain the operator A in (2.36) when
we linearize (2.47) about an equilibrium.

We make the Assumptions 15, 22 and 23. By Proposition 3, S has strictly
negative growth bound and so, for each w > 0, A, has positive resolvents
(A — A,)~! for all A > 0. We take the partial derivative of g in (2.48) with
respect to @,

go(w, )y = wly — wly, 2*)z, z = Nu. (2.49)

Lemma 6. If \—A,, has a bounded positive inverse for X > 0, )\fflfgz(w, x)
has a bounded inverse and

A=A — g, (w, 1:))7155 == flw)flﬁs —wl(\ — Aw)flz

where

Proof. In order to find & = (A — A — g, (w, x))~'Z, we solve the equation
i — Az — wl +w(i, 2*)z = Z.
See (2.48). This can be rewritten as

A= Ay)E =2 —w(i,z")z.

Since the resolvent exists for A,
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F=(\—Ay) ' —w(d )\ — Ay) L.
We apply the functional z*,
(2,2°) = (N = Ap) L Zy, 2%) —w(z, 2*) (X — Ay) "Lz, 2%).

We solve for ¢ := (z,2*) and substitute ¢ into the equation for x. This yields
the assertion. 0O

Since f and g are analytic, (w,z) is an equilibrium of (2.47) if and only

if z = ¢(w) and F(w) = 0 where ¢ and F are analytic functions on R
(see Theorem 25).

2.10.1 Equilibria

To find a concrete expression for the solutions x = ¢(w) of the equation
Az + g(w,z) = 0, which is identical to

0= Az +wlz+ w(N = (z,2%))u = Ay + w(N — (z,2%))u,
we apply the inverse of A,, to the second equation in (2.33),
z=—w(N - <x,z*>)f1;1u. (2.50)
In order to calculate (x, z*), we apply the functional z* to this equation,
(,2*) = —w(N — (z,27))(Ag u, 2%).
We solve for (x, z*),

(A u, 2*)

w

P * = — N~—.
(. 2") R —w(Aytu, 2*)

Notice that the denominator is positive because —A
Further

! is a positive operator.

(x,2") € [0,N). (2.51)
We rewrite 1

(@, 2%) = N(l - m) (2.52)

We substitute this expression into the one for z = ¢(w), recall Nu = z from
Remark 4, and find

$(w) = wip(w),
1 _— (2.53)
P(w) = —mAw ue X;.
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By (2.43),
= (p(w),z") — w(p(w),y") — ocpwN — dw.
At this point, we need an estimate for ¢(w). We recall that there is a one-to-

one correspondence between equilibria of (2.32) and equilibria of the original

system (2.27) with |[z| = 1. This means that ¢(w) = (z;)32, where z € (1!,

Ajz +wlz =0and 20 = N — 3272 ;. By Theorem 19,

oo oo
E MLy — W E orTE < ¢4
k=1 k=0

After eliminating zg = N — Y ;- | x; this reads

=

3 mdi(w) — w3 ok — ooldn(w) — woeN < e
k=1 =

k

< ¢4 — 0w and F(w) < 0 for large w > 0.

By Remark 4 and (2.54), F(w)
(w) into F. For w > 0, equation F'(w) = 0 then

We substitute ¢(w) = w
takes the form
F(w)=90

being analytic in w > 0 and F(w) < § for large w > 0 and
F(0) = ((0),a") —ooN,  9(0) = —A""z.

We combine Theorems 24 and 26. The associated linear operator in Theorem 26
coincides with the operator A in Theorem 24. Notice that, for w > 0, F(w) = §
and F'(w) = 0 is equivalent to F'(w) = 0 and F'(w) = 0.

Theorem 27. Let the Assumptions 15, 22, and 23 be satisfied, £ = ogN + 9.

(a) If £ < —(A‘%,m*}, the extinction equilibrium is unstable and there
exists a persistence equilibrium. For all but finitely many & < —<f1_1z,x*>,
there exists an odd number of persistence equilibria (wj, x;), w1 < wg < ---.
Every even-indezed persistence equilibrium is unstable.

(b) If € > —(A~'2,2*), the extinction equilibrium is stable. For all but
finitely many £ > —(A_lz7m*>, there exists no persistence equilibrium or an
even number of persistence equilibria (wj,z;), wi < we < ---. Every odd-
indexed persistence equilibrium is unstable.

Proof. Assume that F(w) = § has a solution. Since F(w) < § for large w > 0,
F is not constant. F is analytic and so is F’. Since F” is not zero everywhere,
there is no accumulation of arguments w with F”(w) = 0. Since F(w) < 6 for
large w > 0 there are only finitely many w > 0 such that ﬁ(w) = —J and
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F'(w) = 0. So for all but finitely many 4, we have F'(w) # 0 for all w > 0
with F(w) = 4.

(a) Here we consider the case § < F(0).

As F(w) < ¢ for large w, there exists an w > 0 such that F(w) = § by
the intermediate value theorem. For all but finitely many 4, F’ (w) # 0 for
all w with F(w) = . Choose such a §. Since F(w) < § for sufficiently large
w > 0, F(w) crosses the line ' = § an odd number of times, the first time
with a negative derivative, the second time with a positive derivative etc.
By Theorems 24 and 26, every w with F’(w) > 0, i.e., every even-indexed
equilibrium, is unstable. (b) is proved similarly. The stability proof for the
extinction equilibrium is postponed to Theorem 33. 0O

Application of these results to special metapopulation models can be
found in [38].

2.11 Stability of the Extinction Equilibrium
Versus Metapopulation Persistence

The total population size of the metapopulation is given by the sum of the
number of dispersers and the total number of patch occupants,

P(t) = w(t) + Y ja;(b).
j=1

The extinction equilibrium is characterized by P = 0. The stability of the
extinction equilibrium can be formulated in terms of the total population
size.

The extinction equilibrium is locally stable if, for every € > 0, there exists
some ¢ > 0 such that P(t) < e whenever P(0) < . The extinction equilibrium
is locally asymptotically stable, if in addition there exists some &g > 0 such
that P(t) — 0 as t — oo whenever P(0) < do.

The following two concepts imply the instability of the extinction
equilibrium.

The metapopulation is called weakly uniformly persistent if there exists
some € > 0 (independent of the initial conditions) such that

limsup P(t) > ¢ whenever P(0) > 0.

t—o0

The metapopulation is called (strongly) uniformly persistent if there exists
some € > 0 (independent of the initial conditions) such that

litm inf P(t) > € whenever  P(0) > 0.
—00

Obviously uniform persistence implies weak uniform persistence. The converse
holds under additional assumptions the most crucial of which is the existence
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of a compact attractor. Actually we will establish uniform persistence in a
stronger sense. Material on persistence theory for semiflows on infinite dimen-
sional spaces can be found in [27,56,58,62].

2.11.1 Local Asymptotic Stability of the Extinction Equilibrium

We turn to the stability of the extinction equilibrium for the specific metapop-
ulation model (2.27). After elimination of the empty patches, this is the equi-
librium @ = 0, & = 0 for (2.32) or rather its abstract formulation (2.33).
Throughout this section, we make the Assumptions 15 and 22. We define
a linear operator By (on appropriate domain in ¢!!) and a bounded linear
operator C on ¢! by

Bo(w,z) = (=éw, Az),  C(w,z) = ((z,z*),wz2). (2.55)
and a non-linear map ¢ on ¢! by
~ 1
g(w,z) = (wlz,y*), wloz), Ive =T'e — (x, z*)Nz (2.56)

Then (2.33) can be written as (w,z)’ = (By+ C)(w,x) + g(w, x). The domain
of By is the same as the one of the operator Ay, D(By) = D(A;1), D1 C
D(By) C Dy. For each € > 0, (2.32) can be written as the Cauchy problem

(w,z) = Ac(w, z) + ge(w, ),

with
Ae=By—el+ (1 —¢€)C, ge = el +eC+g. (2.57)

Differently from ¢, the modified non-linearity g., for € > 0, is positivity pre-
serving in a neighborhood of the origin (the size of which depends on ¢).

Lemma 7. Let the Assumptions 15 and 22 hold. Then, for any e > 0, there
exists some €9 > 0 such that g.(w,z) > 0 whenever w € [0,€], z € (1
]I < €o.

Proof. Let w € [0,¢], x € ZE, [lz]|7 < €o. We look at the first component of
ge(w, x). By (2.56), (2.57), Remark 4, and Assumption 15(c),

ew + e(x, ) + wlx,y")
o0

> ew — wZakxk > w(e — crl|z||7) > w(e — creg) > 0,
k=1

if €g is chosen small enough. We look at the second component of g.. By (2.57)
(2.56), and (2.55),
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- !
ex + ewz +wlpr = 6.’£+wF£L'+’LU(6— (x, 2z >N)Z

The term in (-) can be estimated by

> 7|| HN—l > e — —1 >0
€ x €— €
- LN = ON_ ’

if €9 > 0 is chosen small enough. As for the other term,
(ex +wl'z); > (€ — wyj;)xj > (6 — weg)z,

where cg is the constant in Assumption 15(d). The last expression is non-
negative if w < ¢y and €y > 0 is chosen small enough. O

_ The operators (1 —€)C are compact for every e > 0. By Proposition 3,
A is the generator of a Cy-semigroup S on ¢! with strictly negative growth
bound. The operators By — €l generate Cy-semigroups S¢ on ¢! which have

the form B
SE(t) (w, ) = (e*<6+5>tw, e’“S(t)aE).

Obviously the semigroups S¢ have strictly negative growth bounds. For each
€ > 0, the operator A. = By—ell+(1—¢)C generates a Cy-semigroup {7 (¢);t >
0} on ¢t Since (1 — €)C is compact, T¢(t) — S¢(t) is compact for every ¢t > 0
and the essential growth bound of T equals the essential growth bound of
S€ [14, Chap. 4, Proposition 2.12] and is strictly negative. For all € € [0, 1],
the operators (1 — €)C' are positive, i.e, they map Eﬁrl into itself. Since the
semigroup S° is positive, the standard perturbation formula implies that the
semigroup 7T is positive.

Proposition 5. Let the Assumptions 15 and 22 be satisfied. Assume that
there is a spectral value of Ay with non-negative real part. Then there exists
some \g > 0 with the following properties:

(i) Ao is a pole of the resolvent of Ag, is isolated in the spectrum of Ag and
an eigenvalue of Ay with finite algebraic multiplicity.
(ii) Ao > R for every X in the spectrum of Aj.
(iii) Ao is associated with positive eigenvectors of Ao and Ag.

Proof. By assumption, the spectral bound of A,
Ao = sup{RX\; A € 0(Ap)},

is non—negative Since T'(t) — S(t) is compact for every t > 0, (A — Ag)~! —
(A—Bg)~! is compact for sufficiently large A > 0, i.e., A is resolvent compact
relatively to By [57, Def.3.7]. Then the spectral bound Ao is non-negative and
has the asserted properties [57, Proposition 3.10]. O
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Theorem 28. Let the Assumptions 22 and 15 be satisfied. Assume that there
is no element v € (3 N D(Ag) such that v # 0 and Agv > 0. Then the
extinction equilibrium is locally asymptotically stable.

Proof. Tt follows from the assumptions and (2.56) that ¢ is continuously dif-
ferentiable in ¢1' and ¢/(0) = 0. Suppose that the spectral bound of Ay,

Ao = sup{RA\; A € o(Ag)},

is non-negative. Then the same arguments as in the proof of Proposition 5
imply that Ao has the properties (i), (ii), (iii) asserted in Proposition 5, in
particular Agv = Agv > 0 with some v € E}rl N D(Ap), in contradiction to our
assumption. Hence Ag < 0 and all eigenvalues of Ay + ¢’ (0) = Ao have strictly
negative real parts. The assertion follows from Theorem 24. Recall w = 0. O

2.11.2 Instability of the Extinction Equilibrium

Theorem 29. Let the Assumptions 22 and 15 be satisfied. Assume that there
is an element v € (3} N D(Ao) such that v # 0 and Agv > 0. Further assume
that there is no element v € EE N D(Ag) such that v # 0 and Agv = 0. Then
the extinction equilibrium is unstable.

Remark 5. Under the assumptions of Theorem 29, there exists an eigenvalue
Ao > 0 of Ag which is associated with positive eigenvectors of Ay and Ag.

Proof. We choose some v € (1!, v # 0, such that Agv > 0. For A > 0,
(XA — Ag)v < M. For sufficiently large \, (A — Ag) ™! exists and is a bounded
positive operator. We apply it to the previous inequality arbitrarily many
times, v < A\"(A—Ag) ™. This implies that the spectral radius of A(A—Ag) !
is greater than or equal to 1. Hence the spectral bound of Ag, Ao, satisfies Ay €
[0,00) [57, Cor. 3.6]. By Proposition 5, Ag is an eigenvalue of Ay associated
with an eigenvector v € (4! of Ay and a positive eigenvector of Af. Since
Agv # 0 for all v € éi_l, v #£ 0, A\g > 0. So Ap has a positive eigenvalue and,
by Theorem 28 (notice that A = Ay because w = @ = 0), the extinction
equilibrium (0, 0) is unstable. O

2.11.3 Persistence of the Metapopulation

Since persistence is a stronger property than instability of the extinction equi-
librium, it is not surprising that we uphold the assumptions of Theorem 29.
Then the operator Ay = By + C' has a positive eigenvalue which is associated
with a positive eigenvector of Afj. We need this eigenvector to be strictly pos-
itive in an appropriate sense. To this end we make irreducibility assumptions
for the transition matrix (o).



2 Infinite ODE Systems Modeling Size-Structured Metapopulations 95

Definition 1. The infinite matrix (oz); ken is called irreducible if, for every
i,k € N, j # k, there exist n € N and 44, ...,4, € N such that iy =k, i,, = j
and ag,,, 5 >0forl=1,...,n—1;

If ko € N, the finite matrix (O‘jk)?,okzl is called irreducible if the analogous
statement holds with the set N be replaced by {0,...,ko}.

A number kg € N is called the irreducibility bound of the infinite matrix
(avjk), if the matrix (ajk)?,(}c:o is irreducible, a;; = 0 whenever j > ko and
k=0,...,7—1, and agx <0 for k > k.

Analogously the irreducibility of an infinite matrix (cx);rez, or its irre-
ducibility bound are defined.

Notice that the irreducibility together with the assumptions Z?io ajp <0,
aj > 0 for j # k, implies that ag, < 0 for all £ € N. It is easy to see that
the irreducibility bound (if there is one) is uniquely determined.

Assumption 30 Let one of the following be satisfied:

(a) The infinite matrix (o)  ren is irreducible and ;o > 0 for some j € N
and 7 > 0 for some k € N.

or

(b) The matrix (a;i);ken has the irreducibility bound kg, ;0 > 0 for some
jeA{l,...,ko} and ny > 0 for some k € {1,...,ko}.

Proposition 6. Let Assumption 22, 15 and 30 be satisfied. Then the eigen-
value Ao of Ag in Proposition 5 is associated with a strictly positive eigenvector
v* of Af, (x,v*) >0 for allx € (1}, x #0.

Proof. Let us first assume (a) in the Assumption 30. The operator Ay =
By + C, with By and C in (2.55) and z*, 2z in Remark 4, is associated with
the infinite matrix

£ m n2 -
- YiolN a1 aqg - -+
(Bjr)3%=0 = | Yoo N o1 gz --- | - (2.58)

By Assumption 30(a) this infinite matrix is irreducible and the semigroup T'
generated by Ay is strictly positive on ¢!, i.e., [T'(t)x]; > 0 for every ¢ > 0,
JE€EZy,x € E}ﬁ x # 0. This implies that the eigenvector v* of A( associated
with Ag is strictly positive, i.e. (x,v*) > 0 for all x € ¢!, x # 0. Let us now
assume (b) in the Assumption 30. v* can be identified with a sequence (y;)52
with y; = (ej,v*) > 0 for all j € Z,. Here e; is the sequence which has 1 in
the j* term and only zeros otherwise. Suppose that y; =0for 7 =0,..., ko.
Let k > kg be the smallest natural number for which y; > 0. Since k£ > 1, by
the form of (2.58),

o0
(eg, A" v™) = Z Yj Q.
j=k
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Since aji, = 0 for j > k > ko by Definition 1,
(er, A"v*) = arry-

But also {ej, A*v*) = Aoy which implies 0 < A\g = ag < 0, a contradiction.
Hence y; > 0 for at least one j € {0,...,ko}. Since the matrix (ﬂjk);?f’kzo is
irreducible, [T'(t)x]; > 0 forallt >0, =0,..., ko, x € £}, x # 0. Hence, for
each x € (1!, x £ 0,

0 < (T(t)x,v*) = e t(x, v*).
O

Theorem 31. Let Assumptions 22, 15, and 30 be satisfied. Assume that there
is an element v € (1}, v # 0, such that Agv = (Bo+C)v > 0. Further assume
that there is no element v € (1!, v # 0, such that (By + C)v = 0.

Then the metapopulation is uniformly weakly persistent, i.e., there exists
some €y > 0 such that

lim sup (w(t) + ijmj (t)) > €
j=1

t—o0

for all solutions of (2.27) with @ >0, & € (1, w + Z;}il jx; > 0.

Proof. By Remark 5, Ag has an eigenvalue \g > 0. We first show that the op-
erators A, also have positive eigenvalues provided that € > 0 is small enough.
Let A be a resolvent value of By. Then

A—Ac=[I+€eX—By) ' = (1—€)C(A— By) '](A— By).
If A > 0 is chosen large enough,
le(A=Bog) ™' = (1=e)C(A—By) " '|| <1

for all € € [0,1] and the operator in [ | has a bounded inverse. Thus A — A
has a bounded inverse and
—1

(A=A = (A= Bo) [T+ e(A = Bo) ™" = (1= )C(A — Bo) ™|
ON=Bo) MI—CA—Bp)™ '] = (A—Ag)

As Ag > 0 is an eigenvalue of Ay and an isolated point of the spectrum of Ag
by Proposition 5, we can choose € > 0 so small that A\, > 0 for the spectral
bound A of A, [32, Chap. 4, Theorem 2.25 and Sect. 3.5]. Then Propositions 5
and 6 hold for A, and A\, rather than Ay and A\g. Once € > 0 has been chosen,
by Lemma 7 there exists some ¢y > 0 such that g.(x) := ex +eCx + g(x) > 0
for all x € 1!, ||x||1 < €. Assume that there exists a non-negative solution
w, (x7)52, of (2.27) with @ > 0, & € £}}, w + > 051 j; >0 and



2 Infinite ODE Systems Modeling Size-Structured Metapopulations 97

lim sup(w(t) + > jz (t)) < €.
t—oo ; /

If we set 2(t) = (2;(£))52,, w and x satisfy (2.33). Then x = (w, z) in £} with
x(0) # 0 and limsup,_, ., ||x(¢)|l1 < €. By Propositions 5 and 6, A = s(A.) is
an eigenvalue of A, and there exists v7 € X7, X = ¢!, such that (z,v?) >0
for all z € £}, x # 0. By making a time shift forward and using the semiflow
property, we can assume that (x(¢),v}) > 0 and [|x(t)|1 < ¢ for all t > 0.
Then, for all ¢t > 0,

x(t) = x(0) + AE/O x(s)ds —|—/0 ge(x(s))ds > x(0) + .AE/O x(s)ds.

Let x(X) denote the Laplace transform of x,

ﬂAy:Zf}qumt

We take the Laplace transform of the equation above,

%(0) + LA K.

x(A) > X

> =

We multiply by A and apply the functional v},

AE(A), v8) = (x(0), 08) + Ac(R(A), v7).-

For A = A we obtain the contradiction, 0 > (x(0),v}) > 0. O

If the solution semiflow has a compact attract, a stronger persistence re-
sults can be obtained.

Theorem 32. Let the Assumptions 15, 17, 20, 22, and 30 be satisfied.
Assume that there is an element v € 01!, v # 0, such that (By+ C)v > 0.
Further assume that there is no element v 68#1, v#0, such that (By+C) v=0.
Then the metapopulation is uniformly strongly persistent in the following
sense: Under Assumption 30(a), for every j € Z., there exists some ¢; > 0
such that

litm infw(t) > e, litm infa;(t) > ¢ VjeN
for all integral solutions of (2.27) with w > 0, & € £}, w + Zj‘;l jx; > 0.
Under Assumption 30(b), such a result holds for w and 1 ..., xy,.

Proof. We define p : Ry x (1! — Ry by p(w, z) = w—|—2§i1 Jzj, T = ()50
By Theorem 31, the semiflow induced by the solutions of (2.27) is uniformly
weakly p-persistent in the language of [58, A.5] and has a compact attrac-
tor by Theorem 21. We apply [58, Theorem A.34]. In order to show the
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persistence result for z;, fix j € N for (a) and j € {1,...,ko} for (b)
and define p(z) = z;, z = (z;)32,. In order to show the persistence re-
sult for w define p by p(w,x) = w. Let @ be the semiflow induced by the
solutions of (2.28), &, (w, :Tc) = (w(t),z(t)) with w,z = (2;)52, satisfying
(2.28). A total orbit (w(t),z(t)) of @ is defined for all ¢ € R and satisfies
(w(t),z(t)) = Pr—r(w(r),z(r)) for all t,7 € R, t > r. This is equivalent to

o0 o0
w’zg nkxk—wg orxr — 6w on R,

() — a5 Za]k / r()ds + 3 e /Ttw<s>xk<s>ds,

k=0
JELy,rite Rt >,

(2.59)

Cf. (2.28). The assumptions of [58, Theorem A.34] are satisfied by the follow-
ing Lemma. 0O

Lemma 8. Let the assumptions of Theorem 32 be satisfied. Let w(t), z(t) =
(zj(t))32o be a non-negative solution of (2.59) which exists on R such that
w(t) + |x(t)|1 < ¢ for allt € R with some constant ¢ > 0 and ||xz(t)| = N for
allt € R.

Then w(t) > 0 and z;(t) > 0 for all't € R and all j € N, whenever
w(t) + Y pe, kxg(t) > 0 for all t € R.

Proof. By (2.59), integrating the equation for w, for ¢t > r,

t ' t
w(t) = w(r)% —l—/r Zr];@xk(s)%ds,

oo

#(t) (/ {Z opz(s) — 6} ds) >0,

50 =28+ [ ; o+ (o) 2 B s

(2.60)

¢;(t) = exp (/Ot {%‘j + ijw(s)] dS) >0

The irreducibility assumptions are now combined with the following kind of
arguments.
Case 1: Suppose that xp(r) > 0 for some r, k € N. By (2.60), zx(t) >

x(r )¢(())>0f0rallt>r Now let j € N, aj, > 0. By (2.60),

; toz- T1(s 6;(t) s r
:L'](t)z/r ik k( )¢J(S)d >0 Vit > r.
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If we combine this argument with the respective irreducibility properties of the

matrix (o) ken we obtain that ;(t) > 0fort >randj € Norj=1,... kg
respectively.
By Assumption 30, there exists some k € N such that 7, > 0. Then

(1)
¢(s)

Case 2: Now assume that w(r) > 0 for some r € R. By (2.60), w(t) > 0 for
all t > r. Since Y.~ o xx(r) = N there are two cases, zo(r) > 0 or zx(r) > 0
for some k € N. If the second is the case, the considerations for case 1 imply
that z;(t) >0 for allt >r and all j € Nor j =1,..., ko respectively. So let
us assume that xg(r) > 0. Then z(t) > 0 for all ¢ > r. By Assumption 30,
there exists some j € N (or j € {1,...,ko}) such that v;o > 0. By (2.60),

$;(t)
b (s)

By Case 1, z;(t) > rforallt >r, jeN. O

ds >0 Yt > r.

w@z/Wu@

ds >0 Yt > r.

20> [ ow(sha(s)

We conclude this section by emphasizing that there is a distinct threshold
condition (though we can only express it in abstract terms) which separates
local stability of the extinction equilibrium on the one hand from existence of
a persistence equilibrium and (weak or strong) persistence of the metapopu-
lation on the other hand.

Theorem 33. Let the Assumptions 15 and 22 be satisfied. Let z, x*, § and
the operator A be as in Remark 4. Then the following hold:

(a) Let € > —(A~'z,2*). Then the extinction equilibrium is locally asymptot-
ically stable.

(b) Let € < —(A~'z x*). Then the extinction equilibrium is unstable and there
exists a persistence equilibrium. If in addition, Assumption 30 holds, the
metapopulation is uniformly weakly persistent in the sense of Theorem 31.
If we also add Assumptions 17 and 20, then the metapopulation is uni-
formly strongly persistent in the sense of Theorem 32.

Proof. (a) We apply Theorem 28. Suppose that the assumptions of this the-
orem are not satisfied. Then there exists an element v € (2! N D(Ay), v # 0,
such that Agv > 0. By definition of Aq in (2.57) and by (2.55), v = (w,x)
with w > 0, z € EE, with

0 < —éw+ (x,x"), 0 < Az + wz. (2.61)

By Proposition 3, —A~1 exist and is a positive bounded linear operator. We
apply it to the second inequality in (2.61), z < —wA 'z, Iff w =0, z € —(}}
and so x = 0 and v = 0. Since v # 0, w > 0. We substitute z < —wA "'z in
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the first inequality in (2.61), 0 < —fw —w(A~ 1z, z*). We divide by w > 0 and
obtain a contradiction to the assumption £ > —([1_12, 2*). So the assumptions
of Theorem 28 are satisfied and the local asymptotic stability of the extinction
equilibrium follows.

(b) The existence of a persistence equilibrium has already been established
in Theorem 27 (a). (Notice that Assumption 23 is only needed for the instabil-
ity statements in Theorem 27 (a).) Similarly as in (a), we show that existence
of an element v € /11, v # 0, Agv = (By + C)v = 0, leads to £ = —(A~ 12, 2*)
which is ruled out by assuming £ < —(A‘lz,x*>. Set . = —A" 1z and w=1.
Then 0 = Az +wz and 0 < —&w + (z, 2*) which translates into (By+C)v > 0
for v = (w,x) by (2.55). The respective assumptions of Theorems 29, 31 and
32 are satisfied and uniform weak or uniform strong persistence follow. 0O

2.12 Application to Special Metapopulation Models

In [38], we consider the following metapopulation model,

oo

w =3 (1= n)Bnan(t) — {5 + ganxn(t)} w,

n=1

() = e () + > Faza(t) - cow(t)zo(t),
=1 (2.62)
x;(t) = [anlﬁnfl + Jnflw(t)]xnfl(t) + Mn+11'n+1(t)
n=12,....

By, and p,, are the birth and death rates in local populations of size n, g, is
the probability that a juvenile stays on its birth patch if the local population
size is n, Kk, is the rate at which a local population of size n is completely
wiped out, and o, the rate at which an average migrating individual settles
on a patch with local population size n. Migrating individuals are assumed to
not reproduce, their per capita death rate is d.

In comparison to (2.27), we identify

g1k = kB, k€N,

A1k = [bos k€N,
apk = —(quBr + i + K, k€N,
Qo = K, ke N, (2'63)
ako = 0, keZ,,
ajr =0, lj— k[ >1,

and
Vit1,k = Ok, keZy,
S—— kel (2.64)

ik = 0, j, k € Z, otherwise
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and Nk = (1 — qk)ﬁk. Then

dap=0, k=01, ...
j=0

For k € N,

Zjajk = (k+ DarBr + (k — V) pr — k(qrBr + px + k)
j=1

= q1Bk — . — ki,

oo
e+ Y ok = Bk — pk — ke
=1

oo
For k=0, Zjajo =0.For keZ,y,

=1

(oo} (oo} oo

Yok =0, D jvk=o0r il <201 +k)ox.
=0 =1 i=1

Assumption 34 (a) f,, K, > 0, p, > 0 for all n € N.
(b)0 < ¢, <1forallneN.

(c) o, >0 forall n € Zy, supo, < oc.
n=0

Theorem 35. Let the Assumption 34 be satisfied. Further, if ¢ > 0 is chosen
small enough, let supS® UtDBn=tn — oo, Then, for every v > 0, ¥ € o,

n
there exists a unique integral solution of on [0,00). Further ||z(t)|| < ||Z| for

allt > 0.

Theorem 36. Let the assumptions of Theorem 35 be satisfied. Further as-
sume that there exist constants cq,€e4 > 0 such that B, — pn, — Nk, < cq4 — €4
for alln € N. Then

o] 00 .
w(t) + 3 ja (1) < (w Y jx> L el
Jj=1 j=1

€4
for all solutions (w,x) of (2.62) with initial data w > 0, & € (1. Further
[l < [|Z|| for allt > 0.
We apply Theorem 21.
Theorem 37. In addition to the Assumption 34 assume that

> . K
inf £ > 0, hmsup& <1, and s%op—n < 00.
n=1ln n—oo MHn n=1 N

Then the semiflow induced by the solutions of (2.62) on R XEE has a compact
attractor for bounded sets.
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2.12.1 Scenarios of Extinction

The population goes extinct without emigration from the patches or coloniza-
tion of empty patches.

Theorem 38. Let the Assumptions of Theorem 37 be satisfied. If qp = 1 for
all k € N (i.e. there is no patch emigration) or if oo = 0 (empty patches are
not colonized), the total population size, w(t) + Z _ 1 Jxj(t), is integrable on
[0,00) and converges to 0 as t — oo.

Proof. This follows from Corollary 2, vo0 = —0g, and g = (1 — qx)Bk. O

The population also goes extinct if on every patch the birth rate is smaller
than the death rate.

Corollary 4. Let the assumptions of Theorem 35 be satisfied. Assume that
there exists some € > 0 such that B — px, — krxi < —ek for all k € N. Then
the total population size, w(t) + Z]oil jxj(t), converges to 0 as time tends to
infinity.

Proof. The assumptions of Theorem 36 are satisfied with ¢4 =0. O

2.12.2 Persistence

We assume that the metapopulation is not subject to catastrophes, x,, = 0,
and introduce the following number which can be interpreted as the basic
reproduction ratio of the metapopulation [38],

oo

. O'0N ﬂ qkﬂk
%= (20 e 26

,ujkl 273

Theorem 39. Let 09 > 0, k, = 0 for all n € N and 1(;101"1& > 0,
n=1 n

lim sup,, _, 5—" < 1. Then the following hold:

(a) Let Ry < 1. Then the extinction equilibrium is locally asymptotically stable.
(b) Let Ry > 1. Then there exists a persistence equilibrium.
(c) Let Ro > 1 and one of the following be satisfied:

(c1) ¢;8; >0 for all j € N and (1 — g;)Br > 0 for some k € N,

or

(c2) There exists some ko € N such that q;8; > 0 for j =1,..., ko — 1,
q;B; =0 forallj > ko, and that (1—q;)B; > 0 for some j € {1,...,ko}.

Under (c1), for every j € Z, there exists some €; > 0 such that

litm infw(t) > e, litm infa;(t) > ¢ VjeN

for all solutions of (2.62) with w >0, & € £}, v + Z _,Jz; > 0. Under
Assumption (c2), such a result holds for w and XY ey Thy-
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Proof. We apply Theorem 33. Let x = —A~'z. Then Yoreq ajpry + 25 =0

for j € N where x € D(A). By Remark 4, z; = vjoN. So 21 = Nog and z; =0
for j > 2 by (31). By (2.63),

H2Zo — @112, = pixy — oo,

_ (2.66)

tiv12i41 — BTy = ity — gj-18i1xi-1,  J 2 2.

Since = € D(A), Z;’;l lajjlz; < oo and (2.63) implies that the series

Z;’;l pjx; and Z;’;l qjBjx; converge. So we can add the second equality in

(2.66) from j to infinity and obtain that z; = %xj_l for j > 2. The first
J

equation in (2.66) implies p121 = 09N. This recursive equation is solved by

j—1
QB ooN
€T = _ 2.67
! 11]1 i fg ( )

with the understanding that H?:l = 1. By Remark 4, (z,2%) = 3372 n;z;
with n; = (1 — ¢;)B;, £ = Nog — d. This implies that £ + (A=1z,2*) has the
same sign as 1 —Ry. 0O

We refer to [38] for existence of multiple persistence equilibria, the spe-
cial case of obligatory juvenile emigration, and a bang-bang principle of
persistence-optimal emigration.

2.13 Special Host-Macroparasite Models
and Existence of Solutions

Let z,, denote the number of hosts with n parasites and w the average number
of free-living parasites,

oo

w' = Z(l - qn)ﬂnxn -

n=1

oo
o+ Z Jno:n] w,
n=0
o0

o0
Ty = Z Yo () Ty + pr21 + Z KnXn — OoWITo — VoXo,
= n=1 (2.68)

g
I

n [Qn—lﬂn—l +0n—lw}xn—l +,Ufn+1xn+1

*[Qnﬂn+0nw+ﬂn+/‘5n+l/n]xna
n=12,....

2.13.1 Explanation of Parameters

In a host with n parasites, parasites die at a rate p,, > 0 and are born at a
rate 3, > 0. With probability ¢, € [0,1], newborn parasites stay within the
birth host.
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Hosts with n parasites are found and entered by an average free-living
parasite at a per capita rate o,. They look for treatment and are completely
delivered of their parasite load at a per capita rate k, > 0. Hosts with n
parasites die at a per capita rate v, > 0 and give birth at a per capita rate
vn. To be specific, we choose a Ricker type per capita reproduction function,

Tn (f) = Yn exp(— Z TInk*xk)
k=0

with 4, 7,k > 0. Notice that no vertical transmission has been assumed, i.e.,
newborn hosts have no parasites.

2.13.2 Unique Existence of Solutions

To fit the host-parasite model into the general framework we identify

U1,k = QBks keN,
Of—1,k = ks k=23, ...,
Qo1 = f1 + K1,
ok = Kks k=2,3,..., (2.69)
are = —(qrBr + pr + Kr + k), ke N,
Qoo = — o,
ajr = 0, otherwise,
i) = S0 @b~ [543 0,
n=1 n=0

oo
(2.70)
go(w,x) = Z’yn(x)xn — opwxo,
n=0
gj(w,z) =w(oj_12_1 — 0jx;), jeN

We calculate -
Zajk:_’/ka ]{1:0,1,....
=0

For k € N,

Zjajk = (k + DarBr + (k — Dpg — k(qrBr + ik + Kk + k)

j=1
= QB — e — k(K + vg).

For k=0, Y jajo=0. For k € Z,
j=1

o0

Zgj(w,x) = Z'yk(x)xk and ngj(w,x) = wZakxk.
k=1 j=1 k=0

=0
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Theorem 40. Let the Assumptions 34 be satisfied and vy, § > 0. Then, for all
w e Ry and & € (3}, there exists a unique solution w,z on [0,00) of (2.22).

Per capita host mortality rates that depend on host density and parasite
burden would realistically not lead to a bounded perturbation, but require a
different approach.

2.14 Application to Prion Proliferation

We focus on model (2.2) and leave the models (2.4) and (2.5) for future
work. We assume that the coefficients bjx, 0, and x; are all non-negative and
the parameters 6 and A are positive. While the infinite matrices (o) have
been sparse (basically tri-diagonal with an additional full first row) in the
special metapopulation model in Sect. 2.12 and the host-macroparasite model
in Sect.2.13, the matrix (a;) in (2.3) has a full array above the diagonal.
The coefficients o, in (2.3) satisfy Assumption 1(a) (modified for the missing
xo-equation). By (2.3), for k > 2,

o k—1 k—1 k—1
Dk =i+ Y bk + b)) —rr— Y bk = brjk.
j=1 j=1 i=1 j=1

We substitute & — j = 1,
o) k—1
> =Y bir (2.71)
§=0 i=1

Assumption 1(b) is satisfied if we assume

k—1
U] bir, < 0. 2.72
k_};Z K (2.72)

T ra=1

We cannot determine from the literature whether or not such an assumption
is biologically reasonable. It seems to be mainly for mathematical reasons that
the coefficients bj, = b are assumed to be constant in [45, App. A] because it
allows a moment closure which transforms the infinite system to three ordinary
differential equations which can be completely analyzed [47]. In this special
case Zf:_ll bir = b(k — 1) and Assumption 1(b) is not satisfied. As for part

(),

00 k—1 k—1
Zjajk = Z](b]k + bk—j,k) — k',%k — k’ Z blk‘
7j=1 j=1 i=1

Again we substitute i = j — k,

[e'S) k—1 k—1 k—1
> e =—krk+ Y gbjp+ > (k—i)bi — k> by =—krp.  (2.73)
=0 j=1 i=1 i=1
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This shows that Assumption 1(c) also follows from (2.72). Let ;, = {z =
()31 [~ < oo} with [|z||~ = Z;‘;l |z;]. Then Theorem 2 and Lemma 2
hold mutandis mutatis under (2.72).

Since the state space of the non-linear equations involves 611 rather than
B, 0 = o = (0)s lally < oo} with [le = S, ™al, it is suf
ficient, though, that the infinite matrix (o) is associated with a positive
Cy-semigroup on /"' which follows from (2.73) by the same construction as
in [39] or in [59]. In order to get a handle on the generator in a analogous
fashion as in Lemma 1, we investigate

00 k—1 k—1
Dotk =Y 570+ bijp) = Kok = k) bik.
=1 =1 P

With the usual substitution j = k — ¢,

o) k—1 k—1 k—1
D P =Y Ph 4 Y (k=) b — KPR — KD b
j=1 J=1 =1 i=1

k—1
=—2> j(k—j)bj — Kr.
j=1

If we do not want to impose (2.72), we can alternatively add the following

boundedness and positivity assumptions.
. k—1 K
Assumption 41 (a) sup maxbj, < oo and sup 2 < 0.
k=2 J=1 j=1 ]
[e'S) o 1 k-1
(b) infk; >0 or inf —minbj > 0.
j=1 =2k j=1

It follows from these assumptions that there exist constants cg,ci,¢ > 0
such that

o0
> iPaje < co— ek® — ekloge| Yk € Zy.
j=1

The same proofs as in [39] or [59] provide the following result.

Lemma 9. Let the Assumption 41 be satisfied. Then the operator Ay on 01
defined by

92 s o
Az = (Z ajkxk) 0 r = (Tk)iZ,
k=1 5=l
D(Ay) = {w € 1Y Kl lax] < oo}
k=1

is closable and its closure generates a positive contraction Cy-semigroup S on
011 S leaves 012 = {z = (z;); ||z]|3 < oo} invariant.
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We set

ft,w,z)=A— wZakxk — dw,
k=1

gi(t,w,x) =w(oj_1x-1 — ojz).

Then the Assumption 4 are satisfied. Further

o0

Zgj(t,w,x) =0,

j=1

o0 o0

> igitw,x) <w - ojay,
j=1 j=1

J(t,w, x) +ngj(t,w,x) < A.

j=1

By (2.73), by similar proofs as in Theorems 5 and 7, we obtain that solutions
with non-negative initial data are defined and non-negative for all ¢ > 0 and
satisfy

w(t) < w(0)e + 4(1 — e=0)

w(t) + ijxj(t) < w(0) + f:jxj(o) At vt > 0.
j=1 j=1

If inf72, x; > 0, then

o0 A 00

1imsup(w(t) + ijj(t)> < —, (= min{5, inf nj} > 0.

t—oo =1 C 7j=1

If we additionally assume that the polymerization rates (o;) are bounded, a

similar procedure as in Sect. 2.7 shows that the semiflow on R x[i_l associated
o0

with system (2.2) has a compact attractor for bounded sets. If i‘nf1 k; = 0 but
=

oo 1 k-1

]i<nf2 z mi{l bjr > 0, we conjecture that the semiflow has a compact attractor for
o= j=

bounded sets if it is restricted to the positive cone of the invariant subspace
R x £'2 with the stronger norm (w,z) = |w| + Y272, j2|z;|*.

A. Non-Differentiability of the Simple Death
Process Semigroup

We prove formulas (2.19) and (2.20) which imply that the semigroups S on ¢
and S; on ¢! associated with the simple birth process are not differentiable
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at any t € (0,In2]. Recall that we have chosen £ = In2 such that e~* = 1/2.
By (2.17) and (2.18),

2n 9
Y\ o_2n .
:2Z<‘)22\n—]|
Jj=0 J

n—1 m 2n m
zzz(j)rzn(n—j)w 3 (j)2_2”(j—n).
j=0

Jj=n-+1

s

We substitute j = 2n — k in the last sum and use (2,:1) = (22:119)7

n—1

—4y" (2]71)2*2” (n — j). (2.74)

Hi S(Del2n)
dt "

<.

By the binomial theorem,

2n 9 n—1 9 9
2 =S () =23 () + () 2.75
2.)=220)+ G 27
Jj=0 Jj=
By rearranging the binomial coefficients,
n—1 n—1 n—2

]z::o (2;7)3' 2y (2;__11) =2y (2”]._ 1). (2.76)

Again by the binomial theorem,

o1 e 2n— 1\ = 2n—1\ | e~ 2n—1
221 = S = )+ ).
o\ c\ - j
7=0 7=0 Jj=n—1

In the second sum we substitute j = 2n — 1 — k. Then
n—2

92n—1 _ jgo (271].— 1) + i (211221i k)

n—2
2n—1 2n —1 2n—1
=22 () () ()
7=0
We combine this formula with (2.76),

S0 =ale - ()

Jj=0

We combine this last formula with (2.75),
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n—1
2n oy 2n 2n - 2n—1 2n o 2n
23 ()= =n( = () —2n (= (5) =0 (5
7=0
By (2.74), we obtain the equation in (2.19). One checks by induction that

(2n)2,2n _ (-3

n

)

)

1-

(Cf. [17, I1.(12.5)] and [17, IL(4.1)].) By (2.19), for n > 2,
1+3)--(n—1+ 1 J+ E

- I (n—1) ) 1:[ 2:g<1+ )

We take the logarithm,

450

lnH Z)e [2n]

n711 1

= 1 _—

; n( + Qj)
z/lnlm(u;x)dx;/Q(HI)ln(H )dy

2(n—1)
>%/ (g—ﬁ)d %(1n2(n—1) m2 - 1)
;(ln(n—l) 1).

We exponentiate this estimate and obtain (2.20). As for the inequality in
(2.19),

s, - 00

- Sl | =23 () -
:2:221( )2 205(n — +2J§;1(2jn)2—2n](]_n)
:212(

— gl-2ngy?2 +4nz< )2_2”(n—j).

)2 Min —j +22( )2_2"(2n—k)(n—k‘)

Here we have used that <2n2n k) = (2121) By (2.74),

d
— 9272192 4 (n 4 1)"%5(5)&2”]

i [2n]
st

This implies the 1nequahty in (2.19).
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