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Summary. We propose a new search algorithm for a special type of subspace
clusters, called maximal 1-complete regions, from high dimensional binary valued
datasets. Our algorithm is suitable for dense datasets, where the number of maximal
1-complete regions is much larger than the number of objects in the datasets. Unlike
other algorithms that find clusters only in relatively dense subspaces, our algorithm
finds clusters in all subspaces. We introduce the concept of weighted density in or-
der to find interesting clusters in relatively sparse subspaces. Experimental results
show that our algorithm is very efficient, and uses much less memory than other
algorithms.

1 Introduction

Frequency has been used for finding interesting patterns in various data min-
ing problems, such as the minimum support threshold used in mining frequent
itemsets [2,3] and the minimum density defined in mining subspace clusters [1].
A priori-like algorithms [1] perform levelwise searches for all patterns having
enough frequencies (either support or density) starting from single dimen-
sions, and prune the search space based on the rationale that in order for a
k−dimensional pattern to be frequent, all its (k−1)−dimensional sub-patterns
must also be frequent. A large frequency threshold is usually set in most of the
algorithms to control the exponential growth of the search space as a function
of the highest dimensionality of the frequent patterns.

Closed patterns was proposed [7] to reduce the number of frequent patterns
being returned by the algorithm without losing any information. Mining closed
patterns is lossless in the sense that all frequent patterns can be inferred
from the set of closed patterns. Most algorithms proposed for mining closed
patterns require all candidates found so far to be kept in memory to avoid
duplicates [9, 11, 12]. These algorithms also require the minimum frequency
threshold value to be specified before the algorithms are run, and the same
value is used to prune off candidates for patterns in all subspaces.
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Table 1. Subspaces with varied density

a b c d e f

1 0 0 0 0 0 1
2 0 0 0 0 0 1
3 0 0 0 0 1 1
4 0 0 0 1 1 1
5 0 0 0 1 1 1
6 0 0 0 1 1 1
7 0 0 0 1 1 0
8 0 0 0 1 0 0
9 1 1 1 0 0 0
10 1 1 1 0 0 0

However, patterns with higher dimensionality tend to have less frequencies,
so using the same threshold value for all patterns risks losing patterns in higher
dimensional spaces. Furthermore, patterns with the same dimensionality may
need different frequency threshold values for various reasons. For example,
a pattern with higher frequency in very dense dimensions may not be as
informative and interesting as a pattern with lower frequency in very sparse
dimensions. Setting a relatively high frequency threshold tends to bias the
search algorithm to favor patterns in dense subspaces only, while patterns in
less dense subspaces are neglected. Consider the example shown in Table 1.
Each column denotes one of the six attributes (a, b, c, d, e, f), and each row
denotes one object (data point). An entry ‘1’ in row i and column j denotes
that object i has attribute j. There is a pattern in subspace {abc} that contains
two instances {9, 10}, and subspace {def} has another pattern containing
three instances {4, 5, 6}. If we set the minimum frequency threshold to be
3, we lose the pattern in {abc}. However, this pattern in {abc} maybe more
interesting than the one in {def}, considering the fact that the number of
‘1’s in attributes a, b, c is much smaller than in attributes d, e, f . Actually,
all instances that have entry ‘1’ in a also have entry ‘1’ in b and c, and this
may suggest a strong correlation between a, b, c, and also a strong correlation
between instances 9 and 10. On the other hand, although the pattern in {def}
has a larger frequency, it does not suggest such strong correlations either
between attributes d, e, f or between instances 4–6. So we suggest that smaller
frequency threshold should be chosen for subspaces with lower densities, that
is, subspaces with less number of ‘1’ entries.

We propose a weighted density measure in this chapter, which captures
the requirement to use a smaller density threshold for less dense subspaces.
And we present an efficient search algorithm to find all patterns satisfying a
minimum weighted density threshold.

Most algorithms for finding closed patters report only the dimensions in
which the patterns occur, without explicitly listing all the objects that are
contained in the patterns. However, the object space of the patterns is crucial
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in interpreting the relationships between two possibly overlapping patterns.
Our algorithm treats the objects and dimensions (attributes) equally, and all
patterns are reported with their associated dimensions and subsets of objects.

Another advantage of our algorithm lies in its step-wise characteristic, that
is, the computation of the next pattern depends only on the current pattern.
Our algorithm is memory efficient due to this property, since there is no need
to keep all previously generated patterns in the memory.

In the rest of the chapter, we present our algorithm in the context of the
subspace clustering problem, but the algorithm and the theorem can also be
applied to other closed set mining problems such as frequent closed item-
sets [7] and maximal biclique [8]. We first present in Sect. 2 the definition of
maximal 1-complete region, where we also introduce the terms and notations
used in this chapter. Section 3 presents our algorithm. Section 4 presents the
experimental results. Finally, we make the conclusion.

2 Problem Statement

A data space DS is characterized by a set of attributes A (attribute space)
and a population of objects O (object space). Each object oi ∈ O has a
value assigned for each attributes aj ∈ A, denoted as dij . We consider only
binary valued datasets in this chapter, that is, di,j ∈ [0, 1]. However, real
valued datasets can be quantized into binary values, and different quantization
methods lead to clusters of different semantics [6]. A subspace S is a subset
of A. A subspace cluster C is defined as <O,A>, where O ⊆ O and A ⊆ A.
We call O and A the object set and the attribute set of the subspace cluster
respectively. Subspace clustering is a search for subsets of P(A) (the power
set of A) where interesting clusters exist.

2.1 The Prefix Tree of Subspaces

Let “<L” be a lexicographic order on the attributes in A, and we use ai <L

aj to indicate that attribute ai is lexicographically smaller than attribute
aj . Each subspace is represented as the set of attributes contained in it in
the lexicographically increasing order. For example, a subspace containing
attribute a1, a2, a3 (a1 <L a2 <L a3) is labeled as {a1a2a3}. And we arrange
all subspaces into a prefix-based tree structure TDS as follows:

1. Each node in the tree corresponds to one subspace, and the tree is rooted
at the node corresponding to the empty subspace that contains no at-
tributes.

2. For a node with label S = {a1, . . . , ak−1, ak}, its parent is the node whose
label is S′ = {a1, . . . , ak−1}.
Table 2 shows an example dataset, and Fig. 1 shows its prefix tree of sub-

spaces.



34 H. Bian and R. Bhatnagar

Table 2. An example data table

a b c d

1 0 0 1 1
2 1 0 1 1
3 1 1 1 0
4 0 0 1 1
5 1 1 0 0
6 0 0 1 1
7 0 0 1 1
8 0 1 0 0

Fig. 1. Prefix-based subspaces search tree

2.2 Maximal 1-complete Regions and Closed Subspaces

We are interested in finding subspace clusters that contain largest regions of
‘1’ entries, formally defined as follows:

Definition 1. A subspace cluster C = <O,A> of binary valued data space
DS is a 1-complete region if it contains only ‘1’ entries.

Definition 2. A complete dense region C = <O,A> is a maximal 1-complete
region if all regions that are proper super-regions of C are not 1-complete.

For the example shown in Table 2, <{1, 2, 4, 6, 7}, {d}> is a 1-complete
region but it is not maximal, because its super-region <{1, 2, 4, 6, 7}, {cd}>
is 1-complete. <{1, 2, 4, 6, 7}, {cd}> is a maximal 1-complete region, while
<{1, 2, 3, 4, 6, 7}, {cd}> is not 1-complete since it contains zero entries. If we
consider each attribute (column) in Table 2 as a bit vector, all 1-complete
regions can be found by intersecting all possible subsets of attributes. How-
ever, not all of them are maximal, so the problem is to find those subsets of
attributes whose intersection produce maximal 1-complete regions.

Definition 3. If a subspace is the attribute set of a maximal 1-complete re-
gion, we call this subspace a closed subspace.
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According on Definition 3, each maximal 1-complete region corresponds to
one unique closed subspace. In order to find all maximal 1-complete regions,
we can traverse the prefix tree of subspaces and check each node to see whether
it is a closed subspace. In the following, we present several methods to test
whether a subspace is closed. We first introduce two functions that perform
mapping between the object space and the attribute space.

We define ψ(S) to be {oi|∀aj ∈ S, dij = 1}, that is, ψ(S) returns the set
of objects that have entry ‘1’ for all the attributes in S. Similarly, ϕ(O) is
defined to be {aj |∀oi ∈ O, dij = 1}, that is, ϕ(O) returns the set of attributes
that are shared by all objects in O. Then ϕ ◦ ψ is a closure operator, and we
have the following lemma.

Lemma 1. The following statements are equivalent:

1. C = <ψ(S), S> is maximal 1-complete
2. S is a closed subspace
3. � ∃a ∈ A/S, for which ψ(a) ⊇ ψ(S)
4. ϕ ◦ ψ(S) = S

Proof. 1 ↔ 2: True by Definition 3.
1 → 3: C = <ψ(S), S> is maximal 1-complete means that we cannot add

any attribute a to S to get an enlarged region, and at the same time maintain
the 1-complete property. If there exists a for which ψ(a) ⊇ ψ(S), then adding
a to S will produce a region that has 1-complete property, which contradicts
the fact that C is maximal 1-complete.

3 → 4 and 4 → 1 can be proved similarly. 
�

From Lemma 1, we can see that ϕ◦ψ(S) is a superset of S if S is not closed,
or equal to S if S is closed. Figure 2 shows a modified prefix tree from Fig. 1,
where each node in Fig. 2 has two labels, including the corresponding subspace
S and the object set ψ(S). For example, node “b, 358” (Fig. 2) represents that
this node corresponds to subspace {b}, for which ψ({b}) = {3, 5, 8}. Under-
lined nodes are those 1-complete regions that are not maximal. Furthermore,
nodes corresponding to subspaces with equal closure are grouped together into
one equivalence class in Fig. 2. For example, ϕ ◦ψ{bc} = {abc}, so nodes “bc”
and “abc” are grouped together. Notice that all equivalent subspaces have
the same object set, so each equivalence class generates only one maximal
1-complete region. Therefore, we need only find one subspace for every such
equivalence class in order to find all 1-complete regions.

2.3 The Lectical Order Between Subspaces

From Fig. 2, we can see that within each equivalence class, the closed subspace
is always to the left of those non-closed ones. Based on this observation, we
define a total order, called the lectical order, on the set of all subspaces. A sim-
ilar definition can be found in [5]. A subspace S1 is called lectically smaller



36 H. Bian and R. Bhatnagar

Fig. 2. Prefix tree of equivalence classes

than subspace S2, denoted as S1 � S2, if the lexicographically smallest at-
tribute ai that distinguishes S1 from S2 belongs to S2. That is, there exists
ai ∈ S2 ∧ ai �∈ S1, and all attributes lexicographically smaller than ai are
shared by S1 and S2. Formally,

S1 � S2 :⇔ ∃ai∈S2\S1 S1 ∩ {a1, a2, . . . , ai−1} = S2 ∩ {a1, a2, . . . , ai−1}.
If we know the attribute ai that distinguishes S1 and S2, we say S1 is

i-smaller than S2, denoted as S1 �i S2.
For example, {ad} �c {acd} because the lexicographically smallest at-

tribute that distinguishes them is c, and it belong to {acd}.
We define Si to be a subset of S which includes all the attributes in S

that are lexicographically smaller than ai, that is, Si := S ∩ {a1, . . . , ai−1}.
Starting from an arbitrary subspace S, the next lectically smallest subspace
that is larger than S can be computed based on Lemma 2.

Lemma 2. The lectically smallest subspace that is lectically larger than S is
Si∪{ai}, where ai is the lexicographically largest attribute that is not contained
in S.

Proof. Let S1 = Si∪{ai}, with ai being the lexicographically largest attribute
that is not contained in S. Suppose the lemma is not true, then there must
exist S2, such that S � S2 � S1. Since S � S2, there must exist an attribute
aj(i �= j), which satisfies aj ∈ S2, aj �∈ S and Sj−1 = Sj−1

2 . We also know
that ai is the smallest attribute that differentiates S and S1, so Si−1 = Si−1

1 .
We consider the following two possible relationships between ai and aj .

ai<Laj : Since i<j, S �j S2 implies aj is not contained in S, which
contradicts the fact that ai is the largest attribute not contained in S.
ai>Laj : Since i>j, Si−1 = Si−1

1 implies Sj−1 = Sj−1
1 . And we also have

Sj−1 = Sj−1
2 , so Sj−1

1 = Sj−1
2 . Since the smallest attribute that differenti-

ates S and S1 is ai, which is larger than aj , so aj �∈ S1. Since Sj−1
1 = Sj−1

2 ,
aj ∈ S2 and aj �∈ S1, we have S1 � S2, which contradicts the assumption
S � S2 � S1. 
�
Starting from the empty subspace, if we keep looking for the next lectically

smallest subspace, we actually perform a right-to-left pre-order depth-first
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traversal of the prefix tree. For the example shown in Fig. 1, the total lectical
order is: {φ} �d {d} �c {c} �d {cd} �b {b} �d {bd} �c {bc} �d {bcd} �a

{a} �d {ad} �c {ac} �d {acd} �b {ab} �d {abd} �c {abc} �d {abcd}.
The next question is how to find the next closed subspace after S. Let

ai be the lexicographically largest attribute that is not contained in S. If
S ∪{ai} is a closed subspace, then it is trivial that S ∪{ai} is the next closed
subspace. If S ∪ {ai} is not closed, then its closure ϕ ◦ ψ(Si ∪ {ai}) must
contain an attribute aj<Lai and aj �∈ S. To simplify the notation, we define
S ⊕ ai := ϕ ◦ ψ(Si ∪ {ai}). Lemma 3 shows the method to find the next closed
subspace after S.

Lemma 3. The lectically smallest closed subspace that is lectically larger than
S is ϕ ◦ψ(Si ∪ {ai}), where ai is the lexicographically largest attribute that is
not contained in S for which S �i S ⊕ ai holds.

A detailed proof for Lemma 3 can be found in [5]. Let ai be the lexico-
graphically largest attribute that is not contained in S for which S �i S ⊕ ai

holds. Let ak be an attribute ak �∈ S and ak>Lai. Since S ��k S ⊕ ak, S ⊕ ak

must contains at least one attribute that is lexicographically smaller than ak.
Let S �j S ⊕ ak, that is, aj is the lexicographically smallest attribute that
differentiates S and S ⊕ ak. If aj<Lai, then S ⊕ ak is lectically larger than
S⊕ai. If aj = ai, then S⊕ai = S⊕ak. If aj>Lai, this contradicts the assump-
tion that ai is the lexicographically largest attribute that is not contained in
S for which S �i S ⊕ ai holds. So in conclusion, Lemma 3 is true.

2.4 Density and Weighted Density

Notice that many nodes in Fig. 2 contain empty object set, which do not con-
tribute to the clustering process. Furthermore, simply enumerating all maxi-
mal 1-complete regions is very time consuming. So we focus on finding those
maximal 1-complete regions that contain at least a certain number of objects.
Formally, we define the density of a single attribute ai to be the ratio between
the number of ‘1’ entries in ai and the total number of objects in the data,
denoted as dens(ai). For the example shown in Table 2, dens(d) is 5

7 and
dens(a) is 3

7 . Similarly, the density of a subspace cluster is the ratio between
the number of objects contained in it and the total number of objects in the
data space. For example, the density of <{1, 2, 4, 6, 7}, {cd}> is 5

7 .
The weighted density of a subspace cluster C = <O,A>, denoted as

densw(C), is defined as the ratio between dens(C) and the average density
over all attributes contained in A, that is, densw(C) = dens(C)

1
|A| (

∑
ai∈A dens(ai))

,

where |A| is the number of attributes contained in S. We call the denomina-
tor, 1

|A| (
∑

ai∈A dens(ai)), the weight.
Since each subspace S has a unique closure ϕ◦ψ(S), which corresponds to

exactly one maximal 1-complete region C = <ψ(S), ϕ ◦ψ(S)>, we define the
density of subspace S (dens(S)) to be dens(C), where C is the cluster having
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the closure of S (ϕ ◦ ψ(S)) as its attribute set. Similarly, densw(S) is equal
to densw(C).

The next section presents the algorithm for finding all maximal 1-complete
regions that have a weighted density larger than δ, where δ is a real number
between 0 and 1.

3 Mining Weighted Dense Maximal 1-complete Regions

In this section, we present the underlying idea of our algorithm and the proof
of correctness. Then we present some methods to speed up the algorithm.

3.1 Non-Decreasing Property

As shown in Fig. 2, density is non-increasing along any branches in the tree.
This is because that the set of objects that are contained in a child node
S ∪{ai} is the intersection of ψ({ai}) and the object set of its parent node S.
Consequently, ψ(S ∪ {ai}) must be a subset of ψ(S).

However, weighted density does not have this property. Although the den-
sity is non-increasing (numerator), the weights (denominator) may decrease
when less dense attributes are added. If the decrease of the weights is faster
than the decrease of density, weighted density of a child node may become
larger than its parent node. One way to guarantee that weighted density
is non-increasing along any branches is to enforce a constraint on the lexico-
graphical order. More specifically, we sort all the attributes into the increasing
density order, such that the lexicographically largest attribute is the one that
has the largest density. By doing this, we can make sure that when we go
deeper into the tree, the weights never decrease. Therefore, weighted density
along any branches of the tree must also be non-increasing. This property
facilitates the search algorithm that is introduced later.

In the remaining of the chapter, we assume that the data has been sorted
this way. For the data shown in Table 2, the sorted dataset is shown in Table 3.

Table 3. Sorted example

a b c d

1 0 0 1 1
2 1 0 1 1
3 1 1 0 1
4 0 0 1 1
5 1 1 0 0
6 0 0 1 1
7 0 0 1 1
8 0 1 0 0
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Fig. 3. 1-complete regions for sorted data

Figure 3 is a tree containing all and only the maximal 1-complete regions in
this sorted dataset. Ideally, we only need to check all and only the nodes
in Fig. 3, which is much smaller than the number of nodes contained in the
complete tree as shown in Fig. 1.

3.2 Mining Weighted Dense 1-complete Regions

To better explain the algorithm, we first show the underlying idea and the cor-
rectness proof of our approach. Lemma 4 states that under certain condition,
applying the “⊕ai” operator multiple times has the same effect as applying
only once.

Lemma 4. S �i S ⊕ ai → S ⊕ ai ⊕ ai = S ⊕ ai.

Rationale. By definition, S �i S ⊕ i means that S ∩ {a1, a2, . . . , ai−1} ∪
{ai} = S ⊕ ai ∩ {a1, a2, . . . , ai−1} ∪ {ai}. Since S ⊕ ai ⊕ ai = ϕ ◦ ψ(S ⊕ ai ∩
{a1, a2, . . . , ai−1} ∪ {ai}), and ϕ ◦ ψ(S ∩ {a1, a2, . . . , ai−1} ∪ {ai}) = S ⊕ ai,
we have S ⊕ ai ⊕ ai = S ⊕ ai.

Lemma 5. S �i S ⊕ ai and aj>Lai → S ⊕ ai ⊕ aj ⊃ S ⊕ ai.

Rationale. S⊕ai⊕aj = ϕ◦ψ(S⊕ai∩{a1, a2, . . . , aj−1}∪{aj}). Since ai ∈ S⊕ai

and aj>Lai, S ⊕ ai ∩ {a1, a2, . . . , aj−1} ∪ {aj} ⊃ S ⊕ ai ∩ {a1, a2, . . . , ai−1} ∪
{ai}. This implies ϕ ◦ ψ(S ⊕ ai ∩ {a1, a2, . . . , aj−1} ∪ {aj}) ⊃ ϕ ◦ ψ(S ⊕ ai ∩
{a1, a2, . . . , ai−1} ∪ {ai}), which is equivalent to S ⊕ ai ⊕ aj ⊃ S ⊕ ai.

The implication of Lemma 5 is that if a 1-complete region C1 in subspace
S ⊕ ai does not have enough density, then there is no need to check any
attribute aj>Lai. This is because Lemma 5 proves that S ⊕ ai ⊕ aj is a
superset of S ⊕ ai, thus the cluster C2 in S ⊕ ai ⊕ aj must have a density less
than dens(C1). Furthermore, since the weights is non-decreasing along any
branches after we sort the attributes into increasing density, densw(C2) must
also be less than densw(C1). Thus if we know that densw(C1)<δ, S⊕ai⊕aj can
be safely pruned. Similarly, we can prove the following Lemma 6 by induction.

Lemma 6. S �i S⊕ai and akm
>L . . . >Lak2>Lak1>Lai → S⊕ai⊕ak1 . . .⊕

akm
⊃ S ⊕ ai.
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Lemma 6 tells us that if a 1-complete region C1 in subspace S ⊕ ai does
not have enough weighted density, we can directly jump to test S ⊕ aj for
aj<Lai because anything in between must not meet the minimum weighted
density threshold, which leads to Theorem 1.

Theorem 1. The lectical smallest closed subspace larger than a given subspace
S ⊂ A and having weighted density larger than δ is S ⊕ ai, where ai is the
lexicographically largest attribute which satisfies densw(S ⊕ ai)>δ and S �i

S ⊕ ai.

Rationale. Let S ⊕ aj be the lectically smallest closed subspace that is larger
than S. If densw(S⊕aj)>δ, the theorem is true since it is the same case as in
Lemma 3. If densw(S⊕aj)<δ, let ai be the largest attribute for which ai<Laj

and S �i S ⊕ ai hold. So we need to show that S ⊕ aj ⊕ ai is the lectically
smallest closed subspace that is larger than S ⊕ aj , and potentially could
have enough weighted density. Since densw(S ⊕ aj)<δ, Lemma 6 guarantees
the search to start with aj−1 for the smallest weighted dense cluster. Since
S �j S ⊕ aj , S ∩ {a1, . . . , aj−1} = S ⊕ aj ∩ {a1, . . . , aj−1}. So the search for
the next ai performs the same on S and S ⊕ aj , that is, S ⊕ ai = S ⊕ aj ⊕ ai.
So S ⊕ ai is the lectically smallest closed subspace that is larger than S and
could have enough weighted density. If dens(S ⊕ ai)>δ, this theorem is true.
Otherwise, find the next ak<Lai for which S �k S ⊕ ak, and the proof can
be completed inductively.

3.3 Lectical Weighted Dense Region Mining Algorithm

Theorem 1 states that if we find that a subspace S⊕ai is not weighted dense,
we can prune the search space by skipping all aj>Lai, and check directly on
ai−1 in the next iteration of the algorithm. Algorithm 1 is a straightforward
implementation of this idea. Based on the correctness of Theorem 1, we can
conclude the correctness of Theorem 2.

Algorithm 1 Lectical weighted dense region mining algorithm
1. C = <O, S> ← <ψ(φ), ϕ ◦ ψ(φ)>
2. IF (densw(C)>δ)
3. Add C = <O, S> to Tree
4. found ← true
5. END IF
6. REPEAT
7. (C, found) ← findnext(C)
8. UNTIL found = false

Theorem 2. Algorithm 1 finds all maximal 1-complete regions that satisfy
the minimum weighted density threshold δ.
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FUNCTION: findnext(C)
1. found ← FALSE
2. o ← lexicographlly − largest({i|ai �∈ S})
3. WHILE (!found) AND (o ≥ 0)
4. IF (ao �∈ S)
5. C = <O, S> ← <ψ(S ⊕ ao), S ⊕ ao>
6. IF (densw(C)>δ) AND (S �o S)
7. found ← TRUE
8. Add C = <(O), S> to Tree
9. END IF
10. END IF
11. o ← o − 1
12. END WHILE
13. RETURN (C, found)

Fig. 4. Search tree of sorted data

The search starts out by finding the closure of the empty subspace (line 1),
and adding that to the tree of closed subspace if it has enough weighted density
(line 2–3). Then the algorithm keeps looking for the next lectically larger
closed subspace satisfying the weighted density constraint until no more such
subspaces can be found (line 6–8).

Function findnextbasic accepts a 1-complete region C as parameter, and
returns the next lectically smallest closed and weighted dense subspace and
its corresponding maximal 1-complete region. First the flag found is set to
be false. Starting from the lexicographically largest attribute not contained
in the current subspace S, it looks for an attribute ao that meets the two
conditions at line 6. The loop terminates either with a successful candidate
or when all the possibilities have been tried (line 3).

Figure 4 traces the algorithm on the dataset shown in Table 3 with δ =
0 (no weighted density pruning). Nodes in the tree are those being visited.
Underlined nodes are non-maximal ones. The arrows indicate the sequence of
visiting. Suppose we start from node S = φ. Since the current subspace is
empty, the largest attribute not contained in S is d. Then we compute the
S ⊕ {d} = {d}. Since S �d S ⊕ {d}, we output cluster <{123467}, {d}> and
keep looking for the next one.
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3.4 Optimizing Techniques

In this section, we present several methods to optimize the time complexity of
the basic algorithm. The data is stored as bit strings, that is, each attribute
is represented as a string of 0 and 1. The major operation of our algorithm
is bit intersection. When the percentage of 1 entries in the dataset is larger
than 10%, using bit strings not only saves memory space, it also makes the
computations more efficient.

Reuse Previous Results in Computing O

The most expensive operation in Function findnext is at line 5, where we
need to compute the S = S ⊕ ao and its object set O = ψ(S ⊕ ao). Notice
that for any node in the prefix tree as shown in Fig. 2, its object set can be
computed incrementally from the object set of its parent. That is, the object
of the child node is the intersection of the object set of the parent node and
ψ(ao), where ao is the newly added attribute. For example, the object set of
cd can be computed by taking the intersection of the object set of its parent
node c({123467}) and ψ(d) ({12467}). So we can maintain the object sets
of all the nodes on the current branch of the search tree on a stack called
curPath to avoid duplicated intersection operations.

However, when the search moves from one branch to the other, the stack
curpath needs to be updated to maintain the correctness of the object set
computation. For example, after we visited node ad, the next node to be
visited is ac. But the object set of ac can not be incrementally computed
based on the object set of ad, while it can be computed incrementally based
on the object set of a. So we maintain another stack of attribute id called
istack, which keeps track of all the attribute id for which S �o S ⊕ ao is
true. For example, after we find that the next closed subspace after ϕ ◦ ψ(φ)
is <{123467}, c>, we push the object set into curPath and we push c into
stack istack. When we try to find the next closed subspace after c, we check
if o is larger than the top of istack. If yes, that means that we are still on
the same branch of the search tree, so there is no need to change the stack; if
no, that means that we are jumping to a different branch, so pop up all the
elements in iStack that is larger than o. When popping out the elements in
iStack, curPath is also updated in the similar fashion. That is, whenever pop
out an element from iStack, we also pop out an element from curPath.

Stack of Unpromising Nodes

Observe the search tree in Fig. 2. Starting from node φ, we first check if
φ �d φ⊕d. Since φ⊕d = {cd}, we know that any closed subspaces that contain
d must also contain c. So, after we reach node {a}, there is no need to check
{ad}, since we know for sure that it can not be closed. For this type of pruning,
we maintain a stack called prelistStack. This stack contains elements called
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prelist, and for each attribute i, prelist[i] is the id of the lexicographically
smallest attribute j for which ψ(j) ⊇ ψ(i). Initially set all prelist[i] = i.
During the search algorithm, set the elements accordingly. Similar to curPath
and iStack, prelist needs to be updated when we jump between branches.

4 Experimental Results

We tested our algorithm on three datasets as listed in Table 4, which includes
the name of the dataset, number of objects, number of attributes, minimum
density of the attributes, and maximal density of the attributes. Mushroom
and Chess are from [4], and Cog is from [10].1 The objective of the experiments
is to show that our algorithm can indeed find clusters both from dense sub-
spaces and relatively sparse subspaces. All our experiments were performed
on 2.4 GHz Pentium PC with 512 MB memory running Windows 2000.

All test data are very dense in the sense that the number of maximal
1-complete regions contained in the datasets is much larger than the number
of objects in the datasets. Another feature of these data is that their at-
tributes have quite different densities. Mushroom contains 129 attributes and
8,124 objects, while the most dense attribute contains all ‘1’s and the least
dense attribute contains only four ‘1’s. The other two datasets have similar
characteristics. Figure 5 shows the density distribution of the attributes for all
the three datasets. For the Chess dataset, around 30% of the attributes have
density less than 20%. If we set the minimum density to be 20%, we will not be
able to find any patterns in almost one thirds of the subspaces. One possible so-
lution to find patterns in these less dense subspaces is to reduce the minimum
density threshold to less than 20%. However, reducing the minimum density
threshold leads to an exponential growth in the total number of clusters being
found, most of which belong to the more dense subspaces. So we perform the
following experiments to show that our algorithm can find weighted dense
1-complete regions in both dense subspaces and sparse subspaces.

We compared our algorithm with CLOSET+ [11], which is an enhanced
version of CLOSET [9]. For CLOSET+, a very small minimum density
threshold value is needed in order to find those weighted dense clusters in the
less dense subspaces. We set the minimum density threshold for CLOSET+
to be a value such that it can find all weighted dense regions larger than a

Table 4. Datasets characteristics

# Of objs # Of attrs Minimum density Maximum density

Mushroom 8,124 129 0.01 1
Chess 3,196 75 0.03 1
COG 3,307 43 0.11 0.60

1Cog stands for clusters of orthologous genes.
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Fig. 5. Density distribution for all attributes

certain threshold value. For example, the least dense attribute in COG has
density 0.11. If we want to find weighted dense clusters that have this least
dense attribute, the minimum density threshold must be set to be no larger
than 0.11. However, our tests show that for Chess and COG, CLOSET+ runs
out of memory for these low threshold values. For Mushroom, CLOSET+ can
finish the mining task for all threshold values.

Our algorithm uses almost the same amount of memory for all weighted
density threshold values, since the computation of the next cluster depends
only on the current cluster and not on any other previously found ones.
As shown in Fig. 6, our algorithm uses almost the same amount of mem-
ory for all weighted density threshold values for all datasets. Compared with
CLOSET+, our algorithms uses much less memory on Mushroom. For Chess
and COG, the difference is more significant as CLOSET+ cannot finish the
task due to insufficient memory.

We also compared the running time of our algorithm with CLOSET+ on
the Mushroom data. Since CLOSET+ runs out of memory on Chess and Cog,
we only report the running time for our algorithm. In order to find weighted
dense clusters in the least dense subspaces, CLOSET+ needs to find almost
all dense regions, which explains why its running time is almost constant for all
threshold values. Even if we want to find all the maximal 1-complete regions
in the data, our algorithm is still faster than CLOSET+.

Figure 9 shows the total number of clusters being found for various
weighted density threshold values. For all three datasets, the running time
curves as shown in Figs. 7 and 8 fit very well with the curves in Fig. 9. This
suggests that our algorithm has a linear time complexity with the number of
clusters being found.
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We also want to show through experiments that using weighted density
can find more clusters in less dense subspaces. So we compared the results
from density pruning with the results from weighted density pruning. For fair
comparison, we only compare when the minimum density threshold and the
minimum weighted density threshold are equally selective, that is, there are
equal number of clusters that satisfy each of the constraint. Figure 10 shows
the percentage of the clusters being found after each attribute id on COG
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when there are 10,000 clusters being found. Attributes are numbered such
that more dense larger attributes have larger ids. The search starts from the
attribute that has the largest id (45 in this case), and ends when it finishes
attribute 0. From the figure we can see that when using weighted density, more
clusters in the less dense subspaces are returned. Close examination reveals
that using minimum density threshold, seven attributes are not included in
any clusters. On the other hand, using weighted density, all attributes belong
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to at least one cluster. We tested a set of different selective threshold values
on all three datasets, and all of them confirms that using the weighted density
constraint finds more clusters in less dense subspaces.

5 Conclusion

We have presented a new subspace clustering mining algorithm to find
weighted dense maximal 1-complete regions in high dimensional datasets. Our
algorithm is very memory efficient, since it does not need to keep all the clus-
ters found so far in the memory. Unlike other density mining algorithms which
tend to find only patterns in the dense subspaces while ignore patterns in less
dense subspaces, our algorithm finds clusters in subspaces of all densities. Our
experiments showed that our algorithm is more efficient than CLOSET+ from
both time complexity and memory consumption perspectives.
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