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1 Introduction

As already announced in Cetraro at the beginning of the C.I.M.E. course,
we deflected from the broader target ‘Classification and deformation types of
complex and real manifolds’, planned and announced originally.

First of all, the lectures actually delivered focused on the intersection of
the above vast area with the theme of the School, ‘Algebraic surfaces and
symplectic 4-manifolds’.

Hence the title of the Lecture Notes has been changed accordingly.
Moreover, the Enriques classification of real algebraic surfaces is not

touched upon here, and complex conjugation and real structures appear
mostly through their relation to deformation types of complex manifolds, and
in particular through their relation with strong and weak rigidity theorems.

In some sense then this course is a continuation of the C.I.M.E. course
I held some 20 years ago in Montecatini [Cat88], about ‘Moduli of algebraic
surfaces’.

But whereas those Lecture Notes had an initial part of considerable length
which was meant to be a general introduction to complex deformation theory,
here the main results of deformation theory which we need are only stated.

Nevertheless, because the topic can be of interest not only to algebraic
geometers, but also to people working in differential or symplectic topology,
we decided to start dedicating the first lecture to recalling basic notions con-
cerning projective and Kähler manifolds. Especially, we recall the main prin-
ciples of classification theory, and state the Enriques classification of algebraic
surfaces of special type.
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Since surfaces of general type and their moduli spaces are a major theme
for us here, it seemed worthwhile to recall in detail in lecture two the struc-
ture of their canonical models, in particular of their singularities, the socalled
Rational Double Points, or Kleinian quotient singularities. The rest of lecture
two is devoted to proving Bombieri’s theorem on pluricanonical embeddings,
to the analysis of other quotient singularities, and to the deformation equiva-
lence relation (showing that two minimal models are deformation equivalent iff
the respective canonical models are). Bombieri’s theorem is proven in every
detail for the case of an ample canonical divisor, with the hope that some
similar result may soon be proven also in the symplectic case.

In lecture three we show first that deformation equivalence implies diffeo-
morphism, and then, using a result concerning symplectic approximations of
projective varieties with isolated singularities and Moser’s theorem, we show
that a surfaces of general type has a ‘canonical symplectic structure’, i.e.,
a symplectic structure whose class is the class of the canonical divisor, and
which is unique up to symplectomorphism.

In lecture three and the following ones we thus enter ‘in medias res’, since
one of the main problems that we discuss in these Lecture Notes is the com-
parison of differentiable and deformation type of minimal surfaces of general
type, keeping also in consideration the canonical symplectic structure (unique
up to symplectomorphism and invariant for smooth deformation) which these
surfaces possess.

We present several counterexamples to the DEF = DIFF speculation of
Friedman and Morgan [F-M88] that deformation type and diffeomorphism
type should coincide for complex algebraic surfaces. The first ones were ob-
tained by Manetti [Man01], and exhibit non simply connected surfaces which
are pairwise not deformation equivalent. We were later able to show that they
are canonically symplectomorphic (see [Cat02] and also [Cat06]). An account
of these results is to be found in Chap. 6, which is an extra chapter with
title ‘Epilogue’ (we hope however that this title may soon turn out to be
inappropriate in view of future further developments).

In lecture 4, after discussing some classical results (like the theorem of
Castelnuovo and De Franchis) and some ‘semi-classical’ results (by the author)
concerning the topological characterization of irrational pencils on Kähler
manifolds and algebraic surfaces, we discuss orbifold fundamental groups and
triangle covers.

We use the above results to describe varieties isogenous to a product.
These yield several examples of surfaces not deformation equivalent to their
complex conjugate surface. We describe in particular the examples by the
present author [Cat03], by Bauer–Catanese–Grunewald [BCG05], and then
the ones by Kharlamov–Kulikov [KK02] which yield ball quotients. In this
lecture we discuss complex conjugation and real structures, starting from el-
ementary examples and ending with a survey of recent results and with open
problems on the theory of ‘Beauville surfaces’.
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The beginning of lecture 5 is again rather elementary, it discusses con-
nected sums and other surgeries, like fibre sums, and recalls basic definitions
and results on braid groups, mapping class groups and Hurwitz equivalence.

After recalling the theory of Lefschetz pencils, especially the differentiable
viewpoint introduced by Kas [Kas80], we recall Freedman’s basic results on the
topology of simply connected compact (oriented) fourmanifolds (see [F-Q90]).

We finally devote ourselves to our main objects of investigation, namely,
the socalled ‘(abc)-surfaces’ (introduced in [Cat02]), which are simply con-
nected. We finish Lecture 5 explaining our joint work with Wajnryb [CW04]
dedicated to the proof that these last surfaces are diffeomorphic to each other
when the two integers b and a + c are fixed.

In Chap. 6 we sketch the proof that these, under suitable numerical con-
ditions, are not deformation equivalent. A result which is only very slightly
weaker is explained in the Lecture Notes by Manetti, but with many more de-
tails; needless to say, we hope that the combined synergy of the two Lecture
Notes may turn out to be very useful for the reader in order to appreciate
the long chain of arguments leading to the theorem that the abc-surfaces give
us the simply connected counterexamples to a weaker version of the DEF=
DIFF question raised by Friedman and Morgan in [F-M88].

An interesting question left open (in spite of previous optimism) concerns
the canonical symplectomorphism of the (abc)-surfaces. We discuss this and
other problems, related to the connected components of moduli spaces of
surfaces of general type, and to the corresponding symplectic structures, again
in Chap. 6.

The present text not only expands the contents of the five lectures ac-
tually held in Cetraro. Indeed, since otherwise we would not have reached a
satisfactory target, we added the extra Chap. 6.

As we already mentioned, since the course by Manetti does not explain the
construction of his examples (which are here called Manetti surfaces), we give
a very brief overview of the construction, and sketch a proof of the canonical
symplectomorphism of these examples.

2 Lecture 1: Projective and Kähler Manifolds,
the Enriques Classification, Construction Techniques

2.1 Projective Manifolds, Kähler and Symplectic Structures

The basic interplay between complex algebraic geometry, theory of complex
manifolds, and theory of real symplectic manifolds starts with projective man-
ifolds.

We consider a closed connected C-submanifold Xn ⊂ P
N := P

N
C

.
This means that, around each point p ∈ X, there is a neighbourhood Up

of p and a permutation of the homogeneous coordinates such that, setting
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x0 = 1, x′ := (x1, . . . xn), x′′ := (xn+1, . . . xN ),

the intersection X ∩ Up coincides with the graph of a holomorphic map Ψ :

X ∩ Up = {(x′, x′′) ∈ Up|x′′ = Ψ(x′)}.

We can moreover assume, after a linear change of the homogeneous coordi-
nates, that the Taylor development of Ψ starts with a second order term (i.e.,
p is the point (1, 0, . . . 0) and the projective tangent space to X at p is the
complex subspace {x′′ = 0}.
Definition 2.1 The Fubini-Study form is the differential 2-form

ωFS :=
i

2π
∂∂log|z|2,

where z is the homogeneous coordinate vector representing a point of P
N.

In fact the above 2-form on C
N+1\{0} is invariant:

(1) For the action of U(N, C) on homogeneous coordinate vectors
(2) For multiplication of the vector z by a nonzero holomorphic scalar

function f(z) (z and f(z)z represent the same point in P
N ), hence

(3) ωFS descends to a differential form on P
N (being C

∗-invariant)

The restriction ω of the Fubini-Study form to a submanifold X of P
n makes

the pair (X,ω) a Kähler manifold according to the following

Definition 2.2 A pair (X,ω) of a complex manifold X, and a real differential
2-form ω is called a Kähler pair if

(i) ω is closed (dω = 0)
(ii) ω is of type (1,1) ⇔ for each pair of tangent vectors v, w one has

(J being the operator on complex tangent vectors given by multiplication by
i =
√
−1),

ω(Jv, Jw) = ω(v, w)

(iii) the associated Hermitian form is strictly positive definite ⇔ the real
symmetric bilinear form ω(v, Jw) is positive definite

The previous definition becomes clearer if one recalls the following easy
bilinear algebra lemma.

Lemma 2.3 Let V be a complex vector space, and H a Hermitian form.
Then, decomposing H in real and imaginary part,

H = S +
√
−1A,

we have that S is symmetric, A is alternating, S(u, v) = A(u, Jv) and
A(Ju, Jv) = A(u, v).

Conversely, given a real bilinear and alternating form A , A is the imagi-
nary part of a Hermitian form H(u, v) = A(u, Jv) +

√
−1A(u, v) if and only

if A satisfies the socalled first Riemann bilinear relation:

A(Ju, Jv) = A(u, v).
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Observe that property (iii) implies that ω is nondegenerate (if in the pre-
vious lemma S is positive definite, then A is nondegenerate), thus a Kähler
pair yields a symplectic manifold according to the standard definition

Definition 2.4 A pair (X,ω) consisting of a real manifold X, and a real
differential 2-form ω is called a symplectic pair if

(i) ω is a symplectic form, i.e., ω is closed (dω = 0) and ω is nondegenerate
at each point (thus X has even dimension).

A symplectic pair (X,ω) is said to be integral iff the De Rham cohomology
class of ω comes from H2(X, Z), or, equivalently, there is a complex line
bundle L on X such that ω is a first Chern form of L.

An almost complex structure J on X is a differentiable endomorphism of
the real tangent bundle of X satisfying J2 = −Id. It is said to be

(ii) compatible with ω if

ω(Jv, Jw) = ω(v, w),

(iii) tame if the quadratic form ω(v, Jv) is strictly positive definite.
Finally, a symplectic manifold is a manifold admitting a symplectic form ω.

Observe that compatibility and tameness are the symplectic geometry
translation of the two classical Riemann bilinear relations which ensure the
existence of a hermitian form, respectively the fact that the latter is positive
definite: the point of view changes mainly in the order of the choice for J ,
resp. ω.

Definition 2.5 A submanifold Y of a symplectic pair (X,ω) is a symplectic
submanifold if ω|Y is nondegenerate.

Let (X ′, ω′) be another symplectic pair. A diffeomorphism f : X → X ′ is
said to be a symplectomorphism if f∗(ω′) = ω.

Thus, unlike the Kähler property for complex submanifolds, the sym-
plectic property is not automatically inherited by submanifolds of even real
dimension.

A first intuition about symplectic submanifolds is given by the following
result, which holds more generally on any Kähler manifold, and says that a
good differentiable approximation of a complex submanifold is a symplectic
submanifold.

Lemma 2.6 Let W ⊂ P
N be a differentiable submanifold of even dimension

(dimW = 2n), and assume that the tangent space of W is ‘close to be complex’
in the sense that for each vector v tangent to W there is another vector v′

tangent to W such that

Jv = v′ + u, |u| < |v|.

Then the restriction to W of the Fubini Study form ωFS makes W a sym-
plectic submanifold of P

N.
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Proof. Let A be the symplectic form on projective space, so that for each
vector v tangent to W we have:
|v|2 = A(v, Jv) = A(v, v′) + A(v, u).
Since |A(v, u)| < |v|2, A(v, v′) �= 0 and A restricts to a nondegenerate

form. �	
The above intuition does not hold globally, since it was observed by

Thurston [Thur76] that there are symplectic complex manifolds which are
not Kähler. The first example of this situation was indeed given by Kodaira
[Kod66] who described the socalled Kodaira surfaces C

2/Γ , which are prin-
cipal holomorphic bundles with base and fibre an elliptic curve (they are not
Kähler since their first Betti number equals 3). Many more examples have
been given later on.

To close the circle between the several notions, there is the following char-
acterization of a Kähler manifold (the full statement is very often referred to
as ‘folklore’, but it follows from the statements contained in Theorem 3.13,
page 74 of [Vois02], and Proposition 4.A.8, page 210 of [Huy05]).

Kähler manifolds Theorem Let (X,ω)be a symplectic pair, and let J be
an almost complex structure which is compatible and tame for ω. Let g(u, v) :=
ω(u, Jv) be the associated Riemannian metric. Then J is parallel for the Levi
Civita connection of g (i.e., its covariant derivative is zero in each direction)
if and only if J is integrable (i.e., it yields a complex structure) and ω is a
Kähler form.

Returning to the Fubini-Study form, it has an important normalization
property, namely, if we consider a linear subspace P

m ⊂ P
N (it does not

matter which one, by the unitary invariance mentioned in (1) above), then
integration in pluripolar coordinates yields

∫
Pm

1
m!

ωm
FS = 1.

The above equation, together with Stokes’ Lemma, and a multilinear al-
gebra calculation for which we refer for instance to Mumford’s book [Mum76]
imply

Wirtinger’s Theorem Let X := Xn be a complex submanifold of P
N . Then

X is a volume minimizing submanifold for the n-dimensional Riemannian
volume function of submanifolds M of real dimension 2n,

vol(M) :=
∫

dV olFS ,

where dV olFS =
√

det(gij)(x) |dx| is the volume measure of the
Riemannian metric gij(x) associated to the Fubini Study form. Moreover,
the global volume of X equals a positive integer, called the degree of X.

The previous situation is indeed quite more general:
Let (X,ω) be a symplectic manifold, and let Y be an oriented subman-

ifold of even dimension = 2m: then the global symplectic volume of Y



Differentiable and Deformation Type of Algebraic Surfaces 61

vol(Y ) :=
∫

Y
1
n!ω

m depends only on the homology class of Y , and will be
an integer if the pair (X,ω) is integral (i.e., if the De Rham class of ω comes
from H2(X, Z)).

If moreover X is Kähler, and Y is a complex submanifold, then Y has a
natural orientation, and one has the

Basic principle of Kähler geometry: Let Y be a compact submanifold of a
Kähler manifold X: then vol(Y ) :=

∫
Y

ωm > 0, and in particular the coho-
mology class of Y in H2m(X, Z) is nontrivial.

The main point of the basic principle is that the integrand of vol(Y ) :=∫
Y

ωm is pointwise positive, because of condition (iii). So we see that a similar
principle holds more generally if we have a symplectic manifold X and a
compact submanifold Y admitting an almost complex structure compatible
and tame for the restriction of ω to Y .

Wirtinger’s theorem and the following theorem of Chow provide the link
with algebraic geometry mentioned in the beginning.

Chow’s Theorem Let X := Xn be a (connected) complex submanifold of
P

N . Then X is an algebraic variety, i.e., X is the locus of zeros of a homo-
geneous prime ideal P of the polynomial ring C[x0, . . . xN ].

We would now like to show how Chow’s theorem is a consequence of an-
other result:

Siegel’s Theorem Let X := Xn be a compact (connected) complex manifold
of (complex) dimension n. Then the field C

Mer(X) of meromorphic functions
on X is finitely generated, and its transcendence degree over C is at most n.

The above was proven by Siegel just using the lemma of Schwarz and an
appropriate choice of a finite cover of a compact complex manifold made by
polycylinder charts (see [Sieg73], or [Corn76]).

Idea of proof of Chow’s theorem.
Let p ∈ X and take coordinates as in 2.1: then we have an injection

C(x1, . . . xn) ↪→ C
Mer(X), thus C

Mer(X) has transcendency degree n by
Siegel’s theorem.

Let Z be the Zariski closure of X: this means that Z is the set of zeros
of the homogeneous ideal IX ⊂ C[x0, . . . xN ] generated by the homogeneous
polynomials vanishing on X.

Since X is connected, it follows right away, going to nonhomogeneous
coordinates and using that the ring of holomorphic functions on a connected
open set is an integral domain, that the ideal IX = IZ is a prime ideal.

We consider then the homogeneous coordinate ring C[Z]:=C[x0, . . . xN ]/IX

and the field of rational functions C(Z), the field of the fractions of the in-
tegral domain C[Z] which are homogeneous of degree 0. We observe that we
have an injection C(Z) ↪→ C

Mer(X).
Therefore C(x1, . . . xn) ↪→ C(Z) ↪→ C

Mer(X). Thus the field of rational
functions C(Z) has transcendency degree n and Z is an irreducible algebraic
subvariety of P

N of dimension n. Since the smooth locus Z∗ := Z\Sing(Z) is
dense in Z for the Hausdorff topology, is connected, and contains X, it follows
that X = Z. �	
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The above theorem extends to the singular case: a closed complex ana-
lytic subspace of P

N is also a closed set in the Zariski topology, i.e., a closed
algebraic set.

We have seen in the course of the proof that the dimension of an irreducible
projective variety is given by the transcendency degree over C of the field C(Z)
(which, by a further extension of Chow’s theorem, equals C

Mer(Z)).
The degree of Z is then defined through the
Emmy Noether Normalization Lemma. Let Z be an irreducible subva-

riety of P
N of dimension n: then for general choice of independent lin-

ear forms (x0, . . . xn) one has that the homogeneous coordinate ring of Z,
C[Z] := C[x0, . . . xN ]/IZ is an integral extension of C[x0, . . . xn]. One can
view C[Z] as a torsion free C[x0, . . . xn]-module, and its rank is called the
degree d of Z.

The geometrical consequences of Noether’s normalization are (see
[Shaf74]):

• The linear projection with centre L := {x|x0 = . . . xn = 0), πL : P
N\L→

P
n is defined on Z since Z ∩ L = ∅, and π := π|L : X → P

n is surjective
and finite.

• For y ∈ P
n, the finite set π−1(y) has cardinality at most d, and equality

holds for y in a Zariski open set U ⊂ P
n.

The link between the volume theoretic and the algebraic notion of degree
is easily obtained via the Noether projection πL.

In fact, the formula (x0, x
′, x′′)→ (x0, x

′, (1− t)x′′) provides a homotopy
between the identity map of Z and a covering of P

n of degree d, by which it
follows that

∫
Z∗ ωn

FS converges and equals precisely d.
We end this subsection by fixing the standard notation: for X a projective

variety, and x a point in X we denote by OX,x the local ring of algebraic
functions on X regular in x, i.e.,

OX,x := {f ∈ C(X)|∃a, b ∈ C[X],homogeneous, s.t.f = a/b and b(x) �= 0}.

This local ring is contained in the local ring of restrictions of local holo-
morphic functions from P

N , which we denote by Oh
X,x.

The pair OX,x ⊂ Oh
X,x is a faithfully flat ring extension, according to the

standard

Definition 2.7 A ring extension A→ B is said to be flat, respectively faith-
fully flat, if the following property holds: a complex of A-modules (Mi, di) is
exact only if (respectively, if and only if) (Mi ⊗A B, di ⊗A B) is exact.

This basic algebraic property underlies the so called (see [Gaga55-6]).
G.A.G.A. Principle. Given a projective variety, and a coherent (algebraic)

OX-sheaf F , let Fh := F ⊗OX
Oh

X be the corresponding holomorphic coherent
sheaf: then one has a natural isomorphism of cohomology groups
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Hi(XZar,F) ∼= Hi(XHaus,Fh),

where the left hand side stands for Čech cohomology taken in the Zariski topol-
ogy, the right hand side stands for Čech cohomology taken in the Hausdorff
topology. The same holds replacing F by O∗

X .
Due to the GAGA principle, we shall sometimes make some abuse of

notation, and simply write, given a divisor D on X, Hi(X,D) instead of
Hi(X,OX(D)).

2.2 The Birational Equivalence of Algebraic Varieties

A rational map of a (projective) variety φ : X ��� P
N is given through N

rational functions φ1, . . . φN .
Taking a common multiple s0 of the denominators bj of φj = aj/bj , we

can write φj = sj/s0, and write φ = (s0, . . . sN ), where the sj ’s are all ho-
mogeneous of the same degree, whence they define a graded homomorphism
φ∗ : C[PN ]→ C[X].

The kernel of φ∗ is a prime ideal, and its zero locus, denote it by Y , is
called the image of φ, and we say that X dominates Y .

One says that φ is a morphism in p if there is such a representation φ =
(s0, . . . sN ) such that some sj(p) �= 0. One can see that there is a maximal
open set U ⊂ X such that φ is a morphism on U , and that Y = φ(U).

If the local rings OX,x are factorial, in particular if X is smooth, then one
can take at each point x relatively prime elements aj , bj , let s0 be the least
common multiple of the denominators, and it follows then that the Indeter-
minacy Locus X\U is a closed set of codimension at least 2. In particular,
every rational map of a smooth curve is a morphism.

Definition 2.8 Two algebraic varieties X,Y are said to be birational iff their
function fields C(X), C(Y ) are isomorphic, equivalently if there are two domi-
nant rational maps φ : X ��� Y, ψ : Y ��� X, which are inverse to each other.
If φ, ψ = φ−1 are morphisms, then X and Y are said to be isomorphic.

By Chow’s theorem, biholomorphism and isomorphism is the same no-
tion for projective varieties (this ceases to be true in the non compact case,
cf. [Ser59]).

Over the complex numbers, we have [Hir64].
Hironaka’s theorem on resolution of singularities. Every projective variety

is birational to a smooth projective variety.
As we already remarked, two birationally equivalent curves are isomorphic,

whereas for a smooth surface S, and a point p ∈ S, one may consider the blow-
up of the point p, π : Ŝ → S. Ŝ is obtained glueing together S\{p} with the
closure of the projection with centre p, πp : S\{p} → P

N−1. One can moreover
show that Ŝ is projective. The result of blow up is that the point p is replaced
by the projectivization of the tangent plane to S at p, which is a curve E ∼= P

1,
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with normal sheaf OE(E) ∼= OP1(−1). In other words, the selfintersection of
E, i.e., the degree of the normal bundle of E, is −1, and we simply say that
E is an Exceptional curve of the I Kind.

Theorem of Castelnuovo and Enriques. Assume that a smooth projective
surface Y contains an irreducible curve E ∼= P

1 with selfintersection E2 = −1:
then there is a birational morphism f : Y → S which is isomorphic to the blow
up π : Ŝ → S of a point p (in particular E is the only curve contracted to a
point by f).

The previous theorem justifies the following

Definition 2.9 A smooth projective surface is said to be minimal if it does
not contain any exceptional curve of the I kind.

One shows then that every birational transformation is a composition of
blow ups and of inverses of blow ups, and each surface X is birational to a
smooth minimal surface S. This surface S is unique, up to isomorphism, if X
is not ruled (i.e., not birational to a product C × P

1), by the classical
Theorem of Castelnuovo. Two birational minimal models S, S′ are isomor-

phic unless they are birationally ruled, i.e., birational to a product C × P
1,

where C is a smooth projective curve. In the ruled case, either S ∼= P
2, or S

is isomorphic to the projectivization P(V ) of a rank 2 vector bundle V on C.
Recall now that a variety X is smooth if and only if the sheaf of differential

forms Ω1
X is locally free, and locally generated by dx1, . . . dxn, if x1, . . . xn yield

local holomorphic coordinates.
The vector bundle (locally free sheaf) Ω1

X and its associated bundles pro-
vide birational invariants in view of the classical [B-H75].

Kähler’s lemma. Let f : Xn ��� Y m be a dominant rational map between
smooth projective varieties of respective dimensions n,m. Then one has in-
jective pull back linear maps H0(Y,Ω1

Y
⊗r)→ H0(X,Ω1

X
⊗r). Hence the vector

spaces H0(X,Ω1
X

⊗r1 ⊗ · · · ⊗Ωn
X

⊗rn) are birational invariants.
Of particular importance is the top exterior power Ωn

X = Λn(Ω1
X), which

is locally free of rank 1, thus can be written as OX(KX) for a suitable Cartier
divisor KX , called the canonical divisor, and well defined only up to linear
equivalence.

Definition 2.10 The ith pluriirregularity of a smooth projective variety X
is the dimension h0,i := dim(Hi(X,OX)), which by Hodge Theory equals
dim(H0(X,Ωi

X)). The mth plurigenus Pm is instead the dimension Pm(X) :=
dim(H0(X,Ωn

X
⊗m)) = h0(X,mKX).

A finer birational invariant is the canonical ring of X.

Definition 2.11 The canonical ring of a smooth projective variety X is the
graded ring

R(X) :=
∞⊕

m=0

H0(X,mKX).
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If R(X) = C one defines Kod(X) = −∞, otherwise the Kodaira dimen-
sion of X is defined as the transcendence degree over C of the canonical sub-
field of C(X), given by the field Q(X) of homogeneous fractions of degree zero
of R(X).

X is said to be of general type if its Kodaira dimension is maximal (i.e.,
equal to the dimension n of X).

As observed in [Andr73] Q(X) is algebraically closed inside C(X), thus
one obtains that X is of general type if and only if there is a positive integer
m such that H0(X,mKX) yields a birational map onto its image Σm.

One of the more crucial questions in classification theory is whether the
canonical ring of a variety of general type is finitely generated, the answer
being affirmative [Mum62,Mori88] for dimension n ≤ 3.1

2.3 The Enriques Classification: An Outline

The main discrete invariant of smooth projective curves C is the genus
g(C) := h0(KC) = h1(OC).

It determines easily the Kodaira dimension, and the Enriques classification
of curves is the subdivision:

• Kod(C) = −∞⇔ g(C) = 0⇔ C ∼= P
1

• Kod(C) = 0⇔ g(C) = 1⇔ C ∼= C/(Z+ τZ), with τ ∈ C, Im(τ) > 0⇔ C
is an elliptic curve

• Kod(C) = 1⇔ g(C) ≥ 2⇔ C is of general type

Before giving the Enriques classification of projective surfaces over the
complex numbers, it is convenient to discuss further the birational invariants
of surfaces.

Remark 2.12 An important birational invariant of smooth varieties X is the
fundamental group π1(X).

For surfaces, the most important invariants are:

• The irregularity q := h1(OX)
• The geometric genus pg := P1 := h0(X,KX), which for surfaces combines

with the irregularity to give the holomorphic Euler–Poincaré characteristic
χ(S) := χ(OS) := 1− q + pg

• The bigenus P2 := h0(X, 2KX) and especially the twelfth plurigenus
P12 := h0(X, 12KX)

If S is a non ruled minimal surface, then also the following are birational
invariants:

1 The question seems to have been settled for varieties of general type, and with a
positive answer.
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• The selfintersection of a canonical divisor K2
S, equal to c1(S)2

• The topological Euler number e(S), equal to c2(S) by the Poincaré Hopf
theorem, and which by Noether’s theorem can also be expressed as

e(S) = 12χ(S)−K2
S = 12(1− q + pg)−K2

S

• The topological index σ(S) (the index of the quadratic form
qS : H2(S, Z) × H2(S, Z) → Z), which, by the Hodge index theorem,
satisfies the equality

σ(S) =
1
3
(K2

S − 2e(S))

• In particular, all the Betti numbers bi(S)
• The positivity b+(S) and the negativity b−(S) of qS (recall that b+(S) +

b−(S) = b2(S))

The Enriques classification of complex algebraic surfaces gives a very sim-
ple description of the surfaces with nonpositive Kodaira dimension:

• S is a ruled surface of irregularity g ⇐⇒ :
⇐⇒ : S is birational to a product Cg × P

1, where Cg has genus g ⇐⇒
⇐⇒ P12(S) = 0, q(S) = g ⇐⇒
⇐⇒ Kod(S) = −∞, q(S) = g

• S has Kod(S) = 0 ⇐⇒ P12(S) = 1

There are four classes of such surfaces with Kod(S) = 0:

• Tori ⇐⇒ P1(S) = 1, q(S) = 2
• K3 surfaces ⇐⇒ P1(S) = 1, q(S) = 0
• Enriques surfaces ⇐⇒ P1(S) = 0, q(S) = 0, P2(S) = 1
• Hyperelliptic surfaces ⇐⇒ P12(S) = 1, q(S) = 1

Next come the surfaces with strictly positive Kodaira dimension:

• S is a properly elliptic surface ⇐⇒ :
⇐⇒ : P12(S) > 1, and H0(12KS) yields a map to a curve with fibres

elliptic curves ⇐⇒
⇐⇒ S has Kod(S) = 1 ⇐⇒
⇐⇒ assuming that S is minimal: P12(S) > 1 and K2

S = 0
• S is a surface of general type ⇐⇒ :
⇐⇒ : S has Kod(S) = 2 ⇐⇒
⇐⇒ P12(S) > 1, and H0(12KS) yields a birational map onto its image
Σ12 ⇐⇒
⇐⇒ assuming that S is minimal: P12(S) > 1 and K2

S ≥ 1

2.4 Some Constructions of Projective Varieties

Goal of this subsection is first of all to illustrate concretely the meaning of
the concept ‘varieties of general type’. This means, roughly speaking, that
if we have a construction of varieties of a fixed dimension involving some
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integer parameters, most of the time we get varieties of general type when
these parameters are all sufficiently large.

[1] Products.
Given projective varieties X ⊂ P

n and Y ⊂ P
m, their product X × Y

is also projective. This is an easy consequence of the fact that the product
P

n × P
m admits the Segre embedding in P

mn+n+m ∼= P(Mat(n + 1,m + 1))
onto the subspace of rank one matrices, given by the morphism (x, y)→ x· ty.

[2] Complete intersections.
Given a smooth variety X, and divisors D1 = {f1 = 0}, . . . , Dr = {fr = 0}

on X, their intersection Y = D1∩· · ·∩Dr is said to be a complete intersection if
Y has codimension r in X. If Y is smooth, or, more generally, reduced, locally
its ideal is generated by the local equations of the Di’s (IY = (f1, . . . fr)).

Y tends to inherit much from the geometry of X, for instance, if X = P
N

and Y is smooth of dimension N − r ≥ 2, then Y is simply connected by the
theorem of Lefschetz.

[3] Finite coverings according to Riemann, Grauert and Remmert.
Assume that Y is a normal variety (this means that each local ring OX,x is

integrally closed in the function field C(X)), and that B is a closed subvariety
of Y (the letter B stands for branch locus).

Then there is (cf. [GR58]) a correspondence between
[3a] subgroups Γ ⊂ π1(Y \B) of finite index, and
[3b] pairs (X, f) of a normal variety X and a finite map f : X → Y which,

when restricted to X\f−1(B), is a local biholomorphism and a topological
covering space of Y \B.

The datum of the covering is equivalent to the datum of the sheaf of OY -
algebras f∗OX . As an OY -module f∗OX is locally free if and only if f is flat
(this means that, ∀x ∈ X, OY,f(x) → OX,x is flat), and this is indeed the case
when f is finite and Y is smooth of dimension 2.

[4] Finite Galois coverings.
Although this is just a special case of the previous one, namely when

Γ is a normal subgroup with factor group G := π1(Y \B)/Γ , in the more
special case (cf. [Par91]) where G is Abelian and Y is smooth, one can give
explicit equations for the covering. This is due to the fact that all irreducible
representations of an abelian group are 1-dimensional, so we are in the split
case where f∗OX is a direct sum of invertible sheaves.

The easiest example is the one of
[4a] Simple cyclic coverings of degree n.
In this case there is
(i) an invertible sheaf OY (L) such that

f∗OX = OY ⊕OY (−L)⊕ · · · ⊕ OY (−(n− 1)L).

(ii) A section 0 �= σ ∈ H0(OY (nL)) such that X is the divisor, in the geometric
line bundle L whose sheaf of regular sections is OY (L), given by the equation
zn = σ(y).
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Here, z is the never vanishing section of p∗(OY (L)) giving a tautological
linear form on the fibres of L: in other words, one has an open cover Uα of
Y which is trivializing for OY (L), and X is obtained by glueing together the
local equations zn

α = σα(y), since zα = gα,β(y)zβ , σα(y) = gα,β(y)nσβ(y).
One has as branch locus B = ∆ := {σ = 0}, at least if one disregards the

multiplicity (indeed B = (n−1)∆). Assume Y is smooth: then X is smooth iff
∆ is smooth, and, via direct image, all the calculations of cohomology groups
of basic sheaves on X are reduced to calculations for corresponding sheaves
on Y . For instance, since KX = f∗(KY + (n− 1)L), one has:

f∗(OX(KX)) = OY (KY )⊕OY (KY + L)⊕ · · · ⊕ OY (KY + (n− 1)L)

(the order is exactly as above according to the characters of the cyclic group).
We see in particular that X is of general type if L is sufficiently positive.
[4b] Simple iterated cyclic coverings.
Suppose that we take a simple cyclic covering f : Y1 → Y as above,

corresponding to the pair (L, σ), and we want to consider again a simple cyclic
covering of Y1. A small calculation shows that it is not so easy to describe
H1(O∗

Y1
) in terms of the triple (Y,L, σ); but in any case H1(O∗

Y1
) ⊃ H1(O∗

Y ).
Thus one defines an iterated simple cyclic covering as the composition of a
chain of simple cyclic coverings fi : Yi+1 → Yi, i = 0, . . . k − 1 (thus X := Yk,
Y := Y0) such that at each step the divisor Li is the pull back of a divisor on
Y = Y0.

In the case of iterated double coverings, considered in [Man97], we have
at each step (zi)2 = σi and each σi is written as σi = bi,0 + bi,1z1 + bi,2z2 +
· · · + bi,1,...i−1z1 . . . zi−1, where, for j1 < j2 · · · < jh, we are given a section
bi,j1,...jh

∈ H0(Y,OY (2Li − Lj1 − · · · − Ljh
)).

In principle, it looks like one could describe the Galois covers with solvable
Galois group G by considering iterated cyclic coverings, and then imposing
the Galois condition. But this does not work without resorting to more com-
plicated cyclic covers and to special geometry.

[4c] Bidouble covers (Galois with group (Z/2)2).
The simple bidouble covers are simply the fibre product of two double

covers, thus here X is the complete intersection of the following two divisors

z2 = σ0, w2 = s0

in the vector bundle L⊕M.
These are the examples we shall mostly consider.
More generally, a bidouble cover of a smooth variety Y occurs [Cat84] as

the subvariety X of the direct sum of three line bundles L1 ⊕ L2 ⊕ L3, given
by equations

Rank

⎛
⎝ x1 w3 w2

w3 x2 w1

w2 w1 x3

⎞
⎠ = 1 (∗)
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Here, we have three Cartier divisors Dj = div(xj) on Y and three line bun-
dles Li, with fibre coordinate wi, such that the following linear equivalences
hold on Y ,

Li + Di ≡ Lj + Lk,

for each permutation (i, j, k) of (1, 2, 3).
One has: f∗OX = OY

⊕
(⊕iOY (−Li)).

Assume in addition that Y is a smooth variety, then:

• X is normal if and only if the divisors Dj are reduced and have no common
components.

• X is smooth if and only if the divisors Dj are smooth, they do not have a
common intersection and have pairwise transversal intersections.

• X is Cohen–Macaulay and for its dualizing sheaf ωX (which, if Y is normal,
equals the sheaf of Zariski differentials that we shall discuss later) we have
f∗ωX = HomOY

(f∗OX , ωY ) = ωY

⊕
(⊕iωY (Li)).

[5] Natural deformations.
One should in general consider Galois covers as ‘special varieties’.
For instance, if we have a line bundle L on Y , we consider in it the divisor

X described by an equation

zn + a2z
n−2 + . . . an−1z + an = 0, for ai ∈ H0(Y,OY (iL)).

It is clear that we obtain a simple cyclic cover if we set an = −σ0, and,
for j �= n, we set aj = 0.

The family of above divisors (note that we may assume a1 = 0 after
performing a Tschirnhausen transformation) is called the family of natural
deformations of a simple cyclic cover.

One can define more generally a similar concept for any Abelian cover-
ing. In particular, for simple bidouble covers, we have the following family of
natural deformations

z2 = σ0(y) + wσ1(y), w2 = s0(y) + zs1(y),

where σ0 ∈ H0(Y,OY (2L)), σ1 ∈ H0(Y,OY (2L −M)), s0 ∈ H0(Y,OY (2M))
s1 ∈ H0(Y,OY (2M − L)).

[6] Quotients.
In general, given an action of a finite group G on the function field C(X)

of a variety X, one can always take the birational quotient, corresponding to
the invariant subfield C(X)G.

Assume that X ⊂ P
N is a projective variety and that we have a finite

group G ⊂ PGL(N + 1, C), such that g(X) = X, ∀g ∈ G.
We want then to construct a biregular quotient X/G with a projection

morphism π : X → X/G.
For each point x ∈ X consider a hyperplane H such that H ∩Gx = ∅, and

let U := X\(∪g∈G g(H)).
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U is an invariant affine subset, and we consider on the quotient set U/G the
ring of invariant polynomials C[U ]G, which is finitely generated since we are
in characteristic zero and we have a projector onto the subspace of invariants.

It follows that if X is normal, then also X/G is normal, and moreover
projective since there are very ample g-invariant divisors on X.

If X is smooth, one has that X/G is smooth if
(1) G acts freely or, more generally, if and only if
(2) For each point p ∈ X, the stabilizer subgroup Gp := {g|g(p) = p}

is generated by pseudoreflections (theorem of Chevalley, cf. for instance
[Dolg82]).

To explain the meaning of a pseudoreflection, observe that, if p ∈ X is a
smooth point, by a theorem of Cartan [Car57], one can linearize the action
of Gp, i.e., there exist local holomorphic coordinates z1, . . . zn such that the
action in these coordinates is linear. Thus, g ∈ Gp acts by z → A(g)z, and
one says that g is a pseudoreflection if A(g) (which is diagonalizable, having
finite order) has (n− 1) eigenvalues equal to 1.

[7] Rational Double Points = Kleinian singularities.

These are exactly the quotients Y = C
2/G by the action of a finite group

G ⊂ SL(2, C). Since A(g) ∈ SL(2, C) it follows that G contains no pseudore-
flection, thus Y contains exactly one singular point p, image of the unique
point with a nontrivial stabilizer, 0 ∈ C

2.
These singularities (Y, p) will play a prominent role in the next section.
In fact, one of their properties is due to the fact that the differential form

dz1 ∧ dz2 is G-invariant (because det(A(g)) = 1), thus the sheaf Ω2
Y is trivial

on Y \{p}.
Then the dualizing sheaf ωY = i∗(Ω2

Y \{p}) is also trivial.

3 Lecture 2: Surfaces of General Type
and Their Canonical Models: Deformation Equivalence
and Singularities

3.1 Rational Double Points

Let us take up again the Kleinian singularities introduced in the previous
section

Definition 3.1 A Kleinian singularity is a singularity (Y, p) analytically
isomorphic to a quotient singularity C

n/G where G is a finite subgroup
G ⊂ SL(n, C).

Example 3.2 The surface singularity An corresponds to the cyclic group
µn
∼= Z/n of nth roots of unity acting with characters 1 and (n− 1).
I.e., ζ ∈ µn acts by ζ(u, v) := (ζu, ζn−1v), and the ring of invariants is

the ring C[x, y, z]/(xy − zn), where

x := un, y := vn, z := uv.
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Example 3.3 One has more generally the cyclic quotient surface singularities
corresponds to the cyclic group µn

∼= Z/n of nth roots of unity acting with
characters a and b, which are denoted by 1

n (a, b).
Here, ζ(u, v) := (ζau, ζbv).
We compute the ring of invariants in the case n = 4, a = b = 1: the ring

of invariants is generated by

y0 := u4, y1 := u3v, y2 := u2v2, y3 := uv3, y4 := v4,

and the ring is C[y0, . . . , y4]/J , where J is the ideal of 2 × 2 minors of the

matrix
(

y0 y1 y2 y3

y1 y2 y3 y4

)
, or equivalently of the matrix

⎛
⎝y0 y1 y2

y1 y2 y3

y2 y3 y4

⎞
⎠. The first

realization of the ideal J corresponds to the identification of the singularity
Y as the cone over a rational normal curve of degree 4 (in P

4), while in the
second Y is viewed as a linear section of the cone over the Veronese surface.

We observe that 2y2 and y0 + y4 give a map to C
2 which is finite of degree

4. They are invariant for the group of order 16 generated by

(u, v) �→ (iu, iv), (u, v) �→ (iu,−iv), (u, v) �→ (v, u),

hence Y is a bidouble cover of C
2 branched on three lines passing through

the origin (cf. (*), we set x3 := x1 − x2 and we choose as branch divisors
x1, x2, x3 := x1 − x2).

In dimension two, the classification of Kleinian singularities is a nice chap-
ter of geometry ultimately going back to Thaetethus’ Platonic solids. Let us
briefly recall it.

First of all, by averaging the positive definite Hermitian product in C
n, one

finds that a finite subgroup G ⊂ SL(n, C) is conjugate to a finite subgroup
G ⊂ SU(n, C). Composing the inclusion G ⊂ SU(n, C) with the surjection
SU(n, C) → PSU(n, C) ∼= SU(n, C)/µn yields a finite group G′ acting on
P

n−1.
Thus, for n = 2, we get G′ ⊂ PSU(2, C) ∼= SO(3) acting on the Riemann

sphere P
1 ∼= S2.

The consideration of the Hurwitz formula for the quotient morphism π :
P

1 → P
1/G′, and the fact that P

1/G′ is a smooth curve of genus 0, (hence
P

1/G′ ∼= P
1) allows the classification of such groups G′.

Letting in fact p1, . . . pk be the branch points of π, and m1, . . .mk the
respective multiplicities (equal to the order in G′ of the element corresponding
to the local monodromy), we have Hurwitz’s formula (expressing the degree
of the canonical divisor KP1 as the sum of the degree of the pull back of KP1

with the degree of the ramification divisor)

−2 = |G′|(−2 +
k∑

i=1

[1− 1
mi

]).
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Each term in the square bracket is ≥ 1
2 , and the left hand side is negative:

hence k ≤ 3.
The situation to classify is the datum of a ramified covering of

P
1\{p1, . . . pk}, Galois with group G′.

By the Riemann existence theorem, and since π1(P1\{p1, . . . pk}) is the
socalled infinite polygonal group T (∞k) = T (∞, . . . ,∞) generated by simple
geometric loops α1, . . . , αk, satisfying the relation α1 ·· · ··αk = 1, the datum of
such a covering amounts to the datum of an epimorphism φ : T (∞, . . . ,∞)→
G′ such that, for each i = 1, . . . , k, ai := φ(αi) is an element of order mi.

The group T (∞k) is trivial for k = 1, infinite cyclic for k = 2, in general
a free group of rank k − 1.

Since ai := φ(αi) is an element of order mi, the epimorphism factors
through the polygonal group

T (m1, . . . ,mk) := 〈α1, . . . , αk|α1 · · · · · αk = αm1
1 = · · · = αmk

k = 1〉.

If k = 2, then we may assume m1 = m2 = m and we have a cyclic
subgroup G′ of order m of PSU(2, C), which, up to conjugation, is generated
by a transformation ζ(u, v) := (ζu, ζn−1v), with ζ a primitive mth root of 1
for m odd, and a primitive 2mth root of 1 for m even. Thus, our group G
is a cyclic group of order n, with n = 2m for m even, and with n = 2m or
n = m for m odd. G is generated by a transformation ζ(u, v) := (ζu, ζn−1v)
(with ζ a primitive nth root of 1), and we have the singularity An previously
considered.

If k = 3, the only numerical solutions for the Hurwitz’ formula are

m1 = 2,m2 = 2,m3 = m ≥ 2,

m1 = 2,m2 = 3,m3 = 3, 4, 5.

Accordingly the order of the group G′ equals 2m, 12, 24, 60. Since m3, for
m3 ≥ 3, is not the least common multiple of m1,m2, the group G′ is not
abelian, and it follows (compare [Klein1884]) that G′ is respectively isomor-
phic to Dm,A4,S4,A5.

Accordingly, since as above the lift of an element in G′ of even order k has
necessarily order 2k, it follows that G is the full inverse image of G′, and G
is respectively called the binary dihedral group, the binary tetrahedral group,
the binary octahedral group, the binary icosahedral group.

Felix Klein computed explicitly the ring of polynomial invariants for the
action of G, showing that C[u, v]G is a quotient ring C[x, y, z]/(z2 − f(x, y)),
where

• f(x, y) = x2 + yn+1 for the An case
• f(x, y) = y(x2 + yn−2) for the Dn case (n ≥ 4)
• f(x, y) = x3 + y4 for the E6 case, when G′ ∼= A4

• f(x, y) = y(x2 + y3) for the E7 case, when G′ ∼= S4

• f(x, y) = x3 + y5 for the E8 case, when G′ ∼= A5
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We refer to [Durf79] for several equivalent characterizations of Rational
Double points, another name for the Kleinian singularities. An important
property (cf. [Reid80] and [Reid87]) is that these singularities may be resolved
just by a sequence of point blow ups: in this procedure no points of higher
multiplicity than 2 appear, whence it follows once more that the canonical
divisor of the minimal resolution is the pull back of the canonical divisor of
the singularity.

A simpler way to resolve these singularities (compare [BPV84], pages 86
and following) is to observe that they are expressed as double covers branched
over the curve f(x, y) = 0. Then the standard method, explained in full
generality by Horikawa in [Hor75] is to resolve the branch curve by point
blow ups, and keeping as new branch curve at each step B′′− 2D′′, where B′′

is the total transform of the previous branch curve B, and D′′ is the maximal
effective divisor such that B′′−2D′′ is also effective. One obtains the following

Theorem 3.4 The minimal resolution of a Rational Double Point has as
exceptional divisor a finite union of curves Ei

∼= P
1, with selfintersection −2,

intersecting pairwise transversally in at most one point, and moreover such
that no three curves pass through one point. The dual graph of the singularity,
whose vertices correspond to the components Ei, and whose edges connect Ei

and Ej exactly when Ei · Ej = 1, is a tree, which is a linear tree with n − 1
vertices exactly in the An case. In this way one obtains exactly all the Dynkin
diagrams corresponding to the simple Lie algebras.

Remark 3.5 (i) See the forthcoming Theorem3.9 for a list of these Dynkin
diagrams.

(ii) The relation to simple Lie algebras was clarified by Brieskorn in
[Briesk71]: these singularities are obtained by intersecting the orbits of the
coadjoint action with a three dimensional submanifold in general position.

We end this subsection with an important observation concerning the au-
tomorphisms of a Rational Double Point (X,x0).

Let H be a finite group of automorphisms of the germ (X,x0) = (C2, 0)/G.
Then the quotient (X,x0)/H is a quotient of (C2, 0) by a group H ′ such

that H ′/G ∼= H. Moreover, by the usual averaging trick (Cartan’s lemma,
see [Car57]) we may assume that H ′ ⊂ GL(2, C). Therefore H ′ is contained
in the normalizer NG of G inside GL(2, C). Obviously, NG contains the centre
C

∗ of GL(2, C), and C
∗ acts on the graded ring C[x, y, z]/(z2 − f(x, y)) by

multiplying homogeneous elements of degree d by td. Therefore H is a finite
subgroup of the group H∗ of graded automorphisms of the ring C[x, y, z]/(z2−
f(x, y)), which is determined as follows (compare [Cat87])

Theorem 3.6 The group H∗ of graded automorphisms of a RDP is:
(1) C

∗ for E8, E7

(2) C
∗ × Z/2 for E6,Dn(n ≥ 5)

(3) C
∗ × S3 for D4
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(4) (C∗)2 × Z/2 for An(n ≥ 2)
(5) GL(2, C)/{±1} for A1

Idea of proof . The case of A1 is clear because G = {±1} is contained in the
centre. In all the other cases, except D4, y is the generator of smallest degree,
therefore it is an eigenvector, and, up to using C

∗, we may assume that y is
left invariant by an automorphism h. Some calculations allow to conclude that
h is the identity in case (1), or the trivial involution z �→ −z in case of E6 and
of Dn for n odd; while for Dn with n even the extra involution is y �→ −y.

Finally, for D4, write the equation as z2 = y(x + iy)(x− iy) and permute
the three lines which are the components of the branch locus. For An, one
finds that the normalizer is the semidirect product of the diagonal torus with
the involution given by (u, v) �→ (v, u).

One may also derive the result from the symmetries of the Dynkin dia-
gram. �	

3.2 Canonical Models of Surfaces of General Type

Assume now that S is a smooth minimal (projective) surface of general type.
We have (as an easy consequence of the Riemann Roch theorem) that S

is minimal of general type if K2
S > 0 and KS is nef (we recall that a divisor

D is said to be nef if, for each irreducible curve C, we have D · C ≥ 0).
In fact, S is minimal of general type iff K2

S > 0 and KS is nef. Since, if
D is nef and, for m > 0, we write |mD| = |M |+ Φ as the sum of its movable
part and its fixed part, then M2 = m2D2 −mD · Φ−M · Φ ≤ m2D2. Hence,
if D2 ≤ 0, the linear system |mD| yields a rational map whose image has
dimension at most 1.

Recall further that the Neron-Severi group NS(S) = Div(S)/ ∼ is the
group of divisors modulo numerical equivalence (D is numerically equivalent
to 0, and we write D ∼ 0, ⇔ D · C = 0 for every irreducible curve C on S).

The Neron Severi group is a discrete subgroup of the vector space
H1(Ω1

S), and indeed on a projective manifold Y it equals the intersection
(H2(Y, Z)/Torsion) ∩H1,1(Y ).

By definition, the intersection form is non degenerate on the Neron Severi
group, whose rank ρ is called the Picard number. But the Hodge index theorem
implies the

Algebraic index theorem The intersection form on NS(S) has positivity
index precisely 1 if S is an algebraic surface.

The criterion of Nakai-Moishezon says that a divisor L on a surface S is
ample if and only if L2 > 0 and L · C > 0 for each irreducible curve C on S.
Hence:

The canonical divisor KS of a minimal surface of general type S is ample
iff there does not exist an irreducible curve C ( �= 0) on S with K · C = 0.
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Remark 3.7 Let S be a minimal surface of general type and C an irreducible
curve on S with K · C = 0. Then, by the index theorem, C2 < 0 and by the
adjunction formula we see that 2p(C)− 2 = K · C + C2 = C2 < 0.

In general p(C) := 1−χ(OC) is the arithmetic genus of C, which is equal
to the sum p(C) = g(C̃) + δ of the geometric genus of C, i.e., the genus of
the normalization p : C̃ → C of C, with the number δ of double points of C,
defined as δ := h0(p∗OC̃/OC).

Therefore here p(C) = 0, so that C ∼= P
1, and C2 = −2.

These curves are called (−2)-curves.

Thus KS is not ample if and only if there exists a (−2)-curve on S. There
is an upper bound for the number of these (−2)-curves.

Lemma 3.8 Let C1, . . . , Ck be irreducible (−2)-curves on a minimal surface
S of general type. We have:

(ΣniCi)2 ≤ 0,

and
(ΣniCi)2 = 0 if and only if ni = 0 for all i.

Thus their images in the Neron-Severi group NS(S) are independent and in
particular k ≤ ρ− 1 ( ρ is the rank of NS(S)), and k ≤ h1(Ω1

S)− 1.

Proof. Let ΣniCi = C+ − C−, (C+ and C− being effective divisors without
common components) be the (unique) decomposition of ΣniCi in its positive
and its negative part. Then K · C+ = K · C− = 0 and C+ · C− ≥ 0, whence
(C+ − C−)2 = (C+)2 + (C−)2 − 2(C+ · C−) ≤ (C+)2 + (C−)2. By the index
theorem (C+)2 + (C−)2 is ≤ 0 and = 0 iff C+ = C− = 0. �	

We can classify all possible configurations of (−2)-curves on a minimal
surface S of general type by the following argument.

If C1 and C2 are two (−2)-curves on S, then:

0 > (C1 + C2)2 = −4 + 2C1 · C2,

hence C1.C2 ≤ 1, i.e., C1 and C2 intersect transversally in at most one point.
If C1, C2, C3 are (−2)-curves on S, then again we have

0 > (C1 + C2 + C3)2 = 2(−3 + C1 · C2 + C1 · C3 + C2 · C3).

Therefore no three curves meet in one point, nor do they form a triangle.
We associate to a configuration ∪Ci of (−2)-curves on S its Dynkin graph:

the vertices correspond to the (−2)-curves Ci, and two vertices (corresponding
to Ci, Cj) are connected by an edge if and only if Ci · Cj = 1.

Obviously the Dynkin graph of a configuration ∪Ci is connected iff ∪Ci is
connected. So, let us assume that ∪Ci is connected.

Theorem 3.9 Let S be a minimal surface of general type and ∪Ci a (con-
nected) configuration of (−2)-curves on S. Then the associated (dual) Dynkin
graph of ∪Ci is one of those listed in Fig. 1.
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3

An :

E6 :

E7 :

E8 :

1

1

1 1 1

12 2

1 12 2

2

3

1

2

3 3 2 142

2 4 6 2345

Dn :

(n ≥ 1)

(n ≥ 4)

Fig. 1. The Dynkin-Diagrams of (−2)-curves configurations (the index n stands for
the number of vertices, i.e. of curves). The labels for the vertices are the coefficients
of the fundamental cycle

Remark 3.10 The figure indicates also the weights ni of the vertices of the
respective trees. These weights correspond to a divisor, called fundamental
cycle

Z := ΣniCi

defined (cf. [ArtM66]) by the properties

(∗∗) Z · Ci ≤ 0 for all i, Z2 = −2, and ni > 0.

Idea of proof of 3.9. The simplest proof is obtained considering the above
set of Dynkin-Diagrams D := {An,Dn, E6, E7, E8} and the corresponding set
of Extended-Dynkin-Diagrams D̃ := {Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8} which classify the
divisors of elliptic type made of (−2)-curves and are listed in Fig. 2 (note
that the divisors of elliptic type classify all the possible nonmultiple fibres
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1

1 1 1 1 (n ≥ 1)Ãn :

Ẽ7 :

Ẽ8 : 2 4 6 245

3 3 2 1421

3 1

1 123Ẽ6 :

(n ≥ 4)2 2

1

1

D̃n :

1

1

2

2

1

2

3

Fig. 2. The extended Dynkin-Diagrams of (−2)-curves configurations. The labels
for the vertices are the coefficients of the divisor F of elliptic type

F of elliptic fibrations). Notice that each graph Γ in D is a subgraph of
a corresponding graph Γ̃ in D̃, obtained by adding exactly a (−2)-curve:
Γ = Γ̃ − Cend. In this correspondence the fundamental cycle equals Z =
F −Cend thus (**) is proven since F ·Ci = 0 for each i. Moreover, by Zariski’s
Lemma [BPV84] the intersection form on Γ is negative definite. If moreover Γ
is a graph with a negative definite intersection form, then Γ does not contain
as a subgraph a graph in D̃, since F 2 = 0. The proof can now be easily
concluded. �	



78 F. Catanese

Artin [ArtM66] showed indeed that the above configurations can be holo-
morphically contracted to Rational Double Points, and that the fundamental
cycle is indeed the inverse image of the maximal ideal in the local ring of the
singularity. By applying these contractions to the minimal model S of a sur-
face of general type one obtains in this way a normal surface X with Rational
Double Points as singularities, called the canonical model of S.

We prefer however to sketch briefly how the canonical model is more di-
rectly obtained from the pluricanonical maps of S, and ultimately it can be
defined as the Projective Spectrum (set of homogeneous prime ideals) of the
canonical ring R(S). We need first of all Franchetta’s theory of numerical
connectedness.

Definition 3.11 An effective divisor D is said to be m-connected if, each
time we write D = A + B, with A,B > 0, then

(∗) A ·B ≥ m.

Lemma 3.12 Let D be a nef divisor on a smooth surface S, with D2 > 0.
Then, if D is effective, then D is 1-connected.

Proof. Since D is nef,

A2 + A ·B = D ·A ≥ 0, B2 + A ·B = D ·B ≥ 0.

Assume A ·B ≤ 0: then A2, B2 ≥ −(AB) ≥ 0 =⇒ A2 ·B2 ≥ (AB)2.
But, by the Index Theorem, A2B2 ≤ (AB)2. Thus equality holds in the

Index theorem ⇐⇒ ∃L such that A ∼ aL, B ∼ bL, D ∼ (a + b)L. Moreover,
since D2 > 0 we have L2 ≥ 1, and we may assume a, b > 0 since A,B are
effective. Thus A ·B = a · b L2 ≥ 1, equality holding

⇐⇒ a = b = 1(=⇒ D ∼ 2L), L2 = 1.

�	

Remark 3.13 Let A · B = 1 and assume A2B2 < (AB)2 =⇒ A2 · B2 ≤ 0,
but A2, B2 ≥ −1. Thus, up to exchanging A and B, either A2 = 0, and then
D ·A = 1, A2 = 0; or A2 > 0, B2 = −1, and then D ·B = 0, B2 = −1.

Hence the following

Corollary 3.14 Let S be minimal of general type, D ∼ mK, m ≥ 1: then D
is 2-connected except possibly if K2 = 1, and m = 2, or m = 1, and K ∼ 2L,
L2 = 1.

Working a little more one finds

Proposition 3.15 Let K be nef and big as before, D ∼ mK with m ≥ 2.
Then D is 3-connected except possibly if

• D = A + B,A2 = −2, A ·K = 0 (=⇒ A ·B = 2)
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• m = 2,K2 = 1, 2
• m = 3,K2 = 1

We use now the Curve embedding Lemma of [C-F-96], improved in
[CFHR99] to the more general case of any curve C (i.e., a pure 1-dimensional
scheme).

Lemma 3.16 (Curve-embedding lemma) Let C be a curve contained in a
smooth algebraic surface S, and let H be a divisor on C. Then H is very
ample if, for each length 2 0-dimensional subscheme ζ of C and for each
effective divisor B ≤ C, we have

Hom(Iζ , ωB(−H)) = 0.

In particular H is very ample on C if ∀ B ≤ C, H ·B > 2p(B)−2+ length
ζ ∩B, where length ζ ∩B :=colength (IζOB). A fortiori, H is very ample on
C if, ∀ B ≤ C,

H ·B ≥ 2p(B) + 1. (∗)

Proof. It suffices to show the surjectivity H0(OC(H))−>> H0(Oζ(H)) ∀
such ζ. In fact, we can take either ζ = {x, y} [2 diff. points], or ζ = (x, ξ), ξ a
tangent vector at x. The surjectivity is implied by H1(IζOC(H)) = 0.

By Serre-Grothendieck duality, and since ωC = OC(KS + C), we have, in
case of nonvanishing, 0 �= H1(IζOC(H))∨ ∼= Hom(IζOC(H),OC(KS + C)) �
σ �= 0.

Let Z be the maximal subdivisor of C such that σ vanishes on Z (i. e.,
Z = div(z), with z|σ) and let B = V (Ann(σ)). Then B + Z = C since, if
C = {(β · z) = 0}, Ann(σ) = (β).

Indeed, let f ∈ Iζ be a non zero divisor: then σ is identified with the
rational function σ = σ(f)

f ; we can lift everything to the local ring OS , then f

is coprime with the equation γ := (βz) of C, and z = G.C.D.(σ(f), γ). Clearly
now Ann(σ) = {u | uσ(f) ∈ (βz)} = (β).

Hence σ induces

σ̂ :=
σ

z
: IζOB(H)→ OB(KS + C − Z)

which is ‘good’ (i.e., it is injective and with finite cokernel), thus we get

0→ IζOB
σ̂−→ OB(KB −H)→ ∆→ 0

where supp(∆) has dim = 0.
Then, taking the Euler Poincaré characteristics χ of the sheaves in question,
we obtain

0 ≤ χ(∆)=χ(OB(KB−H))−χ(IζOB)=−H ·B+2p(B)−2+length(ζ∩B) < 0,

a contradiction. �	
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The basic-strategy for the study of pluricanonical maps is then to find, for
every length 2 subscheme of S, a divisor C ∈ |(m− 2)K| such that ζ ⊂ C.

Since then, in characteristic = 0 we have the vanishing theorem [Ram72-4]

Theorem 3.17 (Kodaira, Mumford, Ramanujam) . Let L2 > 0 on S,
L nef =⇒ Hi(−L) = 0, i ≥ 1. In particular, if S is minimal of general type,
then H1(−KS) = H1(2KS) = 0.

As shown by Ekedahl [Eke88] this vanishing theorem is false in positive
characteristic, but only if char = 2, and for 2 very special cases of surfaces!

Corollary 3.18 If C ∈ |(m− 2)K|, then H0(OS(mK))−>> H0(OC(mK)).
Therefore, |mKS | is very ample on S if h0((m − 2)KS) ≥ 3 and if the hy-
pothesis on H = mKS in the curve embedding Lemma is verified for any
C ≡ (m− 2)K.

We shall limit ourselves here to give the proof of a weaker version of
Bombieri’s theorem [Bom73]

Theorem on Pluricanonical-Embeddings. (Bombieri). (mK) is almost very
ample (it embeds ζ except if ∃B with ζ ⊂ B, and B ·K = 0) if m ≥ 5, m = 4
and K2 ≥ 2, m = 3, pg ≥ 3, K2 ≥ 3.

One first sees when h0((m− 2)K) ≥ 2.

Lemma 3.19 For m ≥ 3 we have h0((m− 2)K) ≥ 3 except if m = 3 pg ≤ 2,
m = 4, χ = K2 = 1 (then q = pg = 0) and ≥ 2 except if m = 3, pg ≤ 1.

Proof. pg = H0(K), so let us assume m ≥ 4.

h0((m− 2)K) ≥ χ((m− 2)K) ≥ χ +
(m− 2)(m− 3)

2
K2.

Now, χ ≥ 1 and K2 ≥ 1, so we are done unless m = 4, χ = K2 = 1. �	
The possibility that KS may not be ample is contemplated in the following

Lemma 3.20 Let H = mK, B ≤ C ≡ (m − 2)K and assume K · B > 0.
Then

H ·B ≥ 2p(B) + 1 except possibly if

(A) m = 4 and K2 = 1, or m = 3 and K2 ≤ 2.

Proof. Let C = B + Z as above. Then we want

mK·B ≥2p(B)−2+3=(K+B)·B+3=(K+C−Z)·B+3=[(m−1)K−Z]·B+3,

i.e.,
K ·B + B · Z ≥ 3.
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Since we assumed K · B ≥ 1, if Z = 0 we use K2 ≥ 2 if m ≥ 4, and K2 ≥ 3
if m = 3, else it suffices to have B · Z ≥ 2, which is implied by the previous
Corollary 3.14 (if m = 3, B ∼ Z ∼ L, L2 = 1, then K ·B = 2). �	

Remark Note that then ζ is contracted iff ∃B with ζ ⊂ B, K · B = 0!
Thus, if there are no (−2) curves, the theorem says that we have an embed-
ding of S. Else, we have a birational morphism which exactly contracts the
fundamental cycles Z of S. To obtain the best technical result one has to
replace the subscheme ζ by the subscheme 2Z, and use that a fundamental
cycle Z is 1-connected. We will not do it here, we simply refer to [CFHR99].

The following is the more precise theorem of Bombieri [Bom73]

Theorem 3.21 Let S be a minimal surface of general type, and consider the
linear system |mK| for m ≥ 5, for m = 4 when K2 ≥ 2, for m = 3 when
pg ≥ 3, K2 ≥ 3.

Then |mK| yields a birational morphism onto its image, which is a normal
surface X with at most Rational Double Points as singularities. For each
singular point p ∈ X the inverse image of the maximal ideal Mp ⊂ OX,p is a
fundamental cycle.

Here we sketch another way to look at the above surface X (called canon-
ical model of S).

Proposition 3.22 If S is a surface of general type the canonical ring R(S)
is a graded C-algebra of finite type.

Proof. We choose a natural number such that |mK| is without base points,
and consider a pluricanonical morphism which is birational onto its image

φm : S → Σm = Σ ⊂ P
N .

For r = 0, . . . ,m− 1, we set Fr := φ∗(OS(rK)).
The Serre correspondence (cf. [FAC55]) associates to Fr the module

Mr :=
∞⊕

i=1

H0(Fr(i)) =
∞⊕

i=1

H0(φ∗(OS(rK))(i)) =

=
∞⊕

i=1

H0(φ∗(OS((r + im)K))) =
∞⊕

i=1

H0(OS((r + im)K)) =
∞⊕

i=1

Rr+im.

Mr is finitely generated over the ring A = C[y0, . . . , yN ], hence R =
m−1⊕
r=0

Mr is a finitely generated A-module.

We consider the natural morphism α : A → R, yi �→ si ∈ Rm, (then the si

generate a subring B of R which is a quotient of A). If v1, . . . , vk generate R
as a graded A-module, then v1, . . . , vk, s0, . . . , sN generate R as a C-algebra.
�	
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The relation between the canonical ring R(S,KS) and the image of pluri-
canonical maps for m ≥ 5 is then that X = Proj(R(S,KS)).

In practice, since R is a finitely generated graded C-algebra, generated by
elements xi of degree ri, there is a surjective morphism

λ : C[z0, . . . , zN ]−>> R, λ(zi) = xi.

If we decree that zi has degree ri, then λ is a graded surjective homomorphism
of degree zero.

With this grading (where zi has degree ri) one defines (see [Dolg82]) the
weighted projective space P(r0, . . . rn) as Proj(C[z0, . . . , zN ]).

P(r0, . . . rn) is simply the quotient := C
N+1 − {0}/C

∗, where C
∗ acts on

C
N+1 in the following way:

t(z) = (z0t
r0 , . . . , zN trN ).

The surjective homomorphism λ corresponds to an embedding of X into
P(r0, . . . rn).

With the above notation, one can easily explain some classical examples
which show that Bombieri’s theorem is the best possible result.

Ex. 1: m ≥ 5 is needed. Take a hypersurface X10 ⊂ P(1, 1, 2, 5) with
Rational Double Points defined by a (weighted) homogeneous polynomial F10

of degree 10. Then ωX = OX(10 − Σei) = OX(1), K2
X = 10/

∏
ei = 1, and

any m-canonical map with m ≤ 4 is not birational.
In fact here the quotient ring C[y0, y1, x3, z5]/(F10), where deg yi =

1,deg x3 = 2,deg z5 = 5 is exactly the canonical ring R(S).
Ex. 2: m = 3, K2 = 2 is also an exception.

Take S = X8 ⊂ P(1, 1, 1, 4). Here S was classically described as a double cover
S → P

2 branched on a curve B of degree 8 (since F8 = z2 − f8(x0, x1, x2)).
The canonical ring, since also here ωS

∼= OS(1), equals

R(S) = C[x0, x1, x2, z]/(F8).

Thus pg = 3, K2 = 8/4 = 2 but |3K| factors through the double cover of P
2.

3.3 Deformation Equivalence of Surfaces

The first important consequence of the theorem on pluricanonical embeddings
is the finiteness, up to deformation, of the minimal surfaces S of general type
with fixed invariants K2 and χ.

In fact, their 5-canonical models Σ5 are surfaces with Rational Double
Points and of degree 25K2 in a fixed projective space P

N , where N + 1 =
P5 = h0(5KS) = χ + 10K2.

In fact, the Hilbert polynomial of Σ5 equals

P (m) := h0(5mKS) = χ +
1
2
(5m− 1)5mK2.
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Grothendieck [Groth60] showed that there is
(i) An integer d and
(ii) A subscheme H = HP of the Grassmannian of codimension P (d)-

subspaces of H0(PN ,O(d)), called Hilbert scheme, such that
(iii) H parametrizes the degree d pieces H0(IΣ(d)) of the homogeneous

ideals of all the subschemes Σ ⊂ P
N having the given Hilbert polynomial P .

Inside H one has the open set

H0 := {Σ|Σ is reduced with only R.D.P.′s as singularities}

and one defines

Definition 3.23 The 5-pseudo moduli space of surfaces of general type with
given invariants K2, χ is the closed subset H0 ⊂ H0,

H0(χ,K2) := {Σ ∈ H0|ω⊗5
Σ
∼= OΣ(1)}

Remark 3.24 The group PGL(N + 1, C) acts on H0 with finite stabilizers
(corresponding to the groups of automorphisms of each surface) and the orbits
correspond to the isomorphism classes of minimal surfaces of general type with
invariants K2, χ. A quotient by this action exists as a complex analytic space.
Gieseker showed in [Gie77] that if one replaces the 5-canonical embedding
by an m-canonical embedding with much higher m, then the corresponding
quotient exists as a quasi-projective scheme.

Since H0 is a quasi-projective scheme, it has a finite number of irreducible
components (to be precise, these are the irreducible components of (H0)red).

Definition 3.25 The connected components of H0(χ,K2) are called the de-
formation types of the surfaces of general type with given invariants K2, χ.

The above deformation types coincide with the equivalence classes for the
relation of deformation equivalence (a more general definition introduced by
Kodaira and Spencer), in view of the following:

Definition 3.26 (1) A deformation of a compact complex space X is a pair
consisting of

(1.1) A flat morphism π : X → T between connected complex spaces (i.e.,
π∗ : OT,t → OX ,x is a flat ring extension for each x with π(x) = t)

(1.2) An isomorphism ψ : X ∼= π−1(t0) := X0 of X with a fibre X0 of π
(2) Two compact complex manifolds X,Y are said to be direct deformation

equivalent if there are a deformation π : X → T of X with T irreducible and
where all the fibres are smooth, and an isomorphism ψ′ : Y ∼= π−1(t1) := X1

of Y with a fibre X1 of π.
(3) Two canonical models X,Y of surfaces of general type are said to be

direct deformation equivalent if there are a deformation π : X → T of X
where T is irreducible and where all the fibres have at most Rational Double
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Points as singularities , and an isomorphism ψ′ : Y ∼= π−1(t1) := X1 of Y
with a fibre X1 of π.

(4) Deformation equivalence is the equivalence relation generated by direct
deformation equivalence.

(5) A small deformation is the germ π : (X ,X0) → (T, t0) of a deforma-
tion.

(6) Given a deformation π : X → T and a morphism f : T ′ → T with
f(t′0) = t0, the pull-back f∗(X ) is the fibre product X ′ := X ×T T ′ endowed
with the projection onto the second factor T ′ (then X ∼= X ′

0).

The two definitions (2) and (3) introduced above do not conflict with each
other in view of the following

Theorem 3.27 Given two minimal surfaces of general type S, S′ and their
respective canonical models X,X ′, then

S and S′ are deformation equivalent (resp.: direct deformation equivalent)
⇔ X and X ′ are deformation equivalent (resp.: direct deformation equivalent).

We shall highlight the idea of proof of the above proposition in the next
subsection: we observe here that the proposition implies that the deformation
equivalence classes of surfaces of general type correspond to the deformation
types introduced above (the connected components of H0), since over H lies
a natural family X → H, X ⊂ P

N ×H, and the fibres over H0 ⊃ H0 have at
most RDP’s as singularities.

A simple but powerful observation is that, in order to analyse deformation
equivalence, one may restrict oneself to the case where dim(T ) = 1: since two
points in a complex space T ⊂ C

n belong to the same irreducible component
of T if and only if they belong to an irreducible curve T ′ ⊂ T .

One may further reduce to the case where T is smooth simply by taking
the normalization T 0 → Tred → T of the reduction Tred of T , and taking the
pull-back of the family to T 0.

This procedure is particularly appropriate in order to study the closure of
subsets of the pseudomoduli space. But in order to show openness of certain
subsets, the optimal strategy is to consider the small deformations of the
canonical models (this is like Columbus’ egg: the small deformations of the
minimal models are sometimes too complicated to handle, as shown by Burns
and Wahl [B-W74] already for surfaces in P

3).
The basic tool is the generalization due to Grauert of Kuranishi’s theorem

([Gra74], see also [Sern06], cor. 1.1.11 page 18, prop. 2.4.8 , page 70)

Theorem 3.28 (Grauert’s Kuranishi type theorem for complex
spaces) Let X be a compact complex space: then

(I) there is a semiuniversal deformation π : (X ,X0)→ (T, t0) of X, i.e., a
deformation such that every other small deformation π′ : (X ′,X ′

0) → (T ′, t′0)
is the pull-back of π for an appropriate morphism f : (T ′, t′0)→ (T, t0) whose
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differential at t′0 is uniquely determined. (II) (T, t0) is unique up to isomor-
phism, and is a germ of analytic subspace of the vector space Ext1(Ω1

X ,OX),
inverse image of the origin under a local holomorphic map (called obstruc-
tion map and denoted by ob) ob : Ext1(Ω1

X ,OX) → T 2(X) whose differential
vanishes at the origin (the point corresponding to the point t0).

The obstruction space T 2(X) equals Ext2(Ω1
X ,OX) if X is a local complete

intersection.

The theorem of Kuranishi [Kur62, Kur65] dealt with the case of com-
pact complex manifolds, and in this case Extj(Ω1

X ,OX) ∼= Hj(X,ΘX), where
ΘX := Hom(Ω1

X ,OX) is the sheaf of holomorphic vector fields. In this case
the quadratic term in the Taylor development of ob, given by the cup product
H1(X,ΘX)×H1(X,ΘX)→ H2(X,ΘX), is easier to calculate.

3.4 Isolated Singularities, Simultaneous Resolution

The main reason in the last subsection to consider deformations of compact
complex spaces was the aim to have a finite dimensional base T for the semi-
universal deformation (this would not have been the case in general).

Things work in a quite parallel way if one considers germs of isolated
singularities of complex spaces (X,x0). The definitions are quite similar, and
there is an embedding X → C

n × T such that π is induced by the second
projection. There is again a completely similar general theorem by Grauert
( [Gra72] and again see [Sern06], cor. 1.1.11 page 18, prop. 2.4.8 , page 70)

Theorem 3.29 (Grauert’s theorem for deformations of isolated sin-
gularities) Let (X,x0) be a germ of an isolated singularity of a complex space:
then

(I) There is a semiuniversal deformation π : (X ,X0, x0)→ (Cn, 0)×(T, t0)
of X, i.e., a deformation such that every other small deformation π′ :
(X ′,X ′

0, x
′
0)→ (Cn, 0)× (T ′, t′0) is the pull-back of π for an appropriate mor-

phism f : (T ′, t′0)→ (T, t0) whose differential at t′0 is uniquely determined.
(II) (T, t0) is unique up to isomorphism, and is a germ of analytic sub-

space of the vector space Ext1(Ω1
X ,OX), inverse image of the origin un-

der a local holomorphic map (called obstruction map and denoted by ob)
ob : Ext1(Ω1

X ,OX) → T 2(X) whose differential vanishes at the origin (the
point corresponding to the point t0).

The obstruction space T 2(X) equals Ext2(Ω1
X ,OX) if X is a local complete

intersection.

One derives easily from the above a previous result of G. Tjurina concern-
ing the deformations of isolated hypersurface singularities.

For, assume that (X, 0) ⊂ (Cn+1, 0) is the zero set of a holomorphic func-
tion f , X = {z|f(z) = 0} and therefore, if fj = ∂f

∂zj
, the origin is the only

point in the locus S = {z|fj(z) = 0 ∀j}.
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We have then the exact sequence

0→ OX
(fj)→ On+1

X → Ω1
X → 0

which yields Extj(Ω1
X ,OX) = 0 for j ≥ 2, and

Ext1(Ω1
X ,OX) ∼= OCn+1,0/(f, f1, . . . fn+1) := T 1.

In this case the basis of the semiuniversal deformation is just the vector
space T 1, called the Tjurina Algebra, and one obtains the following

Corollary 3.30 (Tjurina’s deformation) Given (X, 0) ⊂ (Cn+1, 0) an
isolated hypersurface singularity X = {z|f(z) = 0}, let g1, . . . gτ be a basis
of the Tjurina Algebra T 1 = OCn+1,0/(f, f1, . . . fn+1) as a complex vector
space.

Then X ⊂ C
n+1 × C

τ , X := {z|F (z, t) := f(z) +
∑

j tjgj(z) = 0} is the
semiuniversal deformation of (X, 0).

A similar result holds more generally (with the same proof) when X is a
complete intersection of r hypersurfaces X = {z|φ1(z) = · · · = φr(z) = 0},
and then one has a semiuniversal deformation of the form X ⊂ C

n+1 × C
τ ,

X := {z|Fi(z, t) := φi(z) +
∑

j tjGi,j(z) = 0, i = 1, . . . r}.
In both cases the singularity admits a so-called smoothing, given by the

Milnor fibre (cf. [Mil68])

Definition 3.31 Given a hypersurface singularity (X, 0), X = {z|f(z) = 0},
the Milnor fibre Mδ,ε is the intersection of the hypersurface {z|f(z) = ε} with
the ball B(0, δ) with centre the origin and radius δ << 1, when |ε| << δ.

M := Mδ,ε is a manifold with boundary whose diffeomorphism type is
independent of ε, δ when |ε| << δ << 1.

More generally, for a complete intersection, the Milnor fibre is the inter-
section of the ball B(0, δ) with centre the origin and radius δ << 1 with a
smooth level set Xε := {z|φ1(z) = ε1, . . . φr(z) = εr}.

Remark 3.32 Milnor defined the Milnor fibre M in a different way, as the
intersection of the sphere S(0, δ) with centre the origin and radius δ << 1
with the set {z|f(z) = η|f(z)|}, for |η| = 1.

In this way the complement S(0, δ)\X is fibred over S1 with fibres dif-
feomorphic to the interiors of the Milnor fibres; using Morse theory Milnor
showed that M has the homotopy type of a bouquet of µ spheres of dimen-
sion n, where µ, called the Milnor number, is defined as the dimension of the
Milnor algebra M1 = OCn+1,0/(f1, . . . fn+1) as a complex vector space.

The Milnor algebra and the Tjurina algebra coincide in the case of
a weighted homogeneous singularity (this means that there are weights
m0, . . .mn such that f contains only monomials zi0

0 . . . zin
n of weighted de-

gree
∑

j ijmj = d), by Euler’s rule
∑

j mjzjfj = df .
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This is the case, for instance, for the Rational Double Points, the singulari-
ties which occur on the canonical models of surfaces of general type. Moreover,
for these, the Milnor number µ is easily seen to coincide with the index i in
the label for the singularity (i.e., i = n for an An-singularity), which in turn
corresponds to the number of vertices of the corresponding Dynkin diagram.

Therefore, by the description we gave of the minimal resolution of singu-
larities of a RDP, we see that this is also homotopy equivalent to a bouquet of
µ spheres of dimension 2. This is in fact no accident, it is just a manifestation
of the fact that there is a so-called simultaneous resolution of singularities
(cf. [Tju70,Briesk68-b,Briesk71])

Theorem 3.33 (Simultaneous resolution according to Brieskorn and
Tjurina) Let T := C

µ be the basis of the semiuniversal deformation of a
Rational Double Point (X, 0). Then there exists a finite ramified Galois cover
T ′ → T such that the pull-back X ′ := X×T T ′ admits a simultaneous resolution
of singularities p : S ′ → X ′ (i.e., p is bimeromorphic and all the fibres of the
composition S ′ → X ′ → T ′ are smooth and equal, for t′0, to the minimal
resolution of singularities of (X, 0).

We shall give Tjurina’ s proof for the case of An-singularities.
Proof. Assume that we have the An-singularity

{(x, y, z) ∈ C
3|xy = zn+1}.

Then the semiuniversal deformation is given by

X := {((x, y, z), (a2, . . . an+1)) ∈ C
3 × C

n|xy = zn+1 + a2z
n−1 + . . . an+1},

the family corresponding to the natural deformations of the simple cyclic
covering.

We take a ramified Galois covering with group Sn+1 corresponding to the
splitting polynomial of the deformed degree n + 1 polynomial

X ′ := {((x, y, z), (α1, . . . αn+1)) ∈ C
3 × C

n+1|
∑

j

αj = 0, xy =
∏
j

(z − αj)}.

One resolves the new family X ′ by defining φi : X ′ ��� P
1 as

φi := (x,

i∏
j=1

(z − αj))

and then taking the closure of the graph of Φ := (φ1, . . . φn) : X ′ ��� (P1)n.
�	

We shall consider now in detail the case of a node, i.e., an A1 singularity.
This singularity and its simultaneous resolution was considered also in the
course by Seidel, and will occur once more when dealing with Lefschetz pencils
(but then in lower dimension).
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Example 3.34 Consider a node, i.e., an A1 singularity.
Here, we write f = z2−x2−y2, and the total space of the semiuniversal de-

formation X = {(x, y, z, t)|f−t = 0} = {(x, y, z, t)|z2−x2−y2 = t} is smooth.
The base change t = w2 produces a quadratic nondegenerate singularity at the
origin for X ′ = {(x, y, z, w)|z2 − x2 − y2 = w2} = {(x, y, z, w)|z2 − x2 =
y2 + w2}.

The closure of the graph of ψ := z−x
w+iy = w−iy

z+x yields a so-called small
resolution, replacing the origin by a curve isomorphic to P

1.
In the Arbeitstagung of 1958 Michael Atiyah made the observation that this

procedure is nonunique, since one may also use the closure of the rational map
ψ̃ := z−x

w−iy = w+iy
z+x to obtain another small resolution. An alternative way to

compare the two resolutions is to blow up the origin, getting the big resolution
(with exceptional set P

1 × P
1) and view each of the two small resolutions as

the contraction of one of the two rulings of P
1 × P

1.
Atiyah showed in this way (see also [BPV84]) that the moduli space for

K3 surfaces is non Hausdorff.

Remark 3.35 The first proof of Theorem3.33 was given by G. Tjurina. It
had been observed that the Galois group G of the covering T ′ → T in the above
theorem is the Weyl group corresponding to the Dynkin diagram of the singu-
larity, defined as follows. If G is the simple algebraic group corresponding to
the Dynkin diagram (see [Hum75]), and H is a Cartan subgroup, NH its nor-
malizer, then the Weyl group is the factor group W := NH/H. For example,
An corresponds to the group SL(n+1, C), its Cartan subgroup is the subgroup
of diagonal matrices, which is normalized by the symmetric group Sn+1, and
NH is here a semidirect product of H with Sn+1.

As we already mentioned, E. Brieskorn [Briesk71] found a direct explana-
tion of this interesting phenomenon, according to a conjecture of Grothendieck.
He proved that an element x ∈ G is unipotent and subregular iff the morphism
Ψ : G → H/W , sending x to the conjugacy class of its semisimple part xs,
factors around x as the composition of a submersion with the semiuniversal
deformation of the corresponding RDP singularity.

With the aid of Theorem 3.33 we can now prove that deformation equiva-
lence for minimal surfaces of general type is the same as restricted deforma-
tion equivalence for their canonical models (i.e., one allows only deformations
whose fibres have at most canonical singularities).

Idea of the Proof of Theorem3.27.
It suffices to observe that
(0) if we have a family p : S → ∆ where ∆ ⊂ C is the unit disk, and the

fibres are smooth surfaces, if the central fibre is minimal of general type, then
so are all the others.

(1) If we have a family p : S → ∆, where ∆ ⊂ C is the unit disk, and
the fibres are smooth minimal surfaces of general type, then their canonical
models form a flat family π : X → ∆.
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(2) If we have a flat family π : X → ∆ whose fibres Xt have at most
Rational Double Points and KXt

is ample, then for each t ∈ ∆ there is a
ramified covering f : (∆, 0) → (∆, t) such that the pull back f∗X admits a
simultaneous resolution.

(0) is a consequence of Kodaira’s theorem on the stability of −1-curves by
deformation (see [Kod63-b]) and of the two following facts:

(i) that a minimal surface S with K2
S > 0 is either of general type, or

isomorphic to P
2 or to a Segre-Hirzebruch surface Fn (n �= 1, F0

∼= P
1 × P

1)
(ii) that P

2 is rigid (every deformation of P
2 is a product), while Fn deforms

only to Fm, with n ≡ m (mod 2).
(2) is essentially the above quoted theorem, (1) is a consequence of

Bombieri’s theorem, since p∗(OX (5KX ) is generated by global sections and
a trivialization of this sheaf provides a morphism φ : X → ∆ × P

N which
induces the 5-canonical embedding on each fibre. �	

We end this section by describing the results of Riemenschneider [Riem74]
on the semiuniversal deformation of the quotient singularity 1

4 (1, 1) described
in Example 3.3, and a generalization thereof.

More generally, Riemenschneider considers the singularity Yk+1, a quotient
singularity of the RDP (Rational Double Point) A2k+1 {uv−z2k+2 = 0} by the
involution multiplying (u, v, z) by −1. Indeed, this is a quotient singularity of
type 1

4k+4 (1, 2k+1), and the A2k+1 singularity is the quotient by the subgroup
2Z/(4k + 4)Z.

We use here the more general concept of Milnor fibre of a smoothing which
the reader can find in Definition 4.5.

Theorem 3.36 (Riemenschneider) The basis of the semiuniversal defor-
mation of the singularity Yk+1, quotient of the RDP A2k+1 by multiplication
by −1, consists of two smooth components T1, T2 intersecting transversally.
Both components yield smoothings, but only the smoothing over T1 admits a si-
multaneous resolution. The Milnor fibre over T1 has Milnor number µ = k+1,
the Milnor fibre over T2 has Milnor number µ = k.

For the sake of simplicity, we shall explicitly describe the two families in
the case k = 0 of the quotient singularity 1

4 (1, 1) described in Example 3.3.
We use for this the two determinantal presentations of the singularity.

(1) View the singularity as C[y0, . . . , y4]/J , where J is the ideal generated

by the 2 × 2 minors of the matrix
(

y0 y1 y2 y3

y5 y6 y7 y4

)
and by the three functions

fi := yi − y4+i, for i = 1, 2, 3 (geometrically, this amounts to viewing the
rational normal curve of degree 4 as a linear section of the Segre four-fold
P

1 × P
3). We get the family T1, with base C

3, by changing the level sets of
the three functions fi , fi(y) = ti, for t = (t1, t2, t3) ∈ C

3.
(2) View the singularity as C[y0, . . . , y4]/I, where I is the ideal generated

by the 2×2 minors of the matrix

⎛
⎝y0 y1 y2

y1 y5 y3

y2 y3 y4

⎞
⎠ and by the function f := y5−y2.



90 F. Catanese

In this second realization the cone over a rational normal curve of degree
4 (in P

4) is viewed as a linear section of the cone over the Veronese surface.
We get the family T2, with base C, by changing the level set of the function

f , y5 − y2 = t, for t ∈ C.
We see in the latter case that the Milnor fibre is just the complement to a

smooth conic in the complex projective plane P
2, therefore its Milnor number

(equal by definition to the second Betti number) is equal to 0. Indeed the
Milnor fibre is homotopically equivalent to the real projective plane, but this
is better seen in another way which allows a great generalization.

In fact, as we already observed, the singularities Yk are a special case
(n = 2, d = k + 1, a = 1) of the following

Cyclic quotient singularities
1

dn2
(1, dna− 1) = Adn−1/µn.

These are quotients of C
2 by a cyclic group of order dn2 acting with the

indicated characters (1, dna − 1), but can also be viewed as quotients of the
Rational Double Point Adn−1 of equation uv − zdn = 0 by the action of
the group µn of n-roots of unity acting in the following way:

ξ ∈ µn acts by : (u, v, z)→ (ξu, ξ−1v, ξaz).

This quotient action gives rise to a quotient family X → C
d, where

X = Y/µn , Y is the hypersurface in C
3 × C

d of equation

(∗ ∗ ∗) uv − zdn = Σd−1
k=0tkz

kn

and the action of µn is extended trivially on the factor C
d.

We see in this way that the Milnor fibre is the quotient of the Milnor fibre
of the Rational Double Point Adn−1 by a cyclic group of order n acting freely.
In particular, in the case n = 2, d = 1, a = 1, it is homotopically equivalent to
the quotient of S2 by the antipodal map, and we get P

2
R
.

Another important observation is that Y, being a hypersurface, is Goren-
stein (this means that the canonical sheaf ωY is invertible). Hence, such a
quotient X = Y/µn by an action which is unramified in codimension 1, is (by
definition) Q-Gorenstein.

Remark 3.37 These smoothings were considered by Kollár and Shepherd
Barron ( [K-SB88], 3.7-3.8-3.9, cf. also [Man90]), who pointed out their rel-
evance in the theory of compactifications of moduli spaces of surfaces, and
showed that, conversely, any Q-Gorenstein smoothing of a quotient singular-
ity is induced by the above family (which has a smooth base, C

d).

Returning to the cyclic quotient singularity 1
4 (1, 1), the first description

that we gave of the Q-Gorenstein smoothing (which does obviously not admit
a simultaneous resolution since its Milnor number is 0) makes clear that an
alternative way is to view the singularity (cf. Example 3.3) as a bidouble cover
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of the plane branched on three lines passing through the origin, and then this
smoothing (T2) is simply obtained by deforming these three lines till they
meet in three distinct points.

4 Lecture 3: Deformation and Diffeomorphism,
Canonical Symplectic Structure for Surfaces of General
Type

Summarizing some of the facts we saw up to now, given a birational equiva-
lence class of surfaces of general type, this class contains a unique (complete)
smooth minimal surface S, called the minimal model, such that KS is nef
(KS ·C ≥ 0 for every effective curve C); and a unique surface X with at most
Rational Double Points as singularities, and such that the invertible sheaf ωX

is ample, called the canonical model.
S is the minimal resolution of the singularities of X, and every pluri-

canonical map of S factors through the projection π : S → X.
The basic numerical invariants of the birational class are χ := χ(OS) =

χ(OX) = 1 − q + pg (pg = h0(OS(KS)) = h0(ωX)) and K2
S = K2

X (here KX

is a Cartier divisor such that ωX
∼= OX(KX)).

The totality of the canonical models of surfaces with fixed numerical in-
variants χ = x,K2 = y are parametrized (not uniquely, because of the action
of the projective group) by a quasi projective schemeH0(x, y), which we called
the pseudo moduli space.

The connected components of the pseudo moduli spaces H0(x, y) are the
deformation types of the surfaces of general type, and a basic question is
whether one can find some invariant to distinguish these. While it is quite
easy to find invariants for the irreducible components of the pseudo moduli
space, just by using the geometry of the fibre surface over the generic point,
it is less easy to produce effective invariants for the connected components.
Up to now the most effective invariant to distinguish connected components
has been the divisibility index r of the canonical class (r is the divisibility of
c1(KS) in H2(S, Z)) (cf. [Cat86])

Moreover, as we shall try to illustrate more amply in the next lecture, there
is another fundamental difference between the curve and the surface case.
Given a curve, the genus g determines the topological type, the differentiable
type, and the deformation type, and the moduli space Mg is irreducible.

In the case of surfaces, the pseudo moduli space H0(x, y) is defined over Z,
whence the absolute Galois group Gal(Q̄, Q) operates on it. In fact, it operates
by possibly changing the topology of the surfaces considered, in particular the
fundamental group may change !

Therefore the algebro-geometric study of moduli spaces cannot be reduced
only to the study of isomorphism classes of complex structures on a fixed
differentiable manifold.
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We shall now recall how the deformation type determines the differen-
tiable type, and later we shall show that each surface of general type S has a
symplectic structure (S, ω), unique up to symplectomorphism, such that the
cohomology class of ω is the canonical class c1(KS).

4.1 Deformation Implies Diffeomorphism

Even if well known, let us recall the theorem of Ehresmann [Ehr43]

Theorem 4.1 (Ehresmann) Let π : X → T be a proper submersion of dif-
ferentiable manifolds with T connected: then π is a differentiable fibre bundle,
in particular all the fibre manifolds Xt are diffeomorphic to each other.

The idea of the proof is to endow X with a Riemannian metric, so that
a local vector field ξ on the base T has a unique differentiable lifting which
is orthogonal to the fibres. Then, in the case where T has dimension 1, one
integrates the lifted vector field. The general case is proven by induction on
dimRT .

The same argument allows a variant with boundary of Ehresmann’s
theorem

Lemma 4.2 Let π :M→ T be a proper submersion where M is a differen-
tiable manifold with boundary, such that also the restriction of π to ∂M is a
submersion. Assume that T is a ball in R

n, and assume that we are given a
fixed trivialization ψ of a closed family N → T of submanifolds with bound-
ary. Then we can find a trivialization of π :M→ T which induces the given
trivialization ψ.

Proof. It suffices to take on M a Riemannian metric where the sections
ψ(p, T ), for p ∈ N , are orthogonal to the fibres of π. Then we use the cus-
tomary proof of Ehresmann’s theorem, integrating liftings orthogonal to the
fibres of standard vector fields on T . �	

Ehresmann’s theorem implies then the following

Proposition 4.3 Let X,X ′ be two compact complex manifolds which are de-
formation equivalent. Then they are diffeomorphic by a diffeomorphism φ :
X ′ → X preserving the canonical class (i.e., such that φ∗c1(KX) = c1(KX′)).

Proof. The result follows by induction once it is established for X,X ′ fibres of
a family π : X → ∆ over a 1-dimensional disk. Ehresmann’s theorem provides
a differentiable trivialization X ∼= X×∆. Notice that, since the normal bundle
to a fibre is trivial, the canonical divisor of a fibre KXt

is the restriction of
the canonical divisor KX to Xt. It follows that the trivialization provides a
diffeomorphism φ which preserves the canonical class. �	
Remark 4.4 Indeed, by the results of Seiberg Witten theory, an arbitrary
diffeomorphism between differentiable 4-manifolds carries c1(KX) either
to c1(KX′) or to −c1(KX′) (cf. [Wit94] or [Mor96]). Thus deformation
equivalence imposes only ε more than diffeomorphism only.
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4.2 Symplectic Approximations of Projective Varieties
with Isolated Singularities

The variant 4.2 of Ehresmann’s theorem will now be first applied to the Milnor
fibres of smoothings of isolated singularities.

Let (X,x0) be the germ of an isolated singularity of a complex space, which
is pure dimensional of dimension n = dimCX, assume x0 = 0 ∈ X ⊂ C

n+m,
and consider as above the ball B(x0, δ) with centre the origin and radius δ.
Then, for all 0 < δ << 1, the intersection K0 := X ∩ S(x0, δ), called the link
of the singularity, is a smooth manifold of real dimension 2n− 1.

Consider the semiuniversal deformation π : (X ,X0, x0) → (Cn+m, 0) ×
(T, t0) of X and the family of singularity links K := X ∩ (S(x0, δ) × (T, t0)).
By a uniform continuity argument it follows that K → T is a trivial bundle if
we restrict T suitably around the origin t0 (it is a differentiably trivial fibre
bundle in the sense of stratified spaces, cf. [Math70]).

We can now introduce the concept of Milnor fibres of (X,x0).

Definition 4.5 Let (T, t0) be the basis of the semiuniversal deformation of a
germ of isolated singularity (X,x0), and let T = T1∪· · ·∪Tr be the decomposi-
tion of T into irreducible components. Tj is said to be a smoothing component
if there is a t ∈ Tj such that the corresponding fibre Xt is smooth. If Tj is a
smoothing component, then the corresponding Milnor fibre is the intersection
of the ball B(x0, δ) with the fibre Xt, for t ∈ Tj, |t| < η << δ << 1.

Whereas the singularity links form a trivial bundle, the Milnor fibres form
only a differentiable bundle of manifolds with boundary over the open set
T 0

j := {t ∈ Tj , |t− t0| < η| Xt is smooth}.
Since however Tj is irreducible, T 0

j is connected, and the Milnor fibre is
unique up to smooth isotopy, in particular up to diffeomorphism.

We shall now apply again Lemma 4.2 in order to perform some surgeries
to projective varieties with isolated singularities.

Theorem 4.6 Let X0 ⊂ P
N be a projective variety with isolated singularities

admitting a smoothing component.
Assume that for each singular point xh ∈ X, we choose a smoothing com-

ponent Tj(h) in the basis of the semiuniversal deformation of the germ (X,xh).
Then (obtaining different results for each such choice) X can be approximated
by symplectic submanifolds Wt of P

N , which are diffeomorphic to the glueing
of the ‘exterior’ of X0 (the complement to the union B = ∪hBh of suitable
(Milnor) balls around the singular points) with the Milnor fibres Mh , glued
along the singularity links Kh,0.

A pictorial view of the proof is contained in Fig. 3.
Proof.
First of all, for each singular point xh ∈ X, we choose a holomorphic path

∆ → Tj(h) mapping 0 to the distinguished point corresponding to the germ
(X,xh), and with image of ∆\0 inside the smoothing locus T 0

j(h) ∩{t||t| < η}.
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Mh

X0

xh

Fig. 3. Glueing the ‘exterior’ of X0 (to the Milnor Ball around xh) with a smaller
Milnor fibre Mh

We apply then Lemma 4.2 once more in order to thicken the trivialization
of the singularity links to a closed tubular neighbourhood in the family X .

Now, in order to simplify our notation, and without loss of generality,
assume that X0 has only one singular point x0, and let B := B(x0, δ) be a
Milnor ball around the singularity. Moreover, for t �= 0, t ∈ ∆ ∩ B(0, η) we
consider the Milnor fibreMδ,η(t), whereas we have the two Milnor links

K0 := X0 ∩ S(x0, δ) and Kt := Xt ∩ S(x0, δ − ε)

.
We can consider the Milnor collars C0(ε) := X0 ∩ (B(x0, δ)\B(x0, δ − ε)),

and Ct(ε) := Xt ∩ (B(x0, δ)\B(x0, δ − ε)).
The Milnor collars fill up a complex submanifold of dimension dimX0+1 :=

n + 1 of C
n+m ×∆.

We glue now X\B(x0, δ − ε)) and the Milnor fibreMδ,η(t) by identifying
the Milnor collars C0(ε) and Ct(ε).
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We obtain in this way an abstract differentiable manifold W which is
independent of t, but we want now to give an embedding W → Wt ⊂ C

n+m

such that X\B(x0, δ)) maps through the identity, and the complement of
the collar inside the Milnor fibre maps to Mδ,η(t) via the restriction of the
identity.

As for the collar C0(δ), its outer boundary will be mapped to K0, while its
inner boundary will be mapped to Kt (i.e., we join the two different singularity
links by a differentiable embedding of the abstract Milnor collar).

For η << δ the tangent spaces to the image of the abstract Milnor collar
can be made very close to the tangent spaces of the Milnor collars Mδ,ε(t),
and we can conclude the proof via Lemma 2.6. �	

The following well known theorem of Moser guarantees that, once the
choice of a smoothing component is made for each xh ∈ Sing(X), then the ap-
proximating symplectic submanifold Wt is unique up to symplectomorphism.

Theorem 4.7 (Moser) Let π : X → T be a proper submersion of differen-
tiable manifolds with T connected, and assume that we have a differentiable
2-form ω on X with the property that

(*) ∀t ∈ T ωt := ω|Xt
yields a symplectic structure on Xt whose class in

H2(Xt, R) is locally constant on T (e.g., if it lies on H2(Xt, Z)).
Then the symplectic manifolds (Xt, ωt) are all symplectomorphic.

The unicity of the symplectic manifold Wt will play a crucial role in the
next subsection.

4.3 Canonical Symplectic Structure for Varieties with Ample
Canonical Class and Canonical Symplectic Structure for Surfaces
of General Type

Theorem 4.8 A minimal surface of general type S has a canonical symplectic
structure, unique up to symplectomorphism, and stable by deformation, such
that the class of the symplectic form is the class of the canonical sheaf Ω2

S =
OS(KS). The same result holds for any projective smooth variety with ample
canonical bundle.

Proof.
Let V be a smooth projective variety of dimension n whose canonical

divisor KV is ample.
Then there is a positive integer m (depending only on n) such that mKV

is very ample (any m ≥ 5 does by Bombieri’s theorem in the case of surfaces,
for higher dimension we can use Matsusaka’s big theorem, cf. [Siu93] for an
effective version).

Therefore the mth pluricanonical map φm := φ|mKV | is an embedding of
V in a projective space P

Pm−1, where Pm := dimH0(OV (mKV )).
We define then ωm as follows: ωm := 1

mφ∗
m(FS) (where FS is the Fubini-

Study form i
2π∂∂log|z|2), hence ωm yields a symplectic form as desired.
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One needs to show that the symplectomorphism class of (V, ωm) is inde-
pendent of m. To this purpose, suppose that the integer r has also the property
that φr yields an embedding of V : the same holds also for rm, hence it suffices
to show that (V, ωm) and (V, ωmr) are symplectomorphic.

To this purpose we use first the well known and easy fact that the pull back
of the Fubini-Study form under the rth Veronese embedding vr equals the rth
multiple of the Fubini-Study form. Second, since vr ◦φm is a linear projection
of φrm, by Moser’s Theorem follows the desired symplectomorphism. Moser’s
theorem implies also that if we have a deformation π : V → T where T is con-
nected and all the fibres have ample canonical divisor, then all the manifolds
Vt, endowed with their canonical symplectic structure, are symplectomorphic.

Assume now that S is a minimal surface of general type and that KS is
not ample: then for any m ≥ 5 (by Bombieri’s cited theorem) φm yields an
embedding of the canonical model X of S, which is obtained by contracting
the finite number of smooth rational curves with selfintersection number = −2
to a finite number of Rational Double Point singularities. For these, the base
of the semiuniversal deformation is smooth and yields a smoothing of the
singularity.

By the quoted Theorem 3.33 on simultaneous resolution, it follows that
(1) S is diffeomorphic to any smoothing S′ of X (but it can happen that

X does not admit any global smoothing, as shown by many examples which
one can find for instance in [Cat89]).

(2) S is diffeomorphic to the manifold obtained glueing the exterior X\B
(B being the union of Milnor balls of radius δ around the singular points of
X) together with the respective Milnor fibres, i.e., S is diffeomorphic to each
of the symplectic submanifolds W of projective space which approximate the
embedded canonical model X according to Theorem 4.6.

We already remarked that W is unique up to symplectomorphism, and
this fact ensures that we have a unique canonical symplectic structure on S
(up to symplectomorphism).

Clearly moreover, if X admits a global smoothing, we can then take S′ suf-
ficiently close to X as our approximation W . Then S′ is a surface with ample
canonical bundle, and, as we have seen, the symplectic structure induced by (a
submultiple of) the Fubini Study form is the canonical symplectic structure.

The stability by deformation is again a consequence of Moser’s theorem.
�	

4.4 Degenerations Preserving the Canonical Symplectic Structure

Assume once more that we consider the minimal surfaces S of general type
with fixed invariants χ = x and K2 = y, and their 5-canonical models Σ5,
which are surfaces with Rational Double Points and of degree 25K2 in a fixed
projective space P

N , where N = χ + 10K2 − 1.
The choice of S and of a projective basis for PH0(5KS) yields, as we saw,

a point in the 5-pseudo moduli space of surfaces of general type with given
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invariants χ = x and K2 = y, i. e., the locally closed set H0(x, y) of the
corresponding Hilbert scheme H, which is the closed subset

H0(x, y) := {Σ ∈ H0|ω⊗5
Σ
∼= OΣ(1)}

of the open set

H0(x, y) := {Σ|Σ is reduced with only R.D.P.′s as singularities}.

In fact, even if this pseudo moduli space is conceptually clear, it is com-
putationally more complex than just an appropriate open subset of H0(x, y),
which we denote by H00(x, y) and parametrizes triples

(S,L,B)

where
(i) S is a minimal surface of general type with fixed invariants χ = x and

K2 = y
(ii) L ∈ Pic0(S) is a topologically trivial holomorphic line bundle
(iii) B is a a projective basis for PH0(5KS + L).
To explain how to define H00(x, y), let Hn(x, y) ⊂ H0(x, y) be the open set

of surfaces Σ with K2
Σ = y. Let H be the hyperplane divisor, and observe that

by the Riemann Roch theorem PΣ(m) = χ(OΣ)+1/2 mH ·(mH−KΣ), while
by definition PΣ(m) = x + 1/2(5m− 1)5my. Hence, H2 = 25y, H ·KΣ = 5y,
χ(OΣ) = x, and by the Index theorem K2

Σ ≤ y, equality holding if and only
if H ∼ 5KΣ .

Since the group of linear equivalence classes of divisors which are numeri-
cally equivalent to zero is parametrized by Pic0(Σ)×Tors(H2(Σ, Z)), we get
that the union of the connected components of Hn(x, y) containing H0(x, y)
yields an open set H00(x, y) as described above.

Since Pic0(S) is a complex torus of dimension q = h1(OS), it follows that
indeed there is a natural bijection, induced by inclusion, between irreducible
(resp. connected) components ofH0(x, y) and ofH00(x, y). Moreover,H0(x, y)
and H00(x, y) coincide when q = 0.

As we shall see, there are surfaces of general type which are diffeomor-
phic, or even canonically symplectomorphic, but which are not deformation
equivalent.

Even if H00(x, y) is highly disconnected, and not pure dimensional, one
knows by a general result by Hartshorne [Hart66], that the Hilbert scheme H
is connected, and one may therefore ask

(A) is H00(x, y) connected?
(B) which kind of singular surfaces does one have to consider in order to

connect different components of H00(x, y)?
The latter question is particular significant, since first of all any projective

variety admits a flat deformation to a scheme supported on the projective cone
over its hyperplane section (iterating this procedure, one reduces to the so-
called stick figures, which in this case would be supported on a finite union
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of planes. Second, because when going across badly singular surfaces, then
the topology can change drastically (compare Example 5.12, page 329 of [K-
SB88]).

We refer to [K-SB88] and to [Vieh95] for a theory of compactified moduli
spaces of surfaces of general type. We would only like to mention that the
theory describes certain classes of singular surfaces which are allowed, hence
a certain open set in the Hilbert scheme H.

One important question is, however, which degenerations of smooth sur-
faces do not change the canonical symplectomorphism class. In other words,
which surgeries do not affect the canonical symplectic structure.

A positive result is the following theorem, which is used in order to show
that the Manetti surfaces are canonically symplectomorphic (cf. [Cat06])

Theorem 4.9 Let X ⊂ P
N × ∆ and X ′ ⊂ P

N × ∆′ be two flat families of
normal surfaces over the disc of radius 2 in C.

Denote by π : X → ∆ and by π′ : X ′ → ∆ the respective projections and
make the following assumptions on the respective fibres of π, π′:

(1) the central fibres X0 and X ′
0 are surfaces with cyclic quotient singu-

larities and the two flat families yield Q-Gorenstein smoothings of them.
(2) the other fibres Xt, X ′

t, for t, t′ �= 0 are smooth.
Assume moreover that
(3) the central fibres X0 and X ′

0 are projectively equivalent to respective
fibres (X0

∼= Y0 and X ′
0
∼= Y1) of an equisingular projective family Y ⊂ P

N×∆
of surfaces.

Set X := X1, X ′ := X ′
1: then

(a) X and X ′ are diffeomorphic
(b) if FS denotes the symplectic form inherited from the Fubini-Study

Kähler metric on P
N , then the symplectic manifolds (X,FS) and (X ′, FS)

are symplectomorphic.

The proof of the above is based on quite similar ideas to those of the proof
of Theorem 4.6.

Remark 4.10 Theorem4.9 holds more generally for varieties of higher di-
mension with isolated singularities under the assumption that, for each singu-
lar point x0 of X0, letting y0(t) be the corresponding singularity of Yt

(i) (X0, x0) ∼= (Yt, y0(t))
(ii) the two smoothings X ,X ′, correspond to paths in the same irreducible

component of Def(X0, x0).

5 Lecture 4: Irrational Pencils, Orbifold Fundamental
Groups, and Surfaces Isogenous to a Product

In the previous lecture we considered the possible deformations and mild de-
generations of surfaces of general type. In this lecture we want to consider a
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very explicit class of surfaces (and higher dimensional varieties), those which
admit an unramified covering which is a product of curves (and are said to
be isogenous to a product). For these one can reduce the description of the
moduli space to the description of certain moduli spaces of curves with auto-
morphisms.

Some of these varieties are rigid, i.e., they admit no nontrivial deforma-
tions; in any case these surfaces S have the weak rigidity property that any
surface homeomorphic to them is deformation equivalent either to S or to the
conjugate surface S̄.

Moreover, it is quite interesting to see which is the action of complex
conjugation on the moduli space: it turns out that it interchanges often two
distinct connected components. In other words,there are surfaces such that
the complex conjugate surface is not deformation equivalent to the surface
itself (this phenomenon has been observed by several authors independently,
cf. [F-M94] Theorem 7.16 and Corollary 7.17 on p. 208, completed in [Fried05]
for elliptic surfaces, cf. [KK02,Cat03,BCG05] for the case of surfaces of general
type). However, in this case we obtained surfaces which are diffeomorphic to
each other, but only through a diffeomorphism not preserving the canonical
class.

Other reasons to include these examples are not only their simplicity and
beauty, but also the fact that these surfaces lend themself quite naturally to
reveal the action of the Galois group Gal(Q, Q) on moduli spaces.

In the next section we shall recall some basic results on fibred surfaces
which are used to treat the class of surfaces isogenous to a product.

5.1 Theorem of Castelnuovo–De Franchis, Irrational Pencils
and the Orbifold Fundamental Group

We recall some classical and some new results (see [Cat91] and [Cat03b] for
more references)

Theorem 5.1 (Castelnuovo–de Franchis) Let X be a compact Kähler
manifold and U ⊂ H0(X,Ω1

X) be an isotropic subspace (for the wedge prod-
uct) of dimension ≥ 2. Then there exists a fibration f : X → B, where B is
a curve, such that U ⊂ f∗(H0(B,Ω1

B)) (in particular, the genus g(B) of B is
at least 2).

Idea of proof
Let ω1, ω2 be two C-linearly independent 1-forms ∈ H0(X,Ω1

X) such that
ω1 ∧ ω2 ≡ 0. Then their ratio defines a nonconstant meromorphic function F
with ω1 = Fω2.

After resolving the indeterminacy of the meromorphic map F : X ��� P
1

we get a morphism F̃ : X̃ → P
1 which does not need to have connected fibres,

so we let f : X̃ → B be its Stein factorization.
Since holomorphic forms are closed, 0 = dω1 = dF ∧ ω2 and the forms ωj

restrict to zero on the fibres of f . A small ramification calculation shows then
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that the two forms ωj are pull back of holomorphic one forms on B, whence
B has genus at least two. Since every map of P

1 → B is constant, we see that
f is indeed holomorphic on X itself. �	

Definition 5.2 Such a fibration f as above is called an irrational pencil.

Using Hodge theory and the Künneth formula, the Castelnuovo–de
Franchis theorem implies (see [Cat91]) the following

Theorem 5.3 (Isotropic subspace theorem). (1) Let X be a compact Kähler
manifold and U ⊂ H1(X, C) be an isotropic subspace of dimension ≥ 2. Then
there exists an irrational pencil f : X → B, such that U ⊂ f∗(H1(B, C)).

(2) There is a 1-1 correspondence between irrational pencils f : X → B,
g(B) = b ≥ 2, and subspaces V = U ⊕ Ū , where U is maximal isotropic of
dimension b.

Proof.
(1) Using the fact that H1(X, C) = H0(X,Ω1

X) ⊕H0(X,Ω1
X) we write a

basis of U as (φ1 = ω1 + η1, . . . , φb = ωb + ηb).
Since again Hodge theory gives us the direct sum

H2(X, C) = H0(X,Ω2
X)⊕H1(X,Ω1

X)⊕H0(X,Ω2
X)

the isotropicity condition φi ∧ φj = 0 ∈ H2(X, C) reads:

ωi ∧ ωj ≡ 0, ηi ∧ ηj ≡ 0, ωi ∧ ηj + ηi ∧ ωj ≡ 0, ∀i, j.

The first two identities show that we are done if one can apply the theorem
of Castelnuovo–de Franchis to the ωj ’s, respectively to the ηj ’s , obtaining
two irrational pencils f : X → B, f ′ : X → B′. In fact, if the image of
f ×f ′ : X → B×B′ is a curve, then the main assertion is proven. Else, f ×f ′

is surjective and the pull back f∗ is injective. But then ωi ∧ ηj + ηi ∧ ωj ≡ 0
contradicts the Künneth formula.

Hence, there is only one case left to consider, namely that, say, all the
ωj ’s are C-linearly dependent. Then we may assume ωj ≡ 0, ∀ j ≥ 2 and the
above equation yields ω1 ∧ ηj = 0, ∀j ≥ 2. But then ω1 ∧ ηj ≡ 0, since if ξ is
the Kähler form, |ω1 ∧ ηj |2 =

∫
X

ω1 ∧ ηj ∧ ω1 ∧ ηj ∧ ξn−2 = 0.
(2) Follows easily from (1) as follows.
The correspondence is given by f �→ V := f∗(H1(B, C)).
In fact, since f : X → B is a continuous map which induces a surjection

of fundamental groups, then the algebra homomorphism f∗ is injective when
restricted to H1(B, C) (this statement follows also without the Kähler hy-
pothesis) and f∗(H1(B, C)) ⊂ H1(X, C) contains many isotropic subspaces
U of dimension b with U ⊕ Ū = f∗(H1(B, C)). If such subspace U is not
maximal isotropic, then it is contained in U ′, which determines an irrational
pencil f ′ to a curve B′ of genus > b, and f factors through f ′ in view of the
fact that every curve of positive genus is embedded in its Jacobian. But this
contradicts the fact that f has connected fibres. �	
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To give an idea of the power of the above result, let us show how the
following result due to Gromov ([Grom89], see also [Cat94] for details) follows
as a simple consequence

Corollary 5.4 Let X be a compact Kähler manifold and assume we have a
surjective morphism π1(X) → Γ , where Γ has a presentation with n gener-
ators, m relations, and with n − m ≥ 2. Then there is an irrational pencil
f : X → B, such that 2g(B) ≥ n−m and H1(Γ, C) ⊂ f∗(H1(B, C).

Proof. By the argument we gave in (2) above, H1(Γ, C) injects into H1(X, C)
and we claim that each vector v in H1(Γ, C) is contained in a nontrivial
isotropic subspace. This follows because the classifying space Y := K(Γ, 1)
is obtained by attaching n 1-cells, m 2-cells, and then only cells of higher
dimension. Hence h2(Γ, Q) = h2(Y, Q) ≤ m, and w → w ∧ v has a kernel of
dimension ≥ 2 on H1(Γ, C). The surjection π1(X)→ Γ induces a continuous
map F : X → Y , and each vector in the pull back of H1(Γ, C) is contained
in a nontrivial maximal isotropic subspace, thus, by (2) above , in a subspace
V := f∗(H1(B, C)) for a suitable irrational pencil f . Now, the corresponding
subspaces V are defined over Q and H1(Γ, C) is contained in their union.
Hence, by Baire’s theorem, H1(Γ, C) is contained in one of them. �	

In particular, Gromov’s theorem applies to a surjection π1(X) → Πg,
where g ≥ 2, and Πg is the fundamental group of a compact complex curve of
genus g. But in general the genus b of the target curve B will not be equal to
g, and we would like to detect b directly from the fundamental group π1(X).
For this reason (and for others) we need to recall a concept introduced by
Deligne and Mostow ([D-M93], see also [Cat00]) in order to extend to higher
dimensions some standard arguments about Fuchsian groups.

Definition 5.5 Let Y be a normal complex space and let D be a closed ana-
lytic set. Let D1, . . . , Dr be the divisorial (codimension 1) irreducible compo-
nents of D, and attach to each Dj a positive integer mj > 1.

Then the orbifold fundamental group πorb
1 (Y \D, (m1, . . .mr)) is defined

as the quotient of π1(Y \(D1 ∪ · · · ∪ Dr) by the subgroup normally generated
by the {γm1

1 , . . . , γmr
r }, where γi is a simple geometric loop around the divisor

Di (this means, γi is the conjugate via a simple path δ of a local loop γ which,
in a local coordinate chart where Y is smooth and Di = {(z)|z1 = 0}, is given
by γ(θ) := (exp(2πiθ), 0, . . . 0), ∀θ ∈ [0, 1].

We observe in fact that another choice for γi gives a conjugate element,
so the group is well defined.

Example 5.6 Let Y = C, D = {0}: then πorb
1 (C\{0},m) ∼= Z/m and its

subgroups correspond to the subgroups H ⊂ Z such that H ⊃ mZ, i.e., H =
dZ, where d divides m.

The above example fully illustrates the meaning of the orbifold fundamen-
tal group, once we use once more the well known theorem of Grauert and
Remmert [GR58]
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Remark 5.7 There is a bijection between

Monodromies µ : πorb
1 (Y \D, (m1, . . .mr))→ S(M)

and normal locally finite coverings f : X → Y , with general fibre ∼= M , and
such that for each component Ri of f−1(Di) the ramification index divides mi.

We have moreover (see [Cat00]) the following

Proposition 5.8 Let X be a complex manifold, and G a group of holomorphic
automorphisms of X, acting properly discontinuously. Let D be the branch
locus of π : X → Y := X/G, and for each divisorial component Di of D let
mi be the branching index. Then we have an exact sequence

1→ π1(X)→ πorb
1 (Y \D, (m1, . . .mr))→ G→ 1.

Remark 5.9 (I) In order to extend the above result to the case where X is
only normal (then Y := X/G is again normal), it suffices to define the orbifold
fundamental group of a normal variety X as

πorb
1 (X) := π1(X\Sing(X)).

(II) Taking the monodromy action of πorb
1 (Y \D, (m1, . . .mr)) acting

on itself by translations, we see that there exists a universal orbifold cov-
ering space (Y \D, (m1, . . .mr)) with a properly discontinuous action of
πorb

1 (Y \D, (m1, . . .mr)) having Y as quotient, and the prescribed ramifi-
cation.

(III) Obviously the universal orbifold covering space (Y \D, (m1, . . .mr))
is (connected and) simply connected.

Example 5.10 (a) Let Y be a compact complex curve of genus g, D =
{p1, . . . pr}: then Γ := πorb

1 (Y \{p1, . . . pr}, (m1, . . .mr)) has a presentation

Γ :=< γ1, . . . , γr, α1, β1, . . . αg, βg|γ1 · · · · · γr ·
g∏

i=1

[αi, βi] = 1, γmj

j = 1 >

(b) Γ acts on a simply connected complex curve Σ, with Σ/Γ ∼= Y . By
the uniformization theorem Σ ∼= P

1 iff Σ is compact, i.e., iff Γ is finite (then
Y ∼= P

1). If instead Γ is infinite, then there is a finite index subgroup Γ ′

acting freely on Σ. Then correspondingly we obtain C ′ := Σ/Γ ′ → Y a finite
covering with prescribed ramification mi at each point pi.

Example 5.11 Triangle groups We let Y = P
1, r = 3, without loss of

generality D = {∞, 0, 1}. Then the orbifold fundamental group in this case
reduces to the previously defined triangle group T (m1,m2,m3) which has a
presentation

T (m1,m2,m3) :=< γ1, γ2, γ3|γ1 · γ2 · γ3 = 1, γm1
1 = 1, γm2

2 = 1, γm3
3 = 1 > .
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The triangle group is said to be of elliptic type iff Σ ∼= P
1, of parabolic

type iff Σ ∼= C, of hyperbolic type iff Σ ∼= H := {τ |Im(τ) > 0}.
It is classical (and we have already seen the first alternative as a conse-

quence of Hurwitz’ formula in lecture 2) that the three alternatives occur

• Elliptic ⇔
∑

i
1

mi
> 1 ⇔ (2,2,n) or (2,3,n) (n = 3, 4, 5)

• Parabolic ⇔
∑

i
1

mi
= 1 ⇔ (3,3,3) or (2,3,6) or (2,4,4)

• Hyperbolic ⇔
∑

i
1

mi
< 1

We restrict here to the condition 1 < mi <∞, else for instance there is also
the parabolic case (2, 2,∞), where the uniformizing function is cos : C→ P

1
C
.

The group T (m1,m2,m3), which was described for the elliptic case in lec-
ture 2, is in the parabolic case a semidirect product of the period lattice Λ of
an elliptic curve by its group µn of linear automorphisms

• (3,3,3) : Λ = Z⊕ ζ3Z, ζ3 a generator of µ3

• (2,3,6) : Λ = Z⊕ ζ3Z, −ζ3 a generator of µ6

• (2,4,4) : Λ = Z⊕ iZ, i a generator of µ4.

There is a good reason to call the above ‘triangle groups’. Look in fact at
the ramified covering f : Σ → P

1, branched in {∞, 0, 1}. Complex conjugation
on P

1 lifts to the covering, as we shall see later in more detail. Consider then
a connected component ∆ of f−1(H). We claim that it is a triangle (in the
corresponding geometry: elliptic, resp. Euclidean, respective hyperbolic) with
angles π/m1, π/m2, π/m3.

In fact, take a lift of complex conjugation which is the identity on one of
the three sides of ∆: then it follows that this side is contained in the fixed
locus of an antiholomorphic automorphism of Σ, and the assertion follows
then easily.

In terms of this triangle (which is unique up to automorphisms of Σ
in the elliptic and hyperbolic case) it turns out that the three generators of
T (m1,m2,m3) are just rotations around the vertices of the triangle, while the
triangle group T (m1,m2,m3) sits as a subgroup of index 2 inside the group
generated by the reflections on the sides of the triangle.

Let us leave for the moment aside the above concepts, which will be of
the utmost importance in the forthcoming sections, and let us return to the
irrational pencils.

Definition 5.12 Let X be a compact Kähler manifold and assume we have
a pencil f : X → B. Assume that t1, . . . tr are the points of B whose fibres
Fi := f−1(ti) are the multiple fibres of f . Denote by mi the multiplicity of Fi,
i.e., the G.C.D. of the multiplicities of the irreducible components of Fi. Then
the orbifold fundamental group of the fibration π1(f) := π1(b,m1, . . .mr) is
defined as the quotient of π1(B\{t1, . . . tr}) by the subgroup normally generated
by the γmi

i ’s, where γi is a geometric loop around ti.
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The orbifold fundamental group is said to be of hyperbolic type if the
corresponding universal orbifold (ramified) covering of B is the upper half
plane.

The orbifold fundamental group of a fibration is a natural object in view
of the following result (see [CKO03,Cat03b])

Proposition 5.13 Given a fibration f : X → B of a compact Kähler mani-
fold onto a compact complex curve B, we have the orbifold fundamental group
exact sequence π1(F )→ π1(X)→ π1(b,m1, . . .mr)→ 0, where F is a smooth
fibre of f .

The previous exact sequence leads to following result, which is a small
generalization of Theorem 4.3. of [Cat03b] and a variant of several other results
concerning fibrations onto curves (see [Cat00,Cat03b]), valid more generally
for quasi-projective varieties (in this case the starting point is the closedness
of logarithmic forms, proven by Deligne in [Del70], which is used in order to
obtain extensions of the theorem of Castelnuovo and De Franchis to the non
complete case, see [Bau97,Ara97]).

Theorem 5.14 Let X be a compact Kähler manifold and let (b,m1, . . .mr)
be a hyperbolic type. Then there is a bijection between pencils f : X → B of
type (b,m1, . . .mr) and epimorphisms π1(X)→ π1(b,m1, . . .mr) with finitely
generated kernel.

Proof. One direction follows right away from proposition 5.13, so assume that
we are given such an epimorphism. Since π1(b,m1, . . .mr) is of hyperbolic
type, it contains a normal subgroup H of finite index which is isomorphic to
a fundamental group Πg of a compact curve of genus g ≥ 2.

Let H ′ be the pull back of H in π1(X) under the given surjection,
and let X ′ → X the corresponding Galois cover, with Galois group G ∼=
π1(b,m1, . . .mr)/H.

By the isotropic subspace theorem, there is an irrational pencil f ′ :
X ′ → C, where the genus of C is at least g, corresponding to the surjec-
tion ψ : π1(X ′) = H ′ → H ∼= Πg. The group G acts on X ′ leaving the
associated cohomology subspace (f ′∗(H1(C, C)) invariant, whence G acts on
C preserving the fibration, and we get a fibration f : X → B := C/G.

By Theorem 4.3 of [Cat03b], since the kernel of ψ is finitely generated, it
follows that ψ = f ′

∗ : π1(X ′) → Πg = π1(C). G operates freely on X ′ and
effectively on C: indeed G acts nontrivially on Πg by conjugation, since a
hyperbolic group has trivial centre. Thus we get an action of π1(b,m1, . . .mr)
on the upper half plane H whose quotient equals C/G := B, which has genus b.

We use now again a result from Theorem 4.3 of [Cat03b], namely, that f ′

has no multiple fibres. Since the projection C → B is branched in r points
with ramification indices equal to (m1, . . .mr), it follows immediately that the
orbifold fundamental group of f is isomorphic to π1(b,m1, . . .mr). �	
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Remark 5.15 The crucial property of Fuchsian groups which is used in
[Cat03b] is the so called NINF property, i.e., that every normal nontrivial
subgroup of infinite index is not finitely generated. From this property follows
that, given a fibration f : X ′ → C, the kernel of f∗ : π1(X ′) → π1(C) is
finitely generated (in the hyperbolic case) if and only if there are no multiple
fibres.

5.2 Varieties Isogenous to a Product

Definition 5.16 A complex algebraic variety X of dimension n is said to be
isogenous to a higher product if and only if there is a finite étale cover C1 ×
. . . Cn → X, where C1, . . . , Cn are compact Riemann surfaces of respective
genera gi := g(Ci) ≥ 2.

In fact, X is isogenous to a higher product if and only if there is a finite étale
Galois cover of X isomorphic to a product of curves of genera at least two, ie.,
X ∼= (C1 × . . . Cn)/G, where G is a finite group acting freely on C1 × . . . Cn.

Moreover, one can prove that there exists a unique minimal such Galois
realization X ∼= (C1 × . . . Cn)/G (see [Cat00]).

In proving this plays a key role a slightly more general fact:

Remark 5.17 The universal covering of a product of curves C1 × . . . Cn of
hyperbolic type as above is the polydisk H

n.
The group of automorphisms of H

n is a semidirect product of the normal
subgroup Aut(H)n by the symmetric group Sn (cf. [Ves84] VIII, 1 pages 236–
238). This result is a consequence of three basic facts:

(i) Using the subgroup Aut(H)n we may reduce to consider only automor-
phisms which leave the origin invariant

(ii) We use the Hurwitz trick to show that the tangent representation is
faithful: if g(z) = z + Fm(z) + . . . is the Taylor development at the origin
and with mth order term Fm(z) �= 0, then for the rth iterate of g we get
z → z + rFm(z) + . . . , contradicting the Cauchy inequality for the rth iterate
when r � 0

(iii) Using the circular invariance of the domain (z → λz, |λ| = 1), one
sees that the automorphisms which leave the origin invariant are linear, since,
if g(0) = 0, then g(z) and λ−1g(λz) have the same derivative at the origin,
whence by ii) they are equal

A fortiori, the group of automorphisms of such a product, Aut(C1×. . . Cn)
has as normal subgroup Aut(C1) × . . . Aut(Cn), and with quotient group a
subgroup of Sn.

The above remark leads to the following

Definition 5.18 A variety isogenous to a product is said to be unmixed if in
its minimal realization G ⊂ Aut(C1) × . . . Aut(Cn). If n = 2, the condition
of minimality is equivalent to requiring that G → Aut(Ci) is injective for
i = 1, 2.
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The characterization of varieties X isogenous to a (higher) product be-
comes simpler in the surface case. Hence, assume in the following X = S to
be a surface: then

Theorem 5.19 (see [Cat00]). (a) A projective smooth surface is isogenous
to a higher product if and only if the following two conditions are satisfied:

(1) there is an exact sequence

1→ Πg1 ×Πg2 → π = π1(S)→ G→ 1,

where G is a finite group and where Πgi
denotes the fundamental group of a

compact curve of genus gi ≥ 2;
(2) e(S)(= c2(S)) = 4

|G| (g1 − 1)(g2 − 1).
(b) Any surface X with the same topological Euler number and the same fun-
damental group as S is diffeomorphic to S. The corresponding subset of the
moduli space, M

top
S = M

diff
S , corresponding to surfaces orientedly homeomor-

phic, resp. orientedly diffeomorphic to S, is either irreducible and connected
or it contains two connected components which are exchanged by complex con-
jugation.

In particular, if X is orientedly diffeomorphic to S, then X is deformation
equivalent to S or to S̄.

Sketch of the Proof.
The necessity of conditions (1) and (2) of (a) is clear, since there is an

étale Galois cover of S which is a product, and then e(S) · |G| = e(C1×C2) =
e(C1) · e(C2) = 4(g1 − 1)(g2 − 1).

Conversely, take the étale Galois cover S′ of S with group G corresponding
to the exact sequence (1). We need to show that S′ is isomorphic to a product.

By Theorem 5.14 the two projections of the direct product Πg1×Πg2 yield
two holomorphic maps to curves of respective genera g1, g2, hence we get a
holomorphic map F : S′ → C1 × C2, such that fj := pj ◦ F : S′ → Cj is a
fibration. Let h2 be the genus of the fibres of f1: then since Πg2 is a quotient
of the fundamental group of the fibre, it follows right away that h2 ≥ g2.

We use then the classical (cf. [BPV84], Proposition 11.4, page 97).
Theorem of Zeuthen-Segre Let f : S → B be a fibration of an algebraic

surface onto a curve of genus b, with fibres of genus g: then

e(S) ≥ 4(g − 1)(b− 1),

equality holding iff all the fibres are smooth, or , if g = 1, all the fibres are
multiple of smooth curves.

Hence e(S) ≥ 4(g1 − 1)(h2 − 1) ≥ (g1 − 1)(g2 − 1) = e(S), equality holds,
h2 = g2, all the fibres are smooth and F is then an isomorphism.

Part (b): we consider first the unmixed case. This means that the group G
does not mix the two factors, whence the individual subgroups Πgi

are normal
in π1(S), and moding out by the second of them one gets the exact sequence

1→ Πg1 → π1(S)/Πg2 → G→ 1,
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which is easily seen to be the orbifold exact sequence for the quotient map
C1 → C1/G. This immediately shows that the differentiable structure of the
action of G on the product C1×C2 is determined, hence also the differentiable
structure of the quotient S is determined by the exact sequence (1) in 5.19.

We have now to choose complex structures on the respective manifolds Ci,
which make the action of G holomorphic. Note that the choice of a complex
structure implies the choice of an orientation, and that once we have fixed the
isomorphism of the fundamental group of Ci with Πgi

and we have chosen
an orientation (one of the two generators of H2(Πgi

, Z)) we have a marked
Riemann surface. Then the theory of Teichmüller spaces shows that the space
of complex structures on a marked Riemann surface of genus g ≥ 2 is a com-
plex manifold Tg of dimension 3(g − 1) diffeomorphic to a ball. The finite
group G, whose differentiable action is specified, acts on Tg, and the fixed
point set equals the set of complex structures for which the action is holo-
morphic. The result follows then from Proposition 4.13 of [Cat00], which is a
slight generalization of one of the solutions [Tro96] of the Nielsen realization
problem.

Proposition 5.20 (Connectivity of Nielsen realization) Given a dif-
ferentiable action of a finite group G on a fixed oriented and marked Riemann
surface of genus g, the fixed locus Fix(G) of G on Tg is non empty, connected
and indeed diffeomorphic to an euclidean space.

Let us first explain why the above proposition implies part (b) of the
theorem (in the unmixed case). Because the moduli space of such surfaces
is then the image of a surjective holomorphic map from the union of two
connected complex manifolds. We get two such manifolds because of the choice
of orientations on both factors which together must give the fixed orientation
on our algebraic surface. Now, if we change the choice of orientations, the only
admissible choice is the one of reversing orientations on both factors, which
is exactly the result of complex conjugation.

Idea of proof Let us now comment on the underlying idea for the above
proposition: as already said, Teichmüller space Tg is diffeomorphic to an
Euclidean space of dimension 6g − 6, and admits a Riemannian metric, the
Weil-Petersson metric, concerning which Wolpert and Tromba proved the ex-
istence of a C2-function f on Tg which is proper, G-invariant, non negative
(f ≥ 0), and finally such that f is strictly convex for the given metric (i.e.,
strictly convex along the W-P geodesics).

Recall that, G being a finite group, its action can be linearized at the fixed
points, in particular Fix(G) is a smooth submanifold.

The idea is to use Morse theory for the function f which is strictly convex,
and proper, thus it always has a minimum when restricted to a submanifold
of Tg

(1) There is a unique critical point xo for f on Tg, which is an absolute
minimum on Tg (thus Tg is diffeomorphic to an euclidean space).
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(2) If we are given a connected component M of Fix(G), then a critical point
yo for the restriction of f to M is also a critical point for f on Tg: in fact
f is G invariant, thus df vanishes on the normal space to M at yo.

(3) Thus every connected component M of Fix(G) contains xo, and, Fix(G)
being smooth, it is connected. Fix(G) is nonempty since x0, being the
unique minimum, belongs to Fix(G).

(4) Since f is strictly convex, and proper on Fix(G), then by Morse theory
Fix(G) is diffeomorphic to an euclidean space.

�	
In the mixed case there is a subgroup Go of index 2 consisting of transfor-

mations which do not mix the two factors, and a corresponding subgroup πo

of π = π1(S) of index 2, corresponding to an étale double cover S′ yielding
a surface of unmixed type. By the first part of the proof, it will suffice to
show that, once we have found a lifting isomorphism of πo with a subgroup
Γ o of Aut(H)×Aut(H), then the lifting isomorphism of π with a subgroup Γ
of Aut(H×H) is uniquely determined.

The transformations of Γ o are of the form (x, y)→ (γ1(x), γ2(y)). Pick any
transformation in Γ\Γ o: it will be a transformation of the form (a(y), b(x)).
Since it normalizes Γ o, for each δ ∈ Γ o there is γ ∈ Γ o such that

aγ2 = δ1a, bγ1 = δ2b.

We claim that a, b are uniquely determined. For instance, if a′ would also
satisfy a′γ2 = δ1a

′, we would obtain

a′a−1 = δ1(a′a−1)δ−1
1 .

This would hold in particular for every δ1 ∈ Πg1 , but since only the identity
centralizes such a Fuchsian group, we conclude that a′ = a.

Remark 5.21 A completely similar result holds in higher dimension, but the
Zeuthen-Segre theorem allows an easier formulation in dimension two.

One can moreover weaken the hypothesis on the fundamental group, see
Theorem B of [Cat00].

5.3 Complex Conjugation and Real Structures

The interest of Theorem 5.19 lies in its constructive aspect.
Theorem 5.19 shows that in order to construct a whole connected compo-

nent of the moduli space of surfaces of general type, given by surfaces isoge-
nous to a product, it suffices, in the unmixed type, to provide the following
data:

(i) A finite group G
(ii) Two orbifold fundamental groups A1 := π1(b1,m1, . . .mr), A2 := π1

(b2, n1, . . . nh)
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(iii) Respective surjections ρ1 : A1 → G, ρ2 : A2 → G such that
(iv) If we denote by Σi the image under ρi of the conjugates of the powers of

the generators of Ai of finite order, then

Σ1 ∩Σ2 = {1G}

(v) Each surjection ρi is order preserving, in the sense for instance that a
generator of A1 := π1(b1,m1, . . .mr) of finite order mi has as image an
element of the same order mi.

In fact, if we take a curve C ′
1 of genus b1, and r points on it, to ρ1 corre-

sponds a Galois covering Ci → C ′
i with group G, and the elements of G which

have a fixed point on Ci are exactly the elements of Σi. Therefore we have a
diagonal action of G on C1×C2 (i.e., such that g(x, y) = (ρ1(g)(x), ρ2(g)(y)),
and condition iv) is exactly the condition that G acts freely on C1 × C2.

There is some arbitrariness in the above choice, namely, in the choice of the
isomorphism of the respective orbifold fundamental groups with A1, A2, and
moreover one can compose each ρi simultaneously with the same automor-
phism of G (i.e., changing G up to isomorphism). Condition (v) is technical,
but important in order to calculate the genus of the respective curves Ci.

In order to pass to the complex conjugate surface (this is an important
issue in Theorem 5.19), it is clear that we take the conjugate curve of each C ′

i,
and the conjugate points of the branch points, but we have to be more careful
in looking at what happens with the homomorphisms ρi.

For this reason, it is worthwhile to recall some basic facts about complex
conjugate structures and real structures.

Definition 5.22 Let X be an almost complex manifold, i.e., the pair of a dif-
ferentiable manifold M and an almost complex structure J : then the complex
conjugate almost complex manifold X̄ is given by the pair (M,−J). Assume
now that X is a complex manifold, i.e., that the almost complex structure is
integrable. Then the same occurs for −J , because, if χ : U → C

n is a local
chart for X, then χ : U → C

n is a local chart for X̄.
In the case where X is a projective variety X ⊂ P

N , then we easily see that
X̄ equals σ(X), where σ : P

N → P
N is given by complex conjugation, and the

homogeneous ideal of X̄ = σ(X) is the complex conjugate of the homogeneous
ideal IX of X, namely:

IX̄ = {P ∈ C[z0, . . . zN ]|P (z̄) ∈ IX}.

Definition 5.23 Given complex manifolds X,Y let φ : X → Ȳ be a holo-
morphic map. Then the same map of differentiable manifolds defines an an-
tiholomorphic map φ̄ : X → Y (also, equivalently, an antiholomorphic map
φ̄∗∗ : X̄ → Ȳ ).

A map φ : X → Y is said to be dianalytic if it is either holomorphic or
antiholomorphic. φ determines also a dianalytic map φ∗∗ : X̄ → Ȳ which is
holomorphic iff φ is holomorphic.
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The reason to distinguish between the maps φ, φ̄ and φ̄∗∗ in the above
definition lies in the fact that maps between manifolds are expressed locally as
maps in local coordinates, so in these terms φ̄(x) is indeed the antiholomorphic
function φ(x), while φ̄∗∗(x) = φ(x̄).

With this setup notation, we can further proceed to define the concept of
a real structure on a complex manifold.

Definition 5.24 Let X be a complex manifold.
(1) The Klein Group of X, denoted by Kl(X) or by Dian(X), is the group

of dianalytic automorphisms of X.
(2) A real structure on X is an antiholomorphic automorphism σ : X → X

such that σ2 = IdX .

Remark 5.25 We have a sequence

0→ Bihol(X) := Aut(X)→ Dian(X) := Kl(X)→ Z/2→ 0

which is exact if and only if X is biholomorphic to X̄, and splits if and only
if X admits a real structure.

Example 5.26 Consider the anharmonic elliptic curve corresponding to the
Gaussian integers: X := C/(Z⊕ iZ).

Obviously X is real, since z → z̄ is an antiholomorphic involution.
But there are infinitely many other real structures, since if we take an

antiholomorphism σ we can write σ(z) = ir z̄ + µ, µ = a + ib, with a, b ∈ R/Z

and the condition σ(σ(z)) ≡ z(mod Z⊕ iZ) is equivalent to

irµ̄ + µ = n + im, n,m ∈ Z⇔ a + ib + ira− ir+1b = n + im

and has the following solutions:

• r = 0, a ∈ {0, 1/2}, b arbitrary
• r = 1, a = −b arbitrary
• r = 2, a arbitrary, b ∈ {0, 1/2}
• r = 3, a = b arbitrary.

In the above example the group of biholomorphisms is infinite, and we
have an infinite number of real structures, but many of these are isomorphic,
as the number of isomorphism classes of real structures is equal to the number
of conjugacy classes (for Aut(X)) of such splitting involutions.

For instance, in the genus 0 case, there are only two conjugacy classes of
real structures on P

1
C
:

σ(z) = z̄, σ(z) = −1
z
.

They are obviously distinguished by the fact that in the first case the set
of real points X(R) = Fix(σ) equals P

1
R
, while in the second case we have an

empty set. The sign is important, because the real structure σ(z) = 1
z , which
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has {z||z| = 1} as set of real points, is conjugated to the first. Geometrically, in
the first case we have the circle of radius 1, {(x, y, z) ∈ P

2
C
|x2+y2+z2 = 1}, in

the second the imaginary circle of radius−1, {(x, y, z) ∈ P
2
C
|x2+y2+z2 = −1}.

It is clear from the above discussion that there can be curves C which are
isomorphic to their conjugate, yet do not need to be real: this fact was discov-
ered by C. Earle, and shows that the set of real curves is only a semialgebraic
set of the complex moduli space, because it does not coincide with the set
Mg(R) of real points of Mg.

We want now to give some further easy example of this situation.
We observe preliminarily that C is isomorphic to C̄ if and only in there

is a finite group G of automorphisms such that C/G has a real structure
which lifts to an antiholomorphism of C (in fact, if C ∼= C̄ it suffices to take
Aut(C) = G if g(C) ≥ 2).

We shall denote this situation by saying that the covering C → C/G is
real.

Definition 5.27 We shall say that the covering C → C/G is an n-angle
covering if C/G ∼= P

1 and the branch points set consists of n points.
We shall say that C is an n-angle curve if C → C/Aut(C) is an n-angle

covering.

Remark 5.28 (a) Triangle coverings furnish an example of a moduli space
(C,G), of the type discussed above, which consists of a single point.

(b) If C → C/G is an n-angle covering with n odd, then the induced real
structure on C/G ∼= P

1 has a non empty set of real points (the branch locus
B is indeed invariant), thus we may assume it to be the standard complex
conjugation z �→ z̄.

Example 5.29 We construct here examples of families of real quadrangle
covers C → C/G such that (C/G)(R) = ∅, and such that, for a general curve
in the family, G = Aut(C), and the curve C is not real. The induced real
structure on C/G ∼= P

1 is then σ(z) = − 1
z , and the quotient (C/G)/σ ∼= P

2
R
.

We choose then as branch set B ⊂ P
1
C

the set {∞, 0, w,− 1
w}, and denote

by 0, u the corresponding image points in P
2
R
.

Observe now that

π1(P2
R\{0, u}) = 〈a, b, x|ab = x2〉 ∼= 〈a, x〉

and the étale double covering P
1
C
→ P

2
R

corresponds to the quotient obtained
by setting a = b = 1, thus π1(P1

C
\B) is the free group of rank 3

π1(P1
C\B) = 〈a, x2, x−1ax〉 ∼= 〈a, b, a′ := x−1ax, b′ := x−1bx|ab = a′b′〉.

We let G′ be the group (Z/2n) ⊕ (Z/m), and let C be the Galois cover
of P

2
R

branched in {0, u} corresponding to the epimorphisms such that x �→
(1, 0), a �→ (0, 1). It follows that C is a 4-angle covering with group G ∼=
(2Z/2nZ)⊕ (Z/mZ). It is straightforward to verify the following
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Claim: G′ contains no antiholomorphism of order 2, if n is even.
Thus it follows that C is not real, provided that G = Aut(C). To simplify

things, let n = 4,m = 2. By Hurwitz’ formula C has genus 3, and 8 = |G| =
4(g−1). Assume that Aut(C) �= G. If G has index 2, then we get an involution
on P

1 preserving the branch set B. But the cross-ratio of the four points equals
exactly − 1

|w|2 , and this is not anharmonic for w general (i.e., �= 2,−1, 1/2). If
instead C → C/Aut(C) is a triangle curve, then we get only a finite number
of curves, and again a finite set of values of w, which we can exclude.

Now, since |Aut(C)| > 8(g− 1), if C → C/Aut(C) is not a triangle curve,
then the only possibility, by the Hurwitz’ formula, is that we have a quadrangle
cover with branching indices (2, 2, 2, 3). But this is absurd, since a ramification
point of order 4 for C → C/G must have a higher order of ramification for
the map C → C/Aut(C).

There is however one important special case when a curve isomorphic to
its conjugate must be real, we have namely the following

Proposition 5.30 Let C → C/G be a triangle cover which is real and has
distinct branching indices (m1 < m2 < m3) : then C is real (i.e., C has a real
structure).

Proof. Let σ be the real structure on C/G ∼= P
1. The three branch points

of the covering must be left fixed by σ, since the branching indices are distinct
(observe that µ(σ∗γi) is conjugate to µ(γi), whence it has the same order).
Thus, without loss of generality we may assume that the three branch points
are real, and indeed equal to {0, 1,∞}, while σ(z) = z̄.

Choose 2 as base point, and a basis of the fundamental group as in Fig. 4:

π1(P1\{0, 1,∞}, 2) = 〈α, β, γ|αβγ = 1〉, σ∗α = α−1, σ∗γ = γ−1.

Now, σ lifts if and only if the monodromy µ of the G-covering is equivalent
to the one of µ ◦σ∗ by an inner automorphism Int(φ) of the symmetric group
which yields a group automorphism ψ : G→ G. Set a := µ(α), b := µ(β). Then
these two elements generate G, and since ψ(a) = a−1, ψ(b) = b−1 it follows
that ψ has order 2, as well as the corresponding covering transformation. We
have shown the existence of the desired real structure. �	

�

0
�

1
�

2
�

∞
�
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��

�� � �<

β
��

��<
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Fig. 4. The loops α and β
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We shall now give a simple example of a nonreal triangle cover, based on
the following

Lemma 5.31 Let G be the symmetric group Sn in n ≥ 7 letters, let a :=
(5, 4, 1)(2, 6), c := (1, 2, 3)(4, 5, 6, . . . , n).

Assume that n is not divisible by 3: then
(1) There is no automorphism ψ of G carrying a→ a−1, c→ c−1

(2) Sn =< a, c >
(3) The corresponding triangle cover is not real

Proof. (1) Since n �= 6, every automorphism of G is an inner one. If there
is a permutation g conjugating a to a−1, c to c−1, g would leave each of
the sets {1, 2, 3}, {4, 5, . . . , n}, {1, 4, 5}, {2, 6} invariant. By looking at their
intersections we conclude that g leaves the elements 1, 2, 3, 6 fixed. But then
gcg−1 �= c−1.

(2) Observe that a3 is a transposition: hence, it suffices to show that the
group generated by a and c is 2-transitive. Transitivity being obvious, let us
consider the stabilizer of 3. Since n is not divisible by 3, the stabilizer of 3
contains the cycle (4, 5, 6, . . . , n); since it contains the transposition (2, 6) as
well as (5, 4, 1), this stabilizer is transitive on {1, 2, 4, . . . , n}.

(3) We have ord(a) = 6, ord(c) = 3(n − 3), ord(b) = ord(ca) =
ord((1, 6, 3)(4, 2, 7, . . . n)) = LCM(3, (n − 4)). Thus the orders are distinct
and the nonexistence of such a ψ implies that the triangle cover is not real.
�	

We can now go back to Theorem 5.19, where the surfaces homeomorphic
to a given surface isogenous to a product were forming one or two connected
components in the moduli space. The case of products of curves is an easy
example where we get one irreducible component, which is self conjugate. We
show now the existence of countably many cases where there are two distinct
connected components.

Theorem 5.32 Let S = (C1 × C2)/G be a surface isogenous to a product of
unmixed type, with g1 �= g2. Then S is deformation equivalent to S̄ if and
only if (Cj , G) is deformation equivalent to (Cj , G) for j = 1, 2. In particu-
lar, if (C1, G) is rigid,i.e., C1 → C1/G is a triangle cover, S is deformation
equivalent to S̄ only if (C1, G) is isomorphic to (C1, G). There are infinitely
many connected components of the moduli space of surfaces of general type
for which S is not deformation equivalent to S̄.

Proof. S̄ = (C1 × C2)/G = ((C1 × C2)/G and since g1 �= g2 the nor-
mal subgroups Πgj

of the fundamental group π1(S̄) are uniquely determined.
Hence S̄ belongs to the same irreducible connected component containing S
(according to the key Proposition) if and only if (Cj , G) belongs to the same
irreducible connected component containing (Cj , G).
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We consider now cases where C1 → C1/G is a triangle cover, but not
isomorphic to (C1, G): then clearly S is not deformation equivalent to S̄.

We let , for n ≥ 7, n �= 0(mod3), C1 → C1/G be the nonreal triangle cover
provided by Lemma 5.31. Let g1 be the genus of C1, observe that 2g1 − 2 ≤
(5/6) n! and consider an arbitrary integer g ≥ 2 and a surjection Πg → Sn

(this always exists since Πg surjects onto a free group with g generators).
The corresponding étale covering of a curve C of genus g is a curve C2 with

genus g2 > g1 since 2g2 − 2 ≥ (2g − 2) n! ≥ 2 n!. The surfaces S = C1 × C2

are our desired examples, the action of G = Sn on the product is free since
the action on the second factor is free. �	

Kharlamov and Kulikov gave [KK02,KK02-b] rigid examples of surfaces
S which are not isomorphic to their complex conjugate, for instance they
considered a (Z/5)2 covering of the plane branched on the nine lines in the
plane P

2 dual to the nine flexes of a cubic, the Fermat cubic for example.
These examples have étale coverings which were constructed by Hirzebruch
( [Hirz83], see also [BHH87]) in order to produce simple examples of surfaces
on the Bogomolov Miyaoka Yau line K2 = 3c2, which, by results of Yau and
Miyaoka [Yau77,Miya83] have the unit ball in C

2 as universal covering, whence
they are strongly rigid according to a theorem of Mostow [Most73]: this means
that any surface homotopically equivalent to them is either biholomorphic or
antibiholomorphic to them.

Kharlamov and Kulikov prove that the Klein group of such a surface S
consists only of the above group (Z/5)2 of biholomorphic transformations, for
an appropriate choice of the (Z/5)2 covering, such that to pairs of conjugate
lines correspond pairs of elements of the group which cannot be obtained from
each other by the action of a single automorphism of the group (Z/5)2.

In the next section we shall show how to obtain rigid examples with sur-
faces isogenous to a product.

5.4 Beauville Surfaces

Definition 5.33 A surface S isogenous to a higher product is called a
Beauville surface if and only if S is rigid.

This definition is motivated by the fact that Beauville constructed such a
surface in [Bea78] , as a quotient F ×F of two Fermat curves of degree 5 (and
genus 6). Rigidity was observed in [Cat00].

Example 5.34 (‘The’ Beauville surfaces) Let F be the plane Fermat 5-ic
{x5 + y5 + z5 = 0}. The group (Z/5)2 has a projective action obtained by
multiplying the coordinates by fifth roots of unity. The set of stabilizers is given
by the multiples of a := e1, b := e2, c := e1 + e2, where e1(x, y, z) = (εx, y, z),
e2(x, y, z) = (x, εy, z), ε := exp(2πi/5). In other words, F is a triangle cover of
P

1 with group (Z/5)2 and generators e1, e2,−(e1 +e2). The set σ of stabilizers
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is the union of three lines in the vector space (Z/5)2, corresponding to three
points in P

1
Z/5. Hence, there is an automorphism ψ of (Z/5)2 such that ψ(Σ)∩

Σ = {0}. Beauville lets then (Z/5)2 act on F × F by the action g(P,Q) :=
(gP, ψ(g)Q), which is free and yields a surface S with K2

S = 8, pg = q = 0.
It is easy to see that such a surfaces is not only real, but defined over Q. It
was pointed out in [BaCa04] that there are exactly two isomorphism classes
of such Beauville surfaces.

Let us now construct some Beauville surfaces which are not isomorphic to
their complex conjugate.

To do so, we observe that the datum of an unmixed Beauville surface
amounts to a purely group theoretical datum, of two systems of generators
{a, c} and {a′, c′} for a finite group G such that, defining b through the equa-
tion abc = 1, and the stabilizer set Σ(a, c) as

∪i∈N,g∈G{gaig−1, gbig−1, gcig−1}

the following condition must be satisfied, assuring that the diagonal action on
the product of the two corresponding triangle curves is free

Σ(a, c) ∩Σ(a′, c′) = {1G}.

Example 5.35 Consider the symmetric group Sn for n ≡ 2(mod 3), define
elements a, c ∈ Sn as in Lemma 5.31, and define further a′ := σ−1, c′ := τσ2,
where τ := (1, 2) and σ := (1, 2, . . . , n). It is obvious that Sn =< a′, c′ >.
Assuming n ≥ 8 and n ≡ 2(3), it is easy to verify that Σ(a, c)∩Σ(a′, c′) = {1},
since one observes that elements which are conjugate in Sn have the same type
of cycle decomposition. The types in Σ(a, c) are derived from (6), (3n − 9),
(3n− 12), (as for instance (3), (2), (n− 4) and (n− 3)) since we assume that
3 does neither divide n nor n − 1, whereas the types in Σ(a′, c′) are derived
from (n), (n− 1), or (n−1

2 , n+1
2 ).

One sees therefore (since g1 �= g2) that the pairs (a, c), (a′, c′) determine
Beauville surfaces which are not isomorphic to their complex conjugates.

Our knowledge of Beauville surfaces is still rather unsatisfactory, for in-
stance the following question is not yet completely answered.

Question 5.36 Which groups G can occur?

It is easy to see (cf. [BCG05]) that if the group G is abelian, then it can
only be (Z/n)2, where G.C.D.(n, 6) = 1.

Together with I. Bauer and F. Grunewald, we proved in [BCG05] (see
also [BCG06]) the following results:

Theorem 5.37 (1) The following groups admit unmixed Beauville structures
(a) An for large n
(b) Sn for n ∈ N with n ≥ 7
(c) SL(2, Fp), PSL(2, Fp) for p �= 2, 3, 5
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After checking that all finite simple nonabelian groups of order ≤ 50000,
with the exception of A5, admit unmixed Beauville structures, we were led to
the following

Conjecture 5.38 All finite simple nonabelian groups except A5 admit an
unmixed Beauville structure.

Beauville surfaces were extensively studied in [BCG05] (cf. also [BCG06])
with special regard to the effect of complex conjugation on them.

Theorem 5.39 There are Beauville surfaces S not biholomorphic to S̄ with
group

(1)The symmetric group Sn for any n ≥ 7
(2)The alternating group An for n ≥ 16 and n ≡ 0 mod 4, n ≡ 1 mod 3,

n �≡ 3, 4 mod 7

We got also examples of isolated real points in the moduli space which do
not correspond to real surfaces:

Theorem 5.40 Let p > 5 be a prime with p ≡ 1 mod 4, p �≡ 2, 4 mod 5, p �≡ 5
mod 13 and p �≡ 4 mod 11. Set n := 3p + 1. Then there is a Beauville surface
S with group An which is biholomorphic to its conjugate S̄, but is not real.

Beauville surfaces of the mixed type also exist, but their construction turns
out to be quite more complicated (see [BCG05]). Indeed (cf. [BCG06-b]) the
group of smallest order has order 512.

6 Lecture 5: Lefschetz Pencils, Braid and Mapping Class
Groups, and Diffeomorphism of ABC-Surfaces

6.1 Surgeries

The most common surgery is the connected sum, which we now describe.
Let M be a manifold of real dimension m, thus for each point p ∈M there

is an open set Up containing p and a homeomorphism (local coordinate chart)
ψp : Up → Vp ⊂ R

m onto an open set Vp of R
m such that (on its domain of

definition)
ψp′ ◦ ψ−1

p is a:

• Homeomorphism (onto its image) if M is a topological manifold
• Diffeomorphism (onto its image) if M is a differentiable manifold
• Biholomorpism (onto its image) if M is a complex manifold (in this last

case m = 2n, R
m = C

n).
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Definition 6.1 The operation of connected sum M1�M2 can be done for two
differentiable or topological manifolds of the same dimension.

Choose respective points pi ∈Mi and local charts

ψpi
: Upi

∼=−→ B(0, εi) := {x ∈ R
m||x| < εi}.

Fix positive real numbers ri < Ri < εi such that

(∗∗) R2/r2 = R1/r1

and set M∗
i := Mi\ψ−1

pi
(B(0, ri)): then M∗

1 and M∗
2 are glued together through

the diffeomorphism ψ : N1 := B(0, R1)\B(0, r1) → N2 := B(0, R2)\B(0, r2)
such that ψ(x1) = R2r1

|x1| τ(x1) where either τ(x) = x, or τ(x) is an orientation
reversing linear isometry (in the case where the manifolds Mi are oriented, we
might prefer, in order to furnish the connected sum M1�M2 of a compatible
orientation, to have that ψ be orientation preserving).

In other words the connected sum M1�M2 is the quotient space of the
disjoint union (M∗

1 )∪o (M∗
2 ) through the equivalence relation which identifies

y ∈ ψ−1
p1

(N1)) to w ∈ ψ−1
p2

(N2)) iff

w = ψ−1
p2
◦ ψ ◦ ψp1(y).

We have the following
Theorem The result of the operation of connected sum is independent of

the choices made.
An elementary and detailed proof in the differentiable case (the one in

which we are more interested) can be found in [B-J90], pages 101–110.

Example 6.2 The most intuitive example (see Fig. 5) is the one of two com-
pact orientable Riemann surfaces M1,M2 of respective genera g1, g2: M1�M2

has then genus g1 + g2. In this case, however, if M1,M2 are endowed of a
complex structure, we can even define a connected sum as complex manifolds,
setting ψ(z1) = e2πiθ R2r1

z1
.

Here, however, the complex structure is heavily dependent on the parame-
ters p1, p2, e2πiθ, and R2r1 = R1r2.

In fact, if we set t := R2r1e
2πiθ ∈ C, we see that z1z2 = t, and if t → 0

then it is not difficult to see that the limit of M1�M2 is the singular curve
obtained from M1,M2 by glueing the points p1, p2 to obtain the node z1z2 = 0.

This interpretation shows that we get in this way all the curves near the
boundary of the moduli space Mg. It is not clear to us in this moment how
big a subset of the moduli space one gets through iterated connected sum op-
erations. One should however point out that many of the conjectures made
about the stable cohomology ring H∗(Mg, Z) were suggested by the possibility
of interpreting the connected sum as a sort of H-space structure on the union
of all the moduli spaces Mg (cf. [Mum83]).
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M1 M2

M1 # M2

Fig. 5. The connected sum

Remark 6.3 (1) One cannot perform a connected sum operation for com-
plex manifolds of dimension > 1. The major point is that there is no biholo-
morphism bringing the inside boundary of the ring domain N1 to the outside
boundary of N2. The reason for this goes under the name of holomorphic
convexity: if n ≥ 2 every holomorphic function on N1 has, by Hartogs’ theo-
rem, a holomorphic continuation to the ball B(0, R1). While, for each point
p in the outer boundary, there is a holomorphic function f on N1 such that
limz→p|f(z)| =∞.

(2) The operation of connected sum makes the diffeomorphism classes of
manifolds of the same dimension m a semigroup: associativity holds, and as
neutral element we have the sphere Sm := {x ∈ R

m+1||x| = 1}.
(3) A manifold M is said to be irreducible if M ∼= M1�M2 implies that

either M1 or M2 is homotopically equivalent to a sphere Sm.

A further example is the more general concept of

Definition 6.4 (SURGERY) For i = 1, 2, let Ni ⊂ Mi be a differentiable
submanifold.

Then there exists (if Mi = R
N this is an easy consequence of the implicit

function theorem) an open set Ui ⊃ Ni which is diffeomorphic to the normal
bundle νNi

of the embedding Ni → Mi, and through a diffeomorphism which
carries Ni onto the zero section of νNi

.
Suppose now that we have diffeomorphisms φ : N1 → N2, and ψ : (νN1 −

N1) → (νN2 − N2), the latter compatible with the projections pi : νNi
→ Ni

(i.e., p2◦ψ = φ◦p1), and with the property of being orientation reversing on the
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fibres. We can then define as before a manifold M1�ψM2, the quotient of the
disjoint union (M1−N1)∪o (M2−N2) by the equivalence relation identifying
(U1 −N1) with (U2 −N2) through the diffeomorphism induced by ψ.

Remark 6.5 This time the result of the operation depends upon the choice
of φ and ψ.

The two surgeries described above combine together in the special situation
of the fibre sum.

Definition 6.6 (FIBRE SUM) For i = 1, 2, let fi : Mi → Bi be a proper
surjective differentiable map between differentiable manifolds, let pi ∈ Bi be
a noncritical value, and let Ni ⊂Mi be the corresponding smooth fibre Ni :=
f−1

i (pi).
Then there exists a natural trivialization (up to a constant matrix) of the

normal bundle νNi
of the embedding Ni → Mi, and if we assume as before

that we have a diffeomorphism φ : N1 → N2 we can perform a surgery M :=
M1�φM2, and the new manifold M admits a proper surjective differentiable
map onto the connected sum B := B1�B2.

The possibility of variations on the same theme is large: for instance,
given fi : Mi → Bi (i = 1, 2) proper surjective differentiable maps between
differentiable manifolds with boundary, assume that ∂Mi → ∂Bi is a fibre
bundle, and there are compatible diffeomorphisms φ : ∂B1 → ∂B2 and ψ :
∂M1 → ∂M2: then we can again define the fibre sum M := M1�ψM2 which
admits a proper surjective differentiable map onto B := B1�φB2.

In the case where (B2, ∂B2) is an euclidean ball with a standard sphere
as boundary, and M2 = F ×B2, the question about unicity (up to diffeomor-
phism) of the surgery procedure is provided by a homotopy class. Assume in
fact that we have two attaching diffeomorphisms ψ,ψ′ : ∂M1 → F × ∂B2.
Then from them we construct Ψ := ψ′ ◦ ψ−1 : F × ∂B2 → F × ∂B2, and we
notice that Ψ(x, t) = (Ψ1(x, t), Ψ2(t)), where Ψ2(t) = φ′ ◦ φ−1. We can then
construct a classifying map χ : ∂B2

∼= Sn−1 → Diff(F ) such that

Ψ1(x, t) = χ(Ψ2(t))(x).

We get in this way a free homotopy class [χ], on which the diffeomorphism
class of the surgery depends. If this homotopy class is a priori trivial, then
the result is independent of the choices made: this is the case for instance if
F is a compact complex curve of genus g ≥ 1.

In order to understand better the unicity of these surgery operations, and
of their compositions, we therefore see the necessity of a good understanding
of isotopies of diffeomorphisms. To this topic is devoted the next subsection.

6.2 Braid and Mapping Class Groups

E. Artin introduced the definition of the braid group (cf. [Art26,Art65]), thus
allowing a remarkable extension of Riemann’s concept of monodromy of alge-
braic functions. Braids are a powerful tool, even if not so easy to handle, and
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especially appropriate for the study of the differential topology of algebraic
varieties, in particular of algebraic surfaces.

Remark 6.7 We observe that the subsets {w1, . . . , wn} ⊂ C of n distinct
points in C are in one to one correspondence with monic polynomials P (z) ∈
C[z] of degree n with non vanishing discriminant δ(P ).

Definition 6.8 Let C[z]1n be the affine space of monic polynomials of degree
n. Then the group

Bn := π1(C[z]1n\{P |δ(P ) = 0}),
i.e., the fundamental group of the space of monic polynomials of degree n
having n distinct roots, is called Artin’s braid group.

Usually, one takes as base point the polynomial P (z) = (
∏n

i=1(z − i)) ∈
C[z]1n (or the set {1, . . . , n}).

To a closed (continuous) path α : [0, 1] → (C[z]1n\{P |δ(P ) = 0}) one can
associate the subset Bα := {(z, t) ∈ C × R | αt(z) := α(t)(z) = 0} of R

3,
which gives a visually suggestive representation of the associated braid.

It is however customary to view a braid as moving from up to down, that
is, to associate to α the set B′

α := {(z, t)|(z,−t) ∈ Bα}.
Figure 6 below shows two realizations of the same braid.

Remark 6.9 There is a lifting of α to C
n, the space of ordered n-tuples of

roots of monic polynomials of degree n, hence there are (continuous) functions
wi(t) such that wi(0) = i and αt(z) =

∏n
i=1(z − wi(t)).

It follows that to each braid is naturally associated a permutation τ ∈ Sn

given by τ(i) := wi(1).

Even if it is not a priori evident, a very powerful generalization of Artin’s
braid group was given by M. Dehn (cf. [Dehn38], we refer also to the book
[Bir74]).

i+2i i+1

i+2i i+1 i+2i i+1

i+2i i+1

=

Fig. 6. Relation aba = bab on braids
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Definition 6.10 Let M be a differentiable manifold, then the mapping class
group (or Dehn group) of M is the group

Map(M) := π0(Diff(M)) = (Diff(M)/Diff0(M)),

where Diff0(M), the connected component of the identity, is the subgroup of
diffeomorphisms of M isotopic to the identity (i.e., they are connected to the
identity by a path in Diff(M)).

Remark 6.11 If M is oriented then we often tacitly take Diff+(M), the
group of orientation preserving diffeomorphisms of M instead of Diff(M), in
the definition of the mapping class group. But it is more accurate to distinguish
in this case between Map+(M) and Map(M).

If M is a compact complex curve of genus g, then its mapping class group
is denoted by Mapg. The representation of M = Cg as the K(π, 1) space
H/Πg, i.e., as a quotient of the (contractible) upper halfplane H by the free
action of a Fuchsian group isomorphic to Πg

∼= π1(Cg), immediately yields
the isomorphism Mapg

∼= Out(Πg) = Aut(Πg)/Int(Πg).
In this way the orbifold exact sequences considered in the previous lecture

1→ Πg1 → πorb
1 → G→ 1

determine the topological action of G since the homomorphism G→Mapg is
obtain by considering, for g ∈ G, the automorphisms obtained via conjugation
by a lift g̃ ∈ πorb

1 of g.

The relation between Artin’s and Dehn’s definition is the following:

Theorem 6.12 The braid group Bn is isomorphic to the group

π0(Map∞(C\{1, . . . n})),

where Map∞(C\{1, . . . n}) is the group of diffeomorphisms which are the iden-
tity outside the disk with centre 0 and radius 2n.

In this way Artin’s standard generators σi of Bn (i = 1, . . . n − 1) can be
represented by the so-called half-twists.

Definition 6.13 The half-twist σj is the diffeomorphism of C\{1, . . . n} iso-
topic to the homeomorphism given by:

– Rotation of 180◦ on the disk with centre j + 1
2 and radius 1

2

– On a circle with the same centre and radius 2+t
4 the map σj is the identity

if t ≥ 1 and rotation of 180(1− t) degrees, if t ≤ 1

Now, it is obvious from Theorem 6.12 that Bn acts on the free group
π1(C\{1, . . . n}), which has a geometric basis (we take as base point the com-
plex number p := −2ni) γ1, . . . γn as illustrated in Fig. 7.

This action is called the Hurwitz action of the braid group and has the
following algebraic description
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p1pk

p

Fig. 7. A geometric basis of π1(C − {1, . . . n})

• σi(γi) = γi+1

• σi(γiγi+1) = γiγi+1, whence σi(γi+1) = γ−1
i+1γiγi+1

• σi(γj) = γj for j �= i, i + 1

Observe that the product γ1γ2 . . . γn is left invariant under this action.

Definition 6.14 Let us consider a group G and its cartesian product Gn.
The map associating to each (g1, g2, . . . , gn) the product g := g1g2 . . . , gn ∈ G
gives a partition of Gn, whose subsets are called factorizations of an element
g ∈ G.
Bn acts on Gn leaving invariant the partition, and its orbits are called the

Hurwitz equivalence classes of factorizations.

We shall use the following notation for a factorization: g1 ◦ g2 ◦ · · · ◦ gn,
which should be carefully distinguished from the product g1g2 . . . gn, which
yields an element of G.

Remark 6.15 A broader equivalence relation for the set of factorizations is
obtained considering the equivalence relation generated by Hurwitz equivalence
and by simultaneous conjugation. The latter, using the following notation
ab := b−1ab, corresponds to the action of G on Gn which carries g1◦g2◦· · ·◦gn

to (g1)b ◦ (g2)b ◦ · · · ◦ (gn)b.
Observe that the latter action carries a factorization of g to a factorization

of the conjugate gb of g, hence we get equivalence classes of factorizations for
conjugacy classes of elements of G.

The above equivalence relation plays an important role in several questions
concerning plane curves and algebraic surfaces, as we shall soon see.

Let us proceed for the meantime considering another interesting relation
between the braid groups and the Mapping class groups.

This relation is based on the topological model provided by the hyperel-
liptic curve Cg of equation

w2 =
2g+2∏
i=1

(z − i)
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Cg

P1

1 2 3 4 5 6

Fig. 8. Hyperelliptic curve of genus 2

(see Fig. 8 describing a hyperelliptic curve of genus g = 2).
Observe that, if Y is the double unramified covering of (P1−{1, . . . 2g+2}),

inverse image of (P1−{1, . . . 2g+2}) in Cg, Cg is the natural compactification
of Y obtained by adding to Y the ends of Y (i.e., in such a compactification
one adds to Y the following limK⊂⊂Y π0(Y −K)).

This description makes it clear that every homeomorphism of (P1 −
{1, . . . 2g +2}) which leaves invariant the subgroup associated to the covering
Y admits a lifting to a homeomorphism of Y , whence also to a homeomor-
phism of its natural compactification Cg.

Such a lifting is not unique, since we can always compose with the non-
trivial automorphism of the covering.

We obtain in this way a central extension

1→ Z/2 =< H >→Maph
g →Map0,2g+2 → 1

where

• H is the hyperelliptic involution w → −w (the nontrivial automorphism
of the covering)

• Map0,2g+2 is the Dehn group of (P1 − {1, . . . 2g + 2})
• Maph

g is called the hyperelliptic subgroup of the mapping class group
Mapg, which consists of all the possible liftings.
If g ≥ 3, it is a proper subgroup ofMapg.
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While Artin’s braid group B2g+2 has the following presentation:

〈σ1, . . . σ2g+1|σiσj = σjσi for|i− j| ≥ 2, σiσi+1σi = σi+1σiσi+1〉,

Dehn’s group of (P1 − {1, . . . 2g + 2}) Map0,2g+2 has the presentation:

〈σ1, . . . σ2g+1|σ1 . . . σ2g+1σ2g+1 . . . σ1 = 1, (σ1 . . . σ2g+1)2g+2 = 1,

σiσj = σjσi for|i− j| ≥ 2, σiσi+1σi = σi+1σiσi+1〉,
finally the hyperelliptic mapping class groupMaph

g has the presentation:

〈ξ1, . . . ξ2g+1,H|ξ1 . . . ξ2g+1ξ2g+1 . . . ξ1 = H,H2 = 1, (ξ1 . . . ξ2g+1)2g+2 = 1,

Hξi = ξiH ∀i, ξiξj = ξjξi for|i− j| ≥ 2, ξiξi+1ξi = ξi+1ξiξi+1〉.
We want to illustrate the geometry underlying these important formulae.

Observe that σj yields a homeomorphism of the disk U with centre j + 1/2
and radius 3/4, which permutes the two points j, j + 1.

Therefore there are two liftings of σj to homeomorphisms of the inverse
image V of U in Cg: one defines then ξj as the one of the two liftings which
acts as the identity on the boundary ∂V , which is a union of two loops (see
Fig. 9).

ξj is called the Dehn twist and corresponds geometrically to the diffeo-
morphism of a truncated cylinder which is the identity on the boundary, a
rotation by 180◦ on the equator, and on each parallel at height t is a rotation
by t 360◦ (where t ∈ [0, 1]).

One can define in the same way a Dehn twist for each loop in Cg (i.e., a
subvariety diffeomorphic to S1):

T(D)

D

Rotazione=180o

Rotazione=360o

Rotazione=0o

Fig. 9. At the left, a half twist; at the right: its lift, the Dehn-Twist-T , and its
action on the segment D
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Definition 6.16 Let C be an oriented Riemann surface. Then a positive
Dehn twist Tα with respect to a simple closed curve α on C is an isotopy class
of a diffeomorphism h of C which is equal to the identity outside a neighbour-
hood of α orientedly homeomorphic to an annulus in the plane, while inside
the annulus h rotates the inner boundary of the annulus by 360◦ to the right
and damps the rotation down to the identity at the outer boundary.

Dehn’s fundamental result [Dehn38] was the following

Theorem 6.17 The mapping class groupMapg is generated by Dehn twists.

Explicit presentations of Mapg have later been given by Hatcher and
Thurston [HT80], and an improvement of the method lead to the simplest
available presentation, due to Wajnryb ( [Waj83], see also [Waj99]).

We shall see in the next subsection how the Dehn twists are related to the
theory of Lefschetz fibrations.

6.3 Lefschetz Pencils and Lefschetz Fibrations

The method introduced by Lefschetz for the study of the topology of algebraic
varieties is the topological analogue of the method of hyperplane sections and
projections of the classical italian algebraic geometers.

An excellent exposition of the theory of Lefschetz pencils is the article by
Andreotti and Frankel [A-F69], that we try to briefly summarize here.

Let X ⊂ P
N be projective variety, which for simplicity we assume to be

smooth, and let L ∼= P
N−2 ⊂ P

N be a general linear subspace of codimen-
sion 2. L is the base locus of a pencil of hyperplanes Ht, t ∈ P

1, and the
indeterminacy locus of a rational map φ : P

N\L→ P
1.

The intersection Z : X ∩L is smooth, and the blow up of X with centre Z
yields a smooth variety X ′ with a morphism f : X ′ → P

1 whose fibres are iso-
morphic to the hyperplane sections Yt := X∩Ht, while the exceptional divisor
is isomorphic to the product Z × P

1 and on it the morphism f corresponds
to the second projection.

Definition 6.18 The dual variety W∨ ⊂ P
N∨ of a projective variety W is

defined as the closure of the set of hyperplanes which contain the tangent space
TWp at a smooth point p ∈ W . A pencil of hyperplanes Ht, t ∈ P

1, is said to
be a Lefschetz pencil if the line L′ dual to the subspace L

(1) Does not intersect W∨ if W∨ is not a hypersurface
(2) Intersects W∨ transversally in µ := deg(W∨) points otherwise

An important theorem is the
Biduality theorem: (W∨)∨ = W .
It follows from the above theorem and the previous definition that if W∨

is not a hypersurface, f is a differentiable fibre bundle, while in case (2) all the
fibres are smooth, except µ fibres which correspond to tangent hyperplanes
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Htj
. And for these Ytj

has only one singular point pj , which has an ordinary
quadratic singularity as a hypersurface in X (i.e., there are local holomorphic
coordinates (z1, . . . zn) for X such that locally at ph

Yth
= {z|

∑
j

z2
j = 0}).

Writing zj = uj+ivj , the equation
∑

j z2
j = ρ for ρ ∈ R reads out as

∑
j ujvj =

0,
∑

j(u
2
j−v2

j ) = ρ. In vector notation, and assuming ρ ∈ R≥0, we may rewrite
as

〈u, v〉 = 0, |u|2 = ρ + |v|2.

Definition 6.19 The vanishing cycle is the sphere Σth+ρ of Yth+ρ given, for
ρ ∈ R>0, by {u + iv| |u|2 = ρ, v = 0}.

The normal bundle of the vanishing cycle Σt in Yt is easily seen, in view
of the above equations, to be isomorphic to the tangent bundle to the sphere
Sn−1, whence we can identify a tubular neighbourhood of Σt in Yt to the unit
ball in the tangent bundle of the sphere Sn−1. We follow now the definition
given in [Kas80] of the corresponding Dehn twist.

Definition 6.20 Identify the sphere Σ = Sn−1 = {u||u| = 1} to the zero
section of its unit tangent bundle Y = {(u, v)|〈u, v〉 = 0, |u| = 1, |v| ≤ 1}.

Then the Dehn twist T := TΣ is the diffeomorphism of Y such that, if we
let γu,v(t) be the geodesic on Sn−1 with initial point u, initial velocity v, then

T (u, v) := −(γu,v(π|v|), d

dt
γu,v(π|v|)).

We have then: (1) T is the antipodal map on Σ
(2) T is the identity on the boundary ∂Y = {(u, v)|〈u, v〉 = 0, |u| = 1 =

|v|}.

One has the

Picard-Lefschetz Theorem The Dehn twist T is the local monodromy
of the family Yt (given by the level sets of the function

∑
j z2

j ).
Moreover, by the classical Ehresmann theorem, one sees that a singular

fibre Ytj
is obtained from a smooth fibre by substituting a neighbourhood

of the vanishing cycle Σ with the contractible intersection of the complex
quadratic cone

∑
j z2

j = 0 with a ball around pj . Hence

Theorem 6.21 (Generalized Zeuthen Segre formula) The number µ of
singular fibres in a Lefschetz pencil, i.e., the degree of the dual variety X∨, is
expressed as a sum of topological Euler numbers

e(X) + e(Z) = 2e(Y ) + (−1)nµ,

where Y is a smooth hyperplane section, and Z = L ∩X is the base locus of
the pencil.
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Proof. (idea) Replacing Z by Z × P
1 we see that we replace e(Z) by 2e(Z),

hence the left hand side expresses the Euler number of the blow up X ′.
This number can however be computed from the mapping f : since the

Euler number is multiplicative for fibre bundles, we would have that this
number were 2e(Y ) if there were no singular fibre. Since however for each
singular fibre we replace something homotopically equivalent to the sphere
Sn−1 by a contractible set, we have to subtract (−1)n−1 for each singular
fibre. �	

Lefschetz pencils were classically used to describe the homotopy and ho-
mology groups of algebraic varieties.

The main point is that the finite part of X ′, i.e., X ′−Y∞, has the socalled
‘Lefschetz spine’ as homotopy retract.

In order to explain what this means, assume, without loss of generality
from the differentiable viewpoint, that the fibres Y0 and Y∞ are smooth fibres,
and that the singular fibres occur for some roots of unity tj , which we can
order in counterclockwise order.

Definition 6.22 Notation being as before, define the relative vanishing cycle
∆j as the union, over t in the segment [0, tj ], of the vanishing cycles Σt,j:
these are defined, for t far away from tj, using a trivialization of the fibre
bundle obtained restricting f : X ′ → P

1 to the half open segment [0, tj).
The Lefschetz spine of the Lefschetz pencil is the union of the fibre Y0 with

the µ relative vanishing cycles ∆j.

Theorem 6.23 (Lefschetz’ theorems I and II) (1) The Lefschetz spine
is a deformation retract of X ′ − Y∞.

(2) The affine part X − Y∞ has the homotopy type of a cell complex of
dimension n.

(3) The inclusion ι : Y0 → X induces homology homomorphisms
Hi(ι) : Hi(Y0, Z)→ Hi(X, Z) which are

(3i) Bijective for i < n− 1
(3ii) Surjective if i = n− 1; moreover
(4) The kernel of Hn−1(ι) is generated by the vanishing cycles, i.e., by the

images of Hn−1(Σ0,j , Z).

Comment on the proof:
(1) Follows by using the Ehresmann’s theorem outside of the singularities,

and by retracting locally a neighbourhood of the singularities partly on a
smooth fibre Yt, with t ∈ (0, tj), and partly on the union of the vanishing
cycles. Then one goes back all the way to Y0.

For (2) we simply observe that X−Y∞ has (Y0\Z)∪(∪j∆j) as deformation
retract. Hence, it is homotopically equivalent to a cell complex obtained by
attaching µ n-cells to Y0\Z, and (2) follows then by induction on n.

(3) and (4) are more delicate and require some diagram chasing, which
can be found in [A-F69], and which we do not reproduce here. �	
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In the 1970s Moishezon and Kas realized (see e.g. [Moi77] and [Kas80]), af-
ter the work of Smale on the smoothing of handle attachments, that Lefschetz
fibrations could be used to investigate the differential topology of algebraic
varieties, and especially of algebraic surfaces.

For instance, they give a theoretical method, which we shall now explain,
for the extremely difficult problem to decide whether two algebraic surfaces
which are not deformation equivalent are in fact diffeomorphic [Kas80].

Definition 6.24 Let M be a compact differentiable (or even symplectic) man-
ifold of real even dimension 2n

A Lefschetz fibration is a differentiable map f : M → P
1
C

which
(a) is of maximal rank except for a finite number of critical points p1, . . . pm

which have distinct critical values b1, . . . bm ∈ P
1
C
.

(b) has the property that around pi there are complex coordinates
(z1, . . . zn) ∈ C

n such that locally f =
∑

j z2
j + const. (in the symplectic

case, we require the given coordinates to be Darboux coordinates, i.e., such
that the symplectic form ω of M corresponds to the natural constant coeffi-
cients symplectic structure on C

n).

Remark 6.25 (1) A similar definition can be given if M is a manifold with
boundary, replacing P

1
C

by a disc D ⊂ C.
(2) An important theorem of Donaldson [Don99] asserts that for symplectic

manifolds there exists (as for the case of projective manifolds) a Lefschetz
pencil, i.e., a Lefschetz fibration f : M ′ → P

1
C

on a symplectic blow up M ′ of
M (see [MS98] for the definition of symplectic blow-up).

(3) A Lefschetz fibration with smooth fibre F0 = f−1(b0) and with
critical values b1, . . . bm ∈ P

1
C
, once a geometric basis γ1, γ2, . . . , γm of

π1(P1
C
\{b1, . . . , bm}, b0) is chosen, determines a factorization of the iden-

tity in the mapping class group Map(F0)

τ1 ◦ τ2 ◦ · · · ◦ τm = Id

as a product of Dehn twists.
(4) Assume further that b0, b1, . . . bm ∈ C = P

1\{∞}: then the Lefschetz
fibration determines also a homotopy class of an arc λ between τ1τ2 . . . τm

and the identity in Diff0(F0). This class is trivial when F0 = Cg, a compact
Riemann surface of genus g ≥ 1.

(5) More precisely, the Lefschetz fibration f determines isotopy classes
of embeddings φj : Sn−1 → F0 and of bundle isomorphisms ψj between the
tangent bundle of Sn−1 and the normal bundle of the embedding φj; τj corre-
sponds then to the Dehn twist for the embedding φj.

We are now ready to state the theorem of Kas (cf. [Kas80]).

Theorem 6.26 Two Lefschetz fibrations (M,f), (M ′, f ′) are equivalent (i.e.,
there are two diffeomorphisms u : M → M ′, v : P

1 → P
1 such that f ′ ◦ u =

v ◦ f) if and only if
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(1) The corresponding invariants

(φ1, . . . φm), (ψ1, . . . ψm); (φ′
1, . . . φ

′
m), (ψ′

1, . . . ψ
′
m)

correspond to each other via a diffeomorphism of F0 and a diffeomorphism v
of P

1. This implies in particular
(1′) The two corresponding factorizations of the identity in the mapping

class group are equivalent (under the equivalence relation generated by Hurwitz
equivalence and by simultaneous conjugation).

(2) The respective homotopy classes λ, λ′ correspond to each other under
the above equivalence.

Conversely, given (φ1, . . . φm)(ψ1, . . . ψm) such that the corresponding
Dehn twists τ1, τ2, . . . τm yield a factorization of the identity, and given a
homotopy class λ of a path connecting τ1τ2 . . . τm to the identity in Diff(F0),
there exists an associated Lefschetz fibration.

If the fibre F0 is a Riemann surface of genus g ≥ 2 then the Lefschetz
fibration is uniquely determined by the equivalence class of a factorization of
the identity

τ1 ◦ τ2 ◦ · · · ◦ τm = Id

as a product of Dehn twists.

Remark 6.27 (1) A similar result holds for Lefschetz fibrations over the disc
and we get a factorization

τ1 ◦ τ2 ◦ · · · ◦ τm = φ

of the monodromy φ of the fibration over the boundary of the disc D.
(2) A Lefschetz fibration with fibre Cg admits a symplectic structure if each

Dehn twist in the factorization is positively oriented (see Sect. 2 of [A-B-K-P-
00]).

Assume that we are given two Lefschetz fibrations over P
1
C
: then we can

consider the fibre sum of these two fibrations, which depends as we saw on a
diffeomorphism chosen between two respective smooth fibers (cf. [G-S99] for
more details).

This operation translates (in view of the above quoted theorem of Kas)
into the following definition of ‘conjugated composition’ of factorization:

Definition 6.28 Let τ1 ◦ τ2 ◦ · · · ◦ τm = φ and τ ′
1 ◦ τ ′

2 ◦ · · · ◦ τ ′
r = φ′ be two

factorizations: then their composition conjugated by ψ is the factorization

τ1 ◦ τ2 ◦ . . . τm ◦ (τ ′
1)ψ ◦ (τ ′

2)ψ ◦ · · · ◦ (τ ′
r)ψ = φ ◦ (φ′)ψ.

Remark 6.29 (1) If ψ and φ′ commute, we obtain a factorization of φφ′.
(2) A particular case is the one where φ = φ′ = id and it corresponds to

Lefschetz fibrations over P
1.
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No matter how beautiful the above results are, for a general X projective
or M symplectic, one has Lefschetz pencils, and not Lefschetz fibrations, and
a natural question is to which extent the surgery corresponding to the blowup
does indeed simplify the differentiable structure of the manifold. In the next
subsection we shall consider results by Moishezon somehow related to this
question.

6.4 Simply Connected Algebraic Surfaces: Topology Versus
Differential Topology

In the case of compact topological manifolds of real dimension 4 the methods
of Morse theory and of simplification of cobordisms turned out to encounter
overwhelming difficulties, and only in 1982 M. Freedman [Free82], using new
ideas in order to show the (topological) triviality of certain handles introduced
by Casson, was able to obtain a complete classification of the simply connected
compact topological 4-manifolds.

Let M be such a manifold, fix an orientation of M , and let

qM : H2(M, Z)×H2(M, Z)→ Z

be the intersection form, which is unimodular by Poincaré duality.

Theorem 6.30 (Freedman’s theorem) Let M be an oriented compact
simply connected topological manifold: then M is determined by its inter-
section form and by the Kirby-Siebenmann invariant α(M) ∈ Z/2, which
vanishes if and only if M × [0, 1] admits a differentiable structure.

The basic invariants of qm are its signature σ(M) := b+(M)− b−(M), and
its parity (qm is said to be even iff qm(x, x) ≡ 0 (mod2) ∀x ∈ H2(M, Z)).

A basic result by Serre [Ser64] says that if qM is indefinite then it is
determined by its rank, signature and parity.

The corollary of Freedman’s theorem for complex surfaces is the following

Theorem 6.31 Let S be a compact simply connected complex surface, and
let r be the divisibility index of the canonical class c1(KX) ∈ H2(X, Z).

S is said to be EVEN if qS is EVEN, and this holds iff r ≡ 0(mod2), else
S is said to be ODD. Then

• (EVEN) If S is EVEN, then S is topologically a connected sum of copies
of P

1
C
× P

1
C

and of a K3 surface if the signature of the intersection form
is negative, and of copies of P

1
C
× P

1
C

and of a K3 surface with opposed
orientation in the case where the signature is positive.

• (ODD) S is ODD: then S is topologically a connected sum of copies of P
2
C

and of P
2
C

opp
.

Proof. S has a differentiable structure, whence α(S) = 0, and the corollary
follows from Serre’s result if the intersection form is indefinite.
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We shall now show that if the intersection form is definite, then S ∼= P
2
C
.

Observe that q = 0, since S is simply connected, and therefore b+(S) =
2pg + 1, in particular the intersection form is positive, b2 = 2pg + 1, hence
e(S) = 2χ(S) + 1, and K2

S = 10χ(S)− 1 by Noether’s formula.
By the Yau Miyaoka inequality q = 0 implies K2

S ≤ 9χ(S), whence χ(S) ≤
1 and pg = 0.

Therefore χ(S) = 1, and K2
S = 9. Applying again Yau’s theorem [Yau77]

we see that S = P
2
C
. In fact, if S were of general type its universal cover would

be the unit ball in C
2, contradicting simple connectivity. �	

Remark 6.32 P
2
C

opp is the manifold P
2
C

with opposed orientation.
A K3 surface is (as we already mentioned) a surface S orientedly diffeo-

morphic to a nonsingular surface X of degree 4 in P
3
C
, for instance

X = {(x0, x1, x2, x3) ∈ P
3
C|x4

0 + x4
1 + x4

2 + x4
3 = 0}.

(by a theorem of Kodaira, cf. [Kod63], S is also deformation equivalent to
such a surface X).

Not only P
2
C

is the only algebraic surface with a definite intersection form,
but Donaldson showed that a result of a similar flavour holds for differentiable
manifolds, i.e., if we have a positive definite intersection form, then we have
topologically a connected sum of copies of P

2
C
.

There are several restrictions for the intersection forms of differentiable
manifolds, the oldest one being Rokhlin’s theorem stating that the intersection
form in the even case is divisible by 16. Donaldson gave other restrictions
for the intersection forms of differentiable 4-manifolds (see [D-K90]), but the
socalled 11/8 conjecture is still unproven: it states that if the intersection form
is even, then we have topologically a connected sum as in the case (EVEN)
of Theorem 6.31.

More important is the fact that Donaldson’s theory has made clear in
the 1980s [Don83,Don86,Don90,Don92] how drastically homeomorphism and
diffeomorphism differ in dimension 4, and especially for algebraic surfaces.

Later on, the Seiberg-Witten theory showed with simpler methods the
following result (cf. [Wit94] o [Mor96]):

Theorem 6.33 Any diffeomorphism between minimal surfaces (a fortiori, an
even surface is necessarily minimal) S, S′ carries c1(KS) either to c1(KS′) or
to −c1(KS′)

Corollary 6.34 The divisibility index r of the canonical class c1(KS) ∈
H2(S, Z) is a differentiable invariant of S.

Since only the parity r(mod2) of the canonical class is a topological invari-
ant it is then not difficult to construct examples of simply connected algebraic
surfaces which are homeomorphic but not diffeomorphic (see [Cat86]).
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Let us illustrate these examples, obtained as simple bidouble covers of
P

1 × P
1.

These surfaces are contained in the geometric vector bundle whose sheaf of
holomorphic sections is OP1×P1(a, b)

⊕
OP1×P1(c, d) and are described there

by the following two equations:

z2 = f(x, y),

w2 = g(x, y),

where f and g are bihomogeneous polynomials of respective bidegrees (2a, 2b),
(2c, 2d) (f is a section of OP1×P1(2a, 2b), g is a section of OP1×P1(2c, 2d)).

These Galois covers of P
1 × P

1, with Galois group (Z/2Z)2, are smooth if
and only if the two curves C := {f = 0} and D := {g = 0} in P

1 × P
1 are

smooth and intersect transversally.
The holomorphic invariants can be easily calculated, since, if p : X → P :=

P
1 × P

1 is the finite Galois cover, then

p∗OX
∼= OP1×P1⊕zOP1×P1(−a,−b)⊕wOP1×P1(−c,−d)⊕zwOP1×P1(−a−c,−b−d).

Hence h1(OX) = 0, whereas h2(OX) = (a − 1)(b − 1) + (c − 1)(d − 1) +
(a+c−1)(b+d−1). Assume that X is smooth: then the ramification formula
yields

OX(KX) = OX(p∗KP1×P1 + R) = p∗(OP1×P1(a + c− 2, b + d− 2))

since R = div(z) + div(w). In particular, K2
X = 8(a + c − 2)(b + d − 2) and

the holomorphic invariants of such coverings depend only upon the numbers
(a + b− 2)(c + d− 2) and ab + cd.

Theorem 6.35 Let S, S′ be smooth bidouble covers of P
1 × P

1 of respective
types (a, b)(c, d), (a′, b′)(c′, d′).

Then S is of general type for a + c ≥ 3, b + d ≥ 3, and is simply con-
nected. Moreover, the divisibility r(S) of the canonical class KS is equal to
G.C.D.((a + c− 2), (b + d− 2)).

S and S′ are (orientedly) homeomorphic if and only if r(S) ≡ r(S′)(mod2)
and

(a + b− 2)(c + d− 2) = (a′ + b′ − 2)(c′ + d′ − 2) and ab + cd = a′b′ + c′d′.

S and S′ are not diffeomorphic if r(S) �= r(S′), and for each integer h, we
can find such surfaces S1, . . . Sh which are pairwise homeomorphic but not
diffeomorphic.

Idea of the proof. Set for simplicity u := (a + c − 2), v := (b + d − 2) so
that OS(KS) = p∗(OP1×P1(u, v)) is ample whenever u, v ≥ 1.

The property that S is simply connected (cf. [Cat84] for details) follows
once one establishes that the fundamental group π1((P1 × P

1)\(C ∪ D)) is
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abelian. To establish that the group is abelian, since it is generated by a
product of simple geometric loops winding once around a smooth point of
C ∪D, it suffices to show that these loops are central. But this follows from
considering a Lefschetz pencil having C (respectively, D) as a fibre (in fact,
an S1 bundle over a punctured Riemann surface is trivial).

Since this group is abelian, it is generated by two elements γC , γD which
are simple geometric loops winding once around C, resp. D. The fundamental
group π1(S\R) is then generated by 2γC and 2γD, but these two elements lie
in the kernel of the surjection π1(S\R)→ π1(S) and we conclude the triviality
of this latter group.

The argument for the divisibility of KS is more delicate, and we refer
to [Cat86] for the proof of the key lemma asserting that p∗(H2(P1×P

1, Z)) =
H2(S, Z)G where G is the Galois group G = (Z/2)2 (the proof uses arguments
of group cohomology and is valid in greater generality). Thus, the divisibility
of KS equals the one of c1(OP1×P1(u, v)), i.e., G.C.D.(u, v).

Now, resorting to Freedman’s theorem, it suffices to observe that rank and
signature of the intersection form are given by e(S)−2, σ(S), and these, as we
saw in the first lecture, equal 12χ(S)−K2

S ,K2
S−8χ(S). In this case K2

S = 8uv,
χ(S) = uv + (ab + cd).

There remain to find h such surfaces, and for this purpose, we use
Bombieri’s argument (appendix to [Cat84]): namely, let u′

iv
′
i = 6n be h dis-

tinct factorizations and, for a positive number T , set ui := Tu′
i, vi := Tv′i. It is

clear that G.C.D.(ui, vi) = T (G.C.D.(u′
i, v

′
i)) and these G.C.D.’s are distinct

since the given factorizations are distinct (as unordered factorizations), and
they are even integers if each u′

i, v
′
i is even.

It suffices to show that there are integers wi, zi such that, setting ai :=
(ui +wi)/2+1, ci := (ui−wi)/2+1, bi := (vi− zi)/2+1, di := (vi + zi)/2+1,
then aibi + cidi = constant and the required inequalities ai, bi, ci, di ≥ 3 are
verified.

This can be done by the box principle.
It is important to contrast the existence of homeomorphic but not diffeo-

morphic algebraic surfaces to an important theorem established at the begin-
ning of the study of 4-manifolds by C.T.C. Wall [Wall62]:

Theorem 6.36 (C.T.C. Wall) Given two simply connected differentiable
4-manifolds M,M ′ with isomorphic intersection forms, then there exists an in-
teger k such that the iterated connected sums M�k(P1×P

1) and M ′�k(P1×P
1)

are diffeomorphic.

Remark 6.37 (1) If we take P
2
C

opp, i.e., P
2 with opposite orientation, then

the selfintersection of a line equals −1, just as for the exceptional curve of a
blow up. It is easy to see that blowing up a point of a smooth complex surface
S is the same differentiable operation as taking the connected sum S � P

2
C

opp.
(2) Recall that the blowup of the plane P

2 in two points is isomorphic
to the quadric P

1 × P
1 blown up in a point. Whence, for the connected sum
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calculus, M�(P1 × P
1) �P2

C

opp ∼= M�(P2) �2P
2
C

opp. From Wall’s theorem fol-
lows then (consider Wall’s theorem for Mopp) that for any simply connected
4-manifold M there are integers k, p, q such that M�(k + 1)(P2) �(k)P2

C

opp ∼=
p(P2) �(q)P2

C

opp.

The moral of Wall’s theorem was that homeomorphism of simply connected
4-manifolds implies stable diffeomorphism (i.e., after iterated connected sum
with some basic manifolds as (P1 × P

1) or, with both P
2, P2

C

opp).
The natural question was then how many such connected sums were indeed

needed, and if there were needed at all. As we saw, the Donaldson and Seiberg
Witten invariants show that some connected sum is indeed needed.

Boris Moishezon, in collaboration with Mandelbaum, studied the question
in detail [Moi77, M-M76, M-M80] for many concrete examples of algebraic
surfaces, and gave the following

Definition 6.38 A differentiable simply connected 4-manifold M is com-
pletely decomposable if there are integers p, q with M ∼= p(P2) �(q)P2

C

opp,
and almost completely decomposable if M�(P2) is completely decomposable
(note that the operation yields a manifold with odd intersection form, and if
M is an algebraic surface �= P

2, then we get an indefinite intersection form.

Moishezon and Mandelbaum [M-M76] proved almost complete decompos-
ability for smooth hypersurfaces in P

3, and Moishezon proved [Moi77] almost
complete decomposability for simply connected elliptic surfaces. Observe that
rational surfaces are obviously completely decomposable, and therefore one is
only left with simply connected surfaces of general type, for which as far as I
know the question of almost complete decomposability is still unresolved.

Donaldson’s work clarified the importance of the connected sum with P
2,

showing the following results (cf. [D-K90] pages 26–27).

Theorem 6.39 (Donaldson) If M1,M2 are simply connected differentiable
4-manifolds with b+(Mi) > 0, then the Donaldson polynomial invariants qk ∈
Sd(H2(M, Z) are all zero for M = M1�M2. If instead M is an algebraic
surfaces, then the Donaldson polynomials qk are �= 0 for large k. In particular,
an algebraic surface cannot be diffeomorphic to a connected sum M1�M2 with
M1,M2 as above (i.e., with b+(Mi) > 0).

6.5 ABC Surfaces

This subsection is devoted to the diffeomorphism type of certain series of
families of bidouble covers, depending on three integer parameters (a,b,c)
(cf. [Cat02,CW04]).

Let us make some elementary remark, which will be useful in order to
understand concretely the last part of the forthcoming definition.

Consider the projective line P
1 with homogeneous coordinates (x0, x1) and

with nonhomogeneous coordinate x := x1/x0. Then the homogeneous polyno-
mials of degree m F (x0, x1) are exactly the space of holomorphic sections of



Differentiable and Deformation Type of Algebraic Surfaces 135

OP1(m): in fact to such an F corresponds the pair of holomorphic functions
f0(x) := F (x0,x1)

xm
0

on U0 := P
1\{∞}, and f1(1/x) := F (x0,x1)

xm
1

on U1 := P
1\{0}.

They satisfy the cocycle condition f0(x)xm = f1(1/x).
We assumed here m to be a positive integer, because OP1(−m) has no

holomorphic sections, if m > 0. On the other hand, sheaf theory (the ex-
ponential sequence and the partition of unity argument) teaches us that the
cocycle x−m for OP1(−m) is cohomologous, if we use differentiable functions,
to x̄m (indeed x−m = x̄m

|x|2m , a formula which hints at the homotopy x̄m

|x|2mt of
the two cocycles).

This shows in particular that the polynomials F (x̄0, x̄1) which are homo-
geneous of degree m are differentiable sections of OP1(−m).

Since sometimes we shall need to multiply together sections of OP1(−m)
with sections of OP1(m),and get a global function, we need the cocycles to
be the inverses of each other. This is not a big problem, since on a circle of
radius R we have x̄x = R2. Hence to a polynomial F (x̄0, x̄1) we associate the
two functions

f0(x̄) :=
F (x̄0, x̄1)

x̄m
0

on {x||x| ≤ R}

f1(1/x̄) := R2m F (x̄0, x̄1)
x̄m

1

on {x||x| ≥ R}

and this trick allows to carry out local computations comfortably.
Let us go now to the main definition:

Definition 6.40 An (a, b, c) surface is the minimal resolution of singularities
of a simple bidouble cover S of (P1 × P

1) of type ((2a, 2b), (2c, 2b) having at
most Rational Double Points as singularities.

An (a, b, c)nd surface is defined more generally as (the minimal resolution
of singularities of) a natural deformation of an (a, b, c) surface with R.D.P.’s :
i.e., the canonical model of an (a, b, c)nd surface is embedded in the total space
of the direct sum of two line bundles L1, L2 (whose corresponding sheaves of
sections are OP1×P1(a, b),OP1×P1(c, b)), and defined there by a pair of equa-
tions

(∗ ∗ ∗) z2
a,b = f2a,2b(x, y) + wc,bφ2a−c,b(x, y)

w2
c,b = g2c,2b(x, y) + za,bψ2c−a,b(x, y)

where f,g ,φ, ψ, are bihomogeneous polynomials , belonging to respective vec-
tor spaces of sections of line bundles: f ∈ H0(P1 × P

1,OP1×P1(2a, 2b)), φ ∈
H0(P1 × P

1,OP1×P1(2a − c, b)) and g ∈ H0(P1 × P
1,OP1×P1(2c, 2d)), ψ ∈

H0(P1 × P
1,OP1×P1(2c− a, b)).

A perturbation of an (a, b, c) surface is an oriented smooth 4-manifold
defined by equations as (∗ ∗ ∗), but where the sections φ, ψ are differentiable,
and we have a dianalytic perturbation if φ, ψ are polynomials in the variables
xi, yj , xi, yj, according to the respective positivity or negativity of the entries
of the bidegree.
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Remark 6.41 By the previous formulae,
(1)(a, b, c) surfaces have the same invariants χ(S) = 2(a + c− 2)(b− 1) +

b(a + c),K2
S = 16(a + c− 2)(b− 1)

(2) the divisibility of their canonical class is G.C.D.((a + c− 2), 2(b− 1))
(3) Moreover, we saw that (a, b, c) surfaces are simply connected, thus
(4) Once we fix b and the sum (a + c) = s, the corresponding (a, b, c)

surfaces are all homeomorphic

As a matter of fact, once we fix b and the sum (a + c), the surfaces in
the respective families are homeomorphic by a homeomorphism carrying the
canonical class to the canonical class. This fact is a consequence of the follow-
ing proposition, which we learnt from [Man96]

Proposition 6.42 Let S, S′ be simply connected minimal surfaces of general
type such that χ(S) = χ(S′) ≥ 2, K2

S = K2
S′ , and moreover such that the

divisibility indices of KS and KS′ are the same.
Then there exists a homeomorphism F between S and S′, unique up to

isotopy, carrying KS′ to KS.

Proof. By Freedman’s theorem ( [Free82], cf. especially [F-Q90], page 162)
for each isometry h : H2(S, Z)→ H2(S′, Z) there exists a homeomorphism F
between S and S′, unique up to isotopy, such that F∗ = h. In fact, S and S′

are smooth 4-manifolds, whence the Kirby-Siebenmann invariant vanishes.
Our hypotheses that χ(S) = χ(S′) , K2

S = K2
S′ and that KS ,KS′ have

the same divisibility imply that the two lattices H2(S, Z), H2(S′, Z) have the
same rank, signature and parity, whence they are isometric since S, S′ are
algebraic surfaces. Finally, by Wall’s theorem [Wall62] (cf. also [Man96], page
93) such isometry h exists since the vectors corresponding to the respective
canonical classes have the same divisibility and by Wu’s theorem they are
characteristic: in fact Wall’s condition b2 − |σ| ≥ 4 (σ being the signature of
the intersection form) is equivalent to χ ≥ 2. �	

We come now to the main result of this section (see [CW04] for details)

Theorem 6.43 Let S be an (a, b, c)-surface and S′ be an (a + 1, b, c − 1)-
surface. Moreover, assume that a, b, c− 1 ≥ 2. Then S and S′ are diffeomor-
phic.

Idea of the Proof.
Before we dwell into the proof, let us explain the geometric argument

which led me to conjecture the above theorem in 1997.
Assume that the polynomials f, g define curves C,D which are union of

vertical and horizontal lines. Fix for simplicity affine coordinates in P
1. Then

we may assume, without loss of generality, that the curve C is constituted by
the horizontal lines y = 1, . . . y = 2b, and by the vertical lines x = 2, . . . x =
2a+1, while the curve D is formed by the horizontal lines y = −1, . . . y = −2b,
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and by the vertical lines x = 0, x = 1/4, x = 2a + 2, . . . x = 2a + 2c− 1. The
corresponding surface X has double points as singularities, and its minimal
resolution is a deformation of a smooth (a, b, c)-surface (by the cited results
of Brieskorn and Tjurina).

Likewise, we let X ′ be the singular surface corresponding to the curve
C ′ constituted by the horizontal lines y = 1, . . . y = 2b, and by the vertical
lines x = 0, x = 1/4, x = 2, . . . x = 2a + 1, and to the curve D′ formed by
the horizontal lines y = −1, . . . y = −2b, and by the (2c − 2) vertical lines
x = 2a + 2, . . . x = 2a + 2c− 1.

We can split X as the union X0 ∪X∞, where X0 := {(x, y, z, w)| |x| ≤ 1},
X∞ := {(x, y, z, w)| |x| ≥ 1}, and similarly X ′ = X ′

0 ∪X ′
∞.

By our construction, we see immediately that X ′
∞ = X∞, while there is a

natural diffeomorphism Φ of X0
∼= X ′

0.
It suffices in fact to set Φ(x, y, z, w) = (x,−y, w, z).
The conclusion is that both S and S′ are obtained glueing the same two

4-manifolds with boundary S0, S∞ glueing the boundary ∂X0 = ∂X∞ once
through the identity, and another time through the diffeomorphism Φ. It will
follow that the two 4-manifolds are diffeomorphic if the diffeomorphism Φ|∂S0

admits an extension to a diffeomorphism of S0.
(1) The relation with Lefschetz fibrations comes from the form of Φ, since

Φ does not affect the variable x, but it is essentially given by a diffeomorphism
Ψ of the fibre over x = 1,

Ψ(y, z, w) = (−y, w, z).

Now, the projection of an (a, b, c) surface onto P
1 via the coordinate x

is not a Lefschetz fibration, even if f, g are general, since each time one of
the two curves C,D has a vertical tangent, we shall have two nodes on the
corresponding fibre. But a smooth general natural deformation

z2 = f(x, y) + wφ(x, y) (1)
w2 = g(x, y) + zψ(x, y),

would do the game if φ �= 0 (i.e., 2a− c > 0) and ψ �= 0 (i.e., 2c− a > 0).
Otherwise, it is enough to take a perturbation as in the previous defini-

tion (a dianalytic one suffices), and we can realize both surfaces S and S′ as
symplectic Lefschetz fibrations (cf. also [Don99,G-S99]).

(2) The above argument about S, S′ being the glueing of the same two
manifolds with boundary S0, S∞ translates directly into the property that the
corresponding Lefschetz fibrations over P

1 are fibre sums of the same pair of
Lefschetz fibrations over the respective complex discs {x| |x| ≤ 1},{x| |x| ≥ 1}.

(3) Once the first fibre sum is presented as composition of two factoriza-
tions and the second as twisted by the ‘rotation’ Ψ , (i.e., as we saw, the same
composition of factorizations, where the second is conjugated by Ψ), in order
to prove that the two fibre sums are equivalent, it suffices to apply a very
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simple lemma, which can be found in [Aur02], and that we reproduce here
because of its beauty

Lemma 6.44 (Auroux) Let τ be a Dehn twist and let F be a factorization
of a central element φ ∈Mapg, τ1 ◦ τ2 ◦ · · · ◦ τm = φ.

If there is a factorization F ′ such that F is Hurwitz equivalent to τ ◦ F ′,
then (F )τ is Hurwitz equivalent to F .

In particular, if F is a factorization of the identity, Ψ = Πhτ ′
h, and ∀h ∃F ′

h

such that F ∼= τ ′
h ◦ F ′

h, then the fibre sum with the Lefschetz pencil associated
with F yields the same Lefschetz pencil as the fibre sum twisted by Ψ .

Proof.
If ∼= denotes Hurwitz equivalence, then

(F )τ
∼= τ ◦ (F ′)τ

∼= F ′ ◦ τ ∼= (τ)(F ′)−1 ◦ F ′ = τ ◦ F ′ ∼= F.

�	

Corollary 6.45 Notation as above, assume that F : τ1 ◦ τ2 ◦ · · · ◦ τm = φ is
a factorization of the Identity and that Ψ is a product of some Dehn twists τi

appearing in F . Then the fibre sum with the Lefschetz pencil associated with
F yields the same result as the same fibre sum twisted by Ψ .

Proof. We need only to verify that for each h, there is F ′
h such that F ∼=

τh ◦ F ′
h.

But this is immediately obtained by applying h − 1 Hurwitz moves, the
first one between τh−1 and τh, and proceeding further to the left till we obtain
τh as first factor. �	

(4) It suffices now to show that the diffeomorphism Ψ is in the subgroup
of the mapping class group generated by the Dehn twists which appear in the
first factorization.

Figure 10 below shows the fibre C of the fibration in the case 2b = 6: it
is a bidouble cover of P

1, which we can assume to be given by the equations
z2 = F (y), w2 = F (−y), where the roots of F are the integers 1, . . . , 2b.

Moreover, one sees that the monodromy of the fibration at the boundary
of the disc is trivial, and we saw that the map Ψ is the diffeomorphism of
order 2 given by y �→ −y, z �→ w, w �→ z, which in our figure is given as a
rotation of 180◦ around an axis inclined in direction north-west.

The figure shows a dihedral symmetry, where the automorphism of order
4 is given by y �→ −y, z �→ −w, w �→ z.

(5) A first part of the proof, which we skip here, consists in identifying the
Dehn twists which appear in the first factorization.

It turns out that, among the Dehn twists which appear in the first factor-
ization, there are those which correspond to the inverse images of the segments
between two consecutive integers (cf. Fig. 10). These circles can be organized
on the curve C in six chains (not disjoint) and finally one reduces oneself to
the computational heart of the proof: showing that the isotopy class of Ψ is
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Asse della rotazione

2 3 4 5 61

Fig. 10. The curve C with a dihedral symmetry

the same as the product Ψ ′ of the six Coxeter elements associated to such
chains.

We recall here that, given a chain of curves α1, . . . αn on a Riemann surface,
the Coxeter element associated to the chain is the product

∆ := (Tα1)(Tα2Tα1) . . . (Tαn
Tαn−1 . . . Tα1)

of the Dehn twists associated to the curves of the chain.
In order to finally prove that Ψ ′ (the product of such Coxeter elements)

and Ψ are isotopic, one observes that if one removes the above cited chains
of circles from the curve C, one obtains 4 connected components which are
diffeomorphic to circles. By a result of Epstein it is then sufficient to verify
that Ψ and Ψ ′ send each such curve to a pair of isotopic curves: this last step
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needs a list of lengthy (though easy) verifications, for which it is necessary to
have explicit drawings.

For details we refer to the original paper [CW04].

7 Epilogue: Deformation, Diffeomorphism
and Symplectomorphism Type of Surfaces
of General Type

As we repeatedly said, one of the fundamental problems in the theory of
complex algebraic surfaces is to understand the moduli spaces of surfaces
of general type, and in particular their connected components, which, as we
saw in the third lecture, parametrize the deformation equivalence classes of
minimal surfaces of general type, or equivalently of their canonical models.

We remarked that deformation equivalence of two minimal models S, S′

implies their canonical symplectomorphism and a fortiori an oriented diffeo-
morphism preserving the canonical class (a fortiori, a homeomorphism with
such a property).

In the late eighties Friedman and Morgan (cf. [F-M94]) made the bold
conjecture that two algebraic surfaces are diffeomorphic if and only if they are
deformation equivalent. We will abbreviate this conjecture by the acronym def
= diff. Indeed, I should point out that I had made the opposite conjecture in
the early eighties (cf. [Katata83]).

Later in this section we shall briefly describe the first counterexamples,
due to M. Manetti (cf. [Man01]): these have the small disadvantage of pro-
viding nonsimplyconnected surfaces, but the great advantage of yielding non
deformation equivalent surfaces which are canonically symplectomorphic (see
[Cat02,Cat06] for more details).

We already described in Lecture 4 some easy counterexamples to this
conjecture (cf. [Cat03, KK02, BCG05]), given by pairs of complex conjugate
surfaces, which are not deformation equivalent to their complex conjugate
surface.

We might say that, although describing some interesting phenomena, the
counterexamples contained in the cited papers by Catanese, Kharlamov–
Kulikov, Bauer–Catanese–Grunewald are ‘cheap’, since the diffeomorphism
carries the canonical class to its opposite. I was recently informed [Fried05]
by R. Friedman that also he and Morgan were aware of such ‘complex con-
jugate’ counterexamples, but for the case of some elliptic surfaces having an
infinite fundamental group.

After the examples by Manetti it was however still possible to weaken the
conjecture def = diff in the following way.

Question 7.1 Is the speculation def = diff true if one requires the diffeomor-
phism φ : S → S′ to send the first Chern class c1(KS) ∈ H2(S, Z) in c1(KS′)
and moreover one requires the surfaces to be simply connected?
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But even this weaker question turned out to have a negative answer, as it
was shown in our joint work with Wajnryb [CW04].

Theorem 7.2 ( [CW04]) For each natural number h there are simply con-
nected surfaces S1, . . . , Sh which are pairwise diffeomorphic, but not deforma-
tion equivalent.

The following remark shows that the statement of the theorem implies a
negative answer to the above question.

Remark 7.3 If two surfaces are deformation equivalent, then there exists a
diffeomorphism sending the canonical class c1(KS) ∈ H2(S, Z) to the canon-
ical class c1(KS′). On the other hand, by the cited result of Seiberg-Witten
theory we know that a diffeomorphism sends the canonical class of a minimal
surface S to ±c1(KS′). Therefore, if one gives at least three surfaces, which
are pairwise diffeomorphic, one finds at least two surfaces with the property
that there exists a diffeomorphism between them sending the canonical class
of one to the canonical class of the other.

7.1 Deformations in the Large of ABC Surfaces

The above surfaces S1, . . . , Sh in Theorem 7.2 belong to the class of the so-
called (a, b, c)-surfaces, whose diffeomorphism type was shown in the previous
Lecture to depend only upon the integers (a + c) and b.

The above Theorem 7.2 is thus implied by the following result:

Theorem 7.4 Let S, S′ be simple bidouble covers of P1 × P1 of respective
types ((2a, 2b),(2c,2b), and (2a + 2k, 2b),(2c - 2k,2b), and assume

• (I) a, b, c, k are strictly positive even integers with a, b, c− k ≥ 4
• (II) a ≥ 2c + 1
• (III) b ≥ c + 2 and either
• (IV1) b ≥ 2a + 2k − 1 or (IV2) a ≥ b + 2

Then S and S′ are not deformation equivalent.

The theorem uses techniques which have been developed in a series of pa-
pers by the author and by Manetti [Cat84,Cat87,Cat86,Man94,Man97]. They
use essentially the local deformation theory a’ la Kuranishi for the canonical
models, normal degenerations of smooth surfaces and a study of quotient sin-
gularities of rational double points and of their smoothings (this method was
used in [Cat87] in order to study the closure in the moduli space of a class of
bidouble covers of P

1 × P
1 satisfying other types of inequalities).

Although the proof can be found in [Cat02, CW04], and in the Lecture
Notes by Manetti in this volume, I believe it worthwhile to sketch the main
ideas and arguments of the proof.

Main arguments of the Proof.
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These are the three main steps of the proof:
Step I: determination of a subset Na,b,c of the moduli space
Step II: proof that Na,b,c is an open set
Step III: proof that Na,b,c is a closed set
Let us first of all explain the relevance of hypothesis (2) for step III. If we

consider the natural deformations of (a, b, c) surfaces, which are parametrized
by a quadruple of polynomials (f, g, φ, ψ) and given by the two equations

z2 = f(x, y) + wφ(x, y),

w2 = g(x, y) + zψ(x, y),

we observe that f and g are polynomials of respective bidegrees (2a, 2b),
(2c, 2b), while φ and ψ have respective bidegrees (2a− c, b), (2c− a, b). Hence
a ≥ 2c+1, implies that ψ ≡ 0, therefore every small deformation preserves the
structure of an iterated double cover. This means that the quotient Y of our
canonical model X by the involution z �→ −z admits an involution w �→ −w,
whose quotient is indeed P

1 × P
1.

This fact will play a special role in the study of limits of such (a, b, c)nd

surfaces, showing that this iterated double cover structure passes in a suitable
way to the limit, hence Na,b,c is a closed subset of the moduli space.

Step I.
The family (Na,b,c) consists of all the (minimal resolutions of the) natural

deformations of simple bidouble covers of the Segre-Hirzebruch surfaces F2h

which have only Rational Double Points as singularities and are of type ((2a,
2b),(2c,2b).

In order to explain what this means, let us recall, as in [Cat82] pages
105–111, that a basis of the Picard group of F2h is provided, for h ≥ 1,
by the fibre F of the projection to P

1, and by F ′ := σ∞ + hF , where σ∞
is the unique section with negative self-intersection = −2h. Observe that
F 2 = F ′2 = 0, FF ′ = 1, and that F is nef, while F ′ · σ∞ = −h.

We set σ0 := σ∞ +2hF , so that σ∞σ0 = 0, and we observe (cf. Lemma 2.7
of [Cat82]) that |mσ0+nF | has no base point if and only if m,n ≥ 0. Moreover,
|mσ0 + nF | contains σ∞ with multiplicity ≥ 2 if n < −2h.

At this moment, the above remarks and the inequalities (II), (III), (IV)
can be used to imply that all natural deformations have the structure of
an iterated double covering, since their canonical models are defined by the
following two equations:

z2 = f(x, y) + wφ(x, y),

w2 = g(x, y).

Step II.
A key point here is to look only at the deformation theory of the canonical

models.



Differentiable and Deformation Type of Algebraic Surfaces 143

To prove that the family of canonical models (Na,b,c) yields an open set
in the moduli space it suffices to show that, for each surface X, the Kodaira
Spencer map is surjective.

In fact, one can see as in in [Cat82] that the family (Na,b,c) is parametrized
by a smooth variety which surjects onto H1(ΘF).

Observe that the tangent space to the Deformations of X is provided by
Ext1OX

(Ω1
X ,OX) .

Denoting by π : X → F := F2h the projection map and differentiating
equations (7) we get an exact sequence for Ω1

X

o→ π∗(Ω1
F)→ Ω1

X → ORz
(−Rz)⊕ORw

(−Rw)→ 0

as in (1.7) of [Man94], where Rz = div(z), Rw = div(w).
Applying the derived exact sequence for HomOX

(. . . ,OX) we obtain the
same exact sequence as Theorem (2.7) of [Cat82], and (1.9) of [Man94],
namely:

(∗∗) 0→ H0(ΘX)→ H0(π∗ΘF)→ H0(ORz
(2Rz))⊕H0(ORw

(2Rw))→

→ Ext1OX
(Ω1

X ,OX)→ H1(π∗ΘF).

There is now some technical argument, quite similar to the one given in
[Cat82], and where our inequalities are used in order to show that H1(π∗ΘF) =
H1(ΘF ⊗ π∗(OX)) equals H1(ΘF): we refer to [CW04] for details.

Summarizing the proof of step II, we observe that the smooth parame-
ter space of our family surjects onto H1(ΘF), and its kernel, provided by
the natural deformations with fixed base F2h, surjects onto H0(ORz

(2Rz))⊕
H0(ORw

(2Rw)). Thus the Kodaira Spencer is onto and we get an open set in
the moduli space.

Step III.
We want now to show that our family Na,b,c yields a closed set in the

moduli space.
It is clear at this moment that we obtained an irreducible component of

the moduli space. Let us consider the surface over the generic point of the
base space of our family: then it has Z/2 in the automorphism group (sending
z → −z, as already mentioned).

As shown in [Cat82], this automorphism acts then biregularly on the
canonical model X0 of each surface corresponding to a point in the closure
of our open set. This holds in fact more generally for the action of any fi-
nite group G: the representation of G on H0(S,O(5KS)) depends on discrete
data, whence it is fixed in a family, and then the set of fixed points in the
pseudomoduli space {X|g(X) = X ∀g ∈ G} is a closed set.

We use now the methods of [Cat87,Man97], and more specifically we can
apply Theorem 4.1 of [Man97] to conclude with

Claim III .1 If X0 is a canonical model which is a limit of canonical
models Xt of surfaces St in our family, then the quotient Y0 of X0 by the
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subgroup Z/2 ⊂ Aut(X0) mentioned above is a surface with Rational Double
Points.

Claim III .2 The family of such quotients Yt has a Z/2-action over the
generic point, and dividing by it we get (cf. [Man97, Theorem 4.10]) as quo-
tient Z0 a Hirzebruch surface. Thus our surface X0 is also an iterated double
cover of some F2h, hence it belongs to the family we constructed.

Argument for claim III.1 Since smooth canonical models are dense, we
may assume that X0 is a limit of a 1-parameter family Xt of smooth canonical
models; for the same reason we may assume that the quotient Y0 is the limit
of smooth surfaces Yt = Xt/(Z/2) (of general type if c, b ≥ 3).

Whence,
(1) Y0 has singularities which are quotient of Rational Double Points by

(Z/2).
(2) Yt is a smoothing of Y0, and since we assume the integers c, b to be

even, the canonical divisor of Yt is 2-divisible.
Now, using Theorem 3.6, the involutions acting on RDP’s can be classified

(cf. [Cat87] for this and the following), and it turns out that the quotient
singularities are again RDP’s, with two possible exceptions:

Type (c): the singularity of Y0 is a quotient singularity of type 1
4k+2 (1, 2k),

and X0 is the A2k singularity, quotient by the subgroup 2Z/(4k + 2)Z.
Type (e): the singularity of Y0 is a quotient singularity of type

1
4k+4 (1, 2k + 1), and X0 is the A2k+1 singularity, quotient by the subgroup
2Z/(4k + 4)Z.

The versal families of deformations of the above singularities have been
described by Riemenschneider in [Riem74], who showed:

(C) In the case of type (c), the base space is smooth, and it yields a
smoothing admitting a simultaneous resolution.

(E) In the case of type (e), the base space consists of two smooth compo-
nents intersecting transversally, T1 ∪ T2. T1 yields a smoothing admitting a
simultaneous resolution (we denote this case by ‘case (E1)’).

Hypothesis (2), of 2-divisibility of the canonical divisor of Yt, is used in two
ways. The first consequence is that the intersection form on H2(Yt, Z) is even;
since however the Milnor fibre of the smoothing is contained in Yt, it follows
that no 2-cycle in the Milnor fibre can have odd selfintersection number. This
then excludes case (C), and also case (E1) for k ≥ 1.

In case (E2) we have a socalled Z-Gorenstein smoothing, namely, the T2

family is the quotient of the hypersurface

(∗ ∗ ∗) uv − z2n = Σ1
h=0thzhn

by the involution sending (u, v, z) �→ (−u,−v,−z).
The result is that the Milnor fibre has a double étale cover which is the

Milnor fibre of An−1 (n = k + 1), in particular its fundamental group equals
Z/2. The universal cover corresponds to the cohomology class of the canonical
divisor. This however contradicts condition (2), and case (E2) is excluded too.
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For case (E1) k = 0 we argue similarly: the involution acts trivially on the
parameter t, and in the central fibre it has an isolated fixed point. Because of
simultaneous resolution, the total space ∪tXt may be taken to be smooth, and
then the set of fixed points for the involution is a curve mapping isomorphically
on the parameter space {t}. Then the Milnor fibre should have a double
cover ramified exactly in one point, but this is absurd since by van Kampen’s
theorem the point complement is simply connected.

Argument for claim III.2
Here, Zt := (Yt/Z/2) ∼= P

1 × P
1 = F0 and again the canonical divisor

is 2-divisible. Whence, the same argument as before applies, showing that
Z0 has necessarily Rational Double Points as singularities. But again, since
the Milnor fibre embeds in P

1 × P
1 = F0, the intersection form must have

negativity at most 1, and be even. This leaves only the possibility of an A1

singularity. This case can be again excluded by the same argument given for
the case (E1) k = 0 above.

Proof that Theorem7.4 implies Theorem7.2.
It suffices to show what we took up to now for granted: the irreducible

component Na,b,c uniquely determines the numbers a, b, c up to the obvious
permutations: a↔ c, and , if a = c, the possibilities of exchanging a with b.

It was shown more generally in [Cat84] Theorem 3.8 that the natural de-
formations of bidouble covers of type (2a, 2b)(2c, 2d) yield an irreducible com-
ponent of the moduli space, and that these are distinct modulo the obvious
permutations (exchange type (2a, 2b)(2c, 2d) with type (2c, 2d)(2a, 2b) and
with type (2b, 2a)(2d, 2c)). This follows from geometrical properties of the
canonical map at the generic point.

However, the easiest way to see that the irreducible component Na,b,c

determines the numbers a, b, c, under the given inequalities (II0, III), (IV)
is to observe that the dimension of Na,b,c equals M := (b + 1)(4a + c +
3) + 2b(a + c + 1) − 8. Recall in fact that K2/16 = (a + c − 2)(b − 1), and
(8χ −K2)/8 = b(a + c): setting α = a + c, β = 2b, we get that α, β are then
the roots of a quadratic equation, so they are determined up to exchange, and
uniquely if we restrict our numbers either to the inequality a ≥ 2b or to the
inequality b ≥ a.

Finally M = (β
2 + 1)(α + 3) + β(α + 1) − 8 + 3a(β

2 + 1) then determines
a, whence the ordered triple (a, b, c). �	
Remark 7.5 If, as in [Cat02], we assume

(IV2) a ≥ b + 2,
then the connected component Na,b,c of the moduli space contains only

iterated double covers of P
1 × P

1.

7.2 Manetti Surfaces

Manetti in [Man01] considers surfaces which are desingularization of certain
(Z/2)r covers X of rational surfaces Y which are blowup of the quadric
Q := P

1 × P
1 at n points P1, . . . Pn.
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His construction is made rather complicated, not only by the desire to con-
struct an arbitrarily high number of surfaces which are pairwise diffeomorphic
but not deformation equivalent, but also by the crucial target to obtain that
every small deformation is again such a Galois (Z/2)r cover. This requirement
makes the construction not very explicit (Lemma 3.6 ibidem).

Let us briefly recall the structure of normal finite (Z/2)r covers with
smooth base Y (compare [Par91,Man01], and also [BC06] for a description in
terms of the monodromy homomorphism).

We denote by G = (Z/2)r the Galois group, and by σ an element of G.
We denote by G∨ := Hom(G, C∗) the dual group of characters, G∨ ∼= (Z/2)r,
and by χ an element of G∨. As for any flat finite abelian covering f : X → Y
we have

f∗OX =
⊕

χ∈G∨

OY (−Lχ) = OY ⊕ (
⊕

χ∈G∨\{0}
OY (−Lχ)).

To each element of the Galois group σ ∈ G one associates a divisor Dσ,such
that 2Dσ is the direct image divisor f∗(Rσ), Rσ being the divisorial part of
the set of fixed points for σ.

Let xσ be a section such that div(xσ) = Dσ: then the algebra structure
on f∗OX is given by the following symmetric bilinear multiplication maps:

OY (−Lχ)⊗OY (−Lη)→ OY (−Lχ+η)

associated to the section

xχ,η ∈ H0(Y,OY (Lη + Lχ − Lχ+η)), xχ,η :=
∏

χ(σ)=η(σ)=1

xσ.

Associativity follows since, given characters χ, η, θ, {σ|(χ+η)(σ) = θ(σ) = 1}
is the disjoint union of {σ|χ(σ) = θ(σ) = 1, η(σ) = 0} and of {σ|η(σ) =
θ(σ) = 1, χ(σ) = 0}, so that

OY (−Lχ)⊗OY (−Lη)⊗OY (−Lθ)→ OY (−Lχ+η+θ)

is given by the section
∏

σ∈Σ xσ, where

Σ := {σ|χ(σ) = η(σ) = 1, or χ(σ) = θ(σ) = 1, or η(σ) = θ(σ) = 1}.

In particular, the covering f : X → Y is embedded in the vector bundle V

which is the direct sum of the line bundles whose sheaves of sections are the
OY (−Lχ), and is there defined by equations

zχzη = zχ+η

∏
χ(σ)=η(σ)=1

xσ.

Noteworthy is the special case χ = η, where χ+η is the trivial character 1,
and z1 = 1.
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In particular, let χ1, . . . χr be a basis of G∨ ∼= (Z/2)r, and set zi := zχi
.

We get then the r equations

(�) z2
i =

∏
χi(σ)=1

xσ.

These equations determine the field extension, hence one gets X as the nor-
malization of the Galois cover given by (�).

We can summarize the above discussion in the following

Proposition 7.6 A normal finite G ∼= (Z/2)r covering of smooth variety Y
is completely determined by the datum of

(1) reduced effective divisors Dσ, ∀σ ∈ G, which have no common compo-
nents

(2) divisor classes L1, . . . Lr, for χ1, . . . χr a basis of G∨, such that we have
the following linear equivalence

(3)
2Li ≡

∑
χi(σ)=1

Dσ.

Conversely, given the datum of (1) and (2), if (3) holds, we obtain a normal
scheme X with a finite G ∼= (Z/2)r covering f : X → Y .

Idea of the proof
It suffices to determine the divisors Lχ for the other elements of G∨. But

since any χ is a sum of basis elements, it suffices to exploit the fact that the
linear equivalences

Lχ+η ≡ Lη + Lχ −
∑

χ(σ)=η(σ)=1

Dσ

must hold, and apply induction. Since the covering is well defined as the nor-
malization of the Galois cover given by (�), each Lχ is well defined. Then the
above formulae determine explicitly the ring structure of f∗OX , hence X. �	

A natural question is of course when the scheme X is a variety, i.e., X
being normal, when X is connected, or equivalently irreducible. The obvious
answer is that X is irreducible if and only if the monodromy homomorphism

µ : H1(Y \(∪σDσ), Z)→ G

is surjective.

Remark 7.7 As a matter of fact, we know, from the cited theorem of Grauert
and Remmert, that µ determines the covering. It is therefore worthwhile to see
how µ determines the datum of (1) and (2).

Write for this purpose the branch locus D :=
∑

σ Dσ as a sum of irreducible
components Di. To each Di corresponds a simple geometric loop γi around



148 F. Catanese

Di, and we set σi := µ(γi). Then we have that Dσ :=
∑

σi=σ Di. For each
character χ, yielding a double covering associated to the composition χ◦µ, we
must find a divisor class Lχ such that 2Lχ ≡

∑
χ(σ)=1 Dσ.

Consider the exact sequence

H2n−2(Y, Z)→ H2n−2(D, Z) = ⊕iZ[Di]→ H1(Y \D, Z)→ H1(Y, Z)→ 0

and the similar one with Z replaced by Z/2. Denote by ∆ the subgroup im-
age of ⊕iZ/2[Di]. The restriction of µ to ∆ is completely determined by the
knowledge of the σi ’s, and we have

0→ ∆→ H1(Y \D, Z/2)→ H1(Y, Z/2)→ 0.

Dualizing, we get

0→ H1(Y, Z/2)→ H1(Y \D, Z/2)→ Hom(∆, Z/2)→ 0.

The datum of µ, extending µ|∆ is then seen to correspond to an affine
space over the vector space H1(Y, Z/2): and since H1(Y, Z/2) classifies divisor
classes of 2-torsion on Y , we infer that the different choices of Lχ such that
2Lχ ≡

∑
χ(σ)=1 Dσ correspond bijectively to all the possible choices for µ.

Corollary 7.8 Same notation as in proposition 7.6. Then the scheme X is
irreducible if {σ|Dσ > 0} generates G.

Proof. We have seen that if Dσ ≥ Di �= 0, then µ(γi) = σ, whence we infer
that µ is surjective. �	

An important role plays again here the concept of natural deformations.
This concept was introduced for bidouble covers in [Cat84], Definition 2.8, and
extended to the case of abelian covers in [Par91], Definition 5.1. However, the
two definitions do not coincide, because Pardini takes a much larger parameter
space. We propose therefore to call Pardini’s case the case of extended natural
deformations.

Definition 7.9 Let f : X → Y be a finite G ∼= (Z/2)r covering with Y smooth
and X normal, so that X is embedded in the vector bundle V defined above
and is defined by equations

zχzη = zχ+η

∏
χ(σ)=η(σ)=1

xσ.

Let ψσ,χ be a section ψσ,χ ∈ H0(Y,OY (Dσ − Lχ), given ∀σ ∈ G,χ ∈ G∨. To
such a collection we associate an extended natural deformation, namely, the
subscheme of V defined by equations

zχzη = zχ+η

∏
χ(σ)=η(σ)=1

(
∑

θ

ψσ,θ · zθ).
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We have instead a (restricted) natural deformation if we restrict ourselves
to the θ’s such that θ(σ) = 0,and we consider only an equation of the form

zχzη = zχ+η

∏
χ(σ)=η(σ)=1

(
∑

θ(σ)=0

ψσ,θ · zθ).

The deformation results which we explained in the last lecture for simple
bidouble covers work out also for G ∼= (Z/2)r which are locally simple, i.e.,
enjoy the property that for each point y ∈ Y the σ’s such that y ∈ Dσ

are a linear independent set. This is a good notion since (compare [Cat84],
Proposition 1.1) if also X is smooth the covering is indeed locally simple.

One has the following result (see [Man01], Sect. 3)

Proposition 7.10 Let f : X → Y be a locally simple G ∼= (Z/2)r covering
with Y smooth and X normal. Then we have the exact sequence

⊕χ(σ)=0(H0(ODσ
(Dσ − Lχ)))→ Ext1OX

(Ω1
X ,OX)→ Ext1OX

(f∗Ω1
Y ,OX).

In particular, every small deformation of X is a natural deformation if
(i) H1(OY (−Lχ)) = 0
(ii) Ext1OX

(f∗Ω1
Y ,OX) = 0

If moreover
(iii) H0(OY (Dσ − Lχ)) = 0 ∀σ ∈ G,χ ∈ G∨,
every small deformation of X is again a G ∼= (Z/2)r covering.

Comment on the proof.
In the above proposition condition (i) ensures that H0(OY (Dσ − Lχ))→

H0(ODσ
(Dσ − Lχ)) is surjective.

Condition (ii) and the above diagram imply then that the natural defor-
mations are parametrized by a smooth manifold and have surjective Kodaira
Spencer map, whence they induce all the infinitesimal deformations. �	

In Manetti’s application one needs an extension of the above result. In
fact (ii) does not hold, since the manifold Y is not rigid (one can move the
points P1, . . . Pn which are blown up in the quadric Q). But the moral is the
same, in the sense that one can show that all the small deformations of X are
G-coverings of a small deformation of Y .

Before we proceed to the description of the Manetti surfaces, we consider
some simpler surfaces, which however clearly illustrate one of the features of
Manetti’s construction.

Definition 7.11 A singular bidouble Manetti surface of type (a, b) and triple
of order n is a singular bidouble cover of Q := P

1 × P
1 branched on three

smooth curves C1, C2, C3 belonging to the linear system of sections of the sheaf
OQ(a, b) and which intersect in n points p1, . . . pn, with distinct tangents.

A smooth bidouble Manetti surface of type (a, b) and triple of order n is
the minimal resolution of singularities S of such a surface X as above.
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Remark 7.12 (1) With such a branch locus, a Galois group of type G =
(Z/2)r can be only G = (Z/2)3 or G = (Z/2)2 (we can exclude the uninter-
esting case G = (Z/2)). The case r = 3 can only occur if the class of the three
curves (a, b) is divisible by two since, as we said, the homology group of the
complement Q\(∪iCi) is the cokernel of the map H2(Q, Z) → ⊕3

1(ZCi). The
case r = 3 is however uninteresting, since in this case the elements φ(γi) are
a basis, thus over each point pi we have a nodal singularity of the covering
surface, which obviously makes us remain in the same moduli space as the one
where the three curves have no intersection points whatsoever.

(2) Assume that r = 2, and consider the case where the monodromy µ is
such that the µ(γi)’s are the three nontrivial elements of the group G = (Z/2)2.

Let p = pi be a point where the three smooth curves C1, C2, C3 intersect
with distinct tangents: then over the point p there is a singularity (X,x) of
the type considered in Example 3.3, namely, a quotient singularity which is
analytically the cone over a rational curve of degree 4.

If we blow up the point p, and get an exceptional divisor E, the loop γ
around the exceptional divisor E is homologous to the sum of the three loops
γ1, γ2, γ3 around the respective three curves C1, C2, C3. Hence it must hold
µ(γ) =

∑
i µ(γi) = 0, and the pull back of the covering does not have E

in the branch locus. The inverse image A of E is a (Z/2)2 covering of E
branched in three points, and we conclude that A is a smooth rational curve
of self-intersection −4.

One sees (compare [Cat99]) that

Proposition 7.13 Let X be a singular bidouble Manetti surface of type (a, b)
and triple of order n: then if S is the minimal resolution of the singularities
x1, . . . xn of X, then S has the following invariants:

K2
S = 18ab− 24(a + b) + 32− n

χ(S) = 4 + 3(ab− a− b).
Moreover S is simply connected if (a, b) is not divisible by 2.

Idea of the proof For n = 0 these are the standard formulae since 2KS =
f∗(3a− 4, 3b− 4), and χ(OQ(−a,−b)) = 1 + 1/2(a(b− 2) + b(a− 2)).

For n > 0, each singular point xn lowers K2
S by 1, but leaves χ(S) invariant.

In fact again we have 2KX = f∗(3a−4, 3b−4), but 2KS = 2KX−
∑

i Ai. For
χ(S), one observes that xi is a rational singularity, whence χ(OX) = χ(OS).

It was proven in [Cat84] that S is simply connected for n = 0 when (a, b)
is not divisible by 2 (in the contrary case the fundamental group equals Z/2.)
Let us then assume that n ≥ 1.

Consider now a 1-parameter family C3,t, t ∈ T , such that for t �= 0 C3,t

intersects C1, C2 transversally, while C3,0 = C3. We get a corresponding family
Xt of bidouble covers such that Xt is smooth for t �= 0 and, as we just saw,
simply connected. Then S is obtained from Xt, t �= 0 replacing the Milnor
fibres by tubular neighbourhoods of the exceptional divisors Ai, i = 1, . . . n.
Since Ai is smooth rational, these neighbourhoods are simply connected, and
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the result follows then easily by the first van Kampen theorem, which implies
that π1(S) is a quotient of π1(Xt), t �= 0. �	

The important fact is that the above smooth bidouble Manetti surfaces of
type (a, b) and triple of order n are parametrized, for b = la, l ≥ 2, n = la(2a−
c), 0 < 2c < a, by a disconnected parameter space ( [Man01], Corollary 2.12:
observe that we treat here only the case of k = 3 curves).

We cannot discuss here the method of proof, which relies on the socalled
Brill Noether theory of special divisors: we only mention that Manetti con-
siders the two components arising form the respective cases where OC1(p1 +
. . . pn) ∼= OC1(a− c, b), OC1(p1 + . . . pn) ∼= OC1(a, b− lc), and shows that the
closures of these loci yield two distinct connected components.

Unfortunately, one sees easily that smooth bidouble Manetti surfaces ad-
mit natural deformations which are not Galois coverings of the blowup Y of
Q in the points p1, . . . pn, hence Manetti is forced to take more complicated
G ∼= (Z/2)r coverings (compare Sect. 6 of [Man01], especially page 68, but
compare also the crucial Lemma 3.6).

The Galois group is chosen as G = (Z/2)r,where r := 2+n+5 (once more
we make the simplifying choice k = 1 in 6.1 and foll. of [Man01]).

Definition 7.14 (1) Let G1 := (Z/2)2,G2 := (Z/2)n, G′ := G1⊕G2⊕(Z/2)4,
G := G′ ⊕ (Z/2).

(2) Let D : G′ → Pic(Y ) be the mapping sending

• The three nonzero elements of G1 to the classes of the proper transforms
of the curves Ci, i.e., of π∗(Cj)−

∑
i Ai

• The canonical basis of G2 to the classes of the exceptional divisors Ai

• The first two elements of the canonical basis of (Z/2)4 to the pull back of
the class of OQ(1, 0), the last two to the pull back of the class of OQ(0, 1)

• The other elements of G′ to the zero class.

With the above setting one has (Lemma 3.6 of [Man01])

Proposition 7.15 There is an extension of the map D : G′ → Pic(Y ) to
D : G→ Pic(Y ), and a map L : G∨ → Pic(Y ), χ �→ Lχ such that

(i) The cover conditions 2Lχ ≡
∑

χ(σ)=1 Dσ are satisfied
(ii) −Dσ + Lχ is an ample divisor
(iii) Dσ is an ample divisor for σ ∈ G\G′

Definition 7.16 Let now S be a G-covering of Y associated to the choice
of some effective divisors Dσ in the given classes. S is said to be a Manetti
surface.

For simplicity we assume now that these divisors Dσ are smooth and
intersect transversally, so that S is smooth.

Condition (iii) guarantees that S is connected, while condition (ii) and
an extension of the argument of Proposition 7.10 shows that all the small
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deformations are G-coverings of such a rational surface Y , blowup of Q at n
points.

We are going now only to very briefly sketch the rest of the arguments:
Step A It is possible to choose one of the Dσ’s to be so positive that the

group of automorphisms of a generic such surface S is just the group G.
Step B Using the natural action of G on any such surface, and using again

arguments similar to the ones described in Step III of the last lecture, one sees
that we get a closed set of the moduli space.

Step C The families of surfaces thus described fibre over the corresponding
families of smooth bidouble Manetti surfaces: since for the latter one has more
than one connected component, the same holds for the Manetti surfaces.

In the next section we shall show that the Manetti surfaces corresponding
to a fixed choice of the extension D are canonically symplectomorphic.

In particular, they are a strong counterexample to the Def=Diff question.

7.3 Deformation and Canonical Symplectomorphism

We start discussing a simpler case:

Theorem 7.17 Let S and S′ be the respective minimal resolutions of the
singularities of two singular bidouble Manetti surfaces X,X ′ of type (a, b),
both triple of the same order n: then S and S′ are diffeomorphic, and indeed
symplectomorphic for their canonical symplectic structure.

Proof. In order to set up our notation, we denote by C1, C2, C3 the three
smooth branch curves for p : X → Q, and denote by p1, .., pn the points where
these three curves intersect (with distinct tangents): similarly the covering
p′ : X ′ → Q determines C ′

1, C
′
2, C

′
3 and p′1, .., p

′
n. Let Y be the blow up of the

quadric Q at the n points p1, .., pn, so that S is a smooth bidouble cover of
Y , similarly S′ of Y ′.

Without loss of generality we may assume that C1, C2 intersect transver-
sally in 2ab points, and similarly C ′

1, C
′
2.

We want to apply Theorem 4.9 to S, S′ (i.e., the X,X ′ of Theorem 4.9 are
our S, S′). Let Ĉ3 be a general curve in the pencil spanned by C1, C2, and
consider the pencil C(t) = tC3 + (1 − t)Ĉ3. For each value of t, C1, C2, C(t)
meet in p1, .., pn, while for t = 0 they meet in 2ab points, again with distinct
tangents by our generality assumption. We omit the other finitely many t’s for
which the intersection points are more than n, or the tangents are not distinct.
After blowing up p1, .., pn and taking the corresponding bidouble covers, we
obtain a family St with S1 = S, and such that S0 has exactly 2ab − n := h
singular points, quadruple of the type considered in Example 3.3.

Similarly, we have a family S′
t, and we must find an equisingular family

Zu, u ∈ U , containing S0 and S′
0.

Let P be the linear system P(H0(Q,OQ(a, b)), and consider a general curve
in the Grassmannian Gr(1, P), giving a one dimensional family C1[w], C2[w],
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w ∈W , of pairs of points of P such that C1[w] and C2[w] intersect transversally
in 2ab points of Q.

Now, the covering of W given by

{(w, p1(w), . . . pn(w))|p1(w), . . . pn(w)∈C1[w]∩C2[w], pi(w) �= pj(w)for i �= j}

is irreducible. This is a consequence of the General Position Theorem (see
[ACGH85], page 112) stating that if C is a smooth projective curve, then for
each integer n the subset Cn

dep ⊂ Cn,

Cn
dep := {(p1, . . . pn)|pi �= pjfor i �= j, p1, . . . pn are linearly dependent}

is smooth and irreducible.
We obtain then a one dimensional family with irreducible basis

U of rational surfaces Y (u), obtained blowing up Q in the n points
p1(w(u)),. . .pn(w(u)), and a corresponding family Zu of singular bidouble
covers of Y (u), each with 2ab − n singularities of the same type described
above.

We have then the situation of Theorem 4.9, whence it follows that S, S′, en-
dowed with their canonical symplectic structures, are symplectomorphic. �	

The same argument , mutatis mutandis, shows (compare [Cat02,Cat06])

Theorem 7.18 Manetti surfaces of the same type (same integers a, b, n, r =
2n + 7, same divisor classes [Dσ]) are canonically symplectomorphic.

Manetti indeed gave the following counterexample to the Def= Diff ques-
tion:

Theorem 7.19 (Manetti) For each integer h > 0 there exists a surface of
general type S with first Betti number b1(S) = 0, such that the subset of the
moduli space corresponding to surfaces which are orientedly diffeomorphic to
S contains at least h connected components.

Remark 7.20 Manetti proved the diffeomorphism of the surfaces which are
here called Manetti surfaces using some results of Bonahon ( [Bon83]) on the
diffeotopies of lens spaces.

We have given a more direct proof also because of the application to canon-
ical symplectomorphism.

Corollary 7.21 For each integer h > 0 there exist surfaces of general type
S1, . . . Sh with first Betti number b1(Sj) = 0, socalled Manetti surfaces, which
are canonically symplectomorphic, but which belong to h distinct connected
components of the moduli space of surfaces diffeomorphic to S1.

In spite of the fact that we begin to have quite a variety of examples and
counterexamples, there are quite a few interesting open questions, the first
one concerns the existence of simply connected surfaces which are canonically
symplectomorphic, but not deformation equivalent:
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Question 7.22 Are the diffeomorphic (a, b, c)-surfaces of Theorem6.43, en-
dowed with their canonical symplectic structure, indeed symplectomorphic?

Remark 7.23 A possible way of showing that the answer to the question
above is yes (and therefore exhibiting symplectomorphic simply connected sur-
faces which are not deformation equivalent) goes through the analysis of the
braid monodromy of the branch curve of the ‘perturbed’ quadruple covering of
P

1 × P
1 (the composition of the perturbed covering with the first projection

P
1 × P

1 → P
1 yields the Lefschetz fibration). One would like to see whether

the involution ι on P
1, ι(y) = −y can be written as the product of braids which

show up in the factorization.
This approach turns out to be more difficult than the corresponding analysis

which has been made in the mapping class group, because the braid monodromy
contains very many ‘tangency’ factors which do not come from local contri-
butions to the regeneration of the branch curve from the union of the curves
f = 0, g = 0 counted twice.

Question 7.24 Are there (minimal) surfaces of general type which are ori-
entedly diffeomorphic through a diffeomorphism carrying the canonical class
to the canonical class, but, endowed with their canonical symplectic structure,
are not canonically symplectomorphic?

Are there such examples in the simply connected case?

The difficult question is then: how to show that diffeomorphic surfaces
(diffeomorphic through a diffeomorphism carrying the canonical class to the
canonical class) are not symplectomorphic?

We shall briefly comment on this in the next section, referring the reader
to the other Lecture Notes in this volume (for instance, the one by Auroux
and Smith) for more details.

7.4 Braid Monodromy and Chisini’ Problem

Let B ⊂ P
2
C

be a plane algebraic curve of degree d, and let P be a general
point not on B. Then the pencil of lines Lt passing through P determines a
one parameter family of d-uples of points of C ∼= Lt\{P}, namely, Lt ∩B.

Blowing up the point P we get the projection F1 → P
1, whence the braid

at infinity is a full rotation, corresponding to the generator of the (infinite
cyclic) centre of the braid group Bd,

(∆2
d) := (σd−1σd−2 . . . σ1)d.

Therefore one gets a factorization of ∆2
d in the braid group Bd, and the

equivalence class of the factorization does neither depend on the point P (if P
is chosen to be general), nor does it depend on B, if B varies in an equisingular
family of curves.
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Chisini was mainly interested in the case of cuspidal curves (compare
[Chi44,Chi55]), mainly because these are the branch curves of a generic pro-
jection f : S → P

2
C
, for any smooth projective surface S ⊂ P

r.
More precisely, a generic projection f : S → P

2
C

has the following proper-
ties:

• It is a finite morphism whose branch curve B has only nodes and cusps as
singularities, and moreover

• The local monodromy around a smooth point of the branch curve is a
transposition

Maps with those properties are called generic coverings: for these the local
monodromies are only Z/2 = S2 (at the smooth points of the branch curve B),
S3 at the cusps, and Z/2× Z/2 at the nodes.

In such a case we have a cuspidal factorization, i.e., all factors are powers
of a half twist, with respective exponents 1, 2, 3.

Chisini posed the following daring

Conjecture 7.25 (Chisini’s conjecture) Given two generic coverings f :
S → P

2
C, f ′ : S′ → P

2
C, both of degree at least 5, assume that they have the

same branch curve B. Is it then true that f and f ′ are equivalent?

Observe that the condition on the degree is necessary, since a counterex-
ample for d ≤ 4 is furnished by the dual curve B of a smooth plane cubic
(as already known to Chisini, cf. [Chi44]). Chisini in fact observed that there
are two generic coverings, of respective degrees 3 and 4, and with the given
branch curve. Combinatorially, we have a triple of transpositions correspond-
ing in one case to the sides of a triangle (d = 3, and the monodromy permutes
the vertices of the triangle), and in the other case to the three medians of the
triangle (d = 4, and the monodromy permutes the vertices of the triangle plus
the barycentre).

While establishing a very weak form of the conjecture [Cat86]. I remarked
that the dual curve B of a smooth plane cubic is also the branch curve for three
nonequivalent generic covers of the plane from the Veronese surface (they are
distinct since they determine three distinct divisors of 2-torsion on the cubic).

The conjecture seems now to have been almost proven (i.e., it is not yet
proven in the strongest possible form), after that it was first proven by Kulikov
(cf. [Kul99]) under a rather complicated assumption, and that shortly later
Nemirovskii [Nem01] noticed (just by using the Miyaoka-Yau inequality) that
Kulikov’s complicated assumption was implied by the simpler assumption
d ≥ 12.

Kulikov proved now [Kul06] the following

Theorem 7.26 (Kulikov) Two generic projections with the same cuspidal
branch curve B are isomorphic unless if the projection p : S → P

2 of one of
them is just a linear projection of the Veronese surface.
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Chisini’s conjecture concerns a fundamental property of the fundamental
group of the complement P

2\B, namely to admit only one conjugacy class of
surjections onto a symmetric group Sn, satisfying the properties of a generic
covering.

In turn, the fundamental group π1(P2\B) is completely determined by
the braid monodromy of B, i.e., the above equivalence class (modulo Hurwitz
equivalence and simultaneous conjugation) of the above factorization of ∆2

d.
So, a classical question was: which are the braid monodromies of cuspidal
curves?

Chisini found some necessary conditions, and proposed some argument in
order to show the sufficiency of these conditions, which can be reformulated as

Chisini’s problem: (cf. [Chi55]).
Given a cuspidal factorization, which is regenerable to the factorization

of a smooth plane curve, is there a cuspidal curve which induces the given
factorization?

Regenerable means that there is a factorization (in the equivalence class)
such that, after replacing each factor σi (i = 2, 3) by the i corresponding
factors (e.g. , σ3 is replaced by σ◦σ◦σ) one obtains the factorization belonging
to a non singular plane curve.

A negative answer to the problem of Chisini was given by B. Moishezon
in [Moi94].

Remark 7.27 (1) Moishezon proves that there exist infinitely many non
equivalent cuspidal factorizations observing that π1(P2

C
\B) is an invariant de-

fined in terms of the factorization alone and constructing infinitely many non
isomorphic such groups. On the other hand, the family of cuspidal curves of a
fixed degree is an algebraic set, hence it has a finite number of connected com-
ponents. These two statements together give a negative answer to the above
cited problem of Chisini.

The examples of Moishezon have been recently reinterpreted in [ADK03],
with a simpler treatment, in terms of symplectic surgeries.

Now, as conjectured by Moishezon, a cuspidal factorization together with a
generic monodromy with values in Sn induces a covering M → P

2
C, where the

fourmanifold M has a unique symplectic structure (up to symplectomorphism)
with class equal to the pull back of the Fubini Study form on P

2 (see for
instance [A-K00]).

What is more interesting (and much more difficult) is however the converse.
Extending Donaldson’s techniques (for proving the existence of symplec-

tic Lefschetz fibrations) Auroux and Katzarkov [A-K00] proved that each
symplectic 4-manifold is in a natural way ‘asymptotically’ realized by such a
generic covering.

They show that, given a symplectic fourmanifold (M,ω) with [ω] ∈
H2(M, Z), there exists a multiple m of a line bundle L with c1(L) = [ω] and
three general sections s0, s1, s2 of L⊗m, which are ε-holomorphic with many
of their derivatives (that a section s is ε-holomorphic means, very roughly
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speaking, that once one has chosen a compatible almost complex structure,
|∂̄s| < ε |∂s|) yielding a finite covering of the plane P

2 which is generic and
with branch curve a symplectic subvariety whose singularities are only nodes
and cusps.

The only price they have to pay is to allow also negative nodes, i.e., nodes
which in local holomorphic coordinates are defined by the equation

(y − x̄)(y + x̄) = 0.

The corresponding factorization in the braid group contains then only
factors which are conjugates of σj

1, with j = −2, 1, 2, 3.
Moreover, the factorization is not unique, because it may happen that

two consecutive nodes, one positive and one negative, may disappear, and
the corresponding two factors disappear from the factorization. In particular,
π1(P2

C
\B) is no longer an invariant and the authors propose to use an ap-

propriate quotient of π1(P2
C
\B) in order to produce invariants of symplectic

structures.
It seems however that, in the computations done up to now, even the

groups π1(P2
C
\B) allow only to detect homology invariants of the projected

fourmanifold [ADKY04].
Let us now return to the world of surfaces of general type.
Suppose we have a surface S of general type and a pluricanonical embed-

ding ψm : X → P
N of the canonical model X of S. Then a generic linear

projection of the pluricanonical image to P
2
C

yields, if S ∼= X, a generic cov-
ering S → P

2
C

(else the singularities of X create further singularities for the
branch curve B and other local coverings).

By the positive solution of Chisini’s conjecture, the branch curve B de-
termines the surface S uniquely (up to isomorphism). We get moreover the
equivalence class of the braid monodromy factorization, and this does not
change if S varies in a connected family of surfaces with KS ample (i.e., the
surfaces equal their canonical models).

Motivated by this observation of Moishezon, Moishezon and Teicher in a
series of technically difficult papers (see e.g. [MT92]) tried to calculate funda-
mental groups of complements π1(P2

C
\B), with the intention of distinguishing

connected components of the moduli spaces of surfaces of general type.
Indeed, it is clear that these groups are invariants of the connected compo-

nents of the open set of the moduli space corresponding to surfaces with ample
canonical divisor KS . Whether one could even distinguish connected compo-
nents of moduli spaces would in my opinion deserve a detailed argument, in
view of the fact that several irreducible components consist of surfaces whose
canonical divisor is not ample (see for instance [Cat89] for several series of
examples).

But it may be that the information carried by π1(P2
C
\B) be too scanty,

so one could look at further combinatorial invariants, rather than the class of
the braid monodromy factorization for B.
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In fact a generic linear projection of the pluricanonical image to P
3
C

gives
a surface Σ with a double curve Γ ′. Now, projecting further to P

2
C we do not

only get the branch curve B, but also a plane curve Γ , image of Γ ′.
Even if Chisini’s conjecture tells us that from the holomorphic point of

view B determines the surface S and therefore the curve Γ , it does not follow
that the fundamental group π1(P2

C\B) determines the group π1(P2
C\(B∪Γ )).

It would be interesting to calculate this second fundamental group, even
in special cases.

Moreover, generalizing a proposal done by Moishezon in [Moi83], one can
observe that the monodromy of the restriction of the covering Σ → P

2 to
P

2
C\(B∪Γ )) is more refined, since it takes values in a braid group Bn , rather

than in a symmetric group Sn.
One could proceed similarly also for the generic projections of symplectic

fourmanifolds.
But in the symplectic case one does not have the advantage of knowing a

priori an explicit number m ≤ 5 such that ψm is a pluricanonical embedding
for the general surface S in the moduli space.
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Algebraische Flächen. Aspekte der Math. D4, Vieweg (1987).

[Bau97] I. Bauer, Irrational pencils on non-compact algebraic manifolds, In-
ternat. J. Math. 8 , no. 4 (1997), 441–450.

[BaCa04] I. Bauer, F. Catanese, Some new surfaces with pg = q = 0, The Fano
Conference, Univ. Torino, Torino, (2004), 123–142.

[BCG05] I. Bauer, F. Catanese, F. Grunewald, Beauville surfaces without real
structures. In: Geometric methods in algebra and number theory,
Progr. Math., 235, Birkhäuser (2005), 1–42.
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[Gra72] H. Grauert, Über die Deformation isolierter Singularitäten analytis-
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