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Extensions

2.1 Extensions of Unipotent Groups and Isogenies

Let G; and G5 be connected algebraic k-groups. A k-homomorphism 7 :
G1 — G4 is a k-isogeny if it is an epimorphism with finite kernel. By [77],
Corollary p. 412, any element of the kernel of a separable k-isogeny is defined
over the separable closure kg of k. The groups SLo and PSLy give an exam-
ple for the fact that the existence of an isogeny is not a symmetric relation.
But if G; and G2 are connected commutative unipotent algebraic group and
n : G1 — (> is an isogeny, then there always exists an isogeny 6 : Go — G,
(see [89], Proposition 10, p. 176). The equivalence relation generated by isoge-
nies can be defined as follows: G and G5 are isogenous if there exists a group
G5 and two isogenies 7); : G5 — G; (i = 1,2), see [77], section 3, p. 417.

A main result in the context of commutative unipotent algebraic groups,
defined over a perfect field k, states that any such connected k-group is k-
isogenous to a direct product of Witt groups 20,, (cf. [18], 6.11 p. 595). The
class of Witt groups 20,, is thoroughly described in [18], Chapitre V, or in [89],
VII, 8. The class of unipotent algebraic groups isogenous to a Witt group is
therefore the class of commutative unipotent chains in positive characteristic.

In this section we treat the theory of extensions of algebraic groups, as de-
veloped in a series of papers by Weil [98], Rosenlicht [77,79,82,83], Serre [89].
The purpose is to describe an algebraic group G if a normal connected alge-
braic subgroup A and the factor group G/A are given.

A bit more general than the direct product are the direct product with
amalgamated central subgroup G = G1 Y G2 and the direct product with amal-
gamated factor group G = G1 A G, defined as follows:

2.1.1 Definition. Let G1,Gy be connected algebraic groups, let Z; € G; be
isogenous connected central algebraic subgroups and let p; - H — Z; be two
1sogenies. The factor group (G1 X G2)/A, where

A={(g1,95") € G1 x Gy : gi = pi(x) fori=1,2 withxz € H}
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1s called the direct product with amalgamated central subgroup and is denoted
by (G1 Y Ga)g or simply by G1 Y Ga, if H is understood.

2.1.2 Definition. Let G, G2 be connected algebraic groups, let N; € G; be
connected normal algebraic subgroups such that Gy /Ny is isogenous to Go/Na
and let p; : H — G;/N; be two isogenies. The subgroup

(G1 A G2y ={(91,92) € G1 x G2 : ¢;N; = p;(x) fori=1,2 withx € H}

of G1 X G is called the direct product with amalgamated factor group and
is denoted by (G1 A G2) g or simply by G1 A G, if H is understood.

The following characterisation of the above products follows by standard ar-
guments.

2.1.3 Proposition. The connected algebraic group G contains two connected
algebraic subgroups G1,Go such that G = G1Gs, [G1,G3] = 1 and (G1 N
G2)° = H if and only if G is isogenous to the direct product with amalgamated
central subgroup (G Yég)ﬁ, where G is isogenous to G; and H is isogenous
to H.

The connected algebraic group G contains two connected normal algebraic
subgroups Ny, No such that the homomorphism = : G — G/Ny; x G/Na,
m(x) = (xNy,xN3) is an isogeny if and only if G is isogenous to the direct
product with amalgamated factor group (G1 A G2) g, where G; is isogenous to
G/N; and H is isogenous to G /(N1 Na). O

Now we summarize some results concerning the theory of extensions of
algebraic groups. These are slightly different from the ones in the general
case of abstract groups, especially in the matter of the field of definition
and in the non-affine case. One of the purposes is to show that the descrip-
tion of an algebraic group by means of coordinate functions cries for ques-
tions of separability of the field of definition. At the end of this section we
will therefore abandon the attempt of describing algebraic chains in the con-
text of algebraic k-groups for a general field k and we will assume (mainly)
that k is perfect. The principal reference are the papers [82] and [77] of
Rosenlicht.

Let A and B be two connected algebraic k-groups, with A commutative
and affine, and let ¢ : B x B — A be a k-rational regular factor system, i.e.
an everywhere defined k-rational map satisfying the equation 62¢ = 0, where
one defines

3¢ (z,y,2) = oz, y) + $lay, 2) — ¢y, 2) — o(x,y2). (2.1)
The following multiplication

(b1,a1)(b2,a2) = (biba, a1 + as + ¢(b1,b2)) (2.2)
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makes B x A an algebraic k-group G, where 1 x A is a central algebraic
k-subgroup of G, the factor group G,/(1 x A) is k-isomorphic to B and it is
possible to establish an exact sequence

l1—A-Gy - B—1 (2.3)

of separable k-homomorphisms (cf. [77], Theorem 4, p. 413), where 1(a) =
(I,a — ¢(1,1)) and m(b,a) = b. Since 1 and 7 are separable, it is possible to
identify A with the k-subgroup 1 x A of Gy and B with the factor group
Gy/(1 x A). We say that Gy is an explicit central extension of A by B, em-
phasizing that A is, up to a separable k-isomorphism, a central k-subgroup
of Gg. The set CZ(B, A) of all k-rational regular factor systems from B x B
to A is a commutative group with respect to the addition of maps. For any
k-rational regular map ¢ : B — A, the map

5 (2, y) = =P (y) + Y(y) — ¥(x)

is a k-rational regular factor system, usually called trivial. The trivial
k-rational regular factor systems form a subgroup BZ(B,A) of CZ(B,A)
and the factor group C2(B, A)/BZ(B, A) is usually denoted by HZ(B, A).

Two explicit central extensions G, , G, of A by B, given by ¢1, ¢2, respec-
tively, are k-equivalent if there exists a rational k-isomorphism v : G4, — G,
such that the diagram

11— A—Gy — B—1

1dal o) idpl
l1— A—0Gy, — B—1

is commutative (see [50], 6.10, p. 363ff). This happens if and only if (¢ —¢2) €
BE (B, A), hence two extensions G, and Gy, are equivalent if and only if ¢;
and ¢ differ by a trivial factor system. In particular, the extension defined
by a trivial factor system ¢ € BZ(B, A) is equivalent to the direct product
G, = A x B, which corresponds to the factor system ¢(z,y) = 0 for all
x,y € B. In this case we say that the extension splits.

Thus we have a bijection between the classes of equivalent explicit central
extensions and the classes of HZ(B, A). (This bijection is indeed an isomor-
phism of groups, if one defines a group multiplication on the set of extensions
Gy, as described by the well-known methods of Baer [5]).

Now we turn to the problem of describing a connected algebraic k-group
G by means of factor systems, once we know a connected central affine k-
subgroup A and the corresponding factor group B = G/A.

Let G be a connected algebraic k-group and let A be a connected central affine
algebraic k-subgroup of GG. Then the embedding of A in G and the canonical
projection 7 of G onto B = G/A give an exact sequence

1—A—G-5B—1
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of separable rational k-homomorphisms (see [77], Theorem 4, p. 413). The
question whether the group G is birationally k-isomorphic to an explicit cen-
tral extension G for a suitable k-rational regular factor system ¢ is answered
by the existence of a k-rational regular cross section. A rational cross section
is a rational map from B into G such that wo = id. Note that a rational cross
section is not necessarily a regular one, indeed it could be defined only on an
open dense subset of B.

Let o be a k-rational regular cross section. Since mo = id, one has that §'c
is a k-rational regular function from B x B to A. As A is a central subgroup
of G, writing the multiplication in G additively we have

[0(y) — o(zy) + o(z)] + [0(2) — o(zy2) + o(zy)]+
—lo(2) —o(yz) + o(y)] = [o(yz) —o(xyz) + o(x)] =
[0(y) — o(zy) + o(z)] + [0(2) — o(zy2) + o(xy)]+
[—o(y) + o(yz) — o(2)] + [-o(x) + o(zyz) — o(y2)] =
[0(y) —o(zy) + o(z)] + [-o(z) + o(xyz) — o(y2)]+
[0(2) — o(ayz) + o(zy)] + [-o(y) + o(yz) —o(2)] =
o(y) — o(xy) + o(ayz) — o(yz)+
[0(2) — o(ayz) + o(zy)] + [-o(y) + o(yz) —o(2)] =
o(y)+o(2)—o(zyz)+o(zy)l—o(zy)+o(ayz)—o(yz)+[-o(y)+o(yz)—o(z)] =
o(y) +0(z) —o(yz) + [—o(y) + o(yz) — o(2)] =
o(y) +[=o(y) +o(yz) —o(2)] + 0(2) —o(yz) = 0.

Therefore ¢ = —d'c is a k-rational regular factor system which makes G
birationally k-isomorphic to the explicit central extension G, defined by (2.3).
In fact, define a k-rational regular map p : G4 — G by p(b,a) = o(b)a. This
turns out to be a birational isomorphism, the inverse of which is p=1(g) =
((9), g(om(g)) ™).

For any other k-rational regular cross section 7 we have, by definition,
mo = w7 = id. This forces (o — 7)(B) C kerm, hence 0 — 7 : B — A and
§'(0—7) is a trivial factor system. Thus the factor systems 6'o and 6'7 defined
by two cross sections give equivalent extensions, and, up to exchanging o with
o'z o(x)o(1)7t, we can always assume that o(1) = 1. Moreover, a group
G having a k-rational regular cross section o characterises a unique class of
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equivalent factor systems of HZ(B, A), and G is birationally k-isomorphic to
the direct product A x B if and only if there exists a k-rational regular section
o : B — G which is a homomorphism (injective since o = id).

2.1.4 Remark. As shown, the possibility that G is birationally k-isomorphic
to a suitable explicit central extension Gy depends on the existence of a k-
rational regular cross section. In [77], Theorem 10, p. 426 (see also [83]), it is
proved that, if A is k-split, then a k-rational cross section ¢ exists. In general,
however, ¢ is not a regular map. In this case ¢ = —d'c is a k-rational, but
not regular, factor system, defining, according to Weil’s construction in [98],
a pre-group G(¢) which is not a group, the law of composition being not
defined everywhere. However, a birational map exists which transforms the
law of composition of G(¢) into the one of G. (cf. [98], Théoréme p. 375
or [101], Théoreme 15, p. 136, [89], Lemme 8, p. 89). The group G is therefore
not explicitly described, since the factor system giving G(¢) is not defined
everywhere. A natural candidate to describe this situation is a toroidal group
in the sense of Rosenlicht [80], i.e. a connected algebraic group containing no
unipotent element. Tori, abelian varieties and algebraic groups with a torus as
the maximal connected affine subgroup are all toroidal. By [80], Theorem 2,
p- 986, any regular map ¢ : Vx W — A, where V and W are varieties and A
is a toroidal group, has the shape ¢ (v, w) = ¢1(v) + @2 (w) for suitable regular
mappings ¢1 : V — A and ¢o : W — A. If ¢ is a k-rational regular factor
system from B x B to A, where B is an algebraic group, then

0= QS(U,QU) + d’(vw’ Z) - ¢(w’ Z) - ¢(U, wz) =
$1(v) + ¢2(w) + ¢1(vw) + ¢2(2) — d1(w) — P2(2) — P1(v) — Pa(wz)

for all v, w, z € B, and from this it follows that ¢y and ¢5 are constant maps.
This shows that there exist no regular non-trivial factor systems into a toroidal
group.

Let for instance E be a smooth elliptic curve defined over a finite field and
let Ji, be the generalized Jacobian of E defined, according to [76], Theorem 7,
p.- 518 in § 3, by the modulus m = (M )+(N), where M, N are two distinct non-
zero points of E. This means that Jy, is a connected commutative algebraic
group having no non-trivial affine image and containing a one-dimensional
torus 7" as maximal affine subgroup such that Jy, /T is isomorphic to E. By
Proposition 1.3.3 the group Jy, cannot be defined over a finite field.

According to [17], Theorem 5, one can define on the set T' x E a pre-group
operation by

(k1, Pr) + (ko, Po) = (k1 - ko - ¢(Pr, P2), Py + P»)

putting
lp p,(M)  Lptp,o0(N)
P, P) = : . :
¢( ! 2) €P1+P2,O(M) EPI’PZ (N)
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where ¢p o(X) = 0 is the equation of the line through P and @ (tangent at £
if P =@) and O is the zero of E. A birational map exists which transforms
the law of composition of the pre-group 7' x E into the one of Jy, but we
observe that ¢ is defined only if Py, Po, £(Py + P2) ¢ {M, N}. Therefore this
is an example of an extension of the one-dimensional torus 7" by the elliptic
curve F defined by a rational factor system, which cannot be defined by a
regular factor system. O

2.1.5 Remark. In [82], Theorem 1, p. 99 or Corollary 1, p. 100, Rosenlicht
shows that sufficient conditions for the existence of k-rational regular cross
sections are that A is k-split and unipotent and that B is affine. In contrast
to this, let G be a connected nilpotent linear algebraic group defined over a
separably algebraically closed non-perfect field k such that its unipotent part
(#, is not defined over k. The maximal torus T" of GG is defined over k and G
is a T-principal fiber space over G/T. Then there is no regular cross section
o :G/T — G that is defined over k (see [82], p. 100).

Now we give a concrete example for the situation taking for T' = G,, a
one-dimensional torus defined over a non-perfect field k of characteristic p > 0.
Let E be a purely inseparable extension of k of degree [E : k] = n = p'. We
consider the connected commutative k-group IIT of [91], Section 12.4, that
we recalled in Remark 1.3.9. The group IIT has dimension n and contains T’
up to a birational k-isomorphism. There exists a surjective E-homomorphism
p : IIT — T, the kernel ker p of which is the unipotent radical of IIT is
connected, has dimension n — 1 and does not contain non-trivial algebraic
k-subgroups of IIT. In particular, ker 7 is not defined over k. As a connected
commutative algebraic group, over E the group IIT is isomorphic to the direct
sum of its unipotent radical IIT;, with its maximal torus 7" (see [8] Theorem
10.6, p. 137). Assume by contradiction that the exact sequence

1—>T—>HTL>HT/T—>1

has a k-rational regular cross section. Then there exists also a k-regular cross
section o with 0 = o7 (0), and the map ¢ : g — g(om(g))~! is a morphism
IIT — T sending 0 into 0. Hence % is a rational homomorphism, which is sep-
arable since ¢ is the identity on T (cf. [45], Theorem, p. 44) and defined over k.
This implies that its kernel IIT;, is defined over k, which is a contradiction.

O

Before leaving the questions of rationality and turning to the connections
between factor systems and isogenies, we want to remark once more that the
existence of a k-rational regular factor system is guaranteed if A is a unipotent
group defined over a perfect field k and B is affine.

For any factor system ¢ € C?(B, A) there is precisely one factor system
¢o, equivalent to ¢, satisfying ¢o(1,1) = 0. In the group Gg,, equivalent
to Gy, we have the useful identity (b, a) = (b,0)(1,a). Given a factor system
¢ € C2(B, A), one can construct others in the following way. If f : A — A and
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g : B — B are rational epimorphisms we define f¢ by f¢ (z,y) = f(¢(z,y))
and we define ¢g by ¢g (x,y) = ¢(g(x), g(y)). The maps f¢ and ¢g are factor
systems and we have:

flo+9)=fo+ fv, (p+v)g=9g+1g, (fo)g= f(g).

Moreover, we get an induced epimorphism f from G4 onto G ¢4 and an induced
epimorphism g from G4, onto G by:

f(b.a) = (b, f(a)) and §(b,a) = (9(b), a).

We note that f (respectively g) is an isogeny if and only if f (respectively §)
is one.

One has fB?*(B, A) C B%(B, A) and B?(B, A)g C B?(B, A). Thus we ob-
tain actions of the rational endomorphisms of A, respectively B, on H?(B, A).
We denote by [¢] the coset ¢ + B*(B, A) and by G|y the set of extensions
equivalent to G4. For rational endomorphisms f: A — A, g: B — B and
[¢] € H%(A, B), one has the actions given by f - [¢] = [f¢], [¢] g = [dg].

As the group A is commutative, the set End(A) of rational endomorphisms
of A is a ring and the action of End(A) on H?(B, A) just defined makes
H2(B, A) an End(A)-module. It must be observed, however, that in general
H2(B, A) is not an End(B)-module, even if B is commutative, because in gen-
eral the element ¢(g; + g2) — ¢g1 — ¢go does not belong to B%(B, A), as the
following Remark shows.

2.1.6 Remark. To see concretely that the right action of End(B) on H?(B, A)
does not define a module structure, let A = B = G, be the connected unipo-
tent one-dimensional additive group, over a perfect field of characteristic p. It
is shown in [18], II, § 3, 4.6, that H?>(G,, G,) is a free left End(G,)-module,
having the following family of polynomials as a basis (modulo B?(G,, G,)):

Oy (z,y) = le('z(;;_ll))" l‘iy”_i;
ni(z,y) =ay?  (j=1,2,--).

Put g1(t) =t and go(t) = tP and consider the factor system 6 = n;(g; + g2) —
(mg1 + m1g2). Then we have

0(z,y) = (x +27)(y + ) — oy? —aPy?" = aPy? +ay”.

Since 0(x,y) # 0(y,z), we infer that 0 ¢ B2(B, A), i.e. H3(G,, G,) is not a
right End(G,)-module. Moreover, if p > 2 then we have aPy? = [(z + y)% —
2?P —y?P] € B3(B, A), thus 6 is equivalent to 72. On the other hand, for p = 2
we have 22y? = ®;(z,y)?, thus 0 is equivalent to ®? + 7. O

2.1.7 Remark. The above computation shows that in characteristic 2 it can
happen that the factor set n,g does not belong to the left End(A)-submodule
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M generated by the set {n; : j =1,2,---}. In odd characteristic this is not
possible, because any group G, has exponent p, whereas for ¢ ¢ M the group
G has exponent p?. More details on the right action of End(B) on H*(G,, G,)
can be found in Proposition 2.1.9. 0

2.1.8 Remark. For the basis element ®; and an arbitrary p-polynomial
g(t) =, a;tP" it is easy to check that

[®@19] = [g®4],

where §(t) = Y, alt?". Therefore the submodule of H?(G,,G,) consisting
of symmetric factor systems is a two-sided module over the ring End(G,),
and this is basic for the fact that, given an isogeny v; : G; — G2 of two-
dimensional commutative unipotent algebraic groups, one finds an isogeny
v2 : Ga — G (see Proposition 2.1.12 (3) or [89], § VII, n. 10). More generally
this is possible by the same reason for n-dimensional commutative unipotent
algebraic groups. But it is by no means possible for non-commutative factor
systems, as Example 2.1.14 shows.

If however we restrict our attention to the subspace generated a monomial
g(t) = at?" we obtain

k k. J J J k J k
nig(z,y) = ax? - (ay? )P =a'" P (zy? )P = a' TP (n;(z,y))" .

Putting g;(t) = Al " we get 1,9 = g;mn;- -

In the following proposition we give a general formula for the factor
systems 7; € H2(G,, G,), a special case of which has been used in the
above Remark 2.1.6. We recall that the ring Endy(G,) of k-endomorphisms
of the additive group G, is isomorphic to the non-commutative ring k[F| of
p-polynomials, where F is the Frobenius homomorphism and

. k3
E o;F' o — E o;xf .
i i

The following proposition shows that in odd characteristic any factor sys-
tem can be derived by ®; and 7; only.

2.1.9 Proposition. If the characteristic of the ground field is greater than 2,
then in the free left End(G,)-module H*(G,, G,) we have

k—1 2k—1
[12k] = ZFi[m(l + 2RO — (Z FZ) [m]

i=0 i=0
k k—1 k

Maki] =Y F (1 +F2E N+ FH ] = > Fp] = > F¥ ).

i=0 i=1 i=1
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Proof. Put a(z) = $2°7, hence 0'a(z,y) = 1((x + y)? — % — y?F) = zPyP.
The assertion follows from the fact that

2 =m(1+F) = (1+F)p +d'a
whereas, for any k£ > 1, we have
m(1+F) = (1+F)nr + k1 + Fie—1.
O

2.1.10 Corollary. If the characteristic of the ground field is greater than 2,
for any ¢ € H3(G,, G,) there exist fo, fi, - fny 91, » gn € K[F] such that

o= fo®1+ > fimo
k=1

O

The following Remark 2.1.11, which makes Propositions 2.1.12 and 2.1.13
particularly meaningful, plays a certain role in Section 4.2.

2.1.11 Remark. We illustrate here the fact that the functor H?(B, A) is
contra-variant in B and co-variant in A in the special case of isogenies. The
arguments and the notations are essentially those of [89], VII, 1. p. 164-165.

1) For any explicit central extension G,
1— A4 — Gy, —B—1

of A; by B, defined by the factor system ¢; : B x B — A;, and any
isogeny o : Ay — A, there exists a unique (up to equivalence) explicit
central extension Gy,

1— Ay — Gy, — B —1

and an isogeny o, : Gy, — Gg4,, such that the following diagram

commutes
1— A — Gy, — B —1

al sl idpl
1— Ay — Gy, — B — 1

Explicitly we have [¢2] = a[d1] and «, is defined by o, (z,y) = (2, a(y)).
Moreover, the group Gy, is the factor group of Gy, x Az modulo the
algebraic subgroup A = {(—a,a(a)) : a € A1}.
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2) For any explicit central extension Gy,

1—A— Gy — B —1

of A by By, defined by the factor system ¢; : By x By — A, and any
isogeny (3 : By — B there exists a unique explicit central extension G,

1—>A—>G¢2L>BQ—>1

and an isogeny 3* : G4, — G4, such that the following diagram com-
mutes
l— A— Gy, == By —1

idal Bl Bl

1— A—>G¢1L>Bl—>1.

Explicitly we have [¢2] = [¢1]5 and the isogeny (3* is defined by 5*(x,y) =
(B(x),y). Moreover, the group Gy, is the algebraic subgroup of the direct
product By x G4, defined by

Gy, ={(b;9) € B2 x G, : f(b) = 7(g)}-

In the case where Gy, and G, are two central extensions
1— A — Gy, — B — 1

1— Ay — Gy, — By — 1
we have:

2.1.12 Proposition. Let Gy, (respectively Gy,) be a central extension of the

algebraic affine group Ay (respectively As) by the (not necessarily commuta-

tive) algebraic group By (respectively Ba).

(i) There is an isogeny i : Gy, — Gy, such that i(A1) = Ag if and only if
there exist isogenies f : Ay — As and g : By — Bs with f[¢1] = [¢2]g.

(i) If there are isogenies f : Ay — Ag and g : Bo — By such that

[92] = flo1lg (2.4)

then the groups Gg, and Gy, are isogenous.
Proof. (i) Let i : Gy, — G4, be an isogeny such that i(A;) = Ag. Then i is
given by

i(ﬂ?o,Il) = (g(‘ro)v f(xl) + h(xo)),

where f : Ay — As, g : By — By are isogenies and h : By — As is a
rational regular map satisfying the equation fé, = ¢og + d'h.

Conversely, given isogenies g, f as above and a rational regular map h :
By — A satisfying f¢1 = ¢2g + 0'h, the mapping i : G5, — Gy,

(zo, 1) = (g9(z0), f(71) + h(z0))



2.1 Extensions of Unipotent Groups and Isogenies 21

is an isogeny, since
ker(i) = {(b,a) : b € ker(g), f(a) + h(b) = 0}

is finite, and i(A;) is clearly equal to As.
(11) By (i) we find that G, is isogenous to G, 4, which in turn is isogenous
t0 Gpigigr = G- O

The next proposition shows the crucial role played by the Ore condition
in the context of extensions of algebraic groups and isogenies.

2.1.13 Proposition. Let A (respectively Ay, As) be either the Witt group
W, or the vector group (Gg)™. Let Gy, (respectively Gy, ,Gg,) be a central
extension of A (respectively Ay, As) by the (not necessarily commutative) al-
gebraic group B (respectively B, Bs). If n; : Gy — G, are isogenies with
ni(A) = A;, then there exist h; : A; — A and g; : B — B; such that
ha[¢2]ge = hild1]g:-

Proof. By (i) there exist isogenies f; : A — A; and g; : B — By, (i = 1,2),
such that fi[¢)] = [¢1]g1 and f2[¢)] = [p2]ga. It is shown in [18], V, § 3, 6.9,
p- 593, that in the semigroup of isogenies of a Witt group the Ore condition
holds. For a vector group this follows from [54], § 10, p. 313. Hence can find
two isogenies h; : A; — A such that hy fi = hofe and we obtain ha[ps]gs =
hi[¢1]g1. O

We have already mentioned that the groups SLs and PSLs show that the
existence of an isogeny is not a symmetric relation. However, if there exists
an isogeny from a connected commutative unipotent group Gy onto Gy then
an isogeny from Go onto Gy exists as well (see [89], Proposition 10, p. 176).
Already for unipotent connected non-commutative algebraic groups this is not
any more the case as the following example shows.

2.1.14 Example. In Remark 2.1.6 we denoted by 71 : G, x G, — G,
the factor system defined by n;(z,y) = zy?. As soon as the p-polynomial
g is not monomial, the factor system 7;¢ is no longer contained in the left
End(G,)-submodule generated by ;. Therefore a necessary condition to have
the equality f[m] = [n1]g, for some p-polynomial f, is that g is monomial,
that is ¢ = aF” (see Remark 2.1.8). But in this case we have 719 = gni,
where § = a!'*PF*. This shows that, if f is a p-polynomial which is not a
monomial, it cannot happen that f[n] = [m]g, because the left End(G,)-
submodule generated by 7 is free. By Proposition 2.1.12 (i), there cannot
exist an isogeny from Gy, to G|, whereas by the same Proposition we
have an isogeny from G,,j to G-

O

2.1.15 Remark. Non-central extensions of a group A by a group B are in
general described by an action of B as a non-trivial group of automorphisms
of A

a a’ (a€ A,b € B),
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and a mapping F': B x B — A, satisfying
F(b1by,b3) - F(by,by) = F(by, bybs) - F(ba, bs). (2.5)

For the trivial action of B on a commutative group A, the equation (2.5)

just reduces to the functional equation of a factor system describing a central

extension, as in Section 2.1. With a slight abuse, we call a mapping F' satisfying

(2.5) a factor system. If A and B are algebraic groups, it is necessary to assume

that the factor system F and all the automorphisms a — a® for all b € B are

rational maps, in order to have the extension of A by B as an algebraic group.
Let B, be the central extension

1— B — By, — By — 1
defined on By x By by the product
(bo, b1) (bo, by) = (bo - b, b1 + by + av(bo, b))
and let Gg be the central extension
1—A— Gy — By —1
defined on B x A by the product

((bOv bl)a a)((667 bll)? CL/) = ((bO ’ 66’ by + b/l+a(b07 b6)')7 a+ a/+¢(b07 by, bé)a b/l))
(2.6)
Let H = {(bo, b1,a) € Gy : by = 1}. Under the assumption that [G, H] < A we

want to find the factor system v corresponding to the section 7 : By — G,
7(bo) = (bo, 0,0) of the non-central extension

1— H—Gy — By —1

and we want to compare this factor system with ¢. With the same argument
mentioned in Section 2.1 for central extension, one can easily see that such a
factor system v = (v1,72) : Ba x By — H is v = —&'7. (It is remarkable that
the effects of changing the section for a non-central extension are not those
of adding a trivial factor system, because in this case (7 —7') # 617 — 617,
For a concrete example see the proof of Theorem 6.4.7). A direct computation
shows now that

7(607[)6) = (bO : 67070)_1 : (bo,0,0) . ( 6ﬂ070) = (17O‘(b07b6)75(b07b6))

where « is the map appearing in (2.6) and
B(bo, b)) = —d(bobpy, 0; (boby) ™", —a(boby, (bob) ™))+

(Do, 03 b, 0) + d((bobly) ~*, —a(bobly, (bobhy) ~*): boby, ar(bo, b))
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Therefore the group G is isomorphic to the group defined on By x H by
the multiplication

((bo’bl)’a) ’ (( 67bl1>7a/) = (bO’O’O) : (Lbl’a) : ( 6)0’0> . (Lbllval) =
(bo,0,0) - (b),0,0) - (1,by,a) 00 (1,04 a') =
(b0b670’0) : (1>a(b0’b6)aﬁ(b07b6)) : (17b1’a + Ubo(bl)) ’ (Lb/laa/) =
(boby, b1 + by + a(bo, b)), a+ a’ + p(bo, b1, bh, b))

where
p(bOa bla b/07 bll) = Ubo(bl) + B(b()?bE)) + ¢<17 bl7 17 bll) + d)(l) Oé(bo, b{))’ 17 bl + bll)

whereas for any by € B and for any (1,b1,a) € H the map oy, : By — A is
a homomorphism such that (1,by,a)% = (1,b1,a + oy, (b1)).

Comparing the representation given by v with the one given by ¢ we find
the remarkable fact that 71 = o whereas p is in general different from ¢. [

The universal covering C" of an arbitrary connected commutative complex
Lie group G is a decisive tool for the description of homomorphisms and
extensions of connected commutative complex Lie groups. It plays a similar
role as the Witt group 20, for connected commutative unipotent groups. For
non-commutative unipotent groups unfortunately no similar tool is available.

2.2 Extensions of Commutative Lie Groups

Since any commutative connected complex Lie group is (holomorphically)
isomorphic to the direct product of a linear torus (C*)™, a vector group C!
and a toroidal group X, the theory of commutative extensions of such Lie
groups reduces to the case of extensions which are toroidal groups. These
groups play a similar rdle as the connected algebraic group G = D(G) with
no non-trivial affine epimorphic image.

Homomorphisms and extensions of complex tori X are completely de-
scribed in [7], Ch. 1, Section 5, by means of period matrices, the columns
of which are the vectors of the lattice A of a suitable representation of
X = C"/A. This method works also for connected commutative complex
Lie groups G = C"/A such that the complex rank of A is n, which we will
treat now.

Let X = C"/A be a connected commutative complex Lie group. If the
complex rank of A is m < n, then A is contained in a complex subspace V of
dimension m of C™. Up to a change of basis and a canonical identification of
V with C™, we can see then that X is isomorphic to C*~™ @ C™/A. From
now on we assume therefore that the complex rank of A is n, and we say that
such groups have mazimal complex rank. Let the real rank of A be n+q, where
0<qg<n.
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Up to a change of basis we can assume that A = Z"@T'. The corresponding
column matrix is

I, 0T
P=(,G=["1 ~| € My 44(C
(5. G) (O o T) nta(C)
T :
where the columns of G = 7| are R-independent generators of I'.

In accordance to [7], p. 2, we call P the period matriz of X. The imaginary
part of G has real rank ¢, because the columns of P are R-independent. Up to
a permutation of the vectors of the basis we can assume that the imaginary
part of T' is invertible.

For ¢ = 0 we have A = Z", hence the group X = C"/Z" = (C*)" is a
linear torus, whereas for ¢ = n the group X is a complex torus by definition
( [7], p- 1). According to [1], 1.1.11, p. 9, if P = (I, G) is the matrix of a
R-basis of the lattice A, the group C"/A is toroidal if and only the following
irrationality condition holds:

for any non-zero v € Z" the vector vG is never contained in Z2.  (2.7)

Homomorphisms of connected commutative complex Lie groups of maximal
complex rank can be described in terms of period matrices. In fact, a homo-
morphism [ : X3 = C"/A; — Xy = C™2 /A, lifts to a unique homomor-
phism f : C™ — C™2 of C-vector spaces such that f(A;) < Ao. This lifting
defines therefore two homomorphisms

Pa : Hom(Xl,Xg) — Hom(Cm,an) = Mnfz,nl ((C)

pr : Hom(X1, X2) — Hom(Ay, Ag) = My tgs,m1+01 (z)

such that
pa(f)Pl = P2p7'(f)7 (28)

where P; is a period matrix of X; (i = 1,2) and where we have identified p, (f)
and p,(f) with the matrices corresponding to the chosen basis of C™i. The
homomorphisms p, and p, are called the analytic and the rational represen-
tation of Hom(X1, X2) and the equations in (2.8) are called Hurwitz relations

(cf. [1], p. 8).

2.2.1 Proposition. A homomorphism f : X1 — Xs is an isogeny if and
only if po(f) and p.(f) are square matrices with non-zero determinant. In this
case there exists an isogeny g : Xo — X with fg = lidx, and gf = lidx,
where 1 = |p.(f)|. In particular, the isogeny [ is an isomorphism if and only

if o ()] = £1.

Proof. If f is an isogeny, then f = p,(f) is bijective for dimensional reasons,
hence |pg(f)| # 0. If we put I' = f~1(A3), then A; < T and I'/A; is the kernel
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of the isogeny f. If the real rank of Ay were greater than the real rank of Ay,
then I'/A; would be infinite. As p(f)P1 = Pap.(f) we find Ay = Tp,.(f).
Hence we have: 1) the real rank of A; is not greater than the real rank of
Ao, since As has the same real rank as I, 2) p,.(f) is a square matrix with
non-zero determinant.

Conversely, if p,(f) and p,(f) are square matrices with non-zero determi-
nant, then f is surjective, its kernel is discrete and A; and I"' = f ~1(Ay) have
the same real rank. As the factor group I'/A; is the kernel of f, it has to be
finite, proving that f is an isogeny.

Finally, let [ = |p,.(f)| and let R = Ip,(f)~!, hence R has integral entries.
Since lp,(f)™'P, = PR we can define a homomorphism g : Xo — X;
such that p,(g) = lpa(f)~! and p,.(g) = R. Since p,(g) and p,(g) are square
matrices with non-zero determinant, the homomorphism ¢ is an isogeny and
it is easy to see that fg =lidx, and ¢gf = lidx,.

In particular, if [ = 41 the isogeny f is an isomorphism. Conversely, if f
is an isomorphism, then the rational representation p,.(f) : Ay — As is an
isomorphism of lattices having p,.(f~!) as the inverse, hence |p,.(f)| = +1. O

Now we want to study closed subgroups and factor groups of toroidal
groups as well as holomorphic commutative extensions of toroidal groups by
toroidal groups.

2.2.2 Proposition. Let X =2 C"/A be a connected commutative complex Lie
group of maximal rank n. For any k-dimensional connected closed commuta-
tive complex subgroup X; = CF¥/Ay of mazimal rank k of X there exists a

period matriz P such that
(P X
r=(05)

where Py is a period matriz of X1 and Py is a period matrix of the factor
group X/X;.

Proof. Let P; be a period matrix of the closed subgroup X; = C*/A; of X.
As X is a closed subgroup of X we can construct an exact sequence

0 — CF/A, = C"/A o Cv R /Ay — 0,

where A5 is a lattice corresponding to the connected complex commutative
Lie group X/X; = C"*/A,. Consider the linear maps i = p,(1) and # =
pa(m). As ker1 = 171(A)/A; and 1 is injective we have i71(A) = A; from
which it follows that also 1 is injective. Furthermore by the relation kerm =
771 (A2)/A =1(CF /A1) = (I(CF) + A) /A we have 771 (Ay) = i(C*) + A, which
yields ker & = i(C*). Consequently i and # define an exact sequence

0—Ck Lo Aok 0.
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By the relation #71(Ay) = i(CF) + A we have that the homomorphism
|, + A — Ay is surjective and ker 71, = i(A;). This defines an exact sequence

0— A — A5 Ay — 0.

Since As is a free commutative group we get A = 1(A1) @ T' where ' & As.
Up to a change of basis of the spaces C*, C* and C"* we can assume that

1= p.(1) = (ék), 7 = pa(m) = 0 I,—x), and we can choose a period ma-

P X

trix P of X such that P = <0 A

) , where the columns of the matrix

4) are R-independent Z-generators of I'. Furthermore, fixing a period ma-

trix P of X/Xi, up to a change of generators of I' we can assume that
pr(m) = 0 Intq—k—q.), where n + ¢ (respectively nq + ¢1) is the real rank of
X (respectively of X7). Now, by the Hurwitz relations we have

P X
01,0 (133 = PO Tuva i)

from which it follows that A = P;. O

Now we look for closed linear subtori of a connected commutative complex Lie
group X = C"/A of maximal rank n with period matrix P = (I,, G). Denote
by H=H(ly, - ,lp—m) the m-dimensional subspace of C" defined by

H={(z1,,2,) €C": 7z, =0for [y € {1,--- ,n}and k=1,--- ,;n—m}

and let C'gy (P) be the matrix obtained from P in the following way: we cancel
in P any row with exception of those labeled by Iy, - ,l,_,, as well as any
of the first n columns with exception of those labeled by I, -+ ,l,,_m. Clearly
Cu(P) = Uy—m G, with G’ € M,,_,, 4(C).

2.2.3 Proposition. Let X =2 C"/A be a connected commutative complex Lie
group of mazimal rank n and let P = (I,, G) be a period matriz of X. If the
columns of C(P) are R-independent, then X1 = (H~+A)/A is a closed linear
subtorus of X.

Proof. Let Xo =2 C"™ /A5 be the connected commutative complex Lie group
of maximal rank n — m having C (P) as a period matrix and let f:cr—
C"™ be the homomorphism defined by f(z1,---,2n) = (21,21, ).
Since f(A) < As, a homomorphism f: X — X5 is induced such that X is
the kernel. This proves that X; is a closed subgroup. In order to prove that
X1 is a linear torus we show that H N A has real rank m. This follows from
the fact that the columns of Cg(P) are R-independent, hence no non-trivial
linear combination of the columns Iy, - ,l,,_,, of the matrix P with integral
(or even real) coefficients enters in H. 0
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2.2.4 Remark. The above proposition shows that a toroidal group X with
period matrix

I, 0 T
P = (In G) = <0q I T) S Mn,n+q((c)
n—q

(such that the imaginary part of T is invertible) contains a closed linear
subtorus L of dimension n — ¢ corresponding to the submatrix P, = I,,_,,
because the submatrix Cy(P) = (I, T) is the period matrix of a complex
torus. Hence L is a maximal closed linear subtorus of X. For instance, in the
three-dimensional toroidal group X having

100 4 i
P=1010iv2 0
001 0 V2

as a period matrix, the three subgroups H(2,3), H(1,3) and H(1,2) are one-
dimensional maximal closed linear subtori. Thus X is a C*-fiber bundle over
the complex tori defined by the period matrices

10iv2 0 104 i
Caea =gy 0 iva) e =\o10iva)

o (10 i
H12) = 01iv/20
O

Let X; = C™ /Ay, Xy = C" /Ay be connected commutative complex Lie
groups of maximal ranks my,no and let P;, P> be the corresponding period
matrices. Let

0—Xy —X —Xo—0

be an exact sequence of connected commutative complex Lie groups. By
Proposition 2.2.2 we find a basis such that the corresponding period matrix is

P X
P = (0 Pg) € Mn,n+£]1+qz((c)'
Conversely to each matrix of this form there corresponds a toroidal group X
containing a closed subgroup X; having P; as a period matrix and such that
X/X; is isomorphic to a toroidal group X, having P, as a period matrix.
In fact, X is the kernel of the homomorphism f : X — X5 which lifts to

f(zla e 7Zn) = (Zn1+1a e 7Zn)~
As a consequence of Hurwitz relations we find that P = <P;1 §> and Q =
2

(PE)I i,) define equivalent extensions if and only if a matrix A € M, »,(C)
2

and a matrix M € M, 44, ny+q.(Z) exists such that
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I, A\ (PL X\ (PP 2N (Ini4qp M
0 In2 0 P ~\0 Py 0 In2+!h .
. . P X . .
The period matrix P = 0P defines therefore a split extension of X7 by X5
2
ifand only if ¥ = Py M — AP, with A € M,,, ,,(C) and M € M, 14, ny+qs(Z).
P2 is such that X' = PLM — AP,
0 P
with M € My, 1q, no+q,(Q), then P defines an extension of Xy by X» which
is isogenous to a split one. An isogeny f : X7 — X is given by p.(f) =
Un, 0 and p-(f) = Unirar 0 , where [ € Z is such that [M has
0 In2 0 17L2+q2
integral entries.
Hence we have the following

Moreover, if the period matrix P =

2.2.5 Proposition. Let X1, X5 be connected commutative complex Lie groups
of mazimal rank ny,no and let Py, Py be the corresponding period matrices.
The period matrix

P X
P= <01 PQ) € Mn,n+lh+42 ((C) (n =ny + n2)

defines an extension of X1 by Xo which is isogenous to a split one, via an

isogeny f such that p.(f) = (llgl IO> and p,(f) = (Hnbﬂl I g_q), if and
no n2 2,

only if ¥ = PLM — AP, with A € My, 1,(C) and M € My, 14, .n2+4,(Q),
where | € Z is such that IM has integral entries. O

Extensions of complex tori X; and X, which are not isogenous to a split
analytic extension X; @ Xs are called Shafarevich extensions in [7], Ch. 1,
§ 6, p. 23. Hence it seems for us to be natural to call also non-split analytic
extensions of a toroidal group by a toroidal group Shafarevich extensions.

If X7 and X5 are abelian varieties, Shafarevich extensions of X; by X, are
not abelian varieties and hence provide a wide class of non-projective complex
tori, since an abelian variety is a complex torus admitting a holomorphic
embedding into some projective space (cf. [7], p. xiii).
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