
Chapter II
Intersection and Diametric Problems

In this chapter we first introduce the problem of finding the maximal cardinality of
a system (or family) of subsets (in particular from

([n]
k

)
), such that any two subsets

from the system intersect in not less than t elements. We call such a system of sub-
sets t-intersecting family. We also consider the diametric problem in two different
spaces. The diametric problem in one of the spaces is closely connected with the
intersection problem. This connection is based on a technique that was invented by
Ahlswede and Khachatrian. One can understand how it works by following the proof
of the Complete Intersection Theorem, which we introduce later. This technique the
reader first meets in the proof of Lemma 5. It is quite different from induction or
other methods known before. In some sense it is a combination of shifting, with
proving of necessity of the symmetry of the family under permutations of a suffi-
ciently large number of components. The whole method becomes clear when the
reader goes through the proofs and finds out that this method allows to solve several
problems that had been considered hopeless for solving before. The reward for the
efforts of the reader going along the lines of rather long proofs will be the satisfac-
tion he attains at the end.

Lecture 1 The Complete Intersection Theorem
We turn to the problem of finding the maximal cardinality of a t-intersecting family
of k-subsets (subsets of cardinality k of ground set [n]). It is easy to see that when
n≤ 2k−t, then the whole family

([n]
k

)
of k-subsets is t-intersecting. We thus consider

the case when n > 2k− t.
We come to necessary considerations and definitions. A system of sets A ⊂ 2[n]

is called t-intersecting if for arbitrary A1, A2 ∈ A, |A1 ∩A2| ≥ t. Denote by I(n, t)
the set of unrestricted t-intersecting systems and

I(n,k, t) =
{
A ∈ I(n, t) : A⊂

(
[n]
k

)}
.

9
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Our main goal is to determine the value

M(n,k, t) = max
A∈I(n,k,t)

|A|.

We denote

F(i) =
{

F ∈
(

[n]
k

)
: |F ∩ [t +2i]| ≥ t + i

}
,0 ≤ i ≤ k− t.

In words: F(i) is the family of all k-element subsets of [n] containing at least t + i
elements in the first [t +2i] positions. Obviously, F(i) is a t-intersecting system: all
pairs of k-element subsets from F(i) intersect in at least t elements already in the
first [t +2i] positions.

Theorem 3 (Complete Intersection Theorem (Ahlswede and Khachatrian
1997))

(i) For n = 2k, t = 1

M(n,k,1) =
(

n−1
k−1

)
.

For 1 ≤ t ≤ k ≤ n, n > 2k− t,
(ii) If for some r ∈ {0,1,2 . . .}

(k− t +1)
(

2+
t −1
r +1

)
< n < (k− t +1)

(
2+

t −1
r

)
, (1)

then we have
M(n,k, t) = |F(r)|.

Here we set t−1
r = ∞ if r = 0.

(iii) If for some r ∈ {0,1,2 . . .} and t > 1

(k− t +1)
(

2+
t −1
r +1

)
= n, (2)

then
M(n,k, t) = |F(r)| = |F(r +1)|.

Moreover, all optimal systems are known. In case (i) one must choose for each
A ∈ 2[n] one set from A, Ā. In the other cases, up to permutations on [n], there is
uniqueness in case (ii) and there are two systems in case (iii).

From this theorem it follows that if n ≥ (k− t +1)(t +1) then

M(n,k, t) =
(

n− t
k− t

)
. (3)

In other words in this case the set
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A(n,k, t) =
{

A ∈
(

[n]
k

)
: [1, t] ⊂ A

}

is a maximal intersecting set.
Most famous in this subject is the 4m-conjecture, which was stated more than 70

years ago (see [E87]) and says that

M(4m,2m,2) =

(4m
2m

)
−

(2m
m

)2

2
,

which is based on the construction

{F ∈
(

[4m]
2m

)
: |F ∩ [1,2m]| ≥ m+1}.

It is the first case (t = 2) for which relation (3), which is based on the “naive”
construction A=

{
A ∈

([n]
k

)
: [1, t] ⊂ A

}
, is not optimal. Indeed, simple calculations

give for m = 1 still M(4,2,2) = 1 =
(4−2

2−2

)
; however, for m = 2 M(8,4,2) = 17 >

15 =
(6

2

)
.

The 4m-conjecture, which was mentioned in [E90] as the last open problem
from [EKR61], attracted the attention of many mathematicians for a long time (see
[DF83] and [CF92] for an upper bound). It also made it into the book [CG98].

Proof of Case (i). Obviously M(2k,k,1) ≥
(2k−1

k−1

)
and since with every A its com-

plement cannot be in an intersecting family,

M(2k,k,1) ≤ 1
2

(
2k
k

)
=

1
2

((
2k−1

k

)
+

(
2k−1
k−1

))
=

(
2k−1
k−1

)
.

Now we turn to other cases of this theorem. For every 1 ≤ i < j ≤ n define on
2[n] the left shifting operator Li j by the equation

Li j(A) =
{
{i}∪ (A\{ j}), if i 	∈ A, j ∈ A,
A, otherwise.

Also for every 1 ≤ i < j ≤ n and set system A ∈ 2[n] define an operator on A

Li j(A,A) =
{

Li j(A), if Li j(A) 	∈ A,
A, otherwise.

Also set
Li j(A) = {Li j(A,A), A ∈ A}.

We say that the set system A⊂ 2[n] is left-compressed if A = Li j(A) for all 1 ≤ i <
j ≤ n. Let LI be the set of all left-compressed systems belonging to I. It is easy to
see (Exercise 3) that

M(n,k, t) = max
A∈LI(n,k,t)

|A|. (4)
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For arbitrary A ∈ 2[n] we denote by Ai, j, 1 ≤ i, j ≤ n the set obtained from A by
exchanging coordinates i, j. For a set system A ⊂ 2[n] and 1 ≤ i, j ≤ n we denote
by Ai, j the set system obtained from A by exchanging the coordinates i, j in every
A ∈A. Suppose that A∈ LI(n,k, t) and A is not right-compressed. Let � < n be the
largest integer such that A is invariant under exchange operations in [0, �], that is,

A = Ai, j,1 ≤ i, j ≤ �, but A 	= Ai,�+1 for some 1 ≤ i ≤ �. (5)

We set
A′ = {A ∈ A : Ai,�+1 	∈ A for some 1 ≤ i ≤ �}. (6)

Lemma 4 The following relations are valid (Exercise 4):

(i) �+1 	∈ A for all A ∈ A′.
(ii) Let A ∈ A′ and j ∈ A, 1 ≤ j ≤ �, then A j,�+1 	∈ A.

(iii) Let A ∈ A′, A = B∪C, where B = A∩ [�], C = A∩ [�+1,n], then B′ ∪C ∈ A′

for every B′ ⊂ [1, �] with |B′| = |B|.
(iv) Let A ∈ A′ and D ∈ A\A′, then

|Ai,�+1 ∩D| ≥ t

for all 1 ≤ i ≤ �.
(v) Let A1,A2 ∈A′, Bi = Ai∩ [�]; i = 1,2 and suppose that |B1|+ |B2| 	= �+ t, then

|A1 ∩A2| ≥ t +1.

Proposition 1 Let B ⊂ 2[n] be a set system, such that B = B̄ = {B̄ : B ∈ B}
and B̄ = [n]\B. Then every maximal intersecting B′ ⊂ B has cardinality |B|/2
(Exercise 4).

We will need the following key lemma.

Lemma 5 Let A⊂ LI(n,k, t), |A| = M(n,k, t), n > 2k− t and

n < (k− t +1)
(

2+
t −1

r

)
. (7)

Then Ai, j = A for all 1 ≤ i, j ≤ t +2r.

Proof. We can assume that t ≥ 2, because in the case t = 1 inequalities (7) and n >
2k− t are incomparable (r 	= 0). We suppose that the statement of the lemma is not
valid and come to a contradiction. Let � < t +2r be such that Ai, j =A, 1 ≤ i, j ≤ �,
but A′ = {A ∈ A : Ai,�+1 	∈ A for some 1 ≤ i ≤ �} 	= /0. We will prove that in this
case under the assumption (7) there exists a B ∈ I(n,k, t) such that |B| > |A|, a
contradiction.

Let

A′ =
�⋃

i=1

A(i), A(i) = {A ∈ A′ : |A∩ [1, �] = i}.
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From Lemma 4 it follows that A(i) = /0 when 1 ≤ i < t. We will prove that all set
systems A(i) are empty. Suppose that A(i) 	= /0 for some i : t ≤ i ≤ �. From (iii) of
Lemma 4 it follows that

|A(i)| =
(

�

i

)
|A∗(i)|, (8)

where
A∗(i) = {A∩ [�+2,n] : A ∈ A(i)}. (9)

From (i) of Lemma 4 it follows that �+ 1 	∈ A for all A ∈ A′. Also note that when
n = �+1, we have A∗(i) = { /0} and hence |A∗(i)| = 1. Let

B(i) = {B : |B∩ [1, �]| = i−1, �+1 ∈ B, B∩ [�+2,n] ∈ A∗(i)} .

Then by (ii) of Lemma 4

|B(i)| =
(

�

i−1

)
|A∗(i)|, B(i)∩A = /0. (10)

Similar to (8) and (10) we have

|A(�+ t − i)| =
(

�

�+ t − i

)
|A∗(�+ t − i)|, (11)

|B(�+ t − i)| =
(

�

�+ t − i−1

)
|A∗(�+ t − i)|. (12)

Next we consider two subcases: 1. i 	= �+ t − i and 2. i = �+ t − i.

Subcase 1. From (v) of Lemma 4 it follows:
For B ∈ B(i), A ∈ A( j) with i + j 	= �+ t we have |B∩A| ≥ t. Thus using this

inequality, from (iv) of Lemma 4 we obtain

H1 = ((A\A(�+ t − i))∩B(i)) ∈ I(n,k, t),
H2 = ((A\A(i))∩B(�+ t − i)) ∈ I(n,k, t).

Next we show that in this case

max{|H1|, |H2|} > |A| = M(n,k, t), (13)

which will be a contradiction. If the opposite to (13) is true, then from (8), (10)–(12)
the inequalities

(
�

i−1

)
|A∗(i)| ≤

(
�

�+ t − i

)
|A∗(�+ t − i)|, (14)

(
�

�+ t − i−1

)
|A∗(�+ t − i)| ≤

(
�

i

)
|A∗(i)|

follow. As A(i) 	= /0, from the first inequality in (14) it follows that A(�+ t − i) 	= /0.
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However, (14) yields the inequality

i(�+ t − i) ≤ (�− i+1)(i+1− t),

which could not be true, because t ≥ 2, and hence

i > i+1− t, �+ t − i > �− i+1.

Thus A(i) = /0 for all i 	= �+ t − i.

Subcase 2. Here we have 2|(�+ t) and hence �+ 2 ≤ n. Therefore, if A
(

�+t
2

)
	= /0,

then A∗ ( �+t
2

)
	= /0.

We have ∣
∣
∣
∣A

(
�+ t

2

)∣
∣
∣
∣ =

(
�

�+t
2

)∣
∣
∣
∣A

∗
(

�+ t
2

)∣
∣
∣
∣

and any A ∈ A
(

�+t
2

)
can be written as A = B∪C with

B = (A∩ [1, �]) ∈
(

[�]
�+t

2

)
, C = (S∩ [�+2,n]) ∈ A∗

(
�+ t

2

)
,

where |C| = k− �+t
2 since �+1 	∈ A.

Using the pigeon-hole principle we establish the existence of an element in
[�+2,n] and D ⊂A∗ ( �+t

2

)
such that d ∈ D for all D ∈ D and

|D| ≥
∣
∣
∣
∣A

∗
(

�+ t
2

)∣
∣
∣
∣

k− �+t
2

n− �−1
. (15)

We set

A1

(
�+ t

2

)
=

{
A ∈ A

(
�+ t

2

)
: (A∩ [�+2,n]) ∈ D

}
,

A2

(
�+ t

2

)
= A

(
�+ t

2

)
\A1

(
�+ t

2

)
.

Then

A
(

�+ t
2

)
= A1

(
�+ t

2

)
∪A2

(
�+ t

2

)
.

Also set

H =
(
A\A2

(
�+ t

2

))
∪G,

where

G =
{

B ∈
(

[n]
k

)
: (B∩ [1, �]) ∈

(
[�]

�+t
2 −1

)
, �+1 ∈ B,B∩ [�+2,n] ∈ D

}
.

From (ii) of Lemma 4 follows that G ∩A = /0. Also note that H ∈ I(n,k, t).
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Next we show that under the conditions (1) and

� < t +2r, 2|(�+ t) (16)

the inequality
|H| > |A| (17)

is valid, which will be a contradiction to the assumption about maximality of A.
Note that from inequalities (16) the inequality

� ≤ t +2r−2 (18)

follows. Since

|G| =
(

�
�+t

2 −1

)
|D|,

∣
∣
∣
∣A2

(
�+ t

2

)∣
∣
∣
∣ =

(
�

�+t
2

)(∣
∣
∣
∣A

∗
(

�+ t
2

)∣
∣
∣
∣−|D|

)
,

from (17) we get

(
�

�+t
2 −1

)
|D| >

(
�

�+t
2

)(∣
∣
∣
∣
∣
A∗

(
�+ t

2

)∣
∣
∣
∣
∣
−|D|

)

or (
�+1
�+t

2

)
|D| >

(
�

�+t
2

)∣
∣
∣
∣
∣
A∗

(
�+ t

2

)∣
∣
∣
∣
∣
.

From (15) it follows that for the validity of the last inequality it is sufficient to set

(
�+1
�+t

2

)
k− �+t

2
n− �−1

>

(
�

�+t
2

)
. (19)

Inequality (19) is equivalent to (k− t +1)
(

2+ 2(t−1)
�−t+2

)
> n. The validity of the last

inequality follows from (18) and assumption (7):

(k− t +1)
(

2+
2(t −1)
�− t +2

)
≥ (k− t +1)

(
2+

t −1
r

)
> n.

This proves Lemma 5. �

Proof of Theorem 3.
Case (ii): Suppose first that

(k− t +1)
(

2+
t −1
r +1

)
< n < (k− t +1)

(
2+

t −1
r

)
(20)

and A ∈ LI(n,k, t), |A| = M(n,k, t). From Lemma 5 it follows that A is in-
variant under the permutations of any positions in [1, t + 2r], hence k ≥ t + r.
Also it is easy to see that Ā is right-compressed, Ā ∈ I(n,n− k,n− 2k + t), and
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|A| = |Ā| = M(n,k, t) = M(n,n− k,n−2k + t). From (20) the inequalities

(k′ − t ′ +1)
(

2+
t ′ −1
r′ +1

)
< n < (k′ − t ′ +1)

(
2+

t ′ −1
r′

)

follow, where k′ = n− k, t ′ = n−2k + t, and r′ = k− t − r ( t ′−1
r′ = ∞ when r′ = 0).

Now it is easy to see that Lemma 5 can be formulated for right-compressed sets
with obvious changes in the proof. This proof shows that Ā is invariant under the
permutations of the positions in [n− t ′ − 2r′ + 1,n] = [t + 2r + 1,n]. Hence such
invariance is also valid for A and [t + 2r + 1,n]. Since A is left-compressed and
n > 2k− t, we have

|A1 ∩A2 ∩ [1, t +2r]| ≥ t, A1,A2 ∈ A. (21)

But A is invariant under permutations of the positions from [1, t + 2r]. Thus the
unique maximal set A ∈ LI(n,k, t) is A = F(r).

Case (iii): n = (k− t + 1)
(
2+ t−1

r+1

)
. Similar to the previous case we consider the

complement set of A and using the same approach with one exception n = 2, k, t =
1, we derive an inequality similar to (21):

|A1 ∩A2 ∩ [1, t +2r +2]| ≥ t, A1,A2 ∈ A. (22)

Then (22) and Lemma 5 deliver two optimal sets: either A = F(r) or A = F(r +1)
and

|A| = |F(r)| = |F(r +1)|.
The answer in the case n = 2, k, t = 0 is obvious. The theorem is proved. Thus the
problem of finding a maximal t-intersecting family is completely solved.

Now we turn our attention to the uniqueness of the optimal families. In case (i)
one gets the optimal families by choosing from every set {A, Ā}, A ∈ A, exactly
one element. Up to permutations there is exactly one optimal family in case (ii) and
there are exactly two cases in case (iii). This we prove next.

We will need the following:

Lemma 6 Suppose A∈I(n,k, t) and A gets transformed by left shifting operations
into the set F(r) for some 0 ≤ r ≤ (n− t)/2. Then necessarily A is obtained from
F(r) by permutations of the elements, provided that

n ≥ 2k− t +2, for t ≥ 2,

n = 2k− t +1, for t ≥ 2 and k = t + r or k = t + r +1,

n ≥ 2k +1, for t = 1 and r = 0 or r = 1.

Proof. W.l.o.g. we assume that

Li j(A) = F(r). (23)

It is clear that if i, j ∈ [1, t +2r] or i, j 	∈ [1, t +2r], then A = F(r).
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Suppose now that i = t +2r and j = n. Let

A1 = {A ∈ A : j ∈ A, i 	∈ A, ((A\{ j})∪{i}) 	∈ A},
A2 = {A ∈ A : j 	∈ A, i ∈ A, ((A\{i})∪{ j}) 	∈ A}.

Clearly, if A1 = /0, then A = F(r) and if A2 = /0, then A is obtained from F(r) by
exchanging the coordinates i = t +2r and j = n. Suppose now that A1,A2 	= /0 and
let us show that in this case A 	∈ I(n,k, t). Consider

H =
{

H ∈
(

[n]\{i, j}
k−1

)
: |H ∩ [1, t +2r−1]| = t + r−1

}
.

Observe that from (23) it follows that, for any B ∈ A1 ∪A2, |B∩ [1, t + 2r− 1]| =
t + r− 1 holds. Moreover, from the same assumption (23) we have the following:
for every H ∈H either H ∪{ j} ∈ A1 or H ∪{i} ∈ A2.

Now we form a graph G = (V,E) as follows:

V = H, e(H1,H2) ∈ E iff
∣
∣
∣
∣H1 ∩H2

∣
∣
∣
∣ = t −1.

One can easily verify that graph G is connected iff the conditions of the lemma hold.
Hence under these conditions, if A1 	= /0 and A2 	= /0, then there exist B1 ∈ A1 and
B2 ∈ A2 with |B1 ∩B2| = t −1, which contradicts A ∈ I(n,k, t). �

Now we are ready to prove the uniqueness of the optimal set system in the Com-
plete Intersection Theorem. Let n > 2k − t, A ∈ I(n,k, t), and |A| = M(n,k, t),
and after finitely many left shifting operations let A be transformed to the left-
compressed set system A′ ∈ LI(n,k, t), |A′| = M(n,k, t). We know that A′ = F(r)
for some r ∈ N∪ 0, where r is defined by the conditions of the theorem. It can be
easily verified that these r’s satisfy the conditions of the lemma and hence A is
obtained from F(r) by permutations of the elements. �

Now we consider the case when there is no restriction on the cardinality of a
set from the t-intersecting family. This case turns out to be much simpler than the
previous one. Denote

M(n, t) = max
A∈I(n,t)

|A|,

K(n, t) =
{

A ∈ 2[n] : |A| ≥ n+ t
2

}
=

n⋃

i= n+t
2

(
[n]
i

)
, i f 2|(n+ t).

Theorem 4 (Unrestricted Intersection Theorem (Katona 1964)) The following
identities hold:

M(n, t) =
{
|K(n, t)|, 2|(n+ t),
2|K(n−1, t)|, 2 	 |(n+ t). (24)
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Moreover, in the case 2|(n+ t), t > 1 the optimal family is unique, while in the case
2 	 |(n+ t), t > 1 it is unique up to permutations of the ground set [n].

Proof. We will give the simple proof of this theorem, which was presented in
[AK05]. It uses only shifting and induction. Consider only the case 2|(n + t), the
case 2 	 |(n + t) has a similar proof. For t = 1 and t = n the theorem is obviously
true M(n,1) = 2n−1, because if A ∈ A, then [n] \ A 	∈ A). We can assume, that
A ∈ LI(n, t). Let

A1 = {A ∈ A : 1 ∈ A},
A0 = A\A1,

A∗
j = {A∩ [2,n] : A ∈ A j}, j = 0,1,

Then A∗
1 ∈ I(n−1, t −1), A∗

0 ∈ I(n−1, t +1).
We have by induction

|A| = |A∗
0|+ |A∗

1| ≤
n−1

∑
i= n+t

2 −1

(
n−1

i

)
+

n−1

∑
i= n+t

2

(
n−1

i

)

=
n

∑
i= n+t

2

(
n
i

)
.

The uniqueness of the family A for t > 1 also follows using induction. For t = 1 it
is delegated to Exercise 5. �

Lecture 2 The Diametric Problem for Vertices
in the Hamming Metric

Next we consider the diametric problem in the Hamming space Hn
q, which is the

space of n-tuples with elements from [0,q−1] endowed with the Hamming metric
dH(an,bn) = n−∑n

i=1 δai,bi . As we will see, the solution of this problem is closely
related to the t-intersection problem. The diametric problem is in some sense similar
to the intersection problem. In the case, when all n-tuples in the family have exactly
w nonzero symbols, these two problems coincide: if two n-tuples from the family
intersect in t positions, then the distance between them is 2(w−t). Next we consider
the nonrestrictive diametric problem: we find the maximal cardinality of a family of
n-tuples with prescribed diameter of this family. Note that in the binary case q = 2
this problem was solved a long time ago (formula (5) below). For an,bn ∈Hn

q denote

int(an,bn) =
∣
∣
∣
∣{ j : a j = b j}

∣
∣
∣
∣.

We call A⊂Hn
q a t −Hn

q intersecting family if for all an,bn ∈ A,

int(an,bn) ≥ t.



Lecture 2 The Diametric Problem for Vertices in the Hamming Metric 19

Let Iq(n, t) denote the set of all such families. Since

dH(an,bn) = n− int(an,bn),

we have that the diameter of a t −Hn
q intersecting family A is not greater than n− t.

Hence the problem of finding a maximal t −Hn
q intersecting family is equivalent

to the problem of finding a maximal family with given diameter. Also note that the
notions of t −Hn

2 intersecting family and t-intersecting family in 2[n] are different.
We are interested in finding a formula for the volume of a maximal t −Hn

q inter-
secting family

Nq(n, t) = max
A∈Iq(n,t)

|A|. (1)

Let
B(an) = { j : a j = q−1}, (2)

K(i) =
{

an ∈Hn
q : |B(an)∩ [1, t +2i]| ≥ t + i

}
.

Clearly, K(i) ∈ Iq(n, t), i ∈ {0,1, . . . ,(n− t)/2}. Obviously K(i) has diameter n− t.
Indeed any two n-tuples already in the first t + 2i positions intersect in t positions.
The next theorem gives the complete solution of the diametric problem.

Theorem 5 (Ahlswede and Khachatrian 1998) For q ≥ 2, t > 1 or q = 2, t = 1
let r ∈ {0,1,2 . . .} be the largest integer such that

t +2r < min
{

n+1, t +2
t −1
q−2

}
. (3)

Then Nq(n, t) = |K(r)|. We set here (t −1)/(q−2) = ∞ if q = 2. Also we have

Nq(n,1) = |K(0)| = qn−1. (4)

Uniqueness properties are delegated to the Exercises. In the case q = 2, this theorem
was proved by Kleitman [K66a] and we write the explicit solution in that case

N2(n, t) =

{
∑

n−t
2

i=0

(n
i

)
, 2|(n− t),

2∑
n−t−1

2
i=0

(n−1
i

)
, 2 	 |(n− t).

(5)

This equality can be proved using the same arguments as in the proof of Theorem 4
(Exercise 7). We will use this equality later when we demonstrate the solution of the
diametric problem in the Taxi metric. For q > 2 and small values of n, Frankl and
Füredi [FF80] proved Nq(n, t) = qn−t iff t ≤ q− 1 or t = n,n− 1. A generalization
to q ≥ 2 was proved in [M82].

Exercise 8 asks the reader to prove equality (4) directly. A natural candidate for
the solution of the diametric problem in the case of arbitrary t is

Nq(n, t) = qn−t . (6)
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The maximal family Bq(n, t) in this case can be chosen to be

Bq(n, t) = {B = (q1, . . . ,qn) ∈Hn
q : (q1, . . . ,qt) = (a1, . . . ,at)}

for some (a1, . . . ,at), ai ∈ [q]. However, as it follows from Theorem 5, this is not
true in the general case. Before in [FF80] it was proved that this is true when t ≥ 15
and n ≤ t +1 or q ≥ t +1.

Also it is interesting to mention one more particular case when

n ≤ t +1+ log t/ log(q−1).

In this case

Nq(n, t) =
∣
∣
∣
∣K

(⌊
n− t

2

⌋)∣
∣
∣
∣.

Proof of the Theorem. One can see that the definitions of the families F(i) and K(i)
are quite similar. This gives the hint that the proofs of this theorem and Theorem 3
should also have common features. The reader will find in the proof of Theorem 5
a lot of technique from the proof of the Complete Intersection Theorem. Note that
in the case t = 1,q > 2 inequality (3) is not satisfied for r = 0,1, . . . . It can be
easily seen by following the beginning of the next proof that in this case Nq(n,1) =
|K(0)| = qn−1 (see also Exercise 7). The uniqueness of the optimal configuration
in this case up to permutations of the components and elements of the alphabet
first was proved in [L79a]. In the case t = 1, q = 2 there are many possibilities of
the choice of the optimal configuration (see Exercise 6). Exercises 7 and 9 ask to
establish the uniqueness of the optimal configuration in other cases.

Now we turn to the proof of the theorem.
For A⊂Hn

q, an ∈ A, and j ∈ {1,2, . . . ,n}, i ∈ {0,1, . . . ,q−1} we define

Tji(an) =
{

bn = (a1,a2, . . . ,a j−1,q−1,a j+1, . . . ,an), bn 	∈ A and a j = i,
an, otherwise.

Also we put
Tji(A) =

{
Tji(an) : an ∈ A

}
.

We say that the set A⊂Hn
q is canonical if

Tji(A) = A

for all j = 1,2, . . . ,n and i = 0,1, . . . ,q−1. It is easy to see that by a finite number of
operations Tji every set A becomes canonical. Also, each transformation Tji keeps
the cardinality and the t −Hn

q-intersection property unchanged, that is, |Tji(A)| =
|A| and A ∈ Iq(n, t) ⇒ Tji(A) ∈ Iq(n, t).

Hence
Nq(n, t) = max

A∈CIq(n,t)
|A|, (7)

where CIq(n, t) ⊂ Iq(n, t) is the set of canonical families in Iq(n, t).
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With each system A∈CIq(n, t) we associate the “image” B(A) = {B(an) : an ∈
A}, where B(an) is defined in (2). It is not difficult to see that if A ∈CIq(n, t), then

B(A) ∈ I(n, t). (8)

�

Directly from the definition follows (Exercise 10)

Proposition 2 Let A ∈ CIq(n, t) be maximal: |A| = Nq(n, t) and let B(A) be the
image of A. Then

(i) B(A) is an upset.
(ii)

|A| = ∑
B∈B(A)

(q−1)n−|B| =
n

∑
i=0

g(i)(q−1)n−i,

where

g(i) =

∣
∣
∣
∣
∣
B(A)∩

(
[n]
i

)∣
∣
∣
∣
∣
.

Denote by LCIq(n, t)⊂CIq(n, t) the set of all systems A from CIq(n, t) with B(A)∈
LI(n, t). From the definitions it follows that

Nq(n, t) = max
A∈LCIq(n,t)

|A|. (9)

For E ∈ 2[n] denote

V(E) =
{

an ∈Hn
q : B(an) ∈ U(E)

}
. (10)

Here U(E) is the upset with one minimal set E. Obviously

|V(E)| = qn−|E|. (11)

For E ⊂ 2[n] we put
V(E) =

⋃

E∈E
V(E).

We call A a q-upset, if
A = V(B(A)).

For E = {e1,e2, . . . ,e|E|} ∈ 2[n], e1 < e2 < .. . < e|E| we set s+(E) = e|E| and for
E ⊂ 2[n] we set

s+(E) = max
E∈E

s+(E).

The next results follow from the definitions.

Proposition 3 Let A ∈ LCIq(n, t) be a q-upset and B(A) be the image of A. Let
M(A) be the set of minimal elements of B(A) (in the sense of set inclusion). Then
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A is a disjoint union
A =

⋃

E∈M(A)

D(E),

where

D(E) =
{

an = (a1,a2, . . . ,an) ∈Hn
q : B(an)∩ [1,s+(E)] = E

}
. (12)

Proposition 4 Let A ∈ LCIq(n, t) be a q-upset. For E ∈M(A) such that s+(E) =
s+(M(A)), denote

AE = V(E)\V(M(A)\E).

This is the set of elements from A which are generated only by E.
Then

AE = D(E)

and
|AE | = (q−1)s+(E)−|E|qn−s+(E). (13)

Proposition 5 Let A ∈ LCIq(n, t) be a q-upset and let E1,E2 ∈ M(A) have the
properties i 	∈ E1 ∪E2, j ∈ E1 ∩E2 for some i, j ∈ [n], i < j. Then

|E1 ∩E2| ≥ t +1.

We need the following key result.

Lemma 7 For q > 2 and A ∈ LCIq(n, t) with |A| = Nq(n, t) for some r ∈
{0,1,2, . . .} we have

s+(M(A)) = t +2r ≤ t +
2(t −1)

q−2
. (14)

If (t − 1)/(q − 2) is a positive integer, then there exists an A′ ∈ LCIq(n, t) with
|A′| = Nq(n, t) such that for some r′ ∈ {0,1,2, . . .}

s+(M(A′)) = t +2r′ < t +
2(t −1)

q−2
. (15)

Proof. First we prove (14). Suppose the opposite is true:

s+(M(A)) = � > t +
2(t −1)

q−2
(16)

or 2 	 |(�− t) and

� ≤ t +
2(t −1)

q−2
. (17)

Let us show that in this case there exists A′ ∈ Iq(n, t) such that |A′| > |A|. The
proof of this fact is quite similar to the proof of the t-intersection theorem and we
frequently refer to it. Consider the partition
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M(A) = M0(A)∪M1(A),

where
M0(A) = {E ∈M(A) : s+(E) = s+(M(A)) = �}

and
M1(A) = M(A)\M0(A).

Note that for E1 ∈M0(A) and E2 ∈M1(A) we have

|(E1 \{�})∩E2| ≥ t.

Similar to Lemma 4 (v), using Proposition 5, it can be proved (Exercise 11) that if
E1,E2 ∈M0(A) and |E1 ∩E2| = t, then

|E1|+ |E2| = �+ t. (18)

Like in the proof of the t-intersection theorem, we consider the partition

M0(A) =
⋃

i

R(i),

where R(i) = M0(A)∩
([n]

i

)
and

R′(i) = {E ⊂ [1, �−1] : E ∪{�} ∈ R(i)} .

Now we prove that all R(i) are empty. Suppose that for some i, R(i) 	= /0. Note that
from (18) it follows that if E ′

1 ∈R′(i), E ′
2 ∈R′( j), and i+ j 	= �+ t, then

|E ′
1 ∩E ′

2| ≥ t. (19)

As before, we consider two cases: a. i 	= (�+ t)/2 and b. i = (�+ t)/2.

Case a. According to (19) the two sets

F1 = M1(A)∪ (M0(A)\ (R(i)∪R(�+ t − i)))∪R′(i),
F2 = M1(A)∪ (M0(A)\ (R(i)∪R(�+ t − i)))∪R′(�+ t − i),

have the property F1, F2 ∈ I(n, t) and hence Ai = V(Fi) ∈ Iq(n, t), i = 1,2. We
show that under the assumption R(i) 	= /0 we have

max{|A1|, |A2|} > |A|, (20)

which will be a contradiction to the maximality of A.
From the definitions of F1 and R(i) it follows that

A\A1 =
⋃

E∈R(�+t−i)

D(E),
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and from Proposition 4 we have

|A\A1| = |R(�+ t − i)|(q−1)i−tqn−�. (21)

Now we estimate the value |A1 \A|. Let E1 ∈R′(i). Then, denote

D′(E1) =
{

an ∈Hn
q : B(an)∩ [�] = E1

}
. (22)

We have
D′(E1) ∈ A1 \A. (23)

Since
|D′(E1)| = (q−1)�−i+1qn−�

and
D′(E1)∩D′(E2) = /0, E1,E2 ∈R(i), E1 	= E2

we obtain
|A1 \A| ≥ |R(i)|(q−1)�−i+1qn−�. (24)

In a similar way we show that

|A\A2| = |R(i)|(q−1)�−iqn−�, (25)
|A2 \A| ≥ |R(�+ t − i)|(q−1)i−t+1qn−�. (26)

It is left to the reader to show that even more, (24) and (26) are equalities!
From (21), (24), (25), and (26) follows that if (20) is not true, then

|R(i)|(q−1)�−i+1 ≤ |R(�+ t − i)|(q−1)i−t ,

|R(�+ t − i)|(q−1)i−t+1 ≤ |R(i)|(q−1)�−i.

If R(i) 	= /0 and q > 2, these inequalities are inconsistent. This implies that R(i) = /0
for all i 	= (� + t)/2. In particular, we prove that if R(i) 	= /0, then 2|(� + t) and
i = �+t

2 .

Case b. By the pigeon-hole principle there exists an i ∈ [1, �−1] and a G ⊂R′ ( t+�
2

)

such that i 	∈ E for all E ∈ G and

|G| ≥ �− t
2(�−1)

∣
∣
∣
∣
∣
R′

(
�+ t

2

)∣
∣
∣
∣
∣
. (27)

As |E1 ∩E2| ≥ t, E1,E2 ∈ G, and R(i) = /0, i 	= (�+ t)/2, we have

F′ =
(
M(A)\R

(
�+ t

2

))
∪G ∈ I(n, t).

Thus
V(F′) ∈ Iq(n, t).
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Next we show that under the condition (14),

|V(F′)| > |A|, (28)

which is a contradiction to the maximality of A. Consider the partition

A = V(M(A)) = D1 ∪D2,

where

D1 = V
(
M(A)\R

(
�+ t

2

))
,

D2 = V
(
R

(
�+ t

2

))
\V

(
M(A)\R

(
�+ t

2

))
,

and
V(F′) = D1 ∪D3,

where
D3 = V(G)\V

(
M(A)\R

(
�+ t

2

))
.

Inequality (28) is equivalent to the inequality

|D3| > |D2|. (29)

From Proposition 4 we have

|D2| =
∣
∣
∣
∣R

(
�+ t

2

)∣
∣
∣
∣(q−1)(�−t)/2qn−�. (30)

Let E ∈ G, E ⊂ [�−1], and |E| = (�+ t)/2−1. Denote

C(E) =
{

an ∈Hn
q : B(an)∩ [�−1] = E

}
.

Then C(E) ⊂ D3 and we have the partition

D3 =
⋃

E∈G
C(E)

and hence
|D3| = |G|(q−1)(�−t)/2qn−�+1. (31)

Using inequality (27), from (29), (30), and (31) we get that the following inequality
is sufficient for (28) to hold:

�− t
2(�−1)

∣
∣
∣
∣R

(
�+ t

2

)∣
∣
∣
∣
∣
(q−1)(�−t)/2qn−�+1

>

∣
∣
∣
∣
∣
R

(
�+ t

2

)∣
∣
∣
∣
∣
(q−1)(�−t)/2qn−�.

From inequality (16) it follows that the last inequality is true (R
(

�+t
2

)
	= /0).

Hence assumption (16) is false and the first part of Lemma 7 is proved.
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To prove the second part of the lemma, suppose that (t −1)/(q−2) is a positive
integer and

s+(M(A)) = � = t +2
t −1
q−2

. (32)

We have already proved that for all E ∈ M(A) with s+(E) = � we have |E| =
(�+ t)/2. One can repeat the proof of Case b and show that instead of (28) under
assumption (32) we have the inequality |V(F′)| ≥ |A|. This completes the proof of
the lemma. �

In the proof of Theorem 5 we use a lemma that allows to reduce the problem to
another one, which we have already solved with Theorem 3. Let S ⊂ 22[m]

and

H(S,βt , . . . ,βm) = max
L∈S

m

∑
i=t

|L(i)|βi, (33)

where L(i) = L∩
([m]

i

)
, t ≤ m, L ⊂ 2[m], and βt ,βt+1, . . . ,βm ∈ R+. Suppose that

for some S ⊂ 22[m]
there is an L∗ ∈ S such that for some r ∈ {1,2, . . .}, L∗(i) = /0 for

t ≤ i < t + r and |L∗(i)| ≥ |L(i)| for t + r ≤ i ≤ m and all L ∈ S.

Lemma 8 Let βt ,βt+1, . . . ,βm ∈ R+ and

L∗ = argmax
L∈S

m

∑
i=t

|L(i)|βi

have the properties described above. Then, for any γt , . . . ,γm ∈ R+ such that

βi

βi+1
≥ γi

γi+1
, i = t, . . . ,m−1, (34)

it holds

L∗ = argmax
L∈S

m

∑
i=t

|L(i)|γi.

Proof. W.l.o.g. we can assume that βm = γm = 1. We introduce the numbers
βt , . . . ,βm and γt , . . . ,γm in the form

βm = 1, γm = 1;
βm−1 = δm−1, γm−1 = εm−1;

βm−2 = δm−1δm−2, γm−2 = εm−1εm−2,

...
...

βi = δm−1δm−2 . . .δi, γi = εm−1εm−2 . . .εi;
...

...
βt = δm−1δm−2 . . .δt , γt = εm−1εm−2 . . .εt .



Lecture 2 The Diametric Problem for Vertices in the Hamming Metric 27

We have
δi ≥ εi, i = 1, . . . ,m−1. (35)

Let � ∈ {1,2, . . .} be the largest integer such that δi = εi, i ≥ m− �+1.
Introduce the positive numbers β ′

t , . . . ,β ′
m satisfying β ′

m = βm, . . . ,β ′
m−�+1 =

βm−�+1 and β ′
i = βiεm−�/δm−�, t ≤ i ≤ m− �.

If m− �+1 ≤ t + r, then

m

∑
i=t

|L∗(i)|β ′
i =

m

∑
i=t

|L∗(i)|βi ≥
m

∑
i=t

|L(i)|βi ≥
m

∑
i=t

|L(i)|β ′
i .

If m− �+1 > t + r, then the inequality

m

∑
i=1

|L∗(i)|β ′
i ≥

m

∑
i=1

|L(i)|β ′
i (36)

is equivalent to

m

∑
i=m−�+1

|L∗(i)|βi +
m−�

∑
i=t+r

|L∗(i)|βiεm−�

δn−�

≥
m

∑
i=m−�+1

|L(i)|βi +
m−�

∑
i=t

|L(i)|βiεm−�

δm−�
,

or

(δm−� − εm−�)
m

∑
i=m−�+1

(|L∗(i)|− |L(i)|)βi

+ εm−�

(
m

∑
i=t

|L∗(i)|βi −
m

∑
i=t

|L(i)|βi

)

≥ 0.

The last inequality is true since δm−� > εm−� and |L∗(i)| ≥ |L(i)| for i ≥ m−�+1 >
t +r. Continuing this transformation we obtain step by step the coefficients γt , . . . ,γm
and this proves Lemma 8. �

Now we are ready to prove Theorem 5. It is convenient now to denote the Ham-
ming ball in the space of binary sequences of length t + 2r, which has radius r and
is centered at [t +2r] by

D(r, t) =
{

D ∈ 2[t+2r] : |D| ≥ t + r
}

.

Let

D(i) = D(r, t)∩
(

[t +2r]
i

)
.
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We have |D(i)| = 0, i < t + r, and |D(i)| =
(t+2r

i

)
, i ≥ t + r. Also note that D(r, t) ∈

I(t +2r, t). It is easy to show that the following relations are valid:

|F(r)| =
r

∑
j=0

(
2r + t

t + r + j

)(
n−2r− t

k− t − r− j

)

=
t+2r

∑
i=0

|D(i)|
(

n−2r− t
k− i

)
,

|K(r)| =
r

∑
j=0

(
2r + t

t + r + j

)
(q−1)r− jqn−2r−t

= qn−2r−t
t+2r

∑
j=0

|D(i)|(q−1)2r+t−i.

We can reformulate Theorem 3 as follows. Let for some r = {0,1,2, . . .}

(k− t +1)
(

2+
t −1
r +1

)
< m0 < (k− t +1)

(
2+

t −1
r

)
, (37)

and for i ≥ t

γi =
(

m0 −2r− t
k− i

)
. (38)

Then

D(r, t) = arg max
M∈I(2r+t,t)

t+2r

∑
i=t

|M(i)|γi,

where M(i) = M∩
([t+2r]

i

)
.

When q ≥ 2, t > 1 or q = 2, t = 1, let us choose r ∈ {0,1,2, . . .} such that

t +2r < min
{

n+1, t +
2(t −1)

q−2

}
(39)

and

Nq(n, t) = max
M∈I(t+2r,t)

t+2r

∑
i=t

|M(i)|(q−1)t+2r−iqn−t−2r

= qn−t−2r max
M∈I(t+2r,t)

t+2r

∑
i=t

|M(i)|(q−1)t+2r−i. (40)

The possibility of such a choice follows from Lemma 7. Next we apply Lemma 8
for m = t +2r, S = I(t +2r, t)⊂ 22[t+2r]

, γi =
(m0−2r−t

k−i

)
, i = t, t +1, . . . , t +2r, where

m0 satisfies (37) and βi = (q−1)t+2r−i. Also, we take L∗ = D(r, t) ∈ I(1+2r, t). It
is easy to see that D(r, t) enjoys the properties from Lemma 8 for the set L∗.

Now it remains to make a proper choice of the parameters k and m0. We will show
for given r satisfying (39), the existence of m0 from the interval (37) with condition
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γi

γi+1
≥ q−1 =

βi

βi+1
, i = t, . . . , t +2r−1 (41)

from Lemma 8 holding. Therefore

k ≥ t +2r, (42)
m0 ≥ q(k− t)+ t +2r−1. (43)

It remains to prove that there exists k ∈ {1,2, . . .} such that the system
{

(k− t +1)
(
2+ t−1

r+1

)
< m0 < (k− t +1)

(
2+ t−1

r

)
,

q(k− t)+2r + t −1 ≤ m0
(44)

has a solution m0 ∈ {1,2, . . .} and

k ≥ t +2r, r <
t −1
q−2

. (45)

We rewrite the system (44) in a way to get the following conditions on k:
{

rm0
2r+t−1 + t −1 < k < (r+1)m0

2r+t+1 + t −1,

k ≤ m0
q − 2r+t−1

q + t .
(46)

To be able to choose an integer k satisfying the first inequality, it is enough to satisfy
the inequality

rm0

2r + t −1
+ t −1 <

(r +1)m0

2r + t +1
+ t −2,

or

m0 >
(2r + t +1)(2r + t −1)

t −1
. (47)

Consider now the second inequality from (46). For this we impose the condition

rm0

2r + t −1
+ t −1 <

m0

q
− 2r + t −1

q
+ t −1

or, since r < (t −1)/(q−2), we have

m0 >
(2r + t −1)2

2r + t −qr−1
. (48)

We also impose the condition

2r + t <
m0

2r + t −1
+ t −1,

or

m0 >
(2r +1)(2r + t −1)

r
. (49)
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Finally, we choose m0 that satisfies (47)–(49) and take k to be the smallest integer
such that k > rm0/(2r + t − 1)+ t − 1. For such a choice of m0,k inequalities (41)
hold and hence we can apply Lemma 8. Thus we get

Nq(n, t) = |K(r)| = αn−2r−t
t+2r

∑
i=0

|D(i)|(q−1)2r+t−i. (50)

It is easy to show that the maximum of the RHS of (50) is achieved when r is the
maximal number that satisfies (39). This completes the proof of Theorem 5 in the
case q≥ 2, t > 1 and q = 2, t = 1. When q > 2, t = 1 we derive r = 0 from Lemma 7
and the theorem follows trivially. �

Lecture 3 The Diametric Problem for Vertices
in the Taxi Metric

Now we turn to a problem that has considerably different methods of proof. How-
ever, there are several connections with the previous material. First of all we once
more deal with the diametric problem, but in the Taxi metric (definitions will come
next). In the case of binary n-tuples this metric coincides with the Hamming metric
and Kleitman’s result (5) gives the solution for both metrics.

Consider the diametric problem in a space, which is a direct product of paths.
This problem is in some sense easier than its q-ary Hamming space counterpart (the
direct product of the complete graphs of given size) and has been solved before the
latter one. The metric in the space, which is a direct product of paths, is called the
Taxi metric. In other words, we consider the space T n of sequences xn = (x1, . . . ,xn)
with components xi ∈Xi, where the nodes Xi =

{
x1, . . . ,x|Xi|

}
are nodes of the path

x1 − x2 − . . .− xXi , |xi − x j| = |i− j| and the distance between n-tuples is

∆(xn,yn) =
n

∑
i=1

|xi − yi|.

In the case |Xi|> 2, the structure and the solution of the diametric problem becomes
much more difficult in comparison with the binary case. Next we come to the for-
mulation of the problem and the results. For any subset A ⊂ X n, the diameter D(A)
and the radius R(A) are defined as usual:

D(A) = max
xn,yn∈A

∆(xn,yn),

R(A) = min
xn∈A

max
yn∈A

∆(xn,yn).

We are interested in determining the quantity

C(d,n) = max{|A| : D(A) ≤ d}.
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We show how to completely solve this problem in some important cases, namely
when all |Xi| are odd or all |Xi| are even. In the solution of the diametric problem
when all |Xi| are odd and all |Xi| are even, quite different approaches are used. But
note that in both cases the maximal set of diameter d is the ball of radius d/2. It
is interesting that the center of the ball in the case of all even |Xi| is not a point in
∏n

i=1Xi but some point with coordinates in the intervals [minx∈Xi x,maxx∈Xi x].
Note the important (probably the main) conclusion here that in all cases the max-

imal set is a ball in L1-metric of radius d/2 with some specified center, which can
vary in different cases.

We start with the case when all |Xi| are odd. For convenience we write the alpha-
bets in the form

Xi = {−qi, . . . ,−1,0,1, . . . ,qi}, |Xi| = 2qi +1,

denote qn = (q1, . . . ,qn), and define for convenience the qn-space by B = X n =
X1 ×·· ·×Xn. Let

B(0n,r) = {xn ∈ B : ||xn|| ≤ r}
be the Taxi ball of radius r with the center in the origin (here ||xn|| = ∑i |xi|). De-
note N(r,n) = |B(0n,r)|. The next two theorems give the solution of the diametric
problem in Taxi metric when all |Xi| are odd. The first theorem gives the solution
for even diameter, and the next one for odd diameter of the set.

Theorem 6 (Ahlswede, Cai, and Zhang 1992) C(2r,n) = N(r,n), if all |Xi| are
odd.

Proof. We define the order <c on Xi by arranging its elements in the form
0,1,−1, . . . and the order ≤c on B by setting xn ≤ yn iff xi ≤c yi for i = 1, . . . ,n. By
means of this order we introduce the “pushing to the center operator” P as follows:
for any set A ⊂ B and any xn

j = (x1, . . . ,x j−1,x j+1, . . . ,xn) ∈ ∏1≤i 	= j≤nXi we set

A(xn
j) = {(z1, . . . ,zn) ∈ A : zi = xi f or i 	= j},

let PjA(xn
j) = {(x1, . . . ,x j−1,x,x j+1, . . . ,xn) : x be one of the |A(xn

j)| c-smallest ele-
ments in X j} and also let Pj(A) =

⋃
xn PjA(xn

j).
If PjA = A for all j, then we say that A is a c-downset. It is easy to verify that

every A ⊂ B can be pushed into a c-downset A′ such that

|A| = |A′|,
D(A) ≥ D(A′).

One easily verifies the fact (I) that ||xn|| − ||yn|| = 0 (mod 2) implies ∆(xn,yn) =
0 (mod 2).

We proceed with the proof of the theorem by induction on n. The case n = 1
being trivial, let now qn = q1qn−1 and let A ⊂ B satisfy D(A) ≤ 2r. We can assume
that A is a c-downset. Therefore, we have for u >c v

Au ⊂ Av
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if Au = {xn−1 : uxn−1 ∈ A}, and for every nonnegative integer θ ≤ q1 we have
A−θ ⊂ Aθ . Consider now the sets

A0
θ = {xn−1 : ||xn−1|| is odd, xn−1 ∈ Aθ \A−θ},

Ae
θ = {xn−1 : ||xn−1|| is even, xn−1 ∈ Aθ \A−θ}

and define
A∗
−θ = A−θ ∪A0

θ , A∗
θ = Aθ \A0

θ = A−θ ∪Ae
θ .

We then have

D(A∗
−θ ) = max{D(A−θ ),D(A0

θ ),D(A−θ ,A0
θ )}, (1)

where we define
D(U,V ) = max

u∈U, v∈V
∆(u,v).

We shall show next that
D(A∗

−θ ) ≤ 2(r−θ). (2)

For this, notice that for an−1,bn−1 ∈ A−θ ⊂ Aθ and xn−1,yn−1 ∈ A0
θ the following

sequences are in the set A :

(−θ)an−1, (−θ)bn−1, θan−1, θbn−1, θxn−1, θyn−1, (−θ +1)xn−1, (−θ +1)yn−1.

From the fact D(A) ≤ 2r we obtain therefore the inequalities

∆(an−1,bn−1), ∆(an−1,xn−1) ≤ 2(r−θ), (3)
∆(xn−1,yn−1) ≤ 2(r−θ)+1.

However, since ||xn−1|| and ||yn−1|| are odd, by (I), ∆(xn−1,yn−1) must be even. This
shows that actually

∆(xn−1,yn−1) ≤ 2(r−θ).

This inequality together with (1) and (3) implies (2).
Similarly one can prove that

D(A∗
θ ) ≤ 2(r−θ).

By the induction hypothesis we conclude our proof with

|A| =
q1

∑
u=−q1

|Au| =
q1

∑
u=−q1

|A∗
u| ≤

q1

∑
u=−q1

N(r−|u|,qn−1) = N(r,qn).

�

We address now the case of an odd diameter. Again we present a complete solu-
tion for spaces with odd |Xi|.
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For this, we introduce the ball S∗(r,n) in L1-metric with the center in
(1/2,0, . . . ,0). For d = 2r +1 and qn = qn−1qn with q1 ≥ qi, i = 2, . . . ,n we set

S∗(r,n) = {xn : x1 ≤ 0, ||xn|| ≤ r, or x1 > 0, ||xn|| ≤ r +1}.

Clearly
D(S∗(r,n)) = d.

Theorem 7 (Ahlswede, Cai, and Zhang 1992) If we assume w.l.o.g. q1 ≥ qi for
i = 2, . . . ,n, then we have C(2r + 1,n) = |S∗(r,n)| for d = 2r + 1, when all |Xi|
are odd.

For an,bn ∈ B denote

∆(an,bn) = max{∆(a′n,b′n) : a′n ≤c an, b′n ≤c bn}.

We introduce a metric ∆∗ : B×B → R+ by

∆∗(an,bn) =
{

∆(an,bn), an 	= bn,
0, an = bn,

and the diameter
D∗(A) = max{∆∗(an,bn) : an,bn ∈ A}.

The following result can easily be verified.

Proposition 6 (i) ∆∗(an,bn) = ||an||+ ||bn||− |{i : ai > 0, bi > 0}| if an 	= bn,
(ii) ∆∗ is a metric,

(iii) D∗(Mc(A)) = D(A) for a c-downset A⊂B, where Mc(A) is the set of c-maximal
elements in A.

We assume that q1 ≥ . . . ≥ qn. The operator below is based on the mapping ϕ :
Xn−1 ×Xn →Xn−1 ×Xn defined by

ϕ(x,y) =

⎧
⎪⎪⎨

⎪⎪⎩

(−x,−y), x < 0,y > 0
(−x+1,−y), x > 0,y > 0
(y,0), x = 0,y > 0
(x,y), otherwise.

We will use this function to define for any A ⊂ B a mapping φ : A →B by

φ(an) =
{

an, if an > 0, an−2ϕ(an−1,an) ∈ A,
an−2ϕ(an−1,an), otherwise.

We also write φ(A) = {φ(an) : an ∈ A}.
For any set B ⊂ B we introduce the associated c-downset Dc(B) = {xn : ∃bn ∈

B such that xn ≤c bn}. Now we define an operator Q by putting

Q(A) = Dc(φ(A)).
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Clearly
|Q(A)| ≥ |φ(A)| = |A|.

We summarize some properties that follow immediately from the definitions.

Proposition 7 For any set A ⊂ B
(i) Mc(Q(A)) = Mc(φ(A)) ⊂ φ(A) ⊂ Q(A),

(ii) an−2an−1an ∈ φ(A) implies an−2ϕ(an−1,an) ∈ φ(A).

We need the following:

Lemma 9 For a c-downset A, D(Q(A)) ≤ D(A).

Proof. By (iii) in Proposition 6,

D(Q(A)) = D∗(Mc(Q(A)) = D∗(Mc(φ(A))) ≤ D∗(φ(A))

and, since A is a c-downset, also

D(A) = D∗(A).

It suffices therefore to show that D∗(φ(A)) ≤ D∗(A) or that

∆∗(φ(an),φ(bn)) ≤ D∗(A) (4)

for all an,bn ∈ A. In the case φ(an) = an, φ(bn) = bn, which includes the case
an ≤ 0, bn ≤ 0, this is of course true.

In the case an ≤ 0, bn > 0 we notice that φ does not increase || · || and only in
the case when bn−1 > 0, φ may decrease |{i : ai > 0, bi > 0}|, but by at most 1.
Furthermore, in the case bn−1 > 0, bn > 0 we have ||φ(bn)||= ||bn||−1. Therefore,
by (i) in Proposition 6, we obtain

∆∗(φ(an),φ(bn)) ≤ ∆∗(an,bn)

and thus (4).
The case an > 0,bn ≤ 0 being symmetrically the same, we are left with the case

an > 0, bn > 0, and (again by symmetry) φ(bn) 	= bn. We divide this into two sub-
cases:

1. φ(an) 	= an. We establish (4) by proving ∆∗(φ(an),φ(bn)) = ∆∗(an,bn). To
prove it one should verify that ∆∗(an,bn)−∆(an−2,bn−2) and ∆∗(φ(an),φ(bn))−
∆(an−2,bn−2) are equal.

2. φ(an) = an. Here necessarily ãn = an−2ϕ(an−1,an) ∈ A. We can easily
prove that ∆∗(φ(an),φ(bn)) = ∆∗(ãn,bn) by verifying the validity of the equality
∆∗(ãn,bn)−∆(an−2,bn−2) = ∆∗(φ(an,bn))−∆(an−2,bn−2). �

Now we are able to prove Theorem 7. As before, we proceed by induction on n.
The case n = 1 is clear. By Proposition 7 and Lemma 9 we can assume that A is a
c-downset with the property

an = an−2an−1an ∈ Mc(A), (5)
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which implies
an−2ϕ(an−1,an) ∈ A.

Let Ax = {xn−1 : xn−1x ∈ A} and consider for θ > 0 the sets

A+
θ = {xn−2xn−1 ∈ Aθ \A−θ : xn−1 > 0}

A−
θ = {xn−2xn−1 ∈ Aθ \A−θ : xn−1 ≤ 0}

A∗
θ = Aθ \A−

θ = A−θ ∪A+
θ

A∗
−θ = A−θ ∪A−

θ , A∗
0 = A0.

Since A is a c-downset, we have Aθ ⊃ A−θ . Therefore, for an−1,bn−1 ∈ A−θ ⊂ Aθ
and xn−1 ∈ Aθ we also have an−1(−θ), bn−1θ , xn−1θ ∈ A and thus

∆(an−1,bn−1), ∆(an−1,xn−1) ≤ d −2θ

and
D(A−θ ),D(A−θ ,A−

θ ),D(A−θ ,A+
−θ ) ≤ d −2θ . (6)

Now we are going to prove that also

D(A−
θ ) = D∗(Mc(A−

θ )) ≤ d −2θ (7)
D(A+

θ ) = D∗(Mc(A+
θ )) ≤ d −2θ . (8)

Suppose (7) is not true, then for some an−1,bn−1 ∈ Mc(A−
θ )

∆∗(an−1,bn−1) > d −2θ . (9)

Since an−1 	∈ A−θ and an−1θ ∈ Mc(A), we have an−2ϕ(an−1,θ) ∈ A by (5). More-
over, since an−1 ≤ 0 and θ > 0, by our definitions

ϕ(an−1,θ) =
{

(−an−1,−θ), an−1 < 0,
(θ ,0), an−1 = 0.

Thus, noticing that θ > 0 and bn−1 ≤ 0, we can conclude that

d ≥ D(A) ≥ ∆∗(an−2ϕ(an−1,θ),bn−1θ) = ∆(an−2,bn−2)
+ |an−1|+ |bn−1|+2θ = ∆∗(an−1,bn−1)+2θ > d.

This contradiction proves (7).
Now suppose that (8) is not true, that is, for some an−1,bn−1 ∈ Mc(A+

θ ) (9) holds.
By the reasoning given before an−2ϕ(an−1,θ) ∈ A. Now ϕ(an−1,θ) = (−(an−1 −
1),−θ), because an−1 > 0 and θ > 0 in this case. We arrive again at a contradiction

d ≥ D(A) ≥ ∆∗(an−2ϕ(an−1,θ),bn−1θ)
= ∆(an−2,bn−2)+∆(ϕ(an−1,θ),bn−1θ)
= ∆(an−2,bn−2)+ |an−1|+ |bn−1|+2θ −1
= ∆∗(an−1,bn−1)+2θ > d.
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So (8) holds. From (6), (7), and (8) we conclude that

D(A∗
�) ≤ d −2|�|

for all � and by the induction hypothesis

|A∗
� | ≤ |S∗ (r−|�|,n) |.

Note that A∗
� = /0 when |�| > r, and S∗(z,n) = /0 when z < 0. Therefore,

|A| ≤
qn

∑
�=−qn

|S∗ (r−|�|,n) | = |S∗ (r,n) |.

This completes the proof of Theorem 7. �

Now we consider the diametric problem in the case, when all |Xi| are even. As
we have already mentioned, the proof that some ball of radius d/2 is a maximal set
of diameter d in this case is quite different.

First of all, we prove that in this case a maximal set of diameter d = b(B)− 1,
where b(B) = ∑n

i=1 qi, contains half of the points from B. Moreover, such a set can
be chosen to be a ball of radius (b(B)−1)/2 with the center depending on the parity
of b(B)+n.

Let L1 be the space of n-tuples of reals with the L1-metric

∆(xn,yn) =
n

∑
i=1

|xi − yi|, xn = (x1, . . . ,xn), yn = (y1, . . . ,yn) ∈ L1.

We consider the set B imbedded into the space L1 in such a way that the ith coor-
dinate of B takes the values from Xi =

{
−qi + 1

2 , . . . ,− 1
2 , 1

2 , . . . ,qi − 1
2

}
. Next we

show that a set of diameter b(B) cannot contain more than |B|/2 points from B.
Indeed, consider the set B j ⊂ B, which belongs to some orthant of L1 (by orthant
we mean a set with a prescribed sign of each component), and couple it with the set
B̃ j : B̃ j =−B j. To every point xn = (x1, . . . ,xn)∈B j there is a corresponding unique
point x̃n = (x̃1, . . . , x̃n) ∈ B̃, x̃i = −qi + xi. It is easy to see that this correspondence
is a bijection and

∆(xn, x̃n) = b(B).

Thus only one of the points from a pair (xn, x̃n) can be in a set of diameter b(B)−1,
and a set of diameter b(B)−1 contains not more than half of the points from B.

The next lemma solves the problem of representing a maximal set of diameter
d = b(B)−1 as a ball of radius d/2.

Lemma 10 Let d = b(B)− 1. If b(B) + n is odd, then the ball B
(
0n, d

2

)
, 0n =

(0, . . . ,0) ∈ L1 contains half of the points from B. In the case when b(B) is odd,
the ball B

(
zn, d

2

)
, zn = (1/2, . . . ,1/2) also contains half of the points from B and

in the case of even b(B) the same assertion is true with zn = (0,1/2, . . . ,1/2).
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If b(B) + n is even, the ball B
(
zn, d

2

)
, zn = (1/2,0, . . . ,0) contains half of the

points from B. If b(B) is even, the ball B
(
zn, d

2

)
, zn = (0,1/2, . . . ,1/2) also contains

half of the points from B. Here in the case of odd b(B) the same assertion is true
with zn = (1/2, . . . ,1/2).

Proof. Suppose that b(B) + n is odd. We call the point 0n = (0, . . . ,0) ∈ L1 the
center of B. Let us show that each orthant intersects the ball B

(
0n, b−1

2

)
in exactly

half of the points. W.l.o.g. we consider the orthant B+ with all-positive coordinates.
Again we consider coupling, now the points being from B+. To each point xn =
(x1, . . . ,xn) ∈ B+ we assign in a one-to-one manner the point x̄n = (x̄1, . . . , x̄n) ∈ B+

with x̄i = qi−xi. Next we show that the ball B
(

0n, b(B)−1
2

)
contains at least (actually

exactly) one point from each pair (x, x̄).
Indeed, if

||xn|| >
b(B)−1

2
, (10)

||x̄n|| >
b(B)−1

2
,

or
b(B)+1

2
>

n

∑
i=1

xi >
b(B)−1

2
.

The only possibility for these inequalities to be valid is

n

∑
i=1

xi =
b(B)

2
.

For some positive integer yi, xi = yi − 1
2 = 2yi−1

2 ; thus

n

∑
i=1

(2yi −1) = b(B)

or

2
n

∑
i=1

yi = n+b(B). (11)

We see that the RHS of (11) is odd and the LHS is even, leading to a contradiction.
Thus, when b(B)+n is odd, the ball B

(
0n, d

2

)
is maximal and contains exactly half

of the points from B+ and hence, by symmetry, also from B.
Using the same method, it is easy to check that if 2|(b(B)− 1), then the ball

B
(

zn, b(B)−1
2

)
, zn = (1/2, . . . ,1/2) is also a maximal set of diameter b(B)− 1

and contains half of B. To prove this we consider the pairing (xn, x̄n), xn =
(x1, . . . ,xn), x̄n = (x̄1, . . . , x̄n) ∈ B with

x̄i =
{

qi + xi, xi < 1/2,
−qi + xi, xi ≥ 1/2.

(12)
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As before, the correspondence xn ↔ x̄n is a bijection and the relations, similar
to (10), look as follows:

||xn − zn|| =
n

∑
i=1

∣
∣
∣
∣xi −

1
2

∣
∣
∣
∣ >

b(B)−1
2

,

||x̄n − zn|| = ∑
xi<1/2

∣
∣
∣
∣qi + xi −

1
2

∣
∣
∣
∣+ ∑

xi≥1/2

∣
∣
∣
∣−qi + xi −

1
2

∣
∣
∣
∣ >

b(B)−1
2

or

n

∑
i=1

|xi|+
α −β

2
>

b(B)−1
2

,

b(B)−
n

∑
i=1

|xi|−
α −β

2
>

b(B)−1
2

,

where
α = |{i : xi < 1/2}|, β = |{i : xi ≥ 1/2}|.

Hence we have
b(B)+1

2
>

n

∑
i=1

|xi|+
α −β

2
>

b(B)−1
2

or

2
n

∑
i=1

|xi|+α −β = b(B).

It is easy to see that the LHS of this equality is even, while b(B) is odd, again a
contradiction.

If b(B) is even, we prove that the subset B′ ⊂ B with the first coordinate being
positive intersects B

(
zn, d

2

)
, zn = (0,1/2, . . . ,1/2) in |B′|/2 points, from which by

symmetry follows that the ball B
(
zn, d

2

)
contains half of the points from B. Consider

now the coupling defined by the transformation (12) in all but one coordinate (for
example, when i = 2, . . . ,n) and set

x̄1 = q1 − x1.

As before, we impose the conditions

||xn − zn|| =
n

∑
i=2

∣
∣
∣
∣xi −

1
2

∣
∣
∣
∣+ x1 >

b(B)−1
2

,

||x̄n − zn|| = ∑
xi<1/2

∣
∣
∣
∣qi + xi −

1
2

∣
∣
∣
∣+ ∑

i>1, xi≥1/2

∣
∣
∣
∣−qi + xi −

1
2

∣
∣
∣
∣+q1 − x1

>
b(B)−1

2
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or

n

∑
i=1

|xi|+
α −β1

2
>

b(B)−1
2

,

b(B)−
n

∑
i=1

|xi|−
α − γ

2
>

b(B)−1
2

,

where
γ = #{i > 1 : xi ≥ 1/2}.

Hence we have
b(B)+1

2
>

n

∑
i=1

|xi|+
α − γ

2
>

b(B)−1
2

or
2

n

∑
i=1

|xi|+α − γ = b(B).

But α − γ is odd and b(B) is even, a contradiction.
We are done with the case of odd b(B)+ n. The case of even b(B)+ n can be

settled analogously and we leave it to the reader. �

Now we are ready to prove the theorem, which says that a ball of radius d/2 with
center in some specified point in L1 is a maximal set of diameter d in B.

Theorem 8 Let us assume that all |Xi| are even, then there is a ball (in Taxi
metric) of radius d/2, which is a maximal set of diameter d in B. The center of
the ball can be chosen to be zn = (1/2, . . . ,1/2) if d is even and d < b(B) or
zn = (0,1/2, . . . ,1/2) if d is odd and d < b(B).

If d ≥ b(B), then we can choose zn = (0, . . . ,0) if d − n is even and zn =
(1/2,0, . . . ,0) if d −n is odd.

Proof. To prove the theorem we use the result (5) of Lecture 2, which solves the
problem in the case when all qi are equal to 1 (the binary B). It is easy to check that
the solution of the problem in the binary case is consistent with the general case,
formulated in the theorem.

As in the proof for odd values of |Xi| we can assume that the maximal set is
p-compressed according to the p-order on each Xi : −qi + 1/2 >p qi − 1/2 >p
−qi +3/2 >p qi −3/2 >p . . . >p −1/2 >p 1/2.

Suppose first that d is odd and d < b(B). Fix some coordinate i with qi > 1. Let
B1 be the set obtained from B by deleting the extremal points from the set Xi, that
is, the points qi − 1/2, −qi + 1/2, and B2 = B \B1. We shift the ith coordinate of
B2 to zero in the following way: qi −1/2 → 1/2; −qi +1/2 →−1/2. Let S be the
maximal p-compressed set in B and S j = S∩B j, j = 1,2 (we also assume that the
ith coordinate of S2 is shifted simultaneously with the ith coordinate of B2). Let
zn = (0,1/2, . . . ,1/2). If d j = d(S j), then

d1 ≤ d,

b(B1) = b(B)−1,
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d2 ≤ d −2qi +2,

b(B2) = b(B)−qi +1.

Here the inequality for d2 is valid, because the set S is p-compressed.
We deduce that if d < b(B), then d1 ≤ b(B1) and d2 ≤ b(B2)− 1. Assume at

first that d1 < b(B). Note that the RHS of the restrictions for d j from (13) have the
same parities as d. For the set S2 we can use induction and choose the ball B2 =
B
(

zn, d−2qi+2
2

)
in B2 as a maximal set of diameter d − 2qi + 2. If d < b(B1)− 1,

then we choose the ball B1 = B
(
zn, d

2

)
in B1 as a maximal set of diameter d. Then the

ball B1∪B2 = B
(
zn, d

2

)
gives a maximal set of diameter d in B. If d1 = d = b(B1) =

b(B)− 1, then we can apply Lemma 10 for even b(B) to justify the statement of
the theorem. Also in some step it can happen that B1 and/or B2 become binary and
in this case we use (5) of Lecture 2 and choose the center of the maximal ball in
the binary space as needed for induction (make the necessary considerations in this
case!).

Since the RHS of restrictions for d j in (13) has the same parities as d, the proof
of the theorem in the case of even d < b(B)−1 is similar to the case of odd d and
we leave it to the reader.

Now consider the case when d ≥ b(B). Here we make another splitting of the
set B. Again we choose i such that qi > 1 and choose B3 ⊂ B to be the set of all
n-tuples xn = (x1, . . . ,xn) from B with x1 = ±1/2 and B4 = B \B3. Again we shift
the ith coordinate of B4 by making the transformation

xi →
{

xi +1, xi < 0,
xi −1, xi > 0.

With the same notation as before we have

d3 ≥ min{d, t},
b(B3) = b(B)−qi +1,

d4 = d −2,

b(B4) = b(B)−1,

where t = d(B3). Hence if d ≤ t, then in any case d3 > b(B3) and if d4 ≥ b(B4),
then (as the restrictions on d j have the same parity as d) we can deduce that the
cardinality of S3 or S4 is upper-bounded by the cardinality of the balls B

(
zn, d

2

)
in

B3 or B
(
zn, d−2

2

)
in B4, respectively, where the common center zn depends on the

parity of d (or, for fixed n, the parity of d − n). Thus the cardinality of S does not
exceed the cardinality of the ball B

(
zn, d

2

)
in B.

If d > t, then we can choose the center zn of the ball B
(
zn, d−2

2

)
in B4 as the

maximal set of diameter d −2 in B4 and we have B3 ⊂ B
(
zn, d

2

)
for the ball in B.

In the case d4 = b(B4)−1, we use Lemma 10 in the same way as before.



Lecture 4 The Diametric Problem for Edges in Hamming Metric 41

Again it is possible that on some step B j becomes binary. In that case we use (5)
of Lecture 2 and a consistent choice of the ball center zn. Check that such a choice
always exists. �

Theorems 6, 7, and 8 completely solve the problem of determining maximal sets
of a given diameter in the Taxi metric, when all components Xi have even or odd
lengths.

Lecture 4 The Diametric Problem for Edges
in Hamming Metric

Theorem 5 deals with the vertex-diametric problem: we find the maximal cardinality
of a set with given diameter. It was started in [AK00b] to consider the situation
where one wants to find a set with given diameter that has maximal number of edges.
For a given set A ⊂ {0,1}n (in this problem we consider only the binary case, and
the general case of an arbitrary alphabet is not solved) the edge set is defined as

E(A) = {(an,bn) : an,bn ∈ A, dH(an,bn) = 1}.

We denote D(n,d) = I2(n,n−d). The edge-diametric problem is to find the value

E(n,d) = max
A∈D(n,d)

|E(A)|.

Theorem 9 gives the complete solution of this problem. As in the case of the vertex
diametric problem, while following the proof of this theorem the reader will see that
some parts of it use technique from the proof of the Complete Intersection Theorem.

Let

W(n) = {(a1, . . . ,an) ∈ {0,1}n : a1 = 1} ,

G(r) =
{

A ∈ 2[n] :
∣
∣
∣
∣A∩ [1, t +2r]

∣
∣
∣
∣≥ t + r

}
, t = n−d.

Note that G(r) is the Cartesian product of the Hamming ball on the length 2t + r
with radius r and center in [1,2t + r] and the whole space 2[n−t−2r] on the rest length
n− t −2r.

Theorem 9 (Ahlswede and Khachatrian 2000) Let t = n−d. The following rela-
tion is valid:

E(n,d) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|E(W(n))|, i f d = n−1,∣
∣
∣
∣E

(
G
( d

2

))
∣
∣
∣
∣, i f d ≤ n−2, 2|d,

∣
∣
∣
∣E

(
G
( d−1

2

))
∣
∣
∣
∣, i f d ≤ n−2, 2 	 |d.
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For A ∈ A we denote Tj(A) = Tj0(A). It is easy to see that in addition to the men-
tioned properties, Tj satisfies the relation

|E(Tj(A))| ≥ |E(A)|.

Let UD(n,d) be the set of all upsets in D(n,d). We have

E(n,d) = max
A∈UD(n,d)

|E(A)|. (1)

On the other hand, if A ⊂ 2[n] is an upset and has diameter d, then any A1,A2 ∈ A
have at least (n−d) componentwise common 1’s.

Hence
E(n,d) = max

A∈UI(n,n−d)
|E(A)|, (2)

where UI(n,n−d) denotes the set of all (n−d)-intersecting systems, which are also
upsets.

Also, it is easy to see that

E(n,d) = max
A∈LUI(n,n−d)

|E(A)|, (3)

where LUI(n,n− d) is the set of all left-compressed sets from UI(n,n− d). We
define the sets Ai, j, A′, etc. in the same way as in Lemma 4. Then all statements of
the lemma are still valid in our case. In addition, it is easy to see that the following
items (vi) and (vii) are also true.

(vi) Let A ∈ A′. Then for any B′ ⊂ [1, �] with |B′| < |B| and C′ ⊆C we have

B′ ∪C′ 	∈ A.

(vii) Let A ∈ A′. It can be shown that for any C′ ⊂ C, B ∪C′ ∈ A implies
B∪C′ ∈ A′.

We will need two more results. The verification of Proposition 8 is left to the
reader.

Proposition 8 Let A⊂ 2[n] be an upset. Then

|E(A)| = ∑
A∈A

(n−|A|).

Proposition 9 The following relation holds:

max
A⊂2[n], |A|=2n−1

|E(A)| = |E(W(n))|.

The proof of Proposition 9 is given at the end of the lecture. We start with the
following lemma.
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Lemma 11 Let S ⊂ 2[m] have the following properties:

(i) S is complement closed, that is, from A ∈ S follows that Ā ∈ S,
(ii) S is convex, that is, from A,C ∈ S and A ⊂ B ⊂C follows that B ∈ S.

Then there exists an S′ ⊂ S such that S′ ∈ I(m) and

∑
A∈S ′

(m−|A|) ≥ m−1
2m ∑

A∈S
(m−|A|) =

m−1
4

|S|. (4)

Moreover, if S 	= 2[m], then there exists an S′ ⊂ S, S′ ∈ I(m) for which strict in-
equality in (4) holds.

Proof. First we notice that the identity in (4) follows from property (i). In the case
S = 2[m], by taking S′ = {A ∈ 2[m] : 1 ∈ A}, we have S′ ∈ I(m), |S′| = |S|

2 = 2m−1,
and easily get (4) in this case.

Let now S 	= 2[m], let B ∈ S be any element with minimal cardinality, and let
i ∈ B. We consider the following partition of S = S1 ∪S2 ∪S3 ∪S4, where

S1 = {A ∈ S : i ∈ A, (A\{i}) ∈ S} , S2 = {A ∈ S : i 	∈ A, A∪{i} ∈ S} ,

S3 = {A ∈ S : i ∈ A, (A\{i}) 	∈ S} , S4 = {A ∈ S : i 	∈ A, A∪{i} 	∈ S} .

It is easily seen that
S̄1 = S2, S̄3 = S4.

Hence |S1| = |S2| and |S3| = |S4|. Also S3 	= /0, since i ∈ B ∈ S and B has minimal
cardinality. Also, for every A ∈ S4 and A′ ∈ S \S3, A∩A′ 	= /0 holds. Hence (S1 ∪
S4),(S1 ∪S3) ∈ I(m).

We have

∑
A∈S3∪S4

(m−|A|) = m
|S3|+ |S4|

2
.

Consequently,

max

{

∑
A∈S3

(m−|A|), ∑
A∈S4

(m−|A|)
}

≥ m
|S3|+ |S4|

4
. (5)

On the other hand, by construction of S1,S2 and the property S̄1 = S2, we have

m
|S1|+ |S2|

2
= ∑

A∈S1

(m−|A|)+ ∑
A∈S2

(m−|A|) = 2 ∑
A∈S1

(m−|A|)+
|S1|+ |S2|

2
.

Hence

∑
A∈S1

(m−|A|) =
m−1

4
(|S1|+ |S2|). (6)

Therefore, from (5) and (6) we get
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max

{

∑
A∈S1∪S3

(m−|A|), ∑
A∈S1∪S4

(m−|A|)
}

≥ m
4

(|S3|+ |S4|)

+
m−1

4
(|S1|+ |S2|) ≥

m−1
4

(|S1|+ |S2|+ |S3|+ |S4|) =
m−1

4
|S|.

�

Corollary 1 Let S ⊂ 2[m] be defined as in the previous lemma and let (4) hold for
S′ ⊂ S, S′ ∈ I(m), |S′| = |S|

2 . Then for any c ∈ R

∑
A∈S ′

(m−|A|+ c) ≥ m+2c−1
2(m+2c) ∑

A∈S
(m−|A|+ c). (7)

Proof. We just notice that (7) follows from (4) and the identities

m+2c−1
2(m+2c) ∑

A∈S
(m−|A|+ c) =

m+2c−1
2(m+2c)

(m
2
|S|+ c|S|

)

=
m−1

4
|S|+ c

2
|S|,

∑
A∈S ′

(m−|A|+ c) = ∑
A∈S ′

(m−|A|)+
c
2
|S|.

�

Now let A ∈ D(n,d) and |E(A)| = E(n,d). We can assume that A ∈ LUI
(n,n−d). The next lemma plays the central role in the proof of Theorem 9.

Lemma 12 Let A be the set that was described just above. Then, necessarily, A is
invariant under exchange operations in

(i) [1,n], if 2|d and d ≤ n−3
(ii) [1,n−2], if 2|d and d = n−2

(iii) [1,n−1], if 2 	 |d and d ≤ n−2.

Proof. The proof of this lemma is quite similar to the proof of Lemma 5. Let � be
the largest integer such that Ai, j =A for all 1 ≤ i, j ≤ �. Assume the opposite to the
statement of the lemma is true:

� < n1, (8)

where n1 ∈ {n − 2,n − 1,n} depends on the case. We are going to show that,
under the assumption (8), there exists a B ∈ I(n,n − d) with |E(B)| > |E(A)|,
which is a contradiction. As in the proof of Lemma 5, we start with the partition
A′ =

⋃�
i=1A(i). From Lemma 4 it follows that A(i) = /0 for all 1 ≤ i < n− d = t.

We will show that all A(i)s are empty. Suppose that A(i) 	= /0 for some i, t ≤ i ≤ �.
From Lemma 4 we know that

|A(i)| =
(

�

i

)
|A∗(i)|. (9)
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Note that in the case n = �+ 1 we have A∗(i) = /0 and |A∗(i)| = 1. Now as before
we consider the sets B(i). From Lemma 4 it follows that for B ∈B(i),A ∈A( j) with
i+ j 	= �+ t, |A∩B| ≥ t holds. Hence, using this and (iv) of Lemma 4, we have

H1 = ((A\A(�+ t − i))∪B(i)) ∈ I(n,n−d),

and
H2 = ((A\A(i))∪B(�+ t − i)) ∈ I(n,n−d).

Let us show that

max{|E(H1)|, |E(H2)|} > |E(A)| = E(n,d), (10)

which will be a contradiction.
From the additional (vi) and (vii) of Lemma 4 one can easily show that the sets

H1, H2, (A\A( j)) are upsets. Therefore, using Proposition 8, we have

|E(A)| = |E(A\A(�+ t − i)|+ ∑
A∈A(�+t−i)

(n−|A|)

= |E(A\A(i))|+ ∑
A∈A(i)

(n−|A|),

|E(H1)| = |E(A\A(�+ t − i))|+ ∑
A∈B(i)

(n−|A|) (11)

|E(H2)| = |E(A\A(i))|+ ∑
A∈B(�+t−i)

(n−|A|).

Hence the negation of (10) is

∑
A∈A(�+t−i)

(n−|A|) ≥ ∑
A∈B(i)

(n−|A|), (12)

∑
A∈A(i)

(n−|A|) ≥ ∑
A∈B(�+t−i)

(n−|A|).

Since we have assumed A(i) 	= /0, then clearly A(� + t − i) 	= /0 as well, because
otherwise the first inequality of (12) would be false.

Using properties of the sets A(i),B(i) we can write (12) in the form
(

�

�+ t − i

)

∑
C∈A∗(�+t−i)

(n− �− t + i−|C|) (13)

≥
(

�

i−1

)

∑
D∈A∗(i)

(n− i−|D|),
(

�

i

)

∑
D∈A∗(i)

(n− i−|D|)

≥
(

�

�+ t − i−1

)

∑
C∈A∗(�+t−i)

(n− �− t + i−|C|).
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However, (13) implies

(�− i+1)(i+1− t) ≥ (�+ t − i)i,

which is false, because t ≥ 2 and, consequently, i > i+1− t, �+ t − i > �− i+1.
Hence A(i) = /0 for all i 	= �+ t − i.
Let now i = �+t

2 . Here necessarily 2|(�+ t) and therefore by assumption (8) we
have in Lemma 12 � ≤ n−2 in the case (i), � ≤ n−4 in the case (ii), and � ≤ n−3
in the case (iii). Let us call these conditions “conditions C.”

Now we consider any element A′ = B′ ∪C′, where B′ ∈
( [�]

�+t
2

)
, C ⊂C′ ⊂ [�+2,n],

and C ∈ A∗ ( �+t
2

)
. Of course A′ ∈ A, since A is an upset and (B′ ∪C) ∈ A′ ⊂

A, (B′ ∪C) ⊂ (B′ ∪C′). It is also clear by the definition that, if A′ ∈ A′, then A′ ∈
A

(
�+t

2

)
. Using Lemma 4 we can say more: A′ = B′ ∪C′ ∈ A

(
�+t

2

)
iff there is a

C′′ ∈ A∗ ( �+t
2

)
with C′′ ∩C′ = /0, and hence with every C ∈ A∗ ( �+t

2

)
we have also

C̄ = ([�+2,n]\C) ∈A∗ ( �+t
2

)
. Moreover, it is easily seen that A∗ ( �+t

2

)
is a convex

set. Therefore, A∗ ( �+t
2

)
has the properties described in Lemma 11 and we can apply

this lemma and the corollary to get an intersecting set A∗
1
(

�+t
2

)
⊂ A∗ ( �+t

2

)
for

which (7) holds:

∑
D∈A∗

1( �+t
2 )

(m−|D|+ c) ≥ m+2c−1
2(m+2c) ∑

D∈A∗( �+t
2 )

(m−|D|+ c) (14)

for m = n− �−1 and any constant c.
Now denote

B1 =
{

B : |B∩ [1, �] =
�+ t

2
−1, �+1 ∈ B, (B∩ [�+2,n]) ∈ A∗

1

(
�+ t

2

)}

A1

(
�+ t

2

)
=

{
A ∈ A

(
�+ t

2

)
: (A∩ [�+2,n]) ∈ A∗

1

(
�+ t

2

)}
(15)

and consider the following competitor of the set A :

H3 =
((

A\A
(

�+ t
2

))
∪A1

(
�+ t

2

)
∪B1

)
.

It is easily seen that H3 ∈ I(n,n−d).
We are going to show that

|E(H3)| > |E(A)|, (16)

which will be a contradiction.
It is easily verified that both H3 and A\A

(
�+t

2

)
are upsets. Therefore, by Propo-

sition 8 we can write
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|E(A)| =
∣
∣
∣
∣E

(
A\A

(
�+ t

2

))∣
∣
∣
∣+ ∑

A∈A( �+t
2 )

(n−|A|),

|E(H3)| =
∣
∣
∣
∣E

(
A\A

(
�+ t

2

))∣
∣
∣
∣+ ∑

A∈A1( �+t
2 )∪B1

(n−|A|).

Hence the negation of (16) is

∑
A∈A( �+t

2 )
(n−|A|) ≥ ∑

A∈A1( �+t
2 )∪B1

(n−|A|),

which can be written in the form
( �

�+t
2

)
∑D∈A∗( �+t

2 )(m+ c−|D|)

≥
(( �

�+t
2

)
+

( �
�+t

2 −1

))
∑D∈A∗

1( �+t
2 )(m+ c−|D|)

=
(�+1

�+t
2

)
∑d∈A∗

1( �+t
2 )(m+ c−|D|),

m = n− �−1, c = �−t+2
2 . This is equivalent to

�− t +2
2(�+1) ∑

D∈A∗( �+t
2 )

(m+ c−|D|) ≥ ∑
D∈A∗

1( �+t
2 )

(m+ c−|D|). (17)

However, (14) for m = n− �−1, c = �−t+2
2 , and (17) imply

n− t
n− t +1

≤ �− t +2
�+1

, (18)

which is false, since t ≥ 2 and conditions C can be checked to hold. �

Now we are ready to make the final step in the proof of the theorem. Let A ∈
D(n,d) be a set with |E(A)| = E(n,d). We can assume that A ∈ LUI(n,n−d).

In the case d = n− 1 we just notice that any maximal set B ∈ D(n,n− 1) has
cardinality |B| = 2n−1. Now the equality E(n,n−1) = |E(H)| immediately follows
from Proposition 9.

In the case 2|d, d ≤ n−3 we get from Lemma 12 |A| ≥ n− d
2 for all A ∈A, since

A is invariant in [n] and at the same time A∈ I(n,n−d). This implies A⊂ G
( d

2

)
∈

D(n,d), and by maximality of A we get

A = G
(

d
2

)
.
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Now we consider the case 2|d, d = n−2. Looking at the proof of Lemma 12, (ii),
we see that in (18) for t = n− d = 2, � = n− 2 we have equality, which means it
can be slightly changed to

(ii∗) If 2|d and d = n−2, then there exists an optimal set that is invariant in [1,n].
Therefore, in this case again, we have

E(n,d) =
∣
∣
∣
∣G

(
K

(
d
2

))∣
∣
∣
∣.

We verify (for 2|d, d = n−2) that
∣
∣
∣
∣E

(
G
(

d
2
−1

))∣
∣
∣
∣ =

∣
∣
∣
∣E

(
G
(

d
2

))∣
∣
∣
∣

and hence G
( d

2 −1
)

is the second optimal configuration in this case.
Finally, the case 2 	 |d, d ≤ n − 2 follows from Lemma 12, (iii), by similar

arguments. �

Proof of Proposition 9. First we will make some definitions. A k-subcube of the
n-cube is a set of all vertices, which have the same components in some set of n− k
positions.

A shadow of a k-subcube is obtained by changing one of the n−k fixed positions.
Each k-subcube has n− k shadows.

The following algorithm will number � vertices of the n-cube so that the config-
uration of these � vertices gives a maximal number of connections: assign one to an
arbitrary vertex; having assigned 1, . . . , �−1, assign � to an unnumbered vertex (not
necessarily unique), which has the most numbered nearest neighbors. We will prove
by induction on � and n.

But first we find out which configurations the algorithm delivers. The answer fol-
lows from the fact that whenever � = 2k, a k-subcube is numbered. This is trivial for
k = 0. Assume that we have numbered 2k−1 vertices of an n-cube and that by the
inductive hypothesis they form a (k− 1)-subcube. This cube will have n− (k− 1)
disjoint shadows. When the (2k−1 +1)th vertex is numbered, it will be in any of the
shadows. The next 2k−1 −1 numbers will also fall in this shadow. Since no shadow
of that shadow intersects any other shadow, there will always be unnumbered ver-
tices in the first shadow, which will have two or more numbered nearest neighbors.
Thus, it is inductively apparent that, for any �, the construction gives a series of
cubes, corresponding to the ones in the binary expansion of �, each shadow of every
larger cube.

Now we perform induction. It is obviously true for � = 1. Suppose it is true for
1, . . . , �− 1 and suppose that we have a maximally connected configuration of �
vertices of an n-cube. The n-cube may be divided into two (n− 1)-subcubes in n
ways. Choose one of them. Suppose we have a numbered vertices contained in one
of the halves and b ≤ a in the other one. If b = 0, induction on n completes the
proof. If b > 0, then the number of connections is maximized by having a maxi-
mally connected configuration in each half and b connections between them. By the
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hypothesis, the maximal configurations for a and b would be built of cubes, so that
the smaller one will fit into the shadow of the larger one and so make b connections.
This then is the case. Now suppose that 2k is the largest power of two equal to or
less than �. Then if 2k ≤ a, we have, by the induction hypothesis, a k-subcube in
the larger configuration. If 2k > a, then 2k−1 is the largest power of two equal to
or less than both a and b. In this case both a and b configurations contain (k− 1)-
subcubes, and since they are the largest such, each must lie in the other’s shadow.
In either case we have a k-subcube in maximal configuration. At last we must show
that the remaining �− 2k vertices lie in a single shadow of the k-subcube. If not,
c vertices lie in one shadow and d lie in another (c + d ≤ �− 2k). Let 2 j be the
smallest power of two equal to or greater than c + d. There can be no connections
between the c and d configurations, so that the inductive hypothesis tells us that they
are series of subcubes, each in the shadows of all larger ones. Look at a j-subcube
which contains the c configurations and lies entirely within the shadow. Note that
the complement of the c configurations in that j-subcube is also of the maximally
connected type, so that the d configurations could be placed into it without changing
its number of connections. But since c + d > 2 j−1, placing them both in the same
j-cube would produce at least one more connection, contradicting our assumption
that the configuration was maximally connected with c,d > 0.

At last note that the natural numbering of the n-cube assigns to each vertex the
number that the vertex represents when considered as a binary digit, plus one. It can
be easily seen that this natural numbering produces the above algorithm and hence
the first 2n−1 vertices in this natural order give a set of 2n−1 vertices with the largest
possible number of edges. This proves Proposition 9. �

Lecture 5 Words with Pairwise Common Letter
In this lecture we present a problem that seems to stay apart from the topics of the
other lectures. The problem deals with sets of words with pairwise common letter in
different positions. It does, however, fall into the general frame of maximizing cardi-
nalities of sets, whose members are pairwise in a certain relation like incomparable,
t-intersecting, t −Hn

q intersecting, having distance d, independent, etc.
We start with some definitions. For an alphabet Xq = [q] we consider the set X n

q
of words of length n and also the subset W n

q of all words without repetition of letters,
that is,

W n
q = {xn = (x1, . . . ,xn) : xt ∈ Xq, xs 	= xt i f s 	= t}. (1)

We say that two words xn and yn are in “good relation” if xs = yt for some s 	= t.
For this relation we write xn ↙↘ yn. A set G ⊂ X n

q is good if xn ↙↘ yn for all
xn,yn ∈ G. We will study Gn

q , the family of good sets in X n
q , and the quantity

gn
q = max{|G| : G ∈ Gn

q}. (2)

Denote by Fn
q the family of good sets in W n

q and

f n
q = max{|F | : F ∈ Fn

q}.
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Also, denote the set of entries in xn by

E(xn) = {x : for some t, xt = x}.

Very little is known about the values of gn
q and f n

q . In the following we are going to
demonstrate the asymptotical behavior of gn

q as q → ∞. The theorem we will prove
states the most significant known result in this area.

§1 Asymptotical Behavior of gn
q

Here we will show that gn
q ∼ qn−2

(n
2

)
as q → ∞. We will prove

Theorem 10 (Ahlswede and Cai 1991) The following relation is valid:

lim
q→∞

gn
q

qn−2 =
(

n
2

)
. (3)

Proof. We begin with the inequality

liminf
q→∞

gn
q(q−1

n−2

) ≥
(

n
2

)
(n−2)! (4)

Define

G0 = {xn ∈ X n
q : |E(xn)| = n−1 and 1 occurs exactly twice in xn}.

Obviously G0 ∈ Gn
q , |G0| =

(n
2

)
(n−2)!.

(q−1
n−2

)
(q−1 ≥ n−2), and (4) follows.

Next we show that

limsup
q→∞

gn
q(q−1

n−2

) ≤
(

n
2

)
(n−2)!. (5)

Recall that a partition of an integer n is a finite nonincreasing sequence
of positive integers λ1 ≥ ·· · ≥ λr with ∑r

i=1 λi = n. Denote by P(n) the
set of all partitions of n. We partition now X n

q according to P(n) as fol-
lows. For Λ = (λ1, . . . ,λr) ∈ P(n), set T (Λ) = {xn ∈ X n

q : ∃z1, . . . ,zr ∈
Xq such that zi occurs in xn = (x1, . . . ,xn) exactly λi times . We subdivide {T (Λ) :
Λ ∈ P(n)} into three classes. The class 0 consists of T (Λ0), where Λ0 = (1, . . . ,1).
The class 1 consists of T (Λ) for Λ = Λ1 = (2,1, . . . ,1) and the remaining sets be-
long to the class 2. For all G ∈ Gn

q we have by our definitions |G∩T (Λ0)| ≤ f n
q .

It is easy to see that f n
q ≤ (n!)2, the bound being independent of q. Choose any

(x1, . . . ,xn) ∈ F ∈ Fn
∞. For all yn ∈ F it holds E(yn)∩{x1, . . . ,xn} 	= /0 and, on the

other hand, for fixed j and i, |F ∩{yn : y j = xi}| ≤ f n−1
∞ . This implies f n

∞ ≤ n2 f n−1
∞

and clearly f n
q ≤ f n

∞. Therefore,
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|G∩T (Λ0)| ≤ (n!)2. (6)

Now consider the class 2. For all xn,yn ∈ G we have E(xn)∩E(yn) 	= /0. So {E(xn) :
xn ∈ G∩T (Λ)} is an intersecting family of r-element sets (if Λ = (λ1, . . . ,λr)). For
a T (Λ) in the class 2 of partitions n into r ≤ n−2 parts and for all xn ∈T (Λ) it holds

|{yn : E(yn) = E(xn)}| ≤ rn ≤ (n−2)n. (7)

This leads for large q to the estimate

∣
∣
∣
∣G∩

⎛

⎝
⋃

Λ 	∈{Λ0, Λ1}
T (Λ)

⎞

⎠
∣
∣
∣
∣≤ |P(n)|

(
q−1
n−3

)
(n−2)n. (8)

This inequality uses also equality (3) (Lecture 1). Taking into account relations (6)
and (8) (ln |P(n)|= O(

√
n)), for verification of (5) it suffices to show that for G∈Gn

q

limsup
q→∞

|G∩T (Λ1)|(q−1
n−2

) ≤
(

n
2

)
(n−2)!. (9)

To do this, we have to consider a partition of T (Λ1)∩G into a few subparts. First of
all, we can assume that the intersecting system {E(xn) : xn ∈ G∩T (Λ1)} is not a 2-
intersecting family, because otherwise for large q, |G∩T (Λ1)| ≤

(q−2
n−3

)(n
2

)
(n−1)!∼

qn−3, which follows from the equality

|{yn : E(yn) = E(xn)}| =
(

n
2

)
(n−1)!, xn ∈ T (Λ1) (10)

and (3) (Lecture 1). From this (9) follows.
Using (6), (8), and (9) and taking into account that the set on the LHS of (10) is

intersecting (which gives the factor
(q−1

n−2

)
), we obtain the relation

limsup
q→∞

gn
q(q−1

n−2

) ≤
(

n
2

)
(n−1)!. (11)

Now suppose that |E(an)∩E(bn)| = 1 for some an,bn ∈ G∩T (Λ1). W.l.o.g. let
E(an) = {1,2, . . . ,n− 1} and E(bn) = {1,n,n + 1, . . . ,2n− 3}. Denote Z = {xn ∈
G∩T (Λ1) : 1 	∈ E(xn)}. Since E(xn)∩E(an) 	= /0 and E(xn)∩E(bn) 	= /0 for all
xn ∈ Z , we have |{E(xn) : xn ∈ Z}| < 22(n−2)(q−2n+2

n−3

)
. Consequently, by (10),

|Z| < 22(n−1)
(

n
2

)
(n−1)!

(
q−2n+2

n−3

)
. (12)

Let now Ci = {(c1, . . . ,cn) ∈ T (Λ1) : ci = 1, c j 	= 1, j 	= i} for i = 1, . . . ,n. Then

T (Λ1)∩G = (G∩G0)∪Z ∪ (C1 ∩G)∪ . . .∪ (Cn ∩G). (13)
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As {(c1, . . . ,ci−1,ci+1, . . . ,cn) : (c1, . . . ,ci−1,1,ci+1, . . . ,cn) ∈ Ci ∩G} ∈ Gn−1
q , we

obtain
|Ci ∩G| = O(qn−3), q → ∞ (14)

by inequality (11).
Finally,

|G0 ∩G| ≤ |G0| =
(

n
2

)
(n−2)!

(
q−1
n−2

)
(15)

and (12)–(15) imply (9). This completes the proof of (5) and the theorem. �

Lecture 6 Constant Distance Code Pairs
For an alphabet Xq = [q] consider the Hamming metric dH on X n

q : dH(xn,yn) =
|{i : xi 	= yi}|.

A pair (A,B) of sets A,B ⊂Hn
q is an (n,δ ) constant distance code pair if

dH(an,bn) = δ , for all an ∈ A, bn ∈ B.

The set of all such pairs we denote by Sq(n,δ ). In this lecture we give a partial
solution to the problem of determining the value

Mq(n,δ ) = max{|A||B| : (A,B) ∈ Sq(n,δ )}.

We will find an explicit formula for Mq(n,δ ) only in the cases q = 2,4,5 and will
formulate a conjecture for the values of Mq(n,δ ), when q = 3 and q≥ 6. The explicit
formula for Mq(n,δ ) will be expressed in terms of the following functions

F2(n,δ ) = max
d1+d2=δ

4d1

(
n−2d1

d2

)
, (1)

F3(n,δ ) = max
2�+d=δ

18�

(
n−3�

d

)
2d , (2)

Fq(n,δ ) = max
d1+d2=δ

q̄d1

(
n−d1

d2

)
(q−1)d2 , q ≥ 4, (3)

q̄ =
⌊

q
2

⌋⌈
q
2

⌉
.

§1 The Exact Value of Mq(n,δ )

The main result we are going to prove here is contained in the following:

Theorem 11 (Ahlswede 1987) For q = 2,4,5 the following equality holds:

Mq(n,δ ) = Fq(n,δ ). (4)
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Proof. First we show for arbitrary q the validity of the inequality

Mq(n,δ ) ≥ Fq(n,δ ). (5)

To do this we present explicit constructions of the sets A and B such that (A,B) =
(A,B)q,n,δ and |A||B| = Fq(n,δ ).

First of all we define the following sets:

E1(q,m) = {(1, . . . ,1), . . . ,(q, . . . ,q)} ⊂ [q]m,

E2(q) = {π(1), . . . ,π(q) : π ∈ Sq} ⊂ [q]q,

E3(q,m,d) = {xm ∈ [q]m : dH(xm,(1, . . . ,1)) = d},

E4 = {1,2, . . . ,β}, Ē4 = {β +1, . . . ,q}, β =
⌊

q
2

⌋
,

where Sq is the set of all permutations on [q].
We treat first the case q = 2 and consider the sets

A = (E1(2,2))d1 ×E1(1,n−2d1),

B = (E2(2))d1 ×E3(2,n−2d1,d2).

We have dH(a,b) = d1 + d2, when a ∈ A, b ∈ B and |A| = 2d1 , |B| = 2d1
(n−2d1

d2

)
.

Thus an optimal choice of di gives

|A||B| = F2(n,δ ).

Next, suppose q = 3. This time we define the sets A and B as follows:

A = (E1(3,3))�×E1(1,n−3�),

B = (E2(3))�×E3(3,n−3�,d).

We have dH(a,b) = 2�+d, a ∈ A, b ∈ B, and

|A| = 3�, |B| = 6�

(
n−3�

d

)
2d .

An optimal choice of d, � with 2�+d = δ gives

|A||B| = F3(n,δ ).

In the case q ≥ 4 define

A = (E4(q))d1 ×E1(1,n−d1),

B = (Ē4(q))d1 ×E3(d,n−d1,d2).
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Again, dH(a,b) = d1 +d2, a ∈ A, b ∈ B, and

|A| =
⌊

q
2

⌋d1

, |B| =
⌈

q
2

⌉d1
(

n−d1

d2

)
(q−1)d2 .

An optimal choice of di with d1 +d2 = δ yields

|A||B| = Fq(n,δ ).

Now we start to prove for q = 2,4,5 the inequality

Mq(n,δ ) ≤ Fq(n,δ ),

which together with (5) gives the proof of Theorem 11. We need the following
lemma, which we then use in the inductive proof of the theorem.

Lemma 13 The following relations are valid:

F2(n,δ ) = F2(n−2,δ −1)max
(

4,
n(n−1)
δ (n−δ )

)
, (6)

n ≥ 3, 1 ≤ δ ≤ n−1,

Fq(n,δ ) = Fq(n−1,δ −1)max
(

q̄,
n(q−1)

δ

)
, (7)

q ≥ 4, n ≥ 2, δ ≥ 1.

Proof. First we show that the LHS of equalities (6), (8) do not exceed their RHS.
Choose d1,d2 such that d1 +d2 = δ and

F2(n,δ ) = 22d1

(
n−2d1

d2

)
.

If d1 = 0, then

F2(n,δ ) =
(

n
δ

)
=

(
n−2
δ −1

)
n(n−1)
δ (n−δ )

≤ F2(n−2,δ −1)
n(n−1)
δ (n−δ )

,

and if d1 ≥ 1, then

F2(n,δ ) = 2222(d1−1)
(

n−2−2(d1 −1)
d2

)
≤ 4F2(n−2,δ −1).

For q ≥ 4 we have

Fq(n,δ ) = q̄d1

(
n−d1

d2

)
(q−1)d2

and in the case d1 = 0



Lecture 6 Constant Distance Code Pairs 55

Fq(n,δ ) =
(

n
δ

)
(q−1)δ =

n(q−1)
δ

(
n−1
δ −1

)
(q−1)δ−1

≤ Fq(n−1,δ −1)
n(q−1)

δ
.

If d1 ≥ 1, then

Fq(n,δ ) = q̄d1

(
n−d1

d2

)
(q−1)d2

= q̄q̄d1−1
(

(n−1)− (d −1)
d2

)
(q−1)d2 ≤ q̄Fq(n−1,δ −1).

Next we prove that the RHS of (8) does no exceed its LHS. Let d1,d2 satisfy d1 +
d2 = δ −1 and

Fq(n−1,δ −1) = q̄d1

(
n−1−d1

d2

)
(q−1)d2 .

Then d1 +1+d2 = δ and we have

q̄Fq(n−1,δ −1) = q̄d1+1
(

n− (d1 +1)
d2

)
(q−1)d2 ≤ Fq(n,δ ).

Furthermore, since

n(q−1)
δ

Fq(n−1,δ −1) = q̄d1

(
n−1−d1

d2

)
n
δ

(q−1)d2+1,

it suffices to show that
(

n−1−d1

d2

)
n
δ
≤

(
n−d1

d2 +1

)
.

But (
n−1−d1

d2

)
n
δ

=
(

n−d1

d2 +1

)
d2 +1
n−d1

n
δ

.

Therefore, it suffices to show that

n
n−d1

≤ δ
d2 +1

=
δ

δ −d1
,

which is true, because for x ≥ y ≥ 0,z ≥ 0 with xyz 	= 0 it holds x+z
y+z ≤

x
y .

Now we prove that the RHS of (6) does not exceed its LHS. Suppose that

F2(n−2,δ −1) = 22d
(

n−2−2d
δ −1−d

)
, (8)
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then
4F2(n−2,δ −1) = 22(d+1)

(
n−2(d +1)
δ − (d +1)

)
≤ F2(n,δ )

and, to finish the proof, we have to consider the case

4 <
n(n−1)
δ (n−δ )

. (9)

From (8) it follows that

F2(n−2,δ −1)
(n−2d)(n−2d−1)
(δ −d)(n−d −δ )

= 22d
(

n−2d
δ −d

)
< F2(n,δ ).

It remains to prove that under condition (9) either

n(n−1)
δ (n−δ )

≤ (n−2d)(n−2d −1)
(δ −d)(n−d −δ )

or

δ (n−δ )(n2 −4nd +4d2 −n+2d) ≥ (n2 −n)((n−δ )δ − (n−δ )d −δd +d2)

or
n(n−1)
δ (n−δ )

≥ 4− 2
n−d

(10)

holds, which is true under condition (9). The proof of Lemma 13 is completed.
�

Next we give the following definitions. For a set C ⊂ [q]n and i, j ∈ [q], J ⊂ [q],
define

Ct
i = {(c1, . . . ,ct−1,ct+1, . . . ,cn) : (c1, . . . ,ct−1, i,ct+1, . . . ,cn) ∈C},

Ct(J) = {(c1, . . . ,cn) ∈C : ci ∈ J} ⊂ C, n ≥ 2,

Cst
i j = {(c1, . . . ,cs−1,cs+1, . . . ,ct−1,ct+1, . . . ,cn) :

(c1, . . . ,cs−1, i,cs+1, . . . ,ct−1, j,ct+1, . . . ,cn) ∈C},s 	= t, n ≥ 3.

Denote also Jq =
( [q]
� q

2 �
)
. We need two lemmas.

Lemma 14 For (A,B) ∈ S2(n,δ ) there exist s, t ∈ [n] such that

(|Ast
11|+ |Ast

22|)(|Bst
12|+ |Bst

21|)+(|Ast
12|+ |Ast

21|)(|Bst
11|+ |Bst

22|) (11)

≥ 2δ (n−δ )
n(n−1)

|A||B|.

Proof. Let
Ci j(s, t) = {(c1, . . . ,cn) ∈C : cs = i, ct = j}.
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Then |Ci j(s, t)| = |Cst
i j | and if IA(xn) is the indicator function of the set A, then

∑
s 	=t

[
(|Ast

11|+ |Ast
22|)(|Bst

12|+ |Bst
21|)+(|Ast

12|+ |Ast
21|)(|Bst

11|+ |Bst
22|)

]

= ∑
(xn,yn)∈(A,B), s 	=t

[
(IA11(s,t)(x

n)+ IA22(s,t)(x
n))(IB12(s,t)(y

n)+ IB21(s,t)(y
n))

+ (IA12(s,t)(x
n)+ IA21(s,t)(x

n))(IB11(s,t)(y
n)+ IB22(s,t)(y

n))
]
.

Since dH(xn,yn) = δ for xn ∈ A and yn ∈ B, the contribution of (A,B) is |A||B|δ (n−
δ ) and there exists at least one pair (s, t) with contribution at least |A||B|δ (n −
δ )/

(n
2

)
. The lemma is proved. �

Lemma 15 For (A,B) ∈ Sq(n,δ ) there exists a t ∈ [n], such that

∑
J∈Jq

|At(J)||Bt(Jc)| ≥ |A||B| δ
n(q−1)

q̄
q

(
q
� q

2�

)
, (12)

where Jc = [q]\ J.

Proof. We have

n

∑
t=1

∑
J∈Jq

|At(J)||Bt(Jc)| =
n

∑
t=1

∑
J∈Jq

∑
xn∈A, yn∈B

IAt (J)(x
n)IBt (Jc)(y

n)

= ∑
xn∈A, yn∈B

n

∑
t=1

∑
J∈Jq

IAt (J)(x
n)IBt (Jc)(y

n)

= ∑
xn∈A, yn∈B

δ
(

q−2
� q

2�−1

)
= |A||B|δ

(
q−2
� q

2�−1

)
.

Therefore, there exists a t with

∑
J∈Jq

|At(J)||Bt(Jc)| ≥ |A||B|δ
n

(
q−2
� q

2�−1

)

and (12) follows due to the identity
(

q
� q

2�

)
=

q(q−1)
q̄

(
q−2
� q

2�−1

)
.

By symmetry also

∑
J∈Jq

|At(Jc)||Bt(J)| ≥ |A||B| δ
n(q−1)

q̄
q

(
q
� q

2�

)
.
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Thus there exists a t for which we have

∑
J∈Jq

(|At(J)||Bt(Jc)|+ |At(Jc)||Bt(J)|) ≥ |A||B| 2δ
n(q−1)

q̄
q

(
q
� q

2�

)
. (13)

�

Now we continue to prove the theorem. First we prove (4) for q = 2. In the cases
δ = 0 and δ = n, it can be easily verified that

M2(n,0) = F2(n,0) = M2(n,n) = F2(n,n) = 1.

In the other cases we proceed by induction on n and we assume that δ 	= 0,n. For
n = 1,2 only the case

M2(2,1) = F2(2,1) = 4

is relevant. An optimal configuration here is (A,B) = ({11,22}, {21,12}).
Let (4) be valid for n − 2. We show that it holds also for n. We use the sets

Ast
αβ ,Bst

αβ with property (11). For simplicity we omit the indices s, t and make the
following conventions:

I = (|A11|+ |A22|)(|B11|+ |B22|),
II = (|A12|+ |A21|)(|B11|+ |B22|),

III = (|A11|+ |A22|)(|B12|+ |B21|),
IV = (|A12|+ |A21|)(|B12|+ |B21|).

Lemma 14 says that

|A||B| ≤ n(n−1)
2δ (n−δ )

(II + III). (14)

W.l.o.g. we can assume that
II ≤ III. (15)

First we consider the case A11 ∩A22 	= /0. Then

dH(an
11,b

n
ββ ) 	= dHan

22,b
n
ββ ), an

αα ∈ Aαα(s, t), bn
ββ ∈ Bββ (s, t)

and we have B11 = B22 = /0 and therefore I = II = 0. If now B12 ∩B21 	= /0, then by
the same argument A12 = A21 = /0 and thus also IV = 0. Therefore,

|A||B| = III ≤ 4M2(n−2,δ −1) = 4F2(n−2,δ −1) ≤ F2(n,δ ).

Here, the last equality follows from the induction hypothesis and the last inequality
follows from (6).

On the other hand, if B12∩B21 = /0, then (Aαα ,B12∪B21)∈ S2(n−2,δ −1), α =
1,2 and therefore III ≤ 2M2(n−2,δ −1). Since II = 0, we conclude that

II + III ≤ 2M2(n−2,δ −1) = 2F2(n−2,δ −1)
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and by (14) we have

|A||B| ≤ n(n−1)
δ (n−δ )

F2(n−2,δ −1).

Then (6) implies |A||B| ≤ F2(n,δ ).
Suppose now A11 ∩A22 = /0. If B12 ∩B21 	= /0, then, as previously, A12 = A21 = /0

and II = 0, II + III = III ≤ 2M2(n− 2,δ − 1), and |A||B| ≤ F2(n,δ ). Finally, if
B12 ∩B21 = /0, then

(A11 ∪A22,B12 ∪B21) ∈ S2(n−2,δ −1)

and thus III ≤ M2(n−2,δ −1). From the assumption (15) it follows that II + III ≤
2M2(n−2,δ −1) and the proof can be completed as in the previous case.

Now we prove (4) for q = 4. The case n = 1 is settled by inspection. We assume
that J = {0,1}, Jc = {2,3} and consider the following scheme (we omit index t in
the notations At

i, Bt
i):

For q = 4 inequality (13) can be written in the form

|A||B| ≤ 3n
2δ

((|A1|+ |A2|)(|B3|+ |B4|) (16)

+ (|A3|+ |A4|)(|B1|+ |B2|)) =
3n
2δ

(II + III),

where

I = (|A1|+ |A2|)(|B1|+ |B2|),
II = (|A3|+ |A4|)(|B1|+ |B2|),

III = (|A1|+ |A2|)(|B3|+ |B4|),
IV = (|A3|+ |A4|)(|B3|+ |B4|).

Now we proceed as in the proof of the case q = 2 with substitutions 11 → 1, 22 →
2, 12 → 3, 21 → 4, A11 → A1, B11 → B1, etc.; F2(n,δ ) → F4(n,δ ), (14)→ (16).
Repeating all arguments from the previous proof and taking into account that q̄ = 4,
we are done with the case q = 4.

Now let q = 5. We need one simple preliminary result, which we state in the
forthcoming Lemma 16, whose proof we leave to the reader (Exercise 12). For sim-
plicity we again omit the index t in the notations At

i,B
t
i. Define the numbers r,s, p by

r = |{1 ≤ i ≤ q : |Ai||Bi| > 0}|,
s = |{1 ≤ i ≤ q : |Ai| > 0}|− r,

p = |{1 ≤ i ≤ q : |Bi| > 0}|− r.

After relabeling we have |Ai||Bi|> 0 for 1 ≤ i ≤ r, |Ai|> 0 for 1 ≤ i ≤ r+s, |Bi|> 0
for 1 ≤ i ≤ r, and r + s+1 ≤ i ≤ r + s+ p.
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Lemma 16 Let n ≥ 2. If (A,B) ∈ Sq(n,δ ) and r + s,r + p ≥ 2, then for 1 ≤ i ≤
r, 1 ≤ j ≤ q, i 	= j we have Ai ∩A j = /0 and Bi ∩B j = /0.

Denote

X = {1, . . . ,r}, Y = {r +1, . . . ,r + s},
Z = {r + s+1, . . . ,r + s+ p}.

It is easy to see that if we replace Ai, i ∈ Y by E =
⋃

i∈Y Ai and Bi, i ∈ Z by F =⋃
i∈Z Bi, then we again obtain a pair in Sq(n,δ ). Note also that if s + p 	= 0 we can

enlarge Y or Z so that r + s+ p = q.
Denote

e = ∑
J∈Jq

|A(J)||B(Jc)|.

For J ∈ Jq we define

U = J∩X , V = J∩Y, W = J∩Z, E =
⋃

i∈Y

Ai, F =
⋃

i∈Z

Bi,

a(J) = ∑
i∈J

|Ai|, b(J) = ∑
i∈J

|Bi|, J ⊂ [q].

If s+ p = 0, then

e = ∑
U⊂X , 1≤|U |≤min{βk−1}

a(U)b(X \U)
(

q− r
β −|U |

)
. (17)

If r + s+ p = q, then

e = ∑
U⊂X , V⊂Y, W⊂Z, |U |+|V |+|W |=β

(a(U)+ |V ||E|)(b(X \U)+ |Z \W ||F |).

Opening the brackets on the RHS of the expression for e we obtain four sums

e1 = ∑
U⊂X , V⊂Y, W⊂Z, |U |+|V |+|W |=β

a(U)b(X \U)

= ∑
U⊂X ,� ,|U |+�=2

(
s+ p

�

)
a(U)b(x\U)

= ∑
U⊂X , 1≤|U |≤min{β ,r−1}

(
q− r

β −|U |

)
a(U)b(X \U),

e2 = ∑
U⊂X , V⊂Y, W⊂Z, |U |+|V |+|W |=β

a(U)|Z \W ||F|

= ∑
U⊂X , |U |+|V |+|W |=β

(
s
|V |

)(
p

|W |

)
(p−|W |)a(U)|F|
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= ∑
U⊂X , 1≤|U |≤β

(
q− k−1
β −|U |

)
pa(U)|F |,

e3 = ∑
U⊂X , V⊂Y, W⊂Z, |U |+|V |+|W |=β

b(X \U)|V ||E|

= ∑
U⊂X , |U |+|V |+|W |=β

(
s
|V |

)(
p

|W |

)
|V |b(X \U)|E|

= ∑
U⊂X ,1≤|U |≤min{β ,r−1}

(
q− r−1

β −|U |−1

)
b(X \U)s|E|,

e4 = ∑
U⊂X , V⊂Y, W⊂Z, |U |+|V |+|W |=β

|V ||E||Z \W ||F|

= ∑
U⊂X , |U |+|V |+|W |=β

(
s
|V |

)(
p

|W |

)
|V ||Z \W ||E||F|

= ∑
U⊂X , |U |≤β−1

(
q− r−2

β −|U |−1

)
sp|E||F|.

Note that in the case s+ p = 0 we obtain the same final relations for ei and e. Now
by (8) and Lemma 15, in the case q = 5 the relation

e ≤ F5(n−1,δ −1)12 (18)

is sufficient for induction to work. To prove this inequality we go through the cases
defined by the value of r.
r = 5. Since s = p = 0, we have e2 = e3 = e4 = 0. Therefore,

e = e1 = ∑
U⊂[5], 1≤|U |≤2

(
5−5

2−|U |

)
a(U)b(X \U).

As
(⋃

i∈U Ai,
⋃

i∈X\U Bi

)
= S5(n−1,δ −1) and by Lemma 16

∣
∣
∣
∣
⋃

i∈U

Ai

∣
∣
∣
∣ = a(U),

∣
∣
∣
∣

⋃

i∈X\U

Bi

∣
∣
∣
∣ = b(X \U),

we conclude by using the induction hypothesis that

e ≤
(

5
2

)
M2(n−1,δ −1) ≤ 10F5(n−2,δ −1).
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r = 4. In this case either s = 1, p = 0 or s = 0, p = 1 holds. By symmetry, it suffices
to consider only the first case. Then e2 = e4 = 0 and

e = e1 + e2 = ∑
U⊂[4], 1≤|U |≤2

(
2

2−|U |

)
a(U)b(X \U)

+ ∑
U⊂[4], |U |≤2

(
0

2−|U |−1

)
b(X \U)s|E|

≤
(

4
2

)
F5(n−1,δ −1)+ ∑

U⊂[4],|U |=1
(a(U)+ |E|)b(X \U).

By Lemma 16 and the induction hypothesis the second summand is smaller than
4F5(n−1,δ −1) and therefore e ≤ 10F5(n−1,δ −1).
r = 3. Here we have

e1 = ∑
U⊂[3], 1≤|U |≤2

(
2

2−|U |

)
a(U)b(X \U)

= 2(|A1|(B2|+ |B3|)|A2|(|B1|+ |B3|)+ |A3|(|B1|+ |B2|))
+ ((|A1|+ |A2|)|B3|+(|A1|+ |A3|)|B2|+(|A2|+ |A3|)|B1|),

e2 = 3(|A1|+ |A2|+ |A3|)p|F|,
e3 = 3(|B1|+ |B2|+ |B3|)s|E|,
e4 = 3sp|E||F |.

Now we consider a few subcases.
s = 2, p = 0. Then

e = e1 + e2 = 3(|B1|+ |B2|)(|A3|+ |E|)
+ 3(|B1|+ |B3|)(|A2|+ |E|)+3(|B2|+ |B3|)(|A1|+ |E|).

Since (B1 ∪B2,A3 ∪E) ∈ S5(n − 1,δ − 1), we have 3(|B1|+ |B2|)(|A3|+ |E|) ≤
F5(n− 1,δ − 1). The remaining terms in the expression for e are estimated in the
same manner. Thus we have e ≤ 9F5(n−1,δ −1).
s = 1,p = 1. Then

e = e1 + e2 + e3 + e4,

e2 = 3(|A1|+ |A2|+ |A3|)|F|, e3 = 3(|B1|+ |B2|+ |B3|)|E|, e4 = 3|E||F |

and e1 has the same expression as in the previous subcase. We can assume that
e2 ≤ e3, because otherwise we can exchange the roles of A and B. Thus, by the
previous subcase, e1 +e2 +e3 ≤ 9F5(n−1,δ −1), and since e4 ≤ 3F5(n−1,δ −1),
we conclude e ≤ 12F5(n−1,δ −1).
s = 0,p = 2. Since e1 and e2 are symmetric in A and B, replacement of e3 by e2 in
the case s = 2, t = 0 gives again the bound e ≤ 9F5(n−1,δ −1).
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r = 2. In this case

e1 = ∑
U⊂[2],|U |=1

(
3
|U |

)
a(U)b(X \U) = 3(|A1||B2|+ |A2||B1|),

e2 = ∑
U⊂[2], 1≤|U |≤2

(
2

2−|U |

)
a(U)p|F | = 3(|A1|+ |A2|)p|F |,

e3 = ∑
U⊂[2], |U |≤1

(
2

1−|U |

)
b(X \U)s|E| = 3(|B1|+ |B2|)s|E|,

e4 = ∑
U⊂[2], |U |≤1

(
1

1−|U |

)
sp|E||F| = 3sp|E||F |.

Here also we have some subcases.
s = 3,p = 0. Then

e = e1 + e2 = 3(|B1|(|A2|+ |E|)
+ 3|B2|(|A1|+ |E|)+6(|B1|+ |B2|)|E|) ≤ 12F5(n−1,δ −1).

s = 2,p = 1. Then

e = e1 + e2 + e3 + e4 =
(

e1 + e2 +
1
2

e3 + e4

)
+

1
2

e3

= 3(|B1|+ |F|)(|A2|+ |E|)+3(|B2|+ |F|)(|A1|+ |E|)
+ 3(|B1|+ |B2|)|E| ≤ 9F5(n−1,δ −1).

The other subcases are symmetrically the same.
r = 1. In this case we can write

e1 = 0, e2 =
(

5−1
2−1

)
|A1||F |,

e3 =
(

5−1
2−1

)
|B1|s|E|,

e4 =
(

5−3
2−1

)
sp|E||F|

(
5−3
2−2

)
sp|E||F| = 5q−2β −1sp|E||F |

and
e = 3(|A1|p|F |+ |B1|s|E|+ s|E|p|F|).

But

λ = |A1|p|F |+ |B1|s|E|+ s|E|p|F| = s|E|(|B1|+ |F|)+(|A1|+ |E|)p|F|
+ (s−1)p|E||F|− s|E||F|
= s|E(|B1|+ |F|)+(|A1|+ |E|)p|F|+(sp− s− p)|E||F|.
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As (E,(B1 ∪F)), (A1 ∪E,F), (E,F) ∈ S5(n− 1,δ − 1), the induction hypothesis
gives

λ ≤ (s+ p+(sp− s− p))F5(n−1,δ −1) ≤ 4F5(n−1,δ −1)

and therefore e ≤ 12F5(n−1,δ −1).
r = 0. We have

|A||B| = sp|E||F| ≤ 6|E||F | ≤ 6F5(n−1,δ −1).

This completes the proof of the theorem. �

§2 Four-Words Property

We formulate a generalization of the property of the pair (A,B) to be a constant
distance pair. We say that the pair of sets (A,B), A,B ⊂ X n

q , Xq = [q] satisfies the
four-words property (4-WP) if

dH(an,bn)−dH(an,b′n)+dH(a′n,b′n)−dH(a′n,bn) 	= 1,2

for all an,a′n ∈ A, bn,b′n ∈ B.

Proposition 10 If a pair (A,B) satisfies the 4-WP, then

|A||B| ≤ q∗n, q∗ =

⎧
⎨

⎩

q, q = 2,3,4,

q̄ =
⌊

q
2

⌋
·
⌈

q
2

⌉
, q ≥ 4

and this bound is best.

Next we consider a further generalization of the 4-WP and prove Theorem 12
below, from which also follows the statement of Proposition 10.

Let X and Y be two finite sets. We consider the function

f : X ×Y → Z.

With f we associate the sum-type function fn : X n ×Yn → Z :

fn(xn,yn) =
n

∑
i=1

f (xi,yi),

xn = (x1, . . . ,xn) ∈ X n, yn = (y1, . . . ,yn) ∈ Yn.
We say that the pair (A,B) with A ⊂ X n, B ⊂ Yn satisfies the R−four-word

property (R−4-WP), if

fn(an,bn)− fn(an,b′n)+ fn(a′n,b′n)− fn(a′n,bn) ∈R, (19)
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for all an,a′n ∈ A, bn,b′n ∈ B. Let P( f ,R,n) be the set of all those pairs. We are
interested in

M( f ,R,n) = max{|A||B| : (A,B) ∈ P( f ,R,n)}.

Let P∗( f ,R,n) be the set of those pairs in P( f ,R,n) on which the maximum
M( f ,R,n) is achieved. The following theorem is the basis in the study of the R−4-
WP [ACZ89].

Theorem 12 (Ahlswede, Cai, and Zhang 1989) For any R⊂ Z

M( f ,R,n) ≤ Mn( f ,R,1). (20)

Furthermore, if 0 ∈R and M( f ,{0},1) = M( f ,R,1), then equality holds in (20).

The proof of this theorem proceeds by induction on n and is based on two simple
lemmas, which we first state and prove.

For the set C of sequences of length n from some finite alphabet denote

Cc = {(c1, . . . ,cn−1) : (c1, . . . ,cn−1,c) ∈C},
J(C) = {c : Cc 	= /0},

L(C) = max

{

|D| : D ∈ J(C),
⋂

c∈D

Cc 	= /0

}

.

Lemma 17 For (A,B) ∈ P( f ,R,n) we have L(A)|J(B)| ≤ M( f ,R,1).

Proof. It suffices to show that for every D ⊂ J(A) with
⋂

a∈D Aa 	= /0 necessarily
(D,J(B)) ∈ P( f ,R,1).

To see this choose a,a′ ∈ D, b,b′ ∈ J(B) and note that by assumptions there
are an−1, bn−1, b′n−1 such that an−1a, an−1a′ ∈ A, and bn−1b,b′n−1b′ ∈ B. Now
obviously

R � fn(an−1a,bn−1b)− fn(an−1a,b′n−1b′)
+ fn(an−1a′,b′n−1b′)− fn(an−1a′,bn−1b)
= f (a,b)− f (a,b′)+ f (a′,b′)− f (a′,b).

�

Lemma 18 If (A,B) ∈ P( f ,R,n), then
(⋃

d∈J(A) Ad ,Bb

)
∈ P( f ,R,n− 1) for all

b ∈ J(B).

Proof. For an−1,a′n−1 ∈ ⋃
d∈J(A) Ad choose a,a′ ∈ J(A) such that an−1 ∈

Aa, a′n−1 Aa′ . Now for any bn−1,b′n−1 ∈ Bb,

R � fn(an−1a,bn−1b)− fn(an−1a,b′n−1b)
+ fn(a′n−1a′,b′n−1b)− fn(a′n−1a′,bn−1b)
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= fn−1(an−1,bn−1)− fn−1(an−1,b′n−1)
+ fn−1(a′n−1,b′n−1)− fn−1(a′n−1,bn−1).

�

Proof of Theorem 12. Obviously, if for (A,B) ∈ P∗( f ,{0},1) we have |A||B| =
M( f ,R,1), then (∏n

i=1 A,∏n
i=1 B)∈P( f ,{0},n), where ∏n

i=1 C is the set of n-tuples
of elements from C. Therefore, if 0∈R, then M( f ,R,n)≥ (|A||B|)n = Mn( f ,R,1).

To prove (20) we use induction. For n = 1 nothing needs to be proved. For
(A,B) ∈ P( f ,R,n) we have

|A||B| = ∑
a∈J(A)

|Aa| ∑
b∈J(B)

|Bb|

≤ L(A)
∣
∣
∣
∣

⋃

a∈J(A)

Aa

∣
∣
∣
∣|J(B)| max

b∈J(B)
|Bb|

≤ M( f ,R,1)
∣
∣
∣
∣

⋃

a∈J(A)

Aa

∣
∣
∣
∣ max

b∈J(B)
|Bb|.

The last inequality here follows from Lemma 17. The result |A||B| ≤ Mn( f ,R,1)
now follows from Lemma 18 and the induction hypothesis. �

From this Theorem follows Proposition 10. Indeed the 4-WP means that (A,B)∈
P(dH ,Z−{1,2},n). We have P(dH ,Z−{1,2},1) = P(dH ,{0},1) and therefore
M(dH ,Z−{1,2},n) = Mn(dH ,{0},1). Finally, equality M(dH ,{0},1) = q∗ is easily
verified.

The following fact easily follows from Theorem 12 (Exercise 13). If A,B ⊂
[0,q−1]n and the set [0,q−1]n is equipped with a Lee metric dL, which is defined
as follows:

dL(xn,yn) =
n

∑
i=1

min{|xi − yi|,q−|xi − yi|},

and for all an,a′n ∈ A, bn,b′n ∈ B

dL(an,bn)−dL(an,b′n)+dL(a′n,b′n)−dL(a′n,bn) 	= 1,2, . . .q, (21)

then

|A||B| ≤
(

max
{

q,

(⌊
q
4

⌋
+1

)(⌈
�q/2�

2

⌉
+1

)})n

. (22)

The next fact is also the consequence of Theorem 12 (Exercise 13). Let dT be a Taxi
metric on [0,q−1]n. If A,B ⊂ [0,q−1]n and for an,a′n ∈ A, bn,b′n ∈ B,

dT (an,bn)−dT (an,b′n)+dT (a′n,b′n)−dT (a′n,bn) 	= 1,2, . . .2q,
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then

|A||B| ≤
(

max
{

q,

(⌊
q
2

⌋
+1

)⌈
q
2

⌉})n

(23)

and this bound is best possible.

Notes to Chapter II

As already said, Theorems 6, 7, and 8 completely solve the problem of determining
the maximal sets of given diameter in the Taxi metric when all components X j
have even or odd lengths. In the mixed case, when some of the components have
even length and some odd length, in general some partial results are known when
d < b(B) and d ≥ b(B)+ e(B)−1, where e(B) is the number of components with
odd q′is. In this case it is known that the ball of radius d/2 with some center in L1

is a maximal set of diameter d. The proof here is the same as for all-even q′is in
Theorem 8, but the splitting of B is different. For details about such splittings we
refer to [ACZ92a] and [DK90], see also [KF88]. In [BL93] a direct approach was
used to the diametric problem in Taxi metric. A complete solution was presented
for the problem in the space B, where all qi are equal. There the diametric problem
on the torus also has been considered. Relation (5) (Lecture 2) was first proved in
[K66a].

Theorem 3 was proved in [AK97b] and Theorem 5 was proved in [AK98]. We
reproduced here their proofs. The Intersection Theorem 4 was first proved by Katona
by using another method in [K64]. Relation (3) (Lecture 1) for t ≥ 15 was first
established by Frankl [F78] and subsequently by Wilson [W84] for all t. We took
the proof of Proposition 9 from [H64]. Theorems 6 and 7 were proved in [ACZ92a].
Theorem 9 is taken from [AK00b].

An A ∈ I(n,k, t) is called nontrivial if
∣
∣
∣
∣
⋂

A∈A A
∣
∣
∣
∣ < t and Ĩ(n,k, t) denotes all

nontrivial families from I(n,k, t). Let

M̃(n,k, t) = max
A∈Ĩ(n,k,t)

|A|, 1 ≤ t ≤ k ≤ n.

Let also

V1(n,k, t) =
{

V ∈
(

[n]
k

)
: [1, t] ⊂V,

V ∩ [1+ t,k +1] 	= /0
}
∪{[1,k +1]\{i} : i ∈ [1, t]}.

In [AK96d] the following equalities are proved, which give the complete solution
of the determination of the maximal cardinality of a nontrivial family. This settles
the Hilton-Milner problem, whose investigation was initiated in [HM67b].
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(i) If 2k− t < n ≤ (t +1)(k− t +1), then

M̃(n,k, t) = M(n,k, t).

(ii) If (t +1)(k− t +1) < n and k ≤ 2t +1, then

M̃(n,k, t) = |F(1)|

and F(1) is – up to permutations – the unique optimum.
(iii) If (t +1)(k− t +1) < n and k > 2t +1, then

M̃(n,k, t) = max{|F(1)|, |V1|},

and – up to permutations – F(1) or V1 are the only solutions.

Consider the following sets:
(

[n]
≥ k

)
=

n⋃

i=k

(
[n]
i

)
,

(
[n]
≤ k

)
=

k⋃

i=0

(
[n]
i

)
,

I(n,≥ k, t) = I(n, t)∩2([n]
≥k),

I(n,≤ k, t) = I(n, t)∩2([n]
≤k),

F(i,≥ k) = G(i)∩
(

[n]
≥ k

)
,

F(i,≤ k) = G(i)∩
(

[n]
≤ k

)
, i = 0, . . .

⌊
n− t

2

⌋
.

The description of the following results can be found in [ABEK02]. Using Katona’s
Theorem 4 it is not difficult to prove that

max
A∈I(n,t,≥k)

|A| =
∣
∣
∣
∣F

(⌊
n− t

2

⌋
,≥ k

)∣
∣
∣
∣.

The problem of determination of the value maxA∈I(n,t,≤k) |A| is still open. In
Research Problem 3 at the end of the chapter the corresponding conjecture is
formulated.

In [AAK98], Ahlswede et al. consider the problem of maximal intersecting
systems for direct products. This problem was initiated by Frankl and arose in
connection with a result of Sali. Let n = n1 + · · ·+ nm, k = k1 + · · ·+ km, [n] =
[n1]∪ [n2] · · ·∪ [nm], H =

{
F ∈

([n]
k

)
: |F ∩ [ni]| = ki for i = 1, . . . ,m

}
. For given in-

tegers ti, 1≤ t ≤ ti ≤ ki, 1≤ i≤m, we may say that A⊂H is (t1, . . . , tm)-intersecting,
if for every A,B ∈ A there exists an i, 1 ≤ i ≤ m, such that |A∩B∩Ωi| ≥ ti holds.
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Denote the set of such systems by I(H, t1, . . . , tm). The problem is to determine
maxA∈I(H,t1,...,tm) |A|.

The case t1 = t2 = · · · = tm = 1 has been solved by Frankl. Here is the complete
solution.

Theorem 13 (Ahlswede, Aydinian, and Khachatrian 1998) Let ni ≥ ki ≥ ti ≥ 1
for i = 1, . . . ,m, then

max
A∈I(H,t1,...,tm)

|A| = max
i

M(ni,ki, ti)(ni
ki

) |H|.

We emphasize that the combination of this Theorem and Theorem 3 gives an
explicit value. The proof is heavily (but not only!) based on ideas and methods from
[A96], in particular the method of “generated sets” (c.f. [N] Bey/Engel, “Old and
New Results for the Weighted t-Intersection Problem via AK-Methods”, 45-74;)
takes a central role in the book [E97b].

We took Theorem 10 from [AC91]. Also the following relations were proved
there:

f q−1
q =

1
2
|W q−1

q | = 1
2

q!,

f 3
q = 12, q ≥ 4,

g3
q = 3q+7, 3 ≤ q < ∞.

We took Theorem 11 from [A87].
For the matrix with entries ai j = d(xn

i ,y
n
j), where xn

i are n-tuples with elements
from some finite set X and d(·, ·) is a metric on X n, consider the area i · j of an i× j
minors with constant entries. This concept was introduced in [Y79] for estimating
communication complexity. It inspired the work reported in Lecture 6.

Proposition 10 was first proved in [AM88]. Inequality (22) was first proved in
[C86]. Theorem 12 was proved in [ACZ89].

A pair (A,B), A,B ⊂ {0,1}n is said to be �-cross-intersecting iff λ (an,bn) =
∑n

i=1 min{ai,bi} = � for all an ∈ A, bn ∈ B. If one considers an,bn as subsets of [n],
then λ (an,bn) is their intersection. How large can |A||B| be? A simple construction
in [ACZ89] gives a lower bound stated in Exercise 14. Moreover, it is conjectured
that the construction is best possible. In [AL06] this conjecture is proved for suffi-
ciently large � > �0.

Exercises

1. Erdös, Ko, and Rado [EKR61] proved the Theorem 3 for the case t = 1. Give a
proof using the Kruskal/Katona Theorem ([K63],[K68],[D74]). A formulation
of the result of [K63] and [K68] can be found without proof in [S59].

2. Give another proof with Katona’s cycle method ([K72], see also the book [N]
with the survey [K00]).
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3. Prove relation (4) (Lecture 1).
4. Prove Lemma 4 and Proposition 1.
5. Determine all optimal unrestricted t-intersecting families for t = 1. Hint:

Among them is always A = {A ∈ 2[n] : {1} ∈ A}, A =
⋃

i≥ n+1
2

([n]
i

)
for n odd,

and A =
⋃

i≥ n
2

([n−1]
i

)
for n even.

6. For t = 1 and q = 2 find all optimal configurations for the Hamming distance
problem. Hint: see considerations before Lemma 6.

7. One can see that M(n, t) = N2(n, t). Using operations Tji, relation (8), and the
method of the proof of Theorem 4, prove the validity of (5) (Lecture 2).
For t > 1 prove that the set on which N2(n, t) is achieved is unique up to chang-
ing 0 ↔ 1 symbols in components and permutations of components.

8. Prove equality (4) (Lecture 2) directly. Consider mod q componentwise sum-
mation in Hn

q and prove that if an is in intersection family A, then an +bn 	∈ A
for all bn = (b, . . . ,b), b ∈ {1, . . . ,q−1}.

9. Prove that for t > 1 or t = 1, q > 2 up to permutations of the components and
elements of the alphabet in the components there is only one optimal configu-
ration in Theorem 5, unless t > 1, t +2(t −1)/(q−1) ≤ n, and (t −1)/(q−2)
is an integer in which case we have two optimal configurations K

(
t−1
q−2

)
and

K
(

t−1
q−2 −1

)
.

In addition to the optimal configuration in Theorem 9 we have in the case
d = n− 2, 2|d also the optimal configuration Gd/2−1(n,n− d). Prove that up
to permutations of the components and elements of the alphabet in the compo-
nents these configurations are unique.

10. Prove Propositions 2, 3, 4, and 5.
11. Prove relation (18) (Lecture 2): if E1,E2 ∈M0(A) and |E1∩E2|= t, then |E1|+

|E2| = �+ t.
12. Prove Lemma 16.
13. Using Theorem 12 prove inequalities (22) and (23).
14. Give a construction of an l-cross-intersecting pair (A,B), A,B ⊂ {0,1}n with

|A||B| ≥
{(2l

l

)
2n−2l if n ≥ 2l,(n
l

)
if n < 2l.

15. Actually, it was originally conjectured in [A87] that

max
A,B⊂{0,1}n

l-cross-inters.

|A||B| = max
l≤x≤n

2n−x
(

x
l

)
.

Show that this bound equals the bound in exercise 14, which was conjectured
in [ACZ89].
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16. For B ⊂ {0,1}n, X t = {0,1}, and X = (x1 < x2 < .. . ,< x|X |)⊂ [n], we say that
B has parity on X if for all bn ∈ B,‖X |-tuples b|X | = (bx1 , . . . ,bx|X |) have number
of units of the same parity. Prove that [A87]

∑
X⊂[n], B has parity on X

2|X ||B| ≤ (2n +1)2n−1.

This bound achieves equality, for instance, on the set B of all n-tuples with even
number of ones.

Research Problems

1. Conjecture The lower bound in Exercise 14 is the maximum value for |A||B|.
This was proved in [AL06] for large n.

2. Conjecture Theorem 11 holds also for values of q different from 2,4,5.
3. Conjecture If k ≤ n+t

2 , then the following relation is valid

max
A∈I(n,t,≤k)

|A| = max
{
|F(i,≤ k)| : i = 0, . . . ,

⌊
n− t

2

⌋}
.
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