
Preface

In the theory of locally compact topological groups, the aspects and notions
from abstract group theory have conquered a meaningful place from the be-
ginning (see New Bibliography in [44] and, e.g. [41–43]). Imposing group-
theoretical conditions on the closed connected subgroups of a topological
group has always been the way to develop the theory of locally compact
groups along the lines of the theory of abstract groups.

Despite the fact that the class of algebraic groups has become a classical
object in the mathematics of the last decades, most of the attention was con-
centrated on reductive algebraic groups. For an affine connected solvable alge-
braic group G, the theorem of Lie–Kolchin has been considered as definitive
for the structure of G, whereas for connected non-affine groups, the atten-
tion turns to the analytic and homological aspects of these groups, which are
quasi-projective varieties (cf. [79, 80, 89]). Complex Lie groups and algebraic
groups as linear groups are an old theme of group theory, but connectedness of
subgroups does not play a crucial rôle in this approach, as can be seen in [97].
Non-linear complex commutative Lie groups are a main subject of complex
analysis (cf. [1, 7]).

In these notes we want to include systematically algebraic groups, as well
as real and complex Lie groups, in the frame of our investigation. Although
affine algebraic groups over fields of characteristic zero are related to linear
Lie groups (cf. [11–13]), the theorems depending on the group topology differ
(cf. e.g. Remark 5.3.6). For algebraic groups we want to stress the differences
between algebraic groups over a field of characteristic p > 0 and over fields of
characteristic zero.

One essential task of group theory is the description of a given group
by its composition of more elementary groups. There are two kinds of most
elementary Lie groups and algebraic groups. One class is formed by such
groups that have a dense cyclic subgroup; such groups are commutative. In
the class of locally compact groups these groups are determined in [15], in the
class of algebraic groups (over a not necessarily algebraically closed field) they
are classified in [24]. The other kind of elementary groups are those which have
a chain as lattice of their subgroups. In the class of finite groups they are cyclic
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groups of prime power order. In Lie groups and in algebraic groups the lattice
of closed connected subgroups is a chain precisely in the following cases. If
such groups do not have dimension one then in the class of Lie groups they are
Shafarevich extensions of simple complex tori (cf. [7], Chapter 1, Section 6).
In the class of algebraic groups over fields of characteristic zero they are either
simple abelian varieties or extensions of a one-dimensional affine group by a
simple abelian variety (cf. Theorem 4.1.3). In the class of algebraic groups
over fields of positive characteristic the situation is much more complicated.
Besides simple abelian varieties and extensions of a one-dimensional torus
by a simple abelian variety there are also affine algebraic groups having a
chain as lattice of connected closed subgroups. If they are commutative then
they are Witt groups (cf. [89], Chapter 7, Sections 8 and 10), if they are not
commutative then they form a very rich family of unipotent groups as our
work shows.

Already J. Dieudonné was interested in groups having a chain as their lat-
tice of closed connected subgroups; for such groups we introduce in this book
the term chain. Namely, in [19], Section 7, he deals with non-commutative two-
dimensional groups of this type and remarks that they are counter-examples
to conjectures derived from the case of characteristic zero. In general, one rea-
son for the importance of chains is the fact that a precise knowledge of them
is indispensable for group theoretical investigations referring to the lattice of
connected subgroups. Since the lattices of connected subgroups of the pre-
image and the image of an algebraic or topological epimorphism with finite
kernel are isomorphic (see [71], Lemma 1.3, p. 256), we consider groups related
in this way as equivalent and use for them the term isogenous. More precisely,
we use the notion of isogeny for algebraic and topological groups in the sense
of [77], p. 417 (see also Section 2.1). This aspect motivated us to open, up
to isogeny, the door to the exotic world of algebraic non-commutative chains
which consists of unipotent chains since a reduction of algebraic chains to
unipotent groups can be easily achieved. Even though over fields of positive
characteristic not every connected algebraic group is generated by chains (see
Remark 4.1.5), our work documents that they are the fundamental ingredients
of unipotent groups over fields of positive characteristic.

Already the unipotent chains of nilpotency class two are difficult to
treat. Namely, for a complete classification of them one needs a classifica-
tion of all non-commutative extensions G of n-dimensional Witt groups by
m-dimensional Witt groups such that G has an n-dimensional commuta-
tor subgroup. Despite these great obstacles, using the classification of two-
dimensional unipotent groups given in [18], II, § 3, 4.6, p. 197, we could
concretely determine (through hard and involved computations) all unipo-
tent chains of dimension three over perfect fields of characteristic greater
than two. In particular we obtain that any three-dimensional unipotent non-
commutative chain over a perfect field of characteristic greater than two has
nilpotency class two, its commutator subgroup has dimension one and the
center is two-dimensional. An induction yields that for any unipotent chain
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over a perfect field of characteristic greater than two, the commutator sub-
group has co-dimension at least two and the center has dimension at least two
(cf. Corollary 4.2.10). Moreover, the knowledge of three-dimensional chains al-
lows us to classify, up to isogenies, all three-dimensional unipotent groups over
perfect fields of characteristic greater than two (cf. Section 6). These results
demonstrate the richness of examples in dimension three compared with di-
mension two. The plethora of unipotent k-groups over non-perfect fields and
of dimension less or equal two (see [51]) justifies our restriction to algebraic
groups over perfect fields.

Using the regular factor systems determining Witt groups as extensions of
Witt groups by Witt groups (cf. [18], V, § 1, 1.4, p. 542 or [102]) and [18], II,
§ 3, 4.6, p. 197, we obtain a classification of unipotent chains over perfect fields
of positive characteristic having a one-dimensional commutator subgroup (cf.
Theorem 4.3.1).

As Remark 4.1.6 and Example 4.3.4 show, there are in any dimension
unipotent chains of nilpotency class two having two-dimensional and three-
dimensional commutator subgroup. But the involved structure of these ex-
tensions gives no hope that a complete classification of unipotent chains of
nilpotency class two having a commutator subgroup of dimension greater than
one could be achieved.

The classification of chains having a one-dimensional commutator sub-
group yields a classification of connected algebraic groups G over perfect fields
of characteristic p > 2 such that G has a central subgroup of co-dimension
one. These groups have a representation as an almost direct product of a
commutative group and a group which is a direct group of chains with amal-
gamated factor group (cf. Theorem 4.3.12). Moreover, we prove that in an
algebraic group G having a central maximal connected subgroup the commu-
tator subgroup G′ is a (central) vector group. Conversely, if G′ is a central
vector group and G/zG is isogenous to a Witt group, then the center zG
has co-dimension one in G (cf. Theorem 3.2.8). In contrast to this, a non-
commutative algebraic group over a field of characteristic zero cannot have
its center of co-dimension one.

Our investigations on chains G with one-dimensional commutator sub-
group G′ yield conditions under which an automorphism of the factor group
G/G′ can be extended to an automorphism of G. Using these results we can
illustrate that the non-commutative chains are much more rigid than Witt
groups. Namely, any connected algebraic group of algebraic automorphisms
of a non-commutative unipotent chain of dimension greater than two is unipo-
tent (cf. Corollary 4.3.11).

The lattice of normal connected algebraic subgroups of unipotent algebraic
groups for which the nilpotency class is equal to their dimension n forms a
chain of length n (cf. Proposition 3.1.13). Such unipotent groups occur only
over fields of positive characteristic and play an opposite rôle to the one of
chains which cannot have maximal nilpotency class (see Corollary 4.2.10).
In Section 3.1 we introduce for any n a significant class of unipotent groups
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Jn(α) of dimension n and nilpotency class n, characterise these groups as
linear groups and study their structure. These groups show that a group
with maximal nilpotency class can have a trivial adjoint representation (cf.
Remark 3.1.6). At various places we use the groups Jn(α) as a source of
counter-examples to find the limits of our theorems.

The nilpotency class of n-dimensional algebraic groups over fields of char-
acteristic zero as well as n-dimensional real or complex Lie groups is at most
n− 1. The Lie algebras corresponding to these groups of maximal nilpotency
class are called filiform Lie algebras and form a class thoroughly studied for
thirty years (cf. [36, 37]). The filiform groups, i.e. the groups having filiform
Lie algebras, play in our results on groups in characteristic zero the same rôle
as the unipotent chains in positive characteristic.

The simple structure of the lattice of connected subgroups of an algebraic
or analytic chain motivated us to study to which extent individual properties
of chains restrict the structure of algebraic and analytic groups. Most of these
properties remain invariant under isogenies.

In Section 5.2 we investigate connected algebraic groups and connected
Lie groups having exactly one maximal connected closed subgroup (uni-
maximal groups) as well as connected algebraic groups and connected Lie
groups having exactly one minimal connected closed subgroup (uni-minimal
groups). The description of non-affine algebraic groups, respectively complex
Lie groups, which are uni-minimal or uni-maximal easily reduces to extensions
of affine groups of dimension at most one by abelian varieties, respectively to
toroidal groups (cf. Theorem 5.2.7 and Proposition 5.2.4). Connected affine
algebraic groups which are uni-minimal or uni-maximal and have dimension
greater than one are unipotent algebraic groups over fields of positive charac-
teristic (cf. Proposition 5.2.6).

A non-commutative connected unipotent algebraic group G is uni-maximal
if and only if the commutator subgroup of every proper connected al-
gebraic subgroup of G is smaller than the commutator subgroup of G
(cf. Theorem 5.2.17). Any group in which the commutator subgroup is a
maximal connected subgroup is uni-maximal; in particular the unipotent al-
gebraic groups over fields of positive characteristic having maximal nilpotency
class are of such type (cf. Section 3). But we construct in Remark 3.1.12 also
numerous examples of uni-maximal algebraic groups in which the commutator
subgroup is not maximal. Moreover, any non-commutative connected three-
dimensional unipotent algebraic group over a field of positive characteristic
which is not a product of two non-commutative chains is uni-maximal (see
Theorem 6.4.5).

Uni-minimal non-commutative groups G turn out to be products of chains,
where at most one factor C has dimension greater than two; if C is not com-
mutative then the commutator subgroup of G coincides with the commutator
subgroup of C (cf. Theorem 5.2.34). This result shows that the structure
of uni-minimal groups is less complicated than the structure of uni-maximal
groups.
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In Corollary 5.2.35 we prove that the conditions to be uni-minimal and
uni-maximal are strong enough to characterise the chains over fields of char-
acteristic greater than two. Also the condition that in algebraic groups over
fields of characteristic greater than two every proper algebraic subgroup is a
chain characterises the chains up to two exceptions of small dimension (cf.
Theorem 5.2.30). Moreover, a connected affine algebraic group over a field
of arbitrary prime characteristic, containing a chain M as a maximal con-
nected algebraic subgroup, is either a chain or a product of M with a chain
of dimension at most two (cf. Theorem 5.2.40).

In chains with a one-dimensional commutator subgroup, any connected
algebraic subgroup as well as any proper epimorphic image is commutative.
In general however, for algebraic groups over fields of positive characteris-
tic none of these two conditions is sufficient for a concrete description (cf.
Corollary 5.2.23 and Proposition 5.2.38). In contrast to this, for real or com-
plex Lie groups, for formal groups and for algebraic groups over fields of
characteristic zero the assumption of commutativity of all proper connected
subgroups as well as the dual condition of commutativity of all proper epimor-
phic images is strong enough for a classification. A powerful tool to achieve
this goal is the classification of Lie algebras with one of these two properties.
The Lie algebras in which every subalgebra is commutative have been stud-
ied thoroughly for thirty years (cf. [21, 30–32]). If G is a non-commutative
connected affine algebraic group over a field of characteristic zero such that
any connected algebraic subgroup is commutative, then G is at most three-
dimensional (cf. Proposition 5.3.4). For formal groups we find an analogous
situation (cf. Proposition 5.3.5). In contrast to this there exist real and com-
plex Lie groups of any dimension having only commutative proper connected
subgroups, they are precisely the extra-special real or complex Lie groups
(see Remark 5.3.6). A connected non-simple non-commutative affine alge-
braic group of dimension at least three over a field of characteristic zero such
that every epimorphic image of G is commutative is a Heisenberg group (cf.
Corollary 5.3.9 and Proposition 5.3.11). A connected real or complex non-
simple non-commutative Lie group of dimension greater than three having
only commutative proper epimorphic images is an extra-special complex Lie
group having as center a simple complex torus of dimension at least two.

An affine chain of dimension n has exactly one connected algebraic sub-
group for any dimension d ≤ n and any two epimorphic images of the same
dimension are isogenous. Investigating these two properties for connected al-
gebraic groups, respectively for real or complex Lie groups, we call any such
group aligned if any two proper connected closed subgroups of the same di-
mension are isomorphic, respectively co-aligned if all epimorphic images of the
same dimension are isogenous. For algebraic groups over fields of positive char-
acteristic the properties to be aligned and co-aligned are too weak to obtain
a concrete description for such groups (see Section 5.7 and Theorem 6.4.9).
Also for connected algebraic groups over fields k of characteristic zero and for
real or complex Lie groups, the condition to be co-aligned alone is not strong
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enough to obtain a reasonable description for groups having this property. In
particular there is a rich family of nilpotent co-aligned algebraic k-groups as
well as of nilpotent co-aligned real or complex Lie groups (see Remark 5.5.5).
Only if we assume that these affine groups have nilpotency class two and k is
algebraically closed we obtain Heisenberg groups (cf. Proposition 5.5.4).

In the class of solvable non-nilpotent connected affine algebraic groups G
of dimension greater than three over algebraically closed fields of characteris-
tic zero such that the unipotent radical of G is commutative, the co-aligned
groups are precisely those for which the lattice of connected algebraic sub-
groups forms a projective geometry (see Theorem 5.5.16 and [71], Lemma 4.7,
p. 262). If the unipotent radical U has nilpotency class two and G has dimen-
sion greater than four, then the property to be co-aligned characterises the
semi-direct products of Heisenberg groups H with a one-dimensional torus T
acting on H such that any closed connected subgroup of H is normalized but
not centralised by T (see Theorem 5.5.21). However, the filiform groups admit-
ting a non-trivial action of a one-dimensional torus show that a classification of
co-aligned solvable non-nilpotent affine algebraic groups with unipotent radi-
cal of nilpotency class greater than two is not accessible. The same results hold
for solvable non-nilpotent connected linear complex Lie groups of dimension
grater than three, respectively four (cf. Theorem 5.5.16 and Theorem 5.5.21).

For co-aligned real Lie groups we meet the same difficulties as for algebraic
groups and hence we arrive at a classification only for special subclasses.
A connected non-commutative solvable real Lie group G of dimension greater
than six having commutative commutator subgroup and containing non-trivial
compact elements is co-aligned if and only if G is the direct product of a torus
of dimension at most one and a semi-direct product of an even-dimensional
vector group V with a one-dimensional torus such that any irreducible sub-
space of V has dimension two (see Proposition 5.5.23). A connected solvable
real Lie group G such that the commutator subgroup G′ is not commu-
tative and the factor group G/G′ has a non-trivial compact subgroup of
dimension ≥ 2 is co-aligned if and only if G is a semi-direct product of two
Heisenberg groups with amalgamated centre by a two-dimensional torus (cf.
Proposition 5.5.27).

In contrast to the condition to be co-aligned, the property to be aligned
is strong. This is documented by the fact that a non-commutative connected
affine algebraic group over a field of characteristic zero or a linear complex
Lie group is aligned if and only if it is unipotent and has dimension three
(see Theorem 5.4.4 and Proposition 5.4.9). Moreover, the classification of the
three-dimensional unipotent algebraic groups in Chapter 6 yields that a three-
dimensional non-commutative connected unipotent algebraic group G over
a perfect field of characteristic p > 2 which is aligned is uni-maximal (cf.
Theorem 6.4.7). Furthermore, if G is an aligned uni-minimal group then G is
a chain (cf. Corollary 6.4.8).

For non-linear complex Lie groups the condition to be aligned creates
a situation which is more complicated (cf. Example 5.4.10). However, a
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non-commutative connected real Lie group of dimension n ≥ 4 is aligned
if and only if it is locally isomorphic to one of the following compact Lie
groups: SO2(R) × SO3(R), SO3(R) × SO3(R), SU3(C, 0), SO5(R) and the
14-dimensional exceptional Lie group G2 (cf. Theorem 5.4.8).

In Section 5.7 we characterise chains by the fact that they have only few
non-isogenous factors. Namely a connected unipotent algebraic group is a
chain if and only if it has only finitely many connected algebraic subgroups
(cf. Theorem 5.7.1). This result allows far-reaching generalisations. For in-
stance, a non-commutative unipotent algebraic group G is a chain if and only
if every epimorphic image of G is isogenous to a subgroup of G and any
two connected algebraic subgroups of G of the same dimension are isogenous
(cf. Corollary 5.7.4). The dual conditions also give a characterisation of non-
commutative unipotent chains (cf. Corollary 5.7.8).

In the theory of abstract groups, a group is called hamiltonian or some-
times a Dedekind group if all of its subgroups are normal. For algebraic groups
this condition applied to all algebraic subgroups would not be interesting (see
Theorem 7.2.1). Hence we say that a connected algebraic group is hamiltonian
if all its connected algebraic subgroups are normal. For connected algebraic
groups over a field of characteristic zero also this definition is too strong.
Namely, we show that any connected algebraic k-group over a field k of char-
acteristic zero such that any connected k-subgroup is normal is commuta-
tive (cf. Theorem 7.2.10). But the situation changes drastically if we consider
hamiltonian groups over fields of positive characteristic. Any non-commutative
chain, more generally any uni-minimal connected algebraical group, is hamil-
tonian (see Theorem 7.2.19). Other examples of connected hamiltonian alge-
braic groups are the groups in which the centre has co-dimension one. These
groups in addition are quasi-commutative, i.e. algebraic groups where every
commutative connected algebraic subgroup is central. We remark that non-
commutative, but quasi-commutative algebraic groups exist only over fields
of positive characteristic; they have nilpotency class two (Proposition 3.2.26).

Quite often replacing the condition of normality for certain subgroups by
the condition of quasi-normality one obtains for abstract groups results of the
same significance (see [93]). If G is an algebraic group and Q is a connected
algebraic subgroup of G, then there are two natural possibilities to say that
Q is quasi-normal. The stronger version is to demand that QX = XQ for any
algebraic subgroup of G. But with respect to this definition we can prove a
sharper version of Theorem 1 in [87] : A connected algebraic k-subgroup P
of a connected affine algebraic group G defined over an infinite perfect field
k such that PH = HP for any k-closed subgroup H of G is normal in G
(see Theorem 7.1.1). Because of this result we call a connected algebraic sub-
group Q of an algebraic group G quasi-normal if it is permutable with every
connected algebraic subgroup of G. Quasi-normal, but not normal algebraic
subgroups exist only in algebraic groups G over fields of positive characteristic
(see Corollary 7.1.5). Essentially they are contained in the unipotent radical of
G (see Corollary 7.1.8). Moreover, there are non-commutative algebraic groups
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over fields of positive characteristic in which every algebraic subgroup is quasi-
normal. Among these groups that we call quasi-hamiltonian there are groups
which are not hamiltonian (e.g. Example 7.1.18 and Remark 7.1.20). A con-
sequence of Corollary 7.1.8 is the fact that every connected quasi-hamiltonian
algebraic group is nilpotent (cf. Theorem 7.1.11).

In Sections 7.1 and 7.2 we give many examples of quasi-hamiltonian and
hamiltonian algebraic groups which are neither chains nor uni-minimal (see
e.g. Example 7.2.18 and Remark 7.2.20). A big class of such groups is formed
by the algebraic groups such that the factor group over their centers is a chain
(see Theorem 7.1.12). Moreover, in these sections we describe some product
constructions to obtain hamiltonian groups from given ones, e.g. from chains,
and discuss which limitations occur.

A subclass of the class of hamiltonian algebraic groups are those groups
in which every connected algebraic subgroup is characteristic; we call these
groups super-hamiltonian. A classification of super-hamiltonian algebraic
groups G is easy if G is a direct product of chains (see Corollaries 7.4.2, 7.4.3
and Proposition 7.4.4). However, the decision whether a product of chains is
super-hamiltonian is difficult if the factors do not intersect trivially.

The experience from algebraic groups over fields of characteristic zero,
from abelian varieties and from finite groups makes it surprising that over
fields of prime characteristic there are many examples of three-dimensional
non-commutative connected unipotent algebraic groups which are super-
hamiltonian. In Section 7.4 we use our classification of three-dimensional
connected unipotent groups over perfect fields of characteristic greater than
two to decide which of these groups are super-hamiltonian. Although non-
hamiltonian three-dimensional unipotent groups G exist if and only if the
centre of G is one-dimensional, super-hamiltonian three-dimensional unipo-
tent groups G do not exist only under severe restrictions on the centre, the
commutator subgroup G′ and the factor group G/G′ (see Propositions 7.2.6
and 7.4.6).

Connected quasi-normal subgroups of connected affine algebraic groups
over fields of characteristic zero, respectively of connected Lie groups, are
treated in [87], respectively [86]. A connected closed subgroup Q of a topo-
logical group G is defined to be quasi-normal if it is topologically permutable
with any closed subgroup of G, i.e. if the sets QP and PQ have the same
closure for any closed subgroup P of G (see [52]). This fact motivated us to
seek in Section 7.3 a unified method for the study of quasi-normal subgroups
in topological and algebraic groups G. It turns out that a unified treatment
is possible using a suitable closure operator on the set of subgroups of G (cf.
Definition 7.3.4). This procedure allows to prove that in a connected real or
complex Lie group G, any connected closed subgroup which is topologically
permutable with every closed connected subgroup of G must be normal in G
(see Theorem 7.3.5). In the case of real or complex Lie groups this is a posi-
tive answer to a conjecture in [53]. Moreover, as a consequence we obtain that
every connected real or complex Lie group in which every connected closed
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subgroup is topologically permutable with any other connected closed sub-
group must be commutative (see Corollary 7.3.7). Our point of view has also
the advantage that p-adic Lie groups are included in the considerations, pro-
vided we modify topological permutability to locally topological permutability
(cf. Definition 7.3.10). Using this we can for instance show that any p-adic
Lie group G (over an ultrametric field of characteristic zero) contains an open
commutative subgroup if any family of subgroups which corresponds to some
subalgebra in the Lie algebra of G is locally permutable with every other such
family (cf. Theorem 7.3.14).

In our work we extend all results about affine algebraic groups, respectively
about linear complex Lie groups, to non-affine algebraic groups, respectively to
non-linear complex Lie groups. To do this we use for algebraic groups a series
of well-known results of M. Rosenlicht (cf. Section 1.3) and for complex Lie
groups some theorems on complex tori and toroidal groups (cf. Section 1.1).
Moreover, for algebraic groups we discuss rationality questions and try to
generalize our results to algebraic k-groups.

In Chapter 1 we collect known results on real and complex Lie groups,
formal groups, p-adic groups and algebraic groups as far as they are needed
for our investigations.

The main part of Section 2.1 is devoted to the theory of extensions of alge-
braic groups, in view of our use of regular factor systems. In particular, we need
to know sufficient conditions for an algebraic k-group G, which is an extension
of an algebraic k-group A by an algebraic k-group B, to be k-isomorphic to a
k-group defined on the k-variety B×A. Although such a representation of G is
not always possible (see e.g. Remarks 2.1.4 and 2.1.5), it exists if the normal
subgroup A is k-split and unipotent and B is affine (cf. [82], Theorem 1, p. 99).
Another aim of Section 2.1 is to discuss relations between factor systems and
isogenies. If there exists an isogeny from a connected commutative unipotent
group G1 onto G2, then an isogeny from G2 onto G1 exists as well (see [89],
Proposition 10, p. 176). One could ask if this holds for unipotent connected
non-commutative algebraic groups. Example 2.1.14 answers this question neg-
atively. We establish in Proposition 2.1.12 necessary and sufficient conditions
for the existence of an isogeny between central extensions of A1 by B1 and A2

by B2 which extends two given isogenies between A1 and A2 and between B1

and B2. In Proposition 2.1.13 we give sufficient conditions for central exten-
sions of a Witt group or of a vector group by an algebraic group to be isogenous
in sense of [77], p. 417 (see also Section 2.1). Moreover, for two-dimensional
non-commutative unipotent groups over perfect fields of characteristic p > 2
and of exponent p we give another procedure to obtain, up to a coboundary,
all other factor systems from a suitable one (see Proposition 2.1.9).

In Section 2.2 we deal with commutative extensions of commutative con-
nected complex Lie groups. Since any such group is (holomorphically) iso-
morphic to the direct product of a linear torus (C∗)m, a vector group C

l

and a toroidal group X, the theory of commutative extensions of commuta-
tive connected complex Lie groups reduces to the case of extensions which are
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toroidal groups. The complex n-dimensional toroidal groups X are completely
described by means of period matrices, the columns of which are vectors of the
lattice Λ determining X. If the R-span of the lattice Λ has dimension 2n, then
X is a compact group, namely a complex torus. The description of complex
tori by period matrices given in [7], Chapter 1, suggests to us a generalization
to toroidal groups. Using period matrices, necessary and sufficient conditions
for two toroidal groups to be isogenous, respectively isomorphic, are obtained.
Propositions 2.2.2 and 2.2.3 allow us to recognize suitable closed subgroups
and factor groups of a toroidal group within the corresponding period matrix.
Moreover, a non-compact toroidal group can contain more than one maxi-
mal closed complex linear torus (cf. Example 2.2.4). Using these results we
can concretely decide under which circumstances commutative holomorphic
extensions of toroidal groups by toroidal groups split, and we show that, anal-
ogously to the case of complex tori, Shafarevich extensions of toroidal groups
by toroidal groups exist.

If one considers, as for connected algebraic groups, connected real and
complex Lie groups in which every connected closed subgroup is charac-
teristic, then the Shafarevich extensions are prominent examples of super-
hamiltonian Lie groups. If a super-hamiltonian Lie group has dimension
greater than two, then it is a commutative complex Lie group which is a
closed subgroup of the direct product having as factors a one-dimensional
vector group, a one-dimensional linear torus and a non-trivial toroidal group
which is super-hamiltonian. To settle the question when in a toroidal group X
any connected closed subgroup is characteristic is easy if X is the direct prod-
uct of Shafarevich extensions of a simple torus by a simple torus. In this case
X is super-hamiltonian if and only if there is no non-trivial homomorphism
between two distinct direct factors of X. In general, however, only a thor-
ough analysis of the period matrix determining X allows to decide whether
X is super-hamiltonian or not (see Proposition 7.4.11, Example 7.4.12 and
Proposition 7.4.13).
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