2
Markov Chains

Summary. In Sect. 2.1 we show there is a bijection between probability measures 7
on the boundary space 90X of a tree X, and Markov chain on X. For each point x on
the tree, we consider the set of all the paths going through x and call it the interval
I(z). The interval splits into intervals I (x") corresponding to each arrow z +— z’, and
we give this arrow the probability 7(I(z"))/7(I(z)). The sum of the probability is
equal to 1. This is a Markov chain. We then give a brief description in Sect. 2.2 of the
boundary theory of general transient Markov chains. Let X = || X, Xo = {20}
be the state space, P : | |, X» X Xpny1 — [0, 1] the transition probability. Then we
have

(P")"0z (x)  (z € Xn),
P™" M(z,y) (€ Xn,y € X)),

G(z,y)
G(xo, y)

Probability measure Tn ()

Green kernel G(z,y)

Martin kernel K(z,y) =

The Martin kernel gives a metric. The sequence {y»} is a Cauchy sequence if
{K(z,yn)} is a Cauchy sequence of R for all z and {y,} ~ {y,} if {K(z,yn)} ~
{K(z,yp,)}. Then we obtain the compactification

X = {Cauchy sequence of X}/~ = X U0X.

Recall the theorem that every super-harmonic function f is equal to K, for some
4 which is a probability measure on X U 90X. Here a function f is called super-
harmonic if Pf > f. If Pf = f, we call f a harmonic function and p is a measure
supported only on the boundary 9X. The set Harm(X) of all harmonic functions
on X is divided as

Harm(X) = Harm (X )ext U Harm (X )non-ext
and the boundary X also decomposes as

0X = 8Xext u aXnon»exb
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Here a point y € 90X is called extream if K5, = K(z,y) is extream harmonic
function. Then there is one-to-one correspondence between the probability measures
on 0Xext and the harmonic functions on X.

2.1 Markov Chain on Trees

2.1.1 Probability Measures on 98X
Let X be a tree and zg € X the root. For n > 0, we denote by X,, the set
Xp :={z € X |d(xg,z) =n}.

Then X decomposes as the disjoint union of X,; X = |_|n>0 X,,. Note that
Xo = {zo} and X, is a finite set. The boundary dX of X is defined by the
inverse limit of sets X, or as the collection of all paths starting from the
root xg,

0X :=lm X, = {& ={an}|zn € Xp, d(zn,zns1) =1}.
For z € X,,, we denote I(z) C 0X, which is called the “interval” of z, by
I(z) .= {& ={an} € 0X |2, = 2}

and give a topology in X by regarding the family {I(z)|x € X} as open
base of 0.X.

Let 7 be a probability measure on the boundary dX. Then we obtain a
function 7 : X — [0, 1] defined by 7(z) := 7(I(x)) and it satisfies

Two) =1, (@)= Y 7(@@) (z€Xy,) (2.1)

z' €Xpq

:(:0—»3:/

since I(xzg) = 0X and I(z) = |, .,  I(2"). Here we write z — 2’ instead
of d(xz,2’) = 1. Conversely, let T be a function on the tree X satisfying the
condition (2.1). Let 7(I(x)) := 7(x). Then 7 gives a probability measure on
0X since each open set of 90X is expressed as the disjoint union of some
intervals I(x). Therefore we have the following one-to-one correspondence;

1:1 [ the function on X satisfying
M (0X) — { the condition (2.1) } ’

Here 91 (Y) denotes the set of all probability measure on Y.
Now given such a 7, we define the probability of going from z to z’ by
Pz — o) :=71(2')/7(x). It is clear from (2.1) that

Y Pla—a)=1 (zeX). (2.2)

z/eX
z—x’



2.1 Markov Chain on Trees 35

Hence we have a Markov chain (the condition (2.2) is called the Markov
condition). Namely, we have a tree X, which is called the “state space”, and
the function
P:| | Xnx Xpg1 — [0,1]
n>0

satisfying the condition (2.2). We call such a function P the “transition prob-
ability”. Conversely, if we are given a tree X and a function P satisfying the
Markov condition, we can get a probability measure on 90X as follows; For

any x € X, we have the unique path zg +— z1 — -+ — x, = x from z( to z.
Define the function 7: X — [0, 1] by

7(z) := P(xog — x1) -+ P(xp_1 — T, = ).

Then we have from (2.2) that

\]
oum)

8
N

I

Z P(xgr— 1) - P(rp_1 — z)P(z — )
=P(xgr— 1) P(xp_1 — ) Z P(x — ')

= 7(z).

Hence the function 7(z) satisfies the condition (2.1) and 7(I(z)) := 7(x) gives
a probability measure on 9X. We call 7 the harmonic measure of P. Hence
we obtain the following one-to-one correspondence;

11 Markov chain on X;
M (9X) — { transition probability P }

2.1.2 Hilbert Spaces

Let P be a transition probability and 7 its harmonic measure on 0X. Then
we can obtain the probability measure 7,, on X,, by

Tn(x) = 7(I(x)) := P(xg — x1) -+ - P(xp—1 — ) (r € X,),

where xg — x1 — - -+ — x,, = x is the unique path from xy to z. This can be
also written as 7,(x) = (P*)"d,,(x) where P* is the adjoint of P and ¢,, is
the delta function at z¢ (see the next section). Hence, for all n > 0, we obtain
the Hilbert space

Hy = (X 7) = {£ : X = | |fll, < o0},

where || f||m, = (f, f);l/f and (-, )y, is the inner product of H,, defined by

(F. 9, = 3 F@)g(@)ma):

reEX,
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For each n > 0, we have an embedding H,, — H,,+1 defined by
Hy3pr—¢ €Hpps  ¢(2') = p(2),

where z € X, is the unique element such that z — 2’/. This is an unitary
embedding, that is, it preserves the inner product, and we hence identify H,,
with a subspace of H, 1. On the other hand we have the orthogonal projection
from H,, 1 onto the subspace H,,

Hyi13¢ — o= Py € Hy; Py (x) = Z P(x— 2"y (2).

Z/€X7L+1

:(:0—»3:/

In fact, we can easily show that ¢’ — Py’ € H," := {f € Huy1|(f,9)m,., =0
for all g € H,}.
Since we have a probability measure 7 on 90X, we have another Hilbert
space
H:=00X,7)={f:0X — (C! IIf|lg < oo},

where || f||n := (ﬁf)}f and (-, )y is the inner product of H defined by

(f.9)m = f(@)g(2)7(dZ).

0X

There is also an unitary embedding map H,, < H for all n > 0 defined by
Hys>¢pr—@eH; ()= p(an)

with & = {x,} and this is an unitary embedding. The orthogonal projection
from H onto H,, is given as follows;

1
HoGrpc Hy  olmn) = / H(7)7(d7).
Tn(Tn) I(zn)
P P P P P
Vs Vs yz 4 4
HyC =H,C =---C g sH ¢ =..
Y
\%
H

2.1.3 Symmetric p-Adic 3-Chain

Let us describe the Markov chains associated to the p-adic trees and measures
on them. We first give the symmetric 3-chain on the tree P'(Q,)/Z; with
f-measure. The set of all points on the tree P!'(Q,)/Z is identified with
X = N x N, the state space. In fact, let

X, ={(4,j) € Nx N|max{i,j} = n}.
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Fig. 2.1. Symmetric S-chain on P'(Q,)/Z}

Then X, can be identified with P'(Z/p™)/(Z/p™)* by the following corre-
spondence;

X, 3 (i,§) — (" p" ) € PHZ/p™) /(2 /p")*.

One can easily obtain the probability measure of each arrow (see Fig.2.1).

Remember the projection from P'(Q,) onto P'(Q,)/Z;. If we want to
know the probability measure of an arrow in the tree of P1(Q,), we divide
the probability of the projected arrow in P'(Q,)/Z by the number of the
arrow of P'(Q,) corresponding to the given arrow in P'(Q,)/Zj. For example
if « = =1, it it easy to see that the probability of each arrow is given as in
Fig.2.2 (for the case p = 3). Note that if &« = 8 = 1, the S-measure T;’l is the
unique PGLy(Zp)-invariant measure. In this case we call this the “random
walk”. Random means that the probability of each arrow is alway the same
at any stage. But this is only a = 5 = 1.

2.1.4 Non-Symmetric p-Adic 3-Chain

The symmetric 3-chain on P'(Q,)/Z;, is still too complicated for us. We next
consider the chain on the tree P'(Q,)/Zs x Z,. Since this is not symmetric,
we call this non-symmetric $-chain. Note that the tree of P'(Q,)/Z x Z, is
obtained by collapsing all of the paths corresponding to (p" : 1)Zy for n > 0
of PY(Qy)/Z3 together. Let

X, ={(i,j) e NxN|i+j=n}
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Fig. 2.3. Non-symmetric 3-chain on P'(Q,)/Z; x Z,

We also regard X = N x N as the state space by the following correspondence;
Xn 3 (6,4) — (L:p"9) = (L:p") € PYZ/P™) /(Z/p")" % (Z/p").

The probability measure is also given in Fig. 2.3. We will concentrate on this
chain because it is very simple and will expect a real analogue of the chain.
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Notice that the dimension of the Hilbert space H,, = ¢*(X,,T,) is given by
dimH, = #X,, =n+ 1. Now H, is embedding into H,;; and the dimension
grows by 1 at each stage. Therefore we conclude that there is a unique function
©n # 0, up to constant multiplied in H,, N (H,_1)* and obtain the orthogonal
decomposition H, = Cyp,, & H,_1. Let us decide this function. First it is easy
to see that

p1 =1, (2.3)

where 1 is the constant function. Next ¢4 is the function on X; = {(1,0), (0,1)}
and satisfies (o1, o), = 0. Namely,

(pl(lvo)Tl(lvO) + SOI(O7 1)7—1(07 1) =0.

Since 71(1,0) = (1—p~*)p~7/(1—p~*~F) and 71(0, 1) = (1-p~¥)/(1—p~*~"),
we conclude that

—(I=p™®) i (i,7) = (0,1).

Similar on the n-th set X,, = {(n,0),(n — 1,1),...,(0,n)} for n > 2, the
function ¢,, is given by

—p BB if (5.4) =
(i) = {(1 P~ i (0,5) = (1,0), 2.4

on(i,]) = —pm” 1 if (i,7) = (n— 1,0), (2.5)
0 ifO0<i<n—1.

By the embedding H,, — H, 41, the function ¢,,, which is an element of H,,
can be viewed also as the function on the following spaces Hy for N > n.
Hence we also obtain the orthogonal decomposition of the N-th layer Hy
from (2.3), (2.4) and (2.5);

@ C@N,mv

0<m<N
where
pno =1,
ﬂw if0<i<N,
1
Nt ) —0) i =0,
ﬁm ifm—1<i<N,
ONm (i, 5) —pf’ ifi =m—1, (m > 2).
ifo<i<m-—1,
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Remember that the function ¢,, can be naturally viewed as the element of the
boundary space H = ¢?(0X, 7). Therefore the Hilbert space H is also written
as the orthogonal direct sum over all m > 0;

H = @(Ccpm.

m>0
Identifying the boundary 0X = P'(Q,)/Z x Z,, we have

SDO — 17
1= (149" —p )z, — (1 —p )1,
om =" Gpmz, — PPNy, (m>2)

since, say for m > 2, ¢ = (1= p~2)p"pmz, — "V (Gpm-17, — dpmz, ).

We will denote in future Hy by Hf)?%ﬂ) (The reason why we denote («)f

but not «, 3 is that it is not symmetric for o and 3.) The boundary space H is

8. Further we denote the basis ¢y ,, of Hy by ‘P;?J)vﬁ),m
(a)

the basis ¢,, of H by Lpé‘f‘,)f . We call P Nﬁ),m the p-Hahn basis (an analogue of

the Hahn polynomial) and Lp,(f‘gf the p-Jacobi basis (an analogue of the Jacobi

polynomial).

also written as H" and

2.1.5 p-Adic «v-Chain

Let us consider the y-measure. Take a@ — oo in either the symmetric 8-chain
or non-symmetry (J-chain. We get the following tree in Fig.2.4, called the
p-adic y-chain.

Fig. 2.4. ~-chain on Z,/Z,,
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Similarly we obtain the orthogonal decomposition of Hy and H;

B 5
Hy:=Hyn = D Copnym
0<m<N

H:=H] =PCs .,

m>0

where cpg(N) ., (resp. gagp,m) is the basis of Hy (resp. H) defined by

p(N)O =1,
(1—pP)p’ if0<i<N,
Fhio if i =0,
(1—p P)p™ ifm—-1<i<N,
vy (0:9) = —W Do ifi=m— 1, (m > 2).
0 if0<i<m-—1,
and
‘ng,oz‘bzpa

@Zp,m = pﬁm(bpmzp — pﬁ(m_l)(bpm—lzp (m Z 1)

We call ‘ng,m the p-Laguerre basis, it is the analogue of the Laguerre
polynomial.

Note that if 5 = 1, the y-measure can be written as Tzlp = ¢z, (z)|x]}d 2/
(p(1) = dx, where dx is the Haar measure of the additive group Q, normalized
to be a probability measure by dz(Z,) = 1. This show that Tzlp is an “additive”
measure. Hence the probability of each arrow in the tree of Z, (which is over
that of Z,/7Z;) is given by 1/p, therefore it is also random walk see Fig.2.5
(for p = 3).

Notice also that if we take the limit 8 — oo, the ~-measure TZBP becomes
the probability measure on Zj since Tzﬂp (z) — 0 for z € pZ,. Further if x € Z,
we have TZ (2) = ¢z; (z)d"x/(p(B) — d*z and this gives the “multiplicative”
measure.

2.2 Markov Chain on Non-Trees

2.2.1 Non-Tree

Now let us consider the real analogue. We already obtain the real analogue
of the measure on the boundary, the real analogue of the y-measure and
[-measure. Then what is the real analogue of the Markov chain? We usually
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Fig. 2.5. Random walk on Z,

represent a real number as a path in a “tree”. For example, in decimal expan-
sion, each real number is identified with a path from the origin in the 10 + 1
regular tree and we obtain R, the set of all real numbers, as the boundary
of the tree. Here we sometimes identify two paths, for instance, 1.0000... is
identified with 0.9999.... This shows that the boundary is not totally discon-
nected, hence this is a non-tree (for any tree, the boundary is always totally
disconnected). In this section we study the Markov chain on non-trees, which
can have continuous boundary.

2.2.2 Harmonic Functions

Let X =|],>0 Xn, Xo = {20} and X,, be a finite set for all n > 0. We call X
the state space. Let P : | |~ Xn X Xpp1 — [0,1] be a transition probability,
that is, P satisfies -

Y Prad)=1 (z€X,). (2.6)

' €Xpp1

Then we says that we have a Markov chain. If for any x € X, there exists a
sequence Zo, 1, ...,%, = & such that z; € X; and P(z;,2;41) > 0, we say
that x is reachable from zy. We assume that every state x € X is reachable
from xy. The function P can be extended as a function on X x X by giving 0
if two points x, 2’ are not connected. Therefore we can regard P as a matrix
over X x X.
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We also regard P as an operator which acts on £>°(X), the space of all
bounded function on X, as follows;

Pf(z):= Y P(x,a')f(a')
z'eX
It is easy to see
(i) f>0= Pf>0,
(ii) P1=1

from the Markov property (2.6).
We have the adjoint operator P*, which acts on ¢}(X), defined by

Prua’) = 3 pla)Pla,a').
reX

This operator satisfies
(i) p>0= P'u>0,
(i) /XP u=/){u=§(u(x)~
The Laplacian A is given by the operator
A:=1-P.
The function f: X — [0,00) is called harmonic if
Af =0, f(zo) = 1.

(Here the second condition is a normalization.) Note that the constant func-
tion 1 is clearly harmonic. Up to a constant multiplication, this is equivalent
to the equation

flx) = Pla,a’)f(a))

We denote by Harm(X) the collection of all harmonic functions. Notice that
Harm(X) is convex. Namely,

f(), f1 S Harm(X)

A, A1 >0, N+N =1 = Ao fo+ A fi € Harm(X).

The set Harm(X) is also compact for the topology of pointwise convergence.
If we can take A\g, Ay > 0, then such a function is called non-extremal and we
let Harm (X )pon-ext be the set of all non-extremal harmonic function;

Harm(X )non-ext := {Aofo+Avf1 | fo, f1 € Harm(X), Ao, A1 > 0, Ao+ A1 = 1}.

The harmonic function is called extream if it is not non-extream and we denote
by Harm(X )ext the set of all extream harmonic functions. Then we obtain

Harm(X) = Harm(X ) non-ext L Harm(X ) ext-

This is a basic decomposition of a convex set (see Fig. 2.6).
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Harm(X)non—ext

Fig. 2.6. Harm(X)

2.2.3 Martin Kernel

The Green kernel G is given by the operator
G=A""=>"Ppm
m>0

If we view P as a matrix on X X X, G can be expressed as follows; Since
P™(z,y) is 0 unless x € X, and y € X,,1,,, for some n € N, we have

G(x,y) = Z P(z,z1) - P(Xm-1,Y)

LT, Tm=Y

where the sum is over all paths from « to y. Fix a point y € X. Then the
function G(-,y) : X — [0,00) has finite support and is essentially harmonic
except for the point z = y. Namely,

G(z,y) = Y P,2)G('y)  (x#y).

T’

If © = y, we have G(y,y) = 1 by the definition. Therefore we conclude that
AG(-,y) = 6y,..
We next define the Martin Kernel K by

G(z,y)
G(l‘ovy)'

Hence this function will also be harmonic outside of x = y if we regard K (x,y)
as a function of z for a fixed y € X. Note that

K({L‘,y) =

G(z0,y) = G(zo,2)G(2,Y).
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and we obtain the bound of the Martin Kernel,

K(z,y) < Glro.2)"

Now the Martin metric d: X x X — [0, 1] is defined by

dnoe) =3y . O Clona)lK (o) = Koyl

on+1 4L Y
n>0 # T€X,

The sequence {z,,} is a Cauchy sequence with respect to the Martin metric
if, for every z € X, {K(z,2,)} C R is a Cauchy sequence. We say that two
such sequences {z,} and {z/,} are equivalent (we write simply {z,} ~ {«],})
if d(zyp, ) — 0 as n — oo. This is equivalent to { K (z,x,)} ~ {K(z,z},)} for
all x € X. This clearly gives an equivalence relation on the set of all Cauchy
sequences and we obtain

X := {Cauchy sequences on X}/~.

This is a compactification of X. Actually, for z € X, the constant sequence
{zy} with z,, = « for all n > 0 gives a Cauchy sequence, whence X C X. We
then obtain X = X L 0X where 0X := X \ X.

The Martin kernel K(z,y), which is defined on X x X, is extended to
X x 0X as follows; For x € X and {z,,}/~¢€ 90X, we define

K(x,{xn}/~) = nll_)n;o K(x,xy).

(Since {K (z,xy)} is a Cauchy sequence in R, the limit exists.) This is well-
defined. Fix a point y = {y,}/~€ 0X. Let us write Ké,(z) = K(z,y). Then
this is always Harmonic:

Z P(xvx/)K(xlvy) = K(xvy)

If we take y1 # yo, then we have Kd,, # Ké,,. More generally, for any
probability measure p on the boundary 90X, the function

Ky(x) == K (x,y)p(dy)
0X

is always a harmonic function.
The main theorem of the potential theory is as follows:

Theorem 2.2.1. For every harmonic function f € Harm(X), there exists a
probability measure p € M4 (0X) such that f = K,,.

We here gives some remarks. The function f is called super harmonic
if Pf > f. The proof of Theorem 2.2.1 goes via showing that every super
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harmonic function f is of the form f = K, where p is a probability measure on
X = XUOX. Note that if f € Harm(X )ext, then the corresponding measure
1 has support at one point. Therefore f = K, for some y € 0X. We define

OXext = {y € 0X | K6, € Harm(X ) exs },

In generally, we have X = 0Xext L O0Xpon-ext- FOr our case, we have 90X =
0Xext- Now if in Theorem 2.2.1 the probability measure p is supported on the
extream points, then it is unique. Therefore, for general Markov chain (on a
non-tree), we obtain the following one-to-one correspondence;

Harm(X) <=5 90 (0 X ext)
K, «—pu

This is the one-to-one correspondence stated at the beginning of this chapter.

In particular, the constant function 1 is always harmonic. The correspond-
ing unique measure 7, supported at the extream points, is called the harmonic
measure.
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