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Markov Chains

Summary. In Sect. 2.1 we show there is a bijection between probability measures τ
on the boundary space ∂X of a tree X, and Markov chain on X. For each point x on
the tree, we consider the set of all the paths going through x and call it the interval
I(x). The interval splits into intervals I(x′) corresponding to each arrow x �→ x′, and
we give this arrow the probability τ (I(x′))/τ (I(x)). The sum of the probability is
equal to 1. This is a Markov chain. We then give a brief description in Sect. 2.2 of the
boundary theory of general transient Markov chains. Let X =

⊔
n Xn, X0 = {x0}

be the state space, P :
⊔

n Xn × Xn+1 → [0, 1] the transition probability. Then we
have

Probability measure τn(x) = (P ∗)nδx0(x) (x ∈ Xn),

Green kernel G(x, y) = P m−n(x, y) (x ∈ Xn, y ∈ Xm),

Martin kernel K(x, y) =
G(x, y)

G(x0, y)
.

The Martin kernel gives a metric. The sequence {yn} is a Cauchy sequence if
{K(x, yn)} is a Cauchy sequence of R for all x and {yn} ∼ {y′

n} if {K(x, yn)} ∼
{K(x, y′

n)}. Then we obtain the compactification

X = {Cauchy sequence of X}/∼ = X � ∂X.

Recall the theorem that every super-harmonic function f is equal to Kµ for some
µ which is a probability measure on X � ∂X. Here a function f is called super-
harmonic if Pf ≥ f . If Pf = f , we call f a harmonic function and µ is a measure
supported only on the boundary ∂X. The set Harm(X) of all harmonic functions
on X is divided as

Harm(X) = Harm(X)ext � Harm(X)non-ext

and the boundary ∂X also decomposes as

∂X = ∂Xext � ∂Xnon-ext.
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Here a point y ∈ ∂X is called extream if Kδy = K(x, y) is extream harmonic
function. Then there is one-to-one correspondence between the probability measures
on ∂Xext and the harmonic functions on X.

2.1 Markov Chain on Trees

2.1.1 Probability Measures on ∂X

Let X be a tree and x0 ∈ X the root. For n ≥ 0, we denote by Xn the set

Xn := {x ∈ X | d(x0, x) = n}.
Then X decomposes as the disjoint union of Xn; X =

⊔
n≥0 Xn. Note that

X0 = {x0} and Xn is a finite set. The boundary ∂X of X is defined by the
inverse limit of sets Xn or as the collection of all paths starting from the
root x0,

∂X := lim←−Xn =
{
x̃ = {xn}

∣
∣xn ∈ Xn, d(xn, xn+1) = 1

}
.

For x ∈ Xn, we denote I(x) ⊂ ∂X , which is called the “interval” of x, by

I(x) :=
{
x̃ = {xn} ∈ ∂X |xn = x

}

and give a topology in ∂X by regarding the family {I(x) |x ∈ X} as open
base of ∂X .

Let τ be a probability measure on the boundary ∂X . Then we obtain a
function τ : X → [0, 1] defined by τ(x) := τ(I(x)) and it satisfies

τ(x0) = 1, τ(x) =
∑

x′∈Xn+1
x �→x′

τ(x′) (x ∈ Xn) (2.1)

since I(x0) = ∂X and I(x) =
⊔

x �→x′ I(x′). Here we write x �→ x′ instead
of d(x, x′) = 1. Conversely, let τ be a function on the tree X satisfying the
condition (2.1). Let τ(I(x)) := τ(x). Then τ gives a probability measure on
∂X since each open set of ∂X is expressed as the disjoint union of some
intervals I(x). Therefore we have the following one-to-one correspondence;

M1(∂X) 1:1←→
{

the function on X satisfying
the condition (2.1)

}

.

Here M1(Y ) denotes the set of all probability measure on Y .
Now given such a τ , we define the probability of going from x to x′ by

P (x �→ x′) := τ(x′)/τ(x). It is clear from (2.1) that
∑

x′∈X
x �→x′

P (x �→ x′) = 1 (x ∈ X). (2.2)
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Hence we have a Markov chain (the condition (2.2) is called the Markov
condition). Namely, we have a tree X , which is called the “state space”, and
the function

P :
⊔

n≥0

Xn ×Xn+1 −→ [0, 1]

satisfying the condition (2.2). We call such a function P the “transition prob-
ability”. Conversely, if we are given a tree X and a function P satisfying the
Markov condition, we can get a probability measure on ∂X as follows; For
any x ∈ X , we have the unique path x0 �→ x1 �→ · · · �→ xn = x from x0 to x.
Define the function τ : X → [0, 1] by

τ(x) := P (x0 �→ x1) · · ·P (xn−1 �→ xn = x).

Then we have from (2.2) that
∑

x �→x′
τ(x′) =

∑

x �→x′
P (x0 �→ x1) · · ·P (xn−1 �→ x)P (x �→ x′)

= P (x0 �→ x1) · · ·P (xn−1 �→ x)
∑

x �→x′
P (x �→ x′)

= τ(x).

Hence the function τ(x) satisfies the condition (2.1) and τ(I(x)) := τ(x) gives
a probability measure on ∂X . We call τ the harmonic measure of P . Hence
we obtain the following one-to-one correspondence;

M1(∂X) 1:1←→
{

Markov chain on X ;
transition probability P

}

.

2.1.2 Hilbert Spaces

Let P be a transition probability and τ its harmonic measure on ∂X . Then
we can obtain the probability measure τn on Xn by

τn(x) = τ(I(x)) := P (x0 �→ x1) · · ·P (xn−1 �→ x) (x ∈ Xn),

where x0 �→ x1 �→ · · · �→ xn = x is the unique path from x0 to x. This can be
also written as τn(x) = (P ∗)nδx0(x) where P ∗ is the adjoint of P and δx0 is
the delta function at x0 (see the next section). Hence, for all n ≥ 0, we obtain
the Hilbert space

Hn := �2(Xn, τn) =
{
f : Xn → C

∣
∣ ||f ||Hn <∞}

,

where ||f ||Hn := (f, f)1/2
Hn

and (·, ·)Hn is the inner product of Hn defined by

(f, g)Hn :=
∑

x∈Xn

f(x)g(x)τn(x).
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For each n ≥ 0, we have an embedding Hn ↪→ Hn+1 defined by

Hn � ϕ �−→ ϕ′ ∈ Hn+1; ϕ′(x′) := ϕ(x),

where x ∈ Xn is the unique element such that x �→ x′. This is an unitary
embedding, that is, it preserves the inner product, and we hence identify Hn

with a subspace of Hn+1. On the other hand we have the orthogonal projection
from Hn+1 onto the subspace Hn

Hn+1 � ϕ′ �−→ ϕ = Pϕ′ ∈ Hn; Pϕ′(x) :=
∑

x′∈Xn+1
x �→x′

P (x �→ x′)ϕ′(x′).

In fact, we can easily show that ϕ′−Pϕ′ ∈ Hn
⊥ := {f ∈ Hn+1 | (f, g)Hn+1 = 0

for all g ∈ Hn}.
Since we have a probability measure τ on ∂X , we have another Hilbert

space
H := �2(∂X, τ) =

{
f : ∂X → C

∣
∣ ||f ||H <∞}

,

where ||f ||H := (f, f)1/2
H and (·, ·)H is the inner product of H defined by

(f, g)H :=
∫

∂X

f(x̃)g(x̃)τ(dx̃).

There is also an unitary embedding map Hn ↪→ H for all n ≥ 0 defined by

Hn � ϕ �−→ ϕ̃ ∈ H ; ϕ̃(x̃) := ϕ(xn)

with x̃ = {xn} and this is an unitary embedding. The orthogonal projection
from H onto Hn is given as follows;

H � ϕ̃ �−→ ϕ ∈ Hn; ϕ(xn) :=
1

τn(xn)

∫

I(xn)

ϕ̃(x̃)τ(dx̃).

H0
� � �� H1

� � ��

P
����

· · · � � ��

P
����

Hn
� � ��

P
����

� �

��

Hn+1
� � ��

P
����

· · ·
P

����

H

����

2.1.3 Symmetric p-Adic β-Chain

Let us describe the Markov chains associated to the p-adic trees and measures
on them. We first give the symmetric β-chain on the tree P

1(Qp)/Z
∗
p with

β-measure. The set of all points on the tree P
1(Qp)/Z

∗
p is identified with

X = N× N, the state space. In fact, let

Xn =
{
(i, j) ∈ N× N

∣
∣ max{i, j} = n

}
.
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Fig. 2.1. Symmetric β-chain on P
1(Qp)/Z

∗
p

Then Xn can be identified with P
1(Z/pn)

/
(Z/pn)∗ by the following corre-

spondence;

Xn � (i, j) �−→ (pn−i : pn−j) ∈ P
1(Z/pn)

/
(Z/pn)∗.

One can easily obtain the probability measure of each arrow (see Fig. 2.1).
Remember the projection from P

1(Qp) onto P
1(Qp)/Z

∗
p. If we want to

know the probability measure of an arrow in the tree of P
1(Qp), we divide

the probability of the projected arrow in P
1(Qp)/Z

∗
p by the number of the

arrow of P
1(Qp) corresponding to the given arrow in P

1(Qp)/Z
∗
p. For example

if α = β = 1, it it easy to see that the probability of each arrow is given as in
Fig. 2.2 (for the case p = 3). Note that if α = β = 1, the β-measure τ1,1

p is the
unique PGL2(Zp)-invariant measure. In this case we call this the “random
walk”. Random means that the probability of each arrow is alway the same
at any stage. But this is only α = β = 1.

2.1.4 Non-Symmetric p-Adic β-Chain

The symmetric β-chain on P
1(Qp)/Z

∗
p is still too complicated for us. We next

consider the chain on the tree P
1(Qp)/Z

∗
p � Zp. Since this is not symmetric,

we call this non-symmetric β-chain. Note that the tree of P
1(Qp)/Z

∗
p � Zp is

obtained by collapsing all of the paths corresponding to (pn : 1)Z∗
p for n ≥ 0

of P
1(Qp)/Z

∗
p together. Let

Xn =
{
(i, j) ∈ N× N

∣
∣ i + j = n

}
.
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Fig. 2.2. Random walk on P
1(Qp)
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Fig. 2.3. Non-symmetric β-chain on P
1(Qp)/Z

∗
p � Zp

We also regard X = N×N as the state space by the following correspondence;

Xn � (i, j) �−→ (1 : pn−j) = (1 : pi) ∈ P
1(Z/pn)

/
(Z/pn)∗ � (Z/pn).

The probability measure is also given in Fig. 2.3. We will concentrate on this
chain because it is very simple and will expect a real analogue of the chain.
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Notice that the dimension of the Hilbert space Hn = �2(Xn, τn) is given by
dimHn = #Xn = n + 1. Now Hn is embedding into Hn+1 and the dimension
grows by 1 at each stage. Therefore we conclude that there is a unique function
ϕn 	= 0, up to constant multiplied in Hn∩(Hn−1)⊥ and obtain the orthogonal
decomposition Hn = Cϕn⊕Hn−1. Let us decide this function. First it is easy
to see that

ϕ1 = 1, (2.3)

where 1 is the constant function. Next ϕ1 is the function on X1 = {(1, 0), (0, 1)}
and satisfies (ϕ1, ϕ0)H1 = 0. Namely,

ϕ1(1, 0)τ1(1, 0) + ϕ1(0, 1)τ1(0, 1) = 0.

Since τ1(1, 0) = (1−p−α)p−β/(1−p−α−β) and τ1(0, 1) = (1−p−β)/(1−p−α−β),
we conclude that

ϕ1(i, j) =

{
(1− p−β)pβ if (i, j) = (1, 0),
−(1− p−α) if (i, j) = (0, 1).

(2.4)

Similar on the n-th set Xn = {(n, 0), (n − 1, 1), . . . , (0, n)} for n ≥ 2, the
function ϕn is given by

ϕn(i, j) =

⎧
⎪⎨

⎪⎩

(1 − p−β)pβn if (i, j) = (n, 0),
−pβ(n−1) if (i, j) = (n− 1, 0),
0 if 0 ≤ i < n− 1.

(2.5)

By the embedding Hn ↪→ Hn+1, the function ϕn, which is an element of Hn,
can be viewed also as the function on the following spaces HN for N > n.
Hence we also obtain the orthogonal decomposition of the N -th layer HN

from (2.3), (2.4) and (2.5);

HN =
⊕

0≤m≤N

CϕN,m,

where

ϕN,0 = 1,

ϕN,1(i, j) =

{
(1− p−β)pβ if 0 < i ≤ N,

−(1− p−α) if i = 0,

ϕN,m(i, j) =

⎧
⎪⎨

⎪⎩

(1− p−β)pβm if m− 1 < i ≤ N,

−pβ(m−1) if i = m− 1,
0 if 0 ≤ i < m− 1,

(m ≥ 2).
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Remember that the function ϕn can be naturally viewed as the element of the
boundary space H = �2(∂X, τ). Therefore the Hilbert space H is also written
as the orthogonal direct sum over all m ≥ 0;

H =
⊕

m≥0

Cϕm.

Identifying the boundary ∂X = P
1(Qp)/Z

∗
p � Zp, we have

ϕ0 = 1,

ϕ1 = (1 + pβ − p−α)φpZp − (1 − p−α)1,

ϕm = pβmφpmZp − pβ(m−1)φpm−1Zp
(m ≥ 2)

since, say for m ≥ 2, ϕm = (1− p−β)pβmφpmZp − pβ(m−1)(φpm−1Zp
− φpmZp).

We will denote in future HN by H
(α)β
p(N). (The reason why we denote (α)β

but not α, β is that it is not symmetric for α and β.) The boundary space H is
also written as H

(α)β
p . Further we denote the basis ϕN,m of HN by ϕ

(α)β
p(N),m and

the basis ϕm of H by ϕ
(α)β
p,m . We call ϕ

(α)β
p(N),m the p-Hahn basis (an analogue of

the Hahn polynomial) and ϕ
(α)β
p,m the p-Jacobi basis (an analogue of the Jacobi

polynomial).

2.1.5 p-Adic γ-Chain

Let us consider the γ-measure. Take α→∞ in either the symmetric β-chain
or non-symmetry β-chain. We get the following tree in Fig. 2.4, called the
p-adic γ-chain.
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1

1

1 − p−β

1

p−β

1 − p−β

p−β p−βO

X1

X2

X3

Fig. 2.4. γ-chain on Zp/Z
∗
p
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Similarly we obtain the orthogonal decomposition of HN and H ;

HN : = Hβ
p(N) =

⊕

0≤m≤N

Cϕβ
p(N),m,

H : = Hβ
Zp

=
⊕

m≥0

Cϕβ
Zp,m,

where ϕβ
p(N),m (resp. ϕβ

Zp,m) is the basis of HN (resp. H) defined by

ϕβ
p(N),0 = 1,

ϕβ
p(N),1(i, j) =

{
(1− p−β)pβ if 0 < i ≤ N,

−1 if i = 0,

ϕβ
p(N),m(i, j) =

⎧
⎪⎨

⎪⎩

(1 − p−β)pβm if m− 1 < i ≤ N,

−pβ(m−1) if i = m− 1,
0 if 0 ≤ i < m− 1,

(m ≥ 2).

and

ϕβ
Zp,0 = φZp ,

ϕβ
Zp,m = pβmφpmZp − pβ(m−1)φpm−1Zp

(m ≥ 1).

We call ϕβ
Zp,m the p-Laguerre basis, it is the analogue of the Laguerre

polynomial.
Note that if β = 1, the γ-measure can be written as τ1

Zp
= φZp(x)|x|1pd∗x/

ζp(1) = dx, where dx is the Haar measure of the additive group Qp normalized
to be a probability measure by dx(Zp) = 1. This show that τ1

Zp
is an “additive”

measure. Hence the probability of each arrow in the tree of Zp (which is over
that of Zp/Z

∗
p) is given by 1/p, therefore it is also random walk see Fig. 2.5

(for p = 3).
Notice also that if we take the limit β → ∞, the γ-measure τβ

Zp
becomes

the probability measure on Z
∗
p since τβ

Zp
(x)→ 0 for x ∈ pZp. Further if x ∈ Z

∗
p,

we have τβ
Zp

(x) = φZ∗
p
(x)d∗x/ζp(β)→ d∗x and this gives the “multiplicative”

measure.

2.2 Markov Chain on Non-Trees

2.2.1 Non-Tree

Now let us consider the real analogue. We already obtain the real analogue
of the measure on the boundary, the real analogue of the γ-measure and
β-measure. Then what is the real analogue of the Markov chain? We usually
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Fig. 2.5. Random walk on Zp

represent a real number as a path in a “tree”. For example, in decimal expan-
sion, each real number is identified with a path from the origin in the 10 + 1
regular tree and we obtain R, the set of all real numbers, as the boundary
of the tree. Here we sometimes identify two paths, for instance, 1.0000 . . . is
identified with 0.9999 . . .. This shows that the boundary is not totally discon-
nected, hence this is a non-tree (for any tree, the boundary is always totally
disconnected). In this section we study the Markov chain on non-trees, which
can have continuous boundary.

2.2.2 Harmonic Functions

Let X =
⊔

n≥0 Xn, X0 = {x0} and Xn be a finite set for all n ≥ 0. We call X
the state space. Let P :

⊔
n≥0 Xn ×Xn+1 → [0, 1] be a transition probability,

that is, P satisfies
∑

x′∈Xn+1

P (x, x′) = 1 (x ∈ Xn). (2.6)

Then we says that we have a Markov chain. If for any x ∈ Xn there exists a
sequence x0, x1, . . . , xn = x such that xj ∈ Xj and P (xj , xj+1) > 0, we say
that x is reachable from x0. We assume that every state x ∈ X is reachable
from x0. The function P can be extended as a function on X ×X by giving 0
if two points x, x′ are not connected. Therefore we can regard P as a matrix
over X ×X .
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We also regard P as an operator which acts on �∞(X), the space of all
bounded function on X , as follows;

Pf(x) :=
∑

x′∈X

P (x, x′)f(x′)

It is easy to see

(i) f ≥ 0 =⇒ Pf ≥ 0,

(ii) P1 = 1

from the Markov property (2.6).
We have the adjoint operator P ∗, which acts on �1(X), defined by

P ∗µ(x′) :=
∑

x∈X

µ(x)P (x, x′).

This operator satisfies

(i) µ ≥ 0 =⇒ P ∗µ ≥ 0,

(ii)
∫

X

P ∗µ =
∫

X

µ =
∑

x∈X

µ(x).

The Laplacian ∆ is given by the operator

∆ := 1− P.

The function f : X → [0,∞) is called harmonic if

∆f ≡ 0, f(x0) = 1.

(Here the second condition is a normalization.) Note that the constant func-
tion 1 is clearly harmonic. Up to a constant multiplication, this is equivalent
to the equation

f(x) =
∑

x′
P (x, x′)f(x′)

We denote by Harm(X) the collection of all harmonic functions. Notice that
Harm(X) is convex. Namely,

f0, f1 ∈ Harm(X)
λ0, λ1 ≥ 0, λ0 + λ1 = 1 =⇒ λ0f0 + λ1f1 ∈ Harm(X).

The set Harm(X) is also compact for the topology of pointwise convergence.
If we can take λ0, λ1 > 0, then such a function is called non-extremal and we
let Harm(X)non-ext be the set of all non-extremal harmonic function;

Harm(X)non-ext :=
{
λ0f0 +λ1f1

∣
∣ f0, f1 ∈ Harm(X), λ0, λ1 > 0, λ0 +λ1 = 1

}
.

The harmonic function is called extream if it is not non-extream and we denote
by Harm(X)ext the set of all extream harmonic functions. Then we obtain

Harm(X) = Harm(X)non-ext �Harm(X)ext.

This is a basic decomposition of a convex set (see Fig. 2.6).
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Harm(X)non-ext

Harm(X)ext

Fig. 2.6. Harm(X)

2.2.3 Martin Kernel

The Green kernel G is given by the operator

G := ∆−1 =
∑

m≥0

Pm.

If we view P as a matrix on X × X , G can be expressed as follows; Since
Pm(x, y) is 0 unless x ∈ Xn and y ∈ Xn+m for some n ∈ N, we have

G(x, y) =
∑

x,x1,...,xm=y

P (x, x1) · · ·P (xm−1, y)

where the sum is over all paths from x to y. Fix a point y ∈ X . Then the
function G(·, y) : X → [0,∞) has finite support and is essentially harmonic
except for the point x = y. Namely,

G(x, y) =
∑

x �→x′
P (x, x′)G(x′, y) (x 	= y).

If x = y, we have G(y, y) = 1 by the definition. Therefore we conclude that

∆G(·, y) = δy,·.

We next define the Martin Kernel K by

K(x, y) :=
G(x, y)
G(x0, y)

.

Hence this function will also be harmonic outside of x = y if we regard K(x, y)
as a function of x for a fixed y ∈ X . Note that

G(x0, y) ≥ G(x0, x)G(x, y).
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and we obtain the bound of the Martin Kernel;

K(x, y) ≤ 1
G(x0, x)

.

Now the Martin metric d : X ×X → [0, 1] is defined by

d(y1, y2) :=
∑

n≥0

1
2n+1

1
#Xn

∑

x∈Xn

G(x0, x)|K(x, y1)−K(x, y2)|.

The sequence {xn} is a Cauchy sequence with respect to the Martin metric
if, for every x ∈ X , {K(x, xn)} ⊂ R is a Cauchy sequence. We say that two
such sequences {xn} and {x′

n} are equivalent (we write simply {xn} ∼ {x′
n})

if d(xn, x′
n)→ 0 as n→∞. This is equivalent to {K(x, xn)} ∼ {K(x, x′

n)} for
all x ∈ X . This clearly gives an equivalence relation on the set of all Cauchy
sequences and we obtain

X := {Cauchy sequences on X}/∼.

This is a compactification of X . Actually, for x ∈ X , the constant sequence
{xn} with xn = x for all n ≥ 0 gives a Cauchy sequence, whence X ⊂ X. We
then obtain X = X � ∂X where ∂X := X \X .

The Martin kernel K(x, y), which is defined on X × X , is extended to
X × ∂X as follows; For x ∈ X and {xn}/∼∈ ∂X , we define

K(x, {xn}/∼) := lim
n→∞K(x, xn).

(Since {K(x, xn)} is a Cauchy sequence in R, the limit exists.) This is well-
defined. Fix a point y = {yn}/∼∈ ∂X . Let us write Kδy(x) = K(x, y). Then
this is always Harmonic:

∑

x �→x′
P (x, x′)K(x′, y) = K(x, y)

If we take y1 	= y2, then we have Kδy1 	= Kδy2 . More generally, for any
probability measure µ on the boundary ∂X , the function

Kµ(x) :=
∫

∂X

K(x, y)µ(dy)

is always a harmonic function.
The main theorem of the potential theory is as follows:

Theorem 2.2.1. For every harmonic function f ∈ Harm(X), there exists a
probability measure µ ∈M1(∂X) such that f = Kµ.

We here gives some remarks. The function f is called super harmonic
if Pf ≥ f . The proof of Theorem 2.2.1 goes via showing that every super
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harmonic function f is of the form f = Kµ where µ is a probability measure on
X = X � ∂X . Note that if f ∈ Harm(X)ext, then the corresponding measure
µ has support at one point. Therefore f = Kδy for some y ∈ ∂X . We define

∂Xext :=
{
y ∈ ∂X

∣
∣ Kδy ∈ Harm(X)ext

}
,

In generally, we have ∂X = ∂Xext � ∂Xnon-ext. For our case, we have ∂X =
∂Xext. Now if in Theorem 2.2.1 the probability measure µ is supported on the
extream points, then it is unique. Therefore, for general Markov chain (on a
non-tree), we obtain the following one-to-one correspondence;

Harm(X) 1:1←→M1(∂Xext)
Kµ ←→ µ

This is the one-to-one correspondence stated at the beginning of this chapter.
In particular, the constant function 1 is always harmonic. The correspond-

ing unique measure τ , supported at the extream points, is called the harmonic
measure.
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