4

Geometric Models

Having laid the general foundations in the previous chapters, we now study
geometric processes in R? and the random sets derived from them. By geo-
metric processes we understand point processes of closed sets which are con-
centrated on geometrically distinguished subclasses of F'. In particular, we
consider particle processes and flat processes. Particle processes are point
processes in the subset C’ of nonempty compact sets. Special processes, in
general more tractable, are obtained if only particles from the convex ring R
or even the class K of convex bodies are admitted. A k-flat process is a point
process in ' whose intensity measure is concentrated on the space A(d, k) of
k-dimensional flats (planes, affine subspaces) of R9.

We begin with the investigation of particle processes. For these we intro-
duce, in the stationary case, intensities, grain distributions, and densities of
functionals in various representations. Special cases are fiber and surface pro-
cesses; they are treated after the flat processes, in the fifth section. The second
section establishes a connection between particle processes and marked point
processes. In particular, we introduce the germ-grain processes, where com-
pact sets serve as marks. The germ-grain models of the third section, which
are generated from germ-grain processes, are important examples of random
closed sets. An especially tractable subclass are the Boolean models, de-
rived from Poisson processes. In the fourth section we treat flat processes. Of
particular interest are the processes arising from flat processes by intersec-
tions, either with a fixed plane or by intersecting fixed numbers of the flats in
the process. Some assertions about the intensities and the directional distri-
butions of these derived processes are obtained, mainly in the case of Poisson
processes. The sixth section is concerned with a set-valued parameter, which
can be attached to different processes of geometric objects. This is Matheron’s
‘Steiner compact set’, which we call here the associated zonoid. It permits
us to obtain, among other results, several geometric inequalities for particle
or flat processes. In some cases, these can be used to characterize processes
with specific extremal properties.
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We remind the reader of two general assumptions that we have made. The
first one (at the end of Section 3.6) is that all point processes considered from
now on are simple, except when the opposite is explicitly stated. The second
assumption (at the end of Section 3.1) is that only point processes with locally
finite intensity measures are admitted.

4.1 Particle Processes

By a particle process in R? we understand a point process in /' = F'(R%)
that is concentrated on the subset C’ of nonempty compact sets, that is, the
intensity measure © of which satisfies ©O(F’" \ C’) = 0. In particular, a point
process in F' whose intensity measure is concentrated on R' = R\ {0} or
K’ = K\ {0}, is called a particle process in R, respectively, in K, in the
latter case also a process of convex particles. The local finiteness of the
intensity measure © of a particle process is, by Lemma 2.3.1, equivalent to

O(Fe) < o0 for all C' € C. (4.1)

The assumption (4.1) is essential for many later consequences. This is one
reason for the fact that we did not define a particle process as a point process
in the space (C’,0) (with the Hausdorff metric); local finiteness of an intensity
measure © in this case would only mean that O(F¢*) < oo for C' € C.

Nevertheless, it is convenient in the following, when we work with the
set C', to equip it with the Hausdorfl metric §. In particular, continuity of
functions on C’ will refer to the Hausdorff metric. Although this continuity
differs from continuity with respect to the topology of F, for measurability
there is no difference (see Theorem 2.4.1).

The intensity measure of a stationary particle process has a useful decom-
position, obtained, roughly speaking, by factoring out the translations. For
this, we need a center function, and we choose here the mapping

c:C — R?

that associates with each C' € C’ the circumcenter ¢(C) of C. By definition,
this is the center of the (uniquely determined) smallest ball containing C. We
denote this ball by B(C) and call it the circumball and its radius r(C') the
circumradius of C.

Lemma 4.1.1. The mapping c is continuous on C'.

Proof. Let r(C') denote the radius of B(C), for C' € C’'. We show first that r is
continuous. Let C; — C be a convergent sequence in C'. Every accumulation
point of the sequence (B(C}))ien is a ball containing C'. This implies r(C') <
liminf 7(C;). Conversely, for given e > 0, almost all C; are contained in the
ball B(C) + eB?, hence limsup 7(C;) < r(C) + €. For € — 0 we obtain r(C) =
limr(C;).
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Next, we show that B(C;) — B(C). The sequence of balls B(C;) is
bounded, hence we can assume without loss of generality that it converges, say
B(C;) — B. The limit body B is a ball containing C, and since r(C;) — r(C),
it has radius r(C). Since the circumball is unique, we have B = B(C).

Finally, B(C;) — B(C) implies ¢(C;) — ¢(C). O

We put
Co:={C el :¢(C)=0}

and call Cy the grain space (for particle processes). This grain space may
also be considered as the set of all translation classes in C’. The set Cy is closed
in C" and hence (by Lemma 2.1.2) a Borel set in F. Similarly, we define the
subsets K := Co N K, and Ry := Co NR'. For a subset B C R? we put

C.(B):={C e :¢(C) € B}.

The mapping
D : ]Rd X Co —

(,C) —a+C
is a homeomorphism, by Lemma 4.1.1 and Theorem 12.3.5.

Theorem 4.1.1. Let X be a stationary particle process in R% with intensity
measure @ # 0. Then there exist a number v € (0,00) and a probability
measure Q on Cy such that

O =vP(A 2 Q). (4.2)
The number v and the measure Q are uniquely determined.

Proof. Let © := ~1(6) be the image measure of © on R? x Cy. We first show
a finiteness property. For the unit cube C¢ = [0,1]¢, we put C¢ := [0,1)¢ =
C?\ 0+C? where

ot ={z=(z',...,2%) € C?: max 2' =1}
1<i<d

is the upper right boundary of C?. Let (2;);en be an enumeration of Z.
We have

O(Ce x Cy) = O{C e : ¢(C) € Cd})

O({C el :CN(C+2)#0, ¢(C) e CYY)

o,

o
Il
N

O({C el :CnNCE+#D, c¢(C)eCi—2))

o

©
I
—

=o({Cel :CnC#0}) <O(Fpa) < o0,
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due to the translation invariance of @ (which follows from the stationarity of

X) and (4.1).
Now we can copy the proof of Theorem 3.5.1, to obtain a representation
6=112Q
with v € (0,00) and a probability measure Q on Cy. This proves (4.2). The
uniqueness is trivial. O

Note that Theorem 4.1.1 shows that for ©-integrable functions f on C’ we
have

/ £dO =~ / F(C + 2) \(dz) Q(dC), (4.3)
c’ Co JRA

which will be used frequently.

We call v the intensity and Q the grain distribution of the stationary
particle process X. A random set with distribution @Q is called the typical
grain of X. If X is isotropic, then Q is rotation invariant (since ¢(9C) = 9¢(C)
for C € C" and ¥ € SOg), but the converse is generally false. Unless explicitly
stated otherwise, we occasionally allow also stationary particle processes with
© = 0; in this case we define 7 = 0, the grain distribution Q is not defined,
and vQ has to be read as the zero measure.

For later applications, it will be necessary to admit other center functions,
besides the circumcenter. If ¢ is replaced by a measurable mapping z : ¢’ — R¢
satisfying z(tC') = tz(C) for C' € C’' and every translation ¢, then again a
decomposition (4.2) is obtained, with different Q. However, isotropy of X is
reflected in rotation invariance of Q only if z has the additional property
z(WC) = 9z(C) for ¥ € SO4. (An example, different from the circumcenter,
with this property is provided by the Steiner point of the convex hull.) Such
center functions play a role if a particle process is to be represented as a
marked point process; this is explained in Section 4.2.

It must be noted that the assumed local finiteness of the intensity measure
on F’ has the consequence that not every probability measure on Cy can occur
as the grain distribution Q of a stationary particle process. The following
theorem clarifies this.

Theorem 4.1.2. The probability measure Q on Cqy is the grain distribution of
some stationary particle process if and only if

Va(C +rBYHQ(AC) < 0o for some (or all) r > 0. (4.4)
Co
This is equivalent to the Q-integrability of the dth power of the circumradius,
and in the case of a process of convex particles it is equivalent to the Q-
integrability of the intrinsic volumes Vi, ..., Vy.

If Q satisfies (4.4) and if v > 0 is given, then there exists (up to stochastic
equivalence) precisely one stationary Poisson particle process X in R? with
intensity v and grain distribution Q. The process X is isotropic if and only if
Q is rotation invariant.
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Proof. If O is the intensity measure of the stationary particle process X with
intensity v > 0 and grain distribution @, then (4.3) gives, for K € C,

6F) =7 [ [ 17:(C+2) ) QlaC)

=7/, Va(=C + K) Q(dC),

since

17, (C+2)=1 (CH+2)NK #0=2xe-C+K.

Hence, the local finiteness of © implies, in particular, that

Va(C +rBYHQ(dC) < oo (4.5)
Co

for all » > 0. If (4.5) is satisfied for one number r > 0, then

Vy(C + K)Q(dC) < oo
Co

holds for all K € C, since K can be covered by finitely many translates of
rB?. The remaining equivalences follow from

Va(C + BY) < 2%k, max{r(C)4, 1}

and, in the case of a process of convex particles, from the Steiner formula
(14.5).

Suppose, conversely, that Q satisfies (4.4) and that v > 0 is given. Then
the measure © defined by (4.2) is locally finite and translation invariant.
By Theorems 3.2.1 and 3.6.1, there exists a Poisson process, unique up to
equivalence, with intensity measure ©. It is stationary, and if Q is rotation
invariant, it is also isotropic. O

The intuitive meaning of the intensity and the grain distribution of a
stationary particle process will become clearer by the representations given
below, as special cases of the next theorem. With this theorem, we turn to
a refined quantitative description of particle processes, which we begin with
the definition of densities for geometric functionals. For stationary particle
processes, Theorem 4.1.1 opens an easy way of introducing mean values of
geometric quantities.

Let ¢ : ' — R be a translation invariant, measurable function, and let X
be a stationary particle process with intensity v > 0 and grain distribution
Q. If ¢ is nonnegative or Q-integrable, we define the p-density of X by

?(X) ZZW/C ©dQ. (4.6)
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Remark. We emphasize that $(X) is defined here as the mean value of ¢
with respect to the grain distribution Q, multiplied by the intensity . That
the factor « has been included in the definition, simplifies many formulas, but
must be observed when these formulas are compared with other literature.

For nonnegative ¢, it is permitted in (4.6) that ¥ (and thus also the limit
in Theorem 4.1.3(b)) is infinite.

The following theorem gives different representations of the ¢-density, and
it also justifies this name.

Theorem 4.1.3. Let X be a stationary particle process in R® with grain dis-
tribution Q, and let p : C' — R be a translation invariant measurable function
which is nonnegative or Q-integrable.

(a) For all B € B(R?Y) with 0 < A\(B) < oo,

CeX,c(C)eB
(b) For all W € K with Vy(W) > 0,

1
P(X)=lim ———E »(C).
r=oo Va(rW) CEX,ZC:CTW

(c) If

. |(O)|Va(C + BY) Q(dC) < ,

then L
P(X)=lim —E C
PX) = lim s )DRR(e)
CeX,CNrW#p
for all W € K with Vg(W) > 0.

Proof. (a) From Campbell’s theorem (Theorem 3.1.2) and (4.3), together with
the translation invariance of ¢, we get

E Y @0 =E) 15((C)e(C)

CeX,c(C)eB ceX

=7 [ [, 15(e(€ + a)e€) My @rac)

— JA(B) /C 2(C)QC)
— AB)B(X).

(b) As above, we get
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E Z p(C) = ’y/ o(CO)N{z € RY: C +z C rW}) Q(dC).
cex,ccrw Co

We may assume that 0 is in the interior of W. Then there is a nonnegative
measurable function p : Cp — R such that C' C p(C")W for all C’ € Cy.
For given C' € Cy, suppose that r > p(C). For x € (r — p(C))W we have
C+x C rW. It follows that

p(CN\Y  A{zeRY:C+azcCr})
(1__> = Va(riv) =t

r

For r — o0, the left side converges monotonically to 1, hence the monotone
convergence theorem proves the assertion if ¢ is nonnegative. The dominated
convergence theorem gives the result if ¢ is integrable.

(c) We have

Vd(iW) E > 0= VdZW) /C e(C)Vy (W— %c) Q(dO).

CceX,CnrW#0

For C' € Cy, let B be a ball with —C C B, then W — 1C ¢ W + 1B
and hence Vy(W) < Vy(W — 1C) < Vy(W + 1 B). From the continuity of the
volume functional on K it follows that

Va (W - 1C’) — Va(W) for r — oo.
T

Let y1,...,Ym € —C be points with (W +y;) N(W +y;) = 0 for i # j, and
assume that m is maximal. For x € —C there exists ¢ with (W +z)N(W +y;) #
0, thus x € W — W + y;. This shows that —C' C |J,(W — W + y;). We may
assume that 0 € W. For r > 1, we get W — %C c U, [2W -W+ %yl] and,
therefore, Va(W — 1C) < mV4(2W — W). From mVy(W) < Vy(W — C) we
obtain

Vy W—EC < b(W)HVy(W = C
(w - 2¢) <sommsow - o)

with a constant b(1) that does not depend on C or r.

There are finitely many vectors tq,...,t, € R? such that W c |J_,(B?+
t;). This yields W —C C i, (B%—C+t;), hence Vy(W —C) < nVy(B?1-C) =
nVy(B% + C) and thus

p(O)|[Va(W =€) Q(dC) < oo
Co
The assertion now follows from the dominated convergence theorem. O

For additive functionals ¢, further representations of the ¢-density will
be given in Theorem 9.2.2. The most important such functionals will be the
intrinsic volumes of convex bodies.
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As a special case of Theorem 4.1.3, we may choose
o(C) :=14(C —¢(C)) with A € B(Cyp).

If B is as in Theorem 4.1.3, we get

QU =——E Y 1.(C— (),

)\(B) CeX,c(C)eB
in particular
1
CeX,e(C)eB

Thus, the intensity v can be interpreted as the expected number of particles
per unit volume.
Further we obtain, with W is as in Theorem 4.1.3,

MMﬂgM%)m§wmmﬂm (18)
. 1
= lim Vi) E > 14(C—c(C)) (4.9)

CEX, CNrW#£0

If X is a stationary particle process in R?, then the points ¢(C), C € X,
almost surely generate an ordinary point process X° in R¢ (the necessary
finiteness condition follows from the proof of Theorem 4.1.1). The correspond-
ing assertion is also true in the non-stationary case if the particles are convex;
however, for non-convex particles, the measure ) . y dc(c) is not necessarily
locally finite a.s. For a stationary (simple) particle process X, the point pro-
cess X need no longer be simple. We shall see, however, that for a stationary
Poisson particle process the point process X is always simple (and thus a
stationary Poisson process, t00).

In the case of a stationary particle process X the intensity -y is, according
to (4.7), also the intensity of the stationary point process X°. One might
interpret this as a construction of X, starting from the ordinary point process
XY and attaching random compact sets with distribution Q to the points
(regarding multiplicities). However, this idea is not precise, since the random
Co-sets corresponding to different points of X° need not be independent. The
following example may be instructive.

In R2, let s;, be a horizontal and s, a vertical unit segment, both with
center 0, and consider the system of segments s, + 2, s, + 2, 2, 2/ € Z?, where
z has even and 2’ has odd sum of coordinates. Applying to this system the
translation by a random vector, uniformly distributed in [0, 1]?, we obtain a
stationary particle process for which Q is concentrated on the set {sp,s,}
(associating probability 1/2 to either segment). In this case, the particle, sy,
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or s,, attached to one point of the ordinary point process X, completely
determines all the other particles of the realization.
The situation is different for Poisson processes.

Theorem 4.1.4. Let X be a stationary Poisson particle process in R? with
intensity v > 0 and grain distribution Q. Then the ordinary point process X°
is a (stationary) Poisson process, and the following holds.

To every B € C with A(B) > 0 and every k € N there exist random
points &1,...,& in B with distribution \_B/X(B) and random closed sets
Z1y. .., 2y in Cy with distribution Q such that &1, ..., &k, Z1, ..., 2y are inde-
pendent and

k
P(XLCo(B) €| X(Ce(B)) =k) =P (Z ez, € ) .
i=1

In other words, a stationary Poisson process X in C’ can be generated
(and also simulated) by taking an ordinary stationary Poisson process X°
with intensity v and adding to every z € X independently a random closed
set Z, with distribution Q,

X = Z Ovsz, -

zeX0

Proof. Since
P(X%(4) = k) =P(X(Cc(4)) = k),  AeBRY,
X0 is a stationary Poisson process in R? with intensity measure
Oc(A) = O(C.(A) =7A(4),  AeBRY);

here we have applied Theorem 4.1.1 to the set C.(A). In particular, if B is
compact and A(B) > 0, then 0 < O(C.(B)) < o0, hence we can apply Theorem
3.2.2(b) and obtain independent random closed sets Z1, ..., Z; with

k
P(XL_C.(B) €| X(C(B)) =k) =P (Z 8z, € ) ;

here each Z has distribution

OL_C.(B)

¥z.= 6.m)

From ©L_C.(B) = ¢((A\_B) @ vQ) and ©(C.(B)) = vA(B) it follows that
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Hence, if we define Z;, &; by 1o = (&, Z;), we obtain independent random

variables Z; (random closed sets with distribution Q) and &; (random points
with distribution AL_ B/A(B)), and we have

Zi =D&, Zs) = & + Zs,

therefore also . .
P <Z§Z € > =P (Z(Sgﬁzl € ) .
i=1 i=1

This completes the proof. ]

Marked Particle Processes

In Chapter 10 it will be useful to have limit relations, analogous to those of
Theorem 4.1.3, for marked particle processes. By a marked particle process
we understand a simple point process in C' x M, where M denotes the mark
space, as in Section 3.5. For the intensity measure @ we assume, corresponding
to (3.12), that

O(C x M) < 00 for all C' € C(F).

Stationarity again means invariance of the distribution Px under translations,
where these, as in the case of marked point processes, affect only the first
component. Let X be a stationary marked particle process with intensity
measure @ # 0. Using the mapping

S:RIXxCyx M — CxM
(z,C;m) — (x+C,m),
we obtain, in analogy to Theorem 4.1.1, a decomposition
O =70(A2Q)

where Q is now a probability measure on Cy x M it is called the grain-mark
distribution of X. With this decomposition, Campbell’s theorem and the
analog of (4.3) read as follows. For every nonnegative measurable function f
on C' x M,

E > f(C,m):/ fde

(C,m)ex C'xM
:’y/ F(C + z,m) AN(dz) Q(d(C,m)).
Cox M JRA

Theorem 4.1.5. Let X be a stationary marked particle process in RY with
grain-mark distribution Q, and let ¢ : C' x M — R be a measurable function
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which is translation invariant in the first variable and either nonnegative or
Q-integrable. Then the p-density defined by

P(X) =~ / pdQ
Cox M
has the representations
_ 1
P(X)=—F > ©(C,m) (4.10)
(C,m)eX,c(C)eB
for B € B(RY) with 0 < \(B) < oo,

_ . 1
p(X) = lim Vi) E > ¢(C,m) (4.11)
d (Cm)eX,Ccrw

for W € K with Vy(W) > 0, and

1
?(X)= lim —— E > ©(C,m), (4.12)
(Cym)eX, CNrW 0

if, in addition,
/ 1o(C,m)|Va(C + BY Q(d(C,m)) < oo
Cox M

is satisfied.

The proof is obtained by the obvious modification of that of Theorem
4.1.3.

Note for Section 4.1

Theorem 4.1.1 shows, as did also Theorems 3.3.1 and 3.5.1, how the assumption of
stationarity leads to a decomposition of the intensity measure, where the Lebesgue
measure appears as a factor. Such a factorization of measures with partial invariance
properties on (local) product spaces, where a Haar measure appears as one factor,
was raised by Ambartzumian [35] to a basic principle of stochastic geometry.

4.2 Germ-grain Processes

We recall the convention, agreed upon in Section 3.1, that simple counting
measures are often identified with their supports, so that, for example, for
1 € Ng(C’) the notations n({C}) = 1 and C € n are employed synonymously.

In the previous section, the decomposition of the intensity measure of a
stationary particle process X in R? was based on a representation of the
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particles C' € X in the form C' = Cy + x with z := ¢(C) and Cy := C — ¢(C).
Of course, the formulation of Theorem 4.1.1 is strongly reminiscent of the
corresponding Theorem 3.5.1 on marked point processes. One can, in fact,
identify the stationary particle process X with the marked point process

o (X)={(z,C) eRYxCy:C+2 € X}.

Here the mark space is Cy, and the grain distribution Q becomes the mark
distribution. Before we make use of this connection and apply the results
of Section 3.5 on Palm distributions of marked point processes to particle
processes, we want to clarify the role that the choice of the circumcenter as a
center of the particles plays here.

Generally, we understand by a center function a measurable map z :
C' — R which is compatible with translations, that is, satisfies

2(C+x)=z2(C)+=x for all z € R%.

Examples of center functions, besides the circumcenter ¢, are the center of
gravity, if only particles with positive Lebesgue measure are considered, or the
Steiner point of the convex hull. These center functions are also equivariant
under rotations (that is, z(9C) = 9z(C) for 9 € SO,). The following examples
do not have this property. For C' € C'(R?) (the definition can be extended to
d > 2), the lower tangent point of C is defined by Z(C) = (21, %) with

2% = min{z? : (z*,2?) € O}

2= min{z' : (2',2%) € C},
where 2!, 22 are the coordinates of =. Further, the left lower corner of C is
defined by

2(C) = <minx1,min:c2>
zeC zeC

(in general, z'(C) ¢ C). These center functions are applied in certain estima-
tion procedures. As in the example of the center of gravity, it is sometimes
convenient to allow center functions that are defined only on measurable sub-

classes of C’ which are closed under translations.
If X is a particle process and z is a center function, then

X7 = Z 6z(C)

ceX

is a random counting measure on R? which, however, need neither be simple
nor locally finite. In the stationary case, local finiteness is ensured. Thus, the
following connection between stationary particle processes and marked point
processes can be established.
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Theorem 4.2.1. Let X be a stationary particle process in R%, and let z be a
center function. Then X7 is a stationary point process in R%, and

X. =) 8(x(c).0-=(c))
ceXx

is a stationary marked point process with mark space C'. The intensities of
X, X% and X, are the same. The mark distribution Q, of X, is the image of
the grain distribution Q of X under the mapping C — C — z(C).

In particular, the grain distribution Q is the mark distribution of X..

Proof. To show the measurability of X, it suffices by Lemma 3.1.5 to verify
that {X,(A) = k} is measurable for all A € B(R? x C’) and all k € Ny. Let A
and k be given. The function

p:C — R? x C’
C(2(0),C—2(0))

is measurable, since z is measurable. Hence, {X,(A4) = k} = {X(p71(A)) =
k} is measurable.

As in the proof of Theorem 4.1.1 (where we replace Cy by C’ and ¢ by z)
we obtain

EX.(C¢ x C') < O(Fea) < o0,

where O is the intensity measure of X. This gives EX,(C' x (") < oo for every
compact set C' € C; thus the measure X, is a.s. locally finite. Hence, X~* is a
point process with locally finite intensity measure, and X, satisfies (3.12) and
is, therefore, a marked point process in R?.

For t € R?, the definition of the operation of the translation group on
R? x C’" and the compatibility of z with translations give

X.+t= Z O(2(C)+t,C—=(C))
CceX

= Z O(2(C4t),CHt—=(C+1))
Cex

Y ooy
ceX+t
= (X +1)..

Since X and X + t have the same distribution, the same holds for X, and
X, +t, which means that X, is stationary. From this it follows that also X~
is stationary.

Let Q. be the mark distribution of X, and let v, be its intensity. Denoting
by v and Q the intensity and the grain distribution of X, from Theorems 3.5.1,
3.1.2 and 4.1.1 we get, for B € B(R?) and A € B(C'),
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1A ®Q(B x A) = EX,(B x A)
=E > 15(2(C))14(C — 2(C))

ceX

— V/CO /}Rd 15(2(C 4+ 2))14(C + 2 — 2(C + 2)) Mdz) Q(dC)

— A(B) /C 1,4(C - 2(C)) Q(dC)

=12 ® f2(Q)(B x A)

with f, : Co — C’ defined by f.(C) = C — z(C). The special case B = C? and
A = (' gives 7 = 7,, which is also the intensity of X*. Now it follows that Q,
is the image measure of Q under the mapping f.. O

Some properties of the mark distribution, for example rotation invariance,
depend essentially on the choice of the center function. If X is isotropic and
z is equivariant under rotations, then the mark distribution, too, is rotation
invariant.

By Theorem 4.2.1, to every stationary particle process X there corresponds
a whole family of marked point processes with mark space C’; every center
function z generates an element X, of this family. The special choice z = ¢
yields the canonical model X, of X with X* = X°, which we mostly use in

the following. If X is a stationary Poisson process, a corresponding assertion
holds for X,.

Theorem 4.2.2. Let X be a stationary Poisson particle process in R, and
let z be a center function. Then X, is an independently marked stationary
Poisson process.

Proof. We define
p:C — R? x Cy
C— (2(0),C — z(C)).

As we have seen in the proof of Theorem 4.2.1,

{X.(4) =k} = {X(p7(4)) = k}

holds for Borel sets A € B(R? x Cy) and k € Ny. Hence, X, is a stationary
Poisson process in R? x Cy. The assertion now follows from Theorem 3.5.8. O

We return to the general situation and now consider, conversely, a marked
point process X with mark space C'. Then

Xi= Y dusc (4.13)
(z,0)eX
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defines a particle process X, if the local finiteness of the counting measures
on the right side (and of the intensity measure) is guaranteed. In this case,
we call X a germ-grain process. The intuitive idea behind this is that the
points x of the pairs (z,C) € X are the ‘germs’ and the compact sets x + C
are the ‘grains’. The process (4.13) is called the particle process generated
by X. If, in particular, X is stationary, then in analogy to Theorem 4.1.2 one
finds that for the local finiteness of the intensity measure of X the condition

/ Vi(C + BY)QC) < oo (4.14)
J

on the mark distribution Q of X is necessary and sufficient. In the stationary
case, the mark distribution Q is also called the distribution of the typi-
cal grain, and every random closed set Zy with distribution Q is called the
typical grain (or primary grain) of X.

If X is an independently marked point process with mark space C’, then
even without stationarity it is possible to work with the mark distribution Q,
as in Section 3.5. Also in this case, a random closed set Zy with distribution
Q is called the typical grain of X. The finiteness condition (4.1) for the
intensity measure @ of the particle process X generated by (4.13) can now be
rewritten in the following way. For C' € C’ we have

o) = [ [ 1rela+ K)QuE) i(aa)

:/ Ty (C — z) 9(d).
Rd

Here, ¥ is the intensity measure of the unmarked process X, and Ty, is the
capacity functional of the typical grain Z, of X. Hence, for the particle process
X, (4.1) is equivalent to

/ Tz,(C —z)d(dz) <oo  for C €. (4.15)
Rd

If X is stationary, this is again equivalent to (4.14). An independently marked
point process X satisfying (4.15) is called an independent germ-grain pro-
cess. B

If, for an independent germ-grain process X, the germ process X% is a
Poisson process, and thus X, according to Theorem 3.5.7, is a Poisson process
in R? x C’, with intensity measure ¥ ® Q, then the generated particle process

X is the image o(X) of X under the mapping

c:Ré¢xC — ('
(z,C) —z+C
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and hence is also a Poisson process (with intensity measure © = o(¥ ® Q)).
Since ¥ has no atoms, the same holds true for ©.

We continue these considerations in the next section, where we treat ran-
dom closed sets which arise from independent germ-grain processes by taking
union sets of the generated particle processes.

Now we apply the results of Section 3.5 to particle processes.

Theorem 4.2.3. Let X be a stationary particle process in R% with intensity
v >0, and let z be a center function. Then there is a (uniquely determined)
probability measure P° on C' x N4(C') such that

POA) =B Y 15((C))14(C - 2(C), X — 2(C)
CeX

for all A € B(C') ® N(C') and all B € B(RY) with \(B) = 1.
If f:RYxC' x Ny(C') — R is a nonnegative measurable function, then
Ycex [(2(0),C —2(C), X) is measurable and

CeX
= 0
_V/Rd /fxmsw/)f(x’c’”“Lx)P (A(C, ) A(d).

Proof. We apply Theorem 3.5.2 to the marked point process X, with mark
space C’. More precisely, if A € B(C') @ N5(C’) is given, we apply it to the set
A= (id x 1)(A), where 9 : Ng(C') — Ng(R? x C’) is defined by

¥(n) = 25(,2(01-),01-%(01-)), ifn= 25@--

If the measure that results from Theorem 3.5.2 is denoted by PO, then PO(A) =

f”o(g) yields the required measure. The second part of Theorem 4.2.3 follows
from Theorem 3.5.3. O

Theorem 4.2.4. Let X be a stationary particle process in R% with intensity
v >0, let z be a center function. Let C, o = {C € C' : z2(C) = 0} denote the
mark space of the marked point process X ., and let Q be the mark distribu-
tion of X.. Then there exists a (Q-a.s. uniquely determined) reqular family
(P%%)cec. , of probability measures on Ny(C') with

PO(B x A) = / P%“(A) Q(dC)
B
for B € B(C.,0) and A € N,(C').
If f 1 R% % C, 0 x Ng(C') — R is a nonnegative measurable function, then
Ycex [(2(0),C = 2(C), X) is measurable, and
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E Y f(z(C),C - 2(C), X)

ceX

= x T 0.¢ x).
[ O 1B @) N

Proof. Let PO be the measure obtained in the proof of Theorem 4.2.3. By
Theorem 3.5.4, there exists a (Q-a.s. uniquely determined) regular family
(P%“)cec. , of probability measures on Ny(R? x C. o) with

BO(B x A) = / BOC(4) Q(dC)
B

for all B € B(C,,) and A € N (R4 xC, ). Defining P%C as the image measure
of P%¢ under the mapping

N(R? x C. ) —  N,(C'),

n = Z dzycC
(=,C)en

we obtain the assertion. O

Now we consider sections with a fixed k-dimensional plane S € G(d, k).
Let X be a stationary (but otherwise arbitrary) germ-grain process in R,
With it, we can associate in a natural way the section process

XNnS:= Z O(zs,(z5+C)NS)>
(z,C)eX, (z+C)NSH£D

where x = xg+2° with zs € S and 2 € S is the orthogonal decomposition.
Thus, the germs of X NS arise by orthogonally projecting to S those germs
of X for which the corresponding grain has nonempty intersection with S.
Observe that

(z+C)NS =zs+ [z +C)NS]. (4.16)

If we assume in addition that X N S is simple and that the condition corre-
sponding to (3.12) is satisfied, then X NS is a germ-grain process in the space
S (which we can identify with R¥) with mark space C’(S); the marked process
XNSis stationary in S. For the particle process generated by X,

X = Z Oztc,

(z,0)eX

the section process X NS was already defined in Section 3.6. Because of (4.16),
X NS coincides with the particle process generated by XnSs. B

Suppose now that v is the intensity and Q is the mark distribution of X,
and let v5 ¢, Qg be the corresponding parameters for the section process
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X N S. Then, for B € B(S) and A € B(C'(S)), by Theorem 3.5.1 and the
Campbell theorem we have

Yzns s (B)Qxgng(4)
=E > 15(Xs)1a((z%+C)NS)

(LC)E)}

- 7/, /Rd 1p(zs)1a((z® + C) N S) Mdz) Q(dC)
— 7///&/313(9)1,4((2:4—0) N S) As(dy) Mg (dz) Q(AC)

— As(B) / | /S La(=+ 0) N1 8) As (d2) QAC).

Hence, setting

Mg(A) = / /SL 14((z + C) N S) Mg (dz) Q(dO),

we obtain

Ysns = ¥Ms(C'(S)) = v/c' As: (ClSH) Q(d0), (4.17)
where C|S+ is the image of C' under the orthogonal projection to S+, and
Qis(A) = Ms(A)/Ms(C'(5). (4.18)

it Ms(C'(S)) # 0. Thus, the mark distribution of the section process depends
only on the mark distribution of the original process. More explicit results
for v5,g can be obtained for stationary and isotropic processes of convex
particles (a general result of this type is Theorem 9.4.8).

Notes for Section 4.2

1. Generalized center functions. As a generalization of the notion of center
function z, a generalized center function z maps each particle C in a particle
collection 1 to a point which may depend not only on C' but also on the other
particles in 7. Formally, z is a measurable mapping from C’ o N4(C') := {(C,n) €
C' x Ns(C") : C € n} to R?, which is compatible with translations,

z(C+z,n+2z)=2(C,n)+z for all z € R%.

Every center function z defines a generalized center function (z) by (z)(C,n) := z(C).
In generalization of Theorem 4.2.1, the following holds (see Schneider and Weil [717,
Satz 4.3.1]).

Let X be a stationary particle process in R?, and let z be a generalized center func-
tion. Then
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XZ = Z 52(07)()

cex

is a stationary point process in R?, and

X, = Z d((C,X),C—2(C, X))
cex

is a stationary marked point process with mark space C'. The intensities of X, X”
and X, are the same.

Generalized center functions occur, for example, in connection with Voronoi
mosaics. If A is a locally finite set in R¢ such that the Voronoi cells C(z, A), z € A,
are all bounded (see Section 10.2), then, for the corresponding Voronoi mosaic m :=
{C(xz,A) : x € A}, the mapping z : (C,n) — z, if n = m and C = C(z, A), (and
z(C,n) := ¢(C) otherwise) is a generalized center function.

2. The section formulas (4.17) and (4.18) can be found in Stoyan [740].

3. The interpretation of germ-grain processes as processes of points around which
grains have grown randomly already indicates a temporal aspect which can, and
has been, pursued further. Motivated by applications to the growth of crystals,
tumor cells and other growing structures, various spatio-temporal models have been
developed. Starting with the realization of a spatial point process X, one can, for
example, let balls grow around the points of X with constant or random speed,
in a dependent way or independently, at the same time or at different, random
times. The growth can be stopped or modified, according to different rules, when
the growing balls touch, or the growing balls can overlap, penetrate or get deformed
to form a tessellation of space. Finally, also the underlying point process X may
vary in time, for example as a birth-and-death process. Examples of this kind are
the Stienen model (compare Note 9 to Section 10.2), the lilypond model (lilypond
growth protocol, see Daley and Last [193], Heveling and Last [340]), the dead leaves
model (see Serra [729, pp. 508-511], Cowan and Tsang [184]), the Johnson—Mehl
tessellation model (see Mgller [552]) and the general class of crystallization processes
investigated by Capasso and co-workers [157], [158], [159], [515].

Some of the mentioned spatio-temporal models produce random systems of non-
overlapping balls, others can be modified to do so, for example by thinning. There
are current efforts by statisticians and physicists to generate random packings of
balls with high volume density (Torquato [759], Stoyan and Schlather [745], Doge
et al. [205]).

4.3 Germ-grain Models, Boolean Models

In Theorem 3.6.2 we have seen that for a point process X in F’ the union set
Zy = |J F
Fex

is a random closed set, and in Theorem 3.6.3 we have characterized those Zx
for which X has Poisson distributed counting variables. Now we study the
random closed sets arising as the union sets of particle processes. We shall
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be particularly interested in the random closed sets resulting from special
germ-grain processes.

It is easy to see that a given random closed set Z can always be repre-
sented as the union set of a particle process X. In the following, we describe
a construction which has the advantage that invariance properties of Z carry
over to X. If Z is a random S-set, then it is even possible to choose the parti-
cles of X as convex bodies. However, in order to ensure in this case the local
finiteness of the intensity measure of X, we need an integrability assumption
on the random S-set Z. To formulate it, we define

N(K):min{mEN:KUKiwithIQEIC} for K € R/,
i=1
and N(0) := 0.

Lemma 4.3.1. The function N : R — Ny is measurable.

Proof. By Theorem 2.4.1, it is sufficient to show that N is semicontinuous
with respect to the Hausdorff metric. Let M;, M € R be sets with M; — M
(in the Hausdorff metric) as j — oco. We assert that

N(M) < liminf N (M;). (4.19)

Suppose this were false. Going over to a subsequence, we can assume that
there exists a number m € N with

N(M;)=m < N(M) for j € N,

thus

M; =K with K e K.
i=1

Since the sets M; and hence also the sets K j(i) are uniformly bounded, there
exists a subsequence (ji)ren such that

KJ(-I?—>K(’:) as k — oo, i=1,...,m,

with K2 € K’. Theorem 12.3.5 gives

3

M, = J K5 = KO,
1 =1

3

thus M = ", K, and hence N (M) < m, a contradiction. This completes
the proof of (4.19) and thus of the lemma. O

Now we can prove the announced representation result.
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Theorem 4.3.1. To every random closed set Z in R? there exists a simple
particle process X with Z = Zx and such that X L gX for all rigid motions
g € Gq for which Z 4 9Z. In particular, X is stationary (isotropic) if 7 is
stationary (isotropic).

If Z is a random S-set with EN(Z N C) < oo for all C € C’, then X can
in addition be chosen so that all particles are conver.

Proof. The decomposition of a random closed set Z into compact particles is
easier to achieve than that of a random S-set into convex bodies. Therefore,
we restrict ourselves in the proof to this more difficult situation. The decom-
position into compact particles can be done in a similar way if the mapping
¥ used below is replaced by ¢ : C'— ¢, C € C' (and ¥(0) = 0).

From the proof of Theorem 14.4.4 we get the existence of a measurable
map ¢ : R — Ng(K') with

N(C N(C)

)
W(C) =Y bk, C=|JK
i=1 =1

for C' # 0, and (@) = 0.
As before, we denote by C¢ the half-open unit cube. With an enumeration
(2k)ken of Z4 and with C§, == C§ + 21, we put

w(2) =Y [W(d(ZNC) - 2z) + 2] - (4.20)
k=1

Then ¥ (Z) is a simple point process in K" with a locally finite intensity mea-
sure. In fact, we have

EW(Z)(Fe) < p(OEN(Z N w(C)) < %0

for C' € C’, where p(C) denotes the number of cubes C¢ + 2z, k € N, with
C N (C?+ z) # 0, and w(C) is the union of these cubes.

Obviously, we have Z = Uy cy(z) K and t_.¥(t.2) = ¥(Z) for all z € z4
(to achieve this invariance, and the simplicity, ¥ has been defined by (4.20)).
To obtain the stronger invariance properties as required, the construction has
yet to be modified. For a motion g € G4, we define ¥y(Z) := g¥(g~'Z). We
put

GY:={g="9t, €Gq:9 € S04,z €C{}

and denote by u¥ the Haar measure on the motion group Gy, restricted to the
relatively compact set GY and normalized to a probability measure. Let £ be
a random motion, independent of Z and with distribution x°. We define

X =W (2).

As shown above, X is a point process in K’ with Z = Zx.
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Now suppose that gy € G4 is a motion with Z 2 goZ. Then
90X = go&¥ (6795 ' 90Z) = Wyoe(g02),

hence, for all A € N,(K'),

PlonX € 4)= [ B(I,0(2) € 1)4°(d9).

Ga

by the independence of Z and ¢ and the go-invariance of Z. For gy = Jot4,,
g = Ut we have

gog = VoWt yy 915,
hence (using the decomposition (13.8) of the invariant measure on G )

P(goX € A) = /S ) /C B (Togar, ., 1., (2) € A) Mdw) v(dd).

If ¥ € SOy is fixed, to each x € C¢ there exists a unique representation
z+9 g = y(x) + 2(x)

with y(z) € C¢ and z(z) € Z9. If z varies in C¢, the norm of z(x) remains

bounded, hence z(z) attains only finitely many values z1,...,2, € Z%. For
D;:={reCf:z2(x)=2}i=1,...,r, we then have
T
c =J D,
i=1

and the sets D; are pairwise disjoint. Consider the mapping ¢ :  — y(z) on
Cg. On each D, it is a translation. For x,2’ € C¢ with y(z) = y(2') we have
r—a' = z(z) — 2(z') € Z¢, hence = 2. Thus ¢ is injective. This map is also
surjective, since to each y € C¢ there exists a decomposition y—9~lzg = z—2,
r € O, € Z4. This gives x + 9 1z = y + z, hence y = y(x). Thus ¢ is a
bijection onto C¢, which leaves A invariant. Therefore, we obtain

/C R (oot ., (2) € A) Adx)

P (Spﬁoﬁty(m)+z(z) (Z) c A) )\(dx)

d
0

(195" Z) € A) A(dz)

P (900%;,

. (@)+2(2)
0

P (o0, (0795 Z) € A) A(dx)

d
0

P(9g9%, (01951 Z) € A) \(dx)

d
0

P(@y,ut, (Z) € A) A(dx).

d
0

Il
TS g o
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The rotation invariance of the measure v now yields
PanXed) = [ [ P (2) € )M v(@)
504 JCd

— [ Pw,(2) € g
Ggq
=P(X € A)
and thus go X 2x. O

Due to this theorem, in particular every stationary random closed set Z is
the union set of a stationary germ-grain process X. Moreover, in the case of a
random S-set satisfying the finiteness condition of Theorem 4.3.1 the grains
are convex. Here, the union set Z5 of a germ-grain process X is defined as
the union set

Z)z = U (x4 C)

(z,0)eX

of the particle process induced by X according to (4.13).

To obtain more accessible models, we now consider random sets Z = Zg
arising from an independent germ-grain process. Such a random closed set is
called a germ-grain model. If the mark distribution of X is concentrated on
K', we call Z3 a germ-grain model with convex grains. For a germ-grain
model Z, the capacity functional Tz can be expressed in terms of the process
XY of germs and the capacity functional of the typical grain Z,. In fact, for
C € C we have

T7(C)=1-E [[ 1 —Tz(C—x)). (4.21)
zeX0

To prove this, we choose a suitable representation
~ T ~
X:Z(S(ghzi), T:X(RdxC’),
i=1
and then argue as follows.

1—-T%(C) ZIP’(LTJ(&-FZi)ﬂC:@)

i=1

:P(§Z¢C—Z“ izl,...,T)

_p (f[ (- 1o 7 (6)) = 1)

i=1
.

—E[0 - 1e-2(&)

i=1
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( - 1o K<§z)@(dK>>

=1l
= Hl—TZO — ).
¢

Particularly accessible are those germ-grain models Z for which the process
of germs is a Poisson process. They are called Boolean models (Boolean
models with convex grains if the generating germ-grain process X has
convex grains). These random closed sets are the most tractable ones for
applications. The Boolean model

Z:= |J @+0) (4.22)

(z,0)eX

is (up to stochastic equivalence) determined by the intensity measure ¢ of the
Poisson process of germs and by the distribution Q of the typical grain. For
that reason, we also write Z =: Z(¢, Q).

Formulas for Boolean models are the subject of Section 9.1.

Now let Z be a stationary Boolean model, that is, a stationary random
closed set that is generated, according to (4.22), by an independent germ-
grain process X with a Poisson germ process X°. Then the generated particle

process
Z 6.’I;+C7
(z,C)eX

is a Poisson process, too, as remarked before Theorem 4.2.3. Hence, Z is the
union set of a (by Theorem 3.6.4) stationary Poisson particle process X . From
Theorem 4.2.2 we obtain also a converse, and thus the following result.

Theorem 4.3.2. The stationary Boolean models are precisely the union sets
of stationary Poisson particle processes.

If Z is a stationary Boolean model and X is a generating Poisson parti-
cle process, then the intensity measure of X is uniquely determined by the
distribution of Z, by Theorem 3.6.3 and Lemma 2.3.1. It is translation invari-
ant, and by Theorem 4.1.1 the intensity v (assumed positive) and the grain
distribution Q of X are uniquely determined. By Theorem 4.1.2, also the cor-
responding particle process is uniquely determined. However, this does not
hold for the corresponding marked processes. If, besides Z = Z (v, Q) one
also has Z = Z(y\,Q’), then Q' is in general distinct from the grain distri-
bution Q of X. Yet, it is true that Q is the image of Q' under the mapping

¢ : C — C —¢(C). This follows from Theorem 4.2.1. Thus, the generation
of a stationary Boolean model by an independent germ-grain process with a
Poisson germ process can be achieved in different ways. It is, however, always
possible to choose the ‘canonical’ generating process X..
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If a stationary Boolean model is intersected with a plane S, then in S one
obtains again a Boolean model, stationary with respect to S. In fact, for a
Poisson particle process X, the section process X NS, too, is a Poisson process,
as follows immediately from (3.2).

For a point process of lower-dimensional sets, it may be possible to obtain
certain quantities of X from studying the union set Z. In general this will be
difficult, due to overlappings. In particular, for Poisson processes in C, R or
K and with full-dimensional particles, such overlappings occur with positive
probability, due to Theorem 4.1.4. On the other hand, for a stationary Boolean
model Z, which is the union set of a stationary Poisson particle process X,
this process X is already uniquely determined, as just remarked. Therefore, all
characteristic parameters of X, for example the intensity, must be obtainable
from quantities of Z. We shall study this phenomenon in greater detail in
Section 9.1.

Notes for Section 4.3

1. Theorem 4.3.1 is due to Weil and Wieacker [805].

2. General germ-grain models were introduced by Hanisch [319] and further studied
by Heinrich [324] and others. In Hanisch [319] one finds, for example, formula (4.21).

3. The Boolean model was, after a few precursors (see Cressie [185, p. 753]), at first
mainly studied by the Fontainebleau school; this is reflected in the books of Math-
eron [462] and Serra [729]. The book by Hall [317] contains a detailed discussion
of qualitative and quantitative properties of the Boolean model and more general
germ-grain models, in particular with a view to covering and connectivity proper-
ties. Meesters and Roy [509] study Boolean models in the framework of percolation
theory. Statistical methods for Boolean models are treated by Molchanov [546].

4. Quermass-interaction models. Starting with a Poisson process Y of convex
particles with a finite intensity measure © and the corresponding Boolean model
Z, Kendall, van Lieshout and Baddeley [398] defined quermass-interaction processes
Y’ and their union sets Z’. The particle process Y’ is supposed to be absolutely
continuous to Y with density

d
p(y) = af"™ exp [— Z v Vi(U(y))

Here, y = {Ki,...,K,} is a (finite) realization of Y with n(y) = n, 8 > 0 and
7v; € R are model parameters, « is a normalizing constant and U(y) = ", K.

The particles of Y’ are no longer independent, in general, but satisfy a Markov
property. The main question discussed in [398] is whether Y is stable in the sense
of Ruelle, a property which implies integrability of the density p. The results mostly
concern the planar case with particles being disks or convex polygons.
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4.4 Processes of Flats

In this section, we study processes of flats. A process of k-flats, or k-flat
process, in R? is a point process in the space A(d, k) of k-flats (k-dimensional
planes) in R?, where k € {1,...,d — 1}, and thus a point process in F’ with
intensity measure concentrated on A(d, k). For k = 1, we also speak of a line
process, and for k = d — 1, of a hyperplane process.

For stationary k-flat processes, there is again a decomposition of the in-
tensity measure. The proof is not quite as simple as for the analogous results
in Theorems 3.3.1 and 3.5.1, since A(d, k) can, for k < d — 1, only locally be
represented as a product space with a Euclidean factor.

The Grassmannian G(d, k) of k-dimensional linear subspaces of R? is a
subset of A(d, k) and is closed in F and F'. For L € G(d, k), recall that Ay, is
the k-dimensional Lebesgue measure on L. The (continuous) mapping

d—1 d—1
mo: | J Al k) — | G(d, k)
k=1 k=1

associates with every plane its translate through 0.

Theorem 4.4.1. Let @ be a locally finite, translation invariant measure on
A(d, k). Then there exists a uniquely determined finite measure Oy on G(d, k)
such that

O(A) = / / 14(L+2)Apo(de) Og(dL) (4.23)
G(d,k) J L+
for every Borel set A € B(A(d, k)).
Proof. Let U € G(d,d — k), and define
Gy = {L € G(d,k) : dim (LN U) = 0}
and Ay :={L+x: L € Gy, z € U}. The mapping

QD:GUXUH AU
(L,z) — L+x

is a homeomorphism. Let A C Gy be a Borel set. For Borel sets B C U, let
n(B) := O(¢(A x B)).

Then 7 is a locally finite, translation invariant measure on U and thus a
multiple of the Lebesgue measure A\y. Denoting the factor by p(A), we have

O(p(A x B)) = p(A)Au(B).

Evidently, p is a finite measure on Gy. Thus,
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¢ 1(O)(Ax B) = (p@ A y)(A x B),

which gives ¢~ 1(0) = p® Ay and, therefore, OL_ Ay = ¢(p® A\yr). Hence, for
every nonnegative measurable function f on A(d, k) we have

/AUf 10 = /G /Uf (L +2) M (dz) pldL).

For given L € Gy, let II;, : U — L* denote the orthogonal projection
to the orthogonal complement of L. It is bijective, since L € Gy . Therefore,
I, (A\v) = a(L)Ap1, with a factor a(L) > 0 that depends only on L. Further,
f(L+z)= f(L+1g(z)). This yields

/Uf(L—i—x)/\U(dx):a(L) - f(L+z)Apo(da).

Defining a measure Oy on Gy by a(L)p(dL) =: Oy (dL), we have
/ fde = / fL+ ) Apo(de) Op(dL).
Ay Gy Lt

We interpret Oy as a measure on all of G(d, k), with Oy (G(d, k) \ Gy) = 0,
and then have

/ £d6 = / F(L +2) Aps (dz) O (dL).
Au G(dk) J Lt

Every set Gy, U € G(d,d — k), is open in G(d, k), hence there are finitely
many subspaces Ui, ..., U, € G(d,d — k) with G(d, k) = |J*, Gu,. The sets

Au,, i = 1,...,m, cover A(d,k) and are invariant under translations. The
translation invariant Borel sets defined by Ay := Ay, \ (A1 U ... U Ax_1),
k=1,...,m, form a disjoint covering of A(d, k). Since @L_A; is translation

invariant, the measure ©; := (@ A;)y,, defined as above, satisfies

/ fde :/ F(L+2) Ao (dz) ©;(dL).
A; G(d,k) JL+

Therefore, the measure O := @1 + ... + O, satisfies (4.23).
From (4.23) we obtain, for A € B(G(d, k)),

O0(A) = Rdl_k@ (Fpa Ny (4)). (4.24)

From (4.24) it is obvious that @ is finite and uniquely determined. O

Applying the preceding theorem to intensity measures, we immediately
obtain the following result.
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Theorem 4.4.2. Let X be a stationary k-flat process in RY with intensity
measure © # 0. Then there are a number v € (0,00) and a probability measure
Q on G(d, k) with

/ FdO =~ / F(L+2) A (do) QL) (4.25)
A(d,k) G(d.k) J Lt

for all nonnegative measurable functions f on A(d,k). Here v and Q are
uniquely determined by ©.

We call v the intensity and QQ the directional distribution of the sta-
tionary flat process X. If X is moreover isotropic, then Q) is rotation invariant,
as follows from the uniqueness. By Theorem 13.2.11, there is only one nor-
malized rotation invariant measure on G(d, k), the Haar measure vy.

Occasionally (for example, when sections are considered) we have to allow
flat processes with © = 0; for these we define v = 0.

The interpretation of v and @ is clear from (4.25), since for A € B(G(d, k))
this gives

~Q(A) = L EX (de N 770_1(/1)) , (4.26)
Kd—k
in particular
v = ! E X (Fpga) (4.27)
Kd—k
and .
Q(4) = EX (FBd nm (A)) (4.28)

E X (Fpga)

The representation (4.28) explains why the measure Q is called the directional
distribution of X.

For a further interpretation of the intensity 7y, we need a measurability
result.

Lemma 4.4.1. Let X be a point process in A(d, k). Then

> As(A) (4.29)

BeX
is measurable for all A € B(R?).

Proof. It is sufficient to consider the case A € mB?, m € N. First let A be
compact, and assume that F; — E in G(d, k). Then there exist rotations g; €
SOy, i € N, converging to the identity for i — oo, and such that gi_lE =F;.
Using the representation

A () = [ Lyial) As (o),
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one shows as in the proof of Theorem 12.3.6 that the function F +— Ag(A)
is upper semicontinuous and thus measurable. By Theorem 3.1.2, also (4.29)
is measurable. Now let A be the system of all Borel sets A € mB? for which
(4.29) is measurable. We have shown that A contains all compact subsets
of mB®. Evidently, A is closed under disjoint countable unions and relative
complements. Since C is N-stable, A contains the o-algebra generated by the
compact sets in mB?, and, therefore, all Borel sets in mB<. ]

The measurability being shown, we can define
px(A):=E Y Ag(4), AcBR?),
EEX

and thus obtain a locally finite measure ¢ x. If X is stationary, ¢x is transla-
tion invariant and, therefore, of the form ¢x = aA with a number « € [0, c0).
The following theorem shows that this constant is precisely the intensity ~.

Theorem 4.4.3. Let X be a stationary k-flat process in R with intensity ~.
Then
E > Ap =7\
EeX
Proof. Using the Campbell theorem and Theorem 4.4.2, we get

E > Ag(4) :/ Ae(A) O(dE)

Pex A(d,k)

— / Apso(A) Aps (dz) Q(dL)
G(d,k) J L+

= [ Ao
G(d,k)
=A(4),
as stated. O

Further interpretations of the intensity will be obtained in Section 9.4. In
particular, formula (9.33) provides k + 1 such interpretations.

Processes of k-flats satisfying Poisson assumptions again have particular
properties. From Theorems 3.2.1 and 3.6.1, the following is immediately clear.

Theorem 4.4.4. Let vy € (0,00) and let Q be a probability measure on G(d, k).
Then there is (up to equivalence) precisely one stationary Poisson k-flat pro-
cess X in R® with intensity ~ and directional distribution Q. The process X
is isotropic if and only if Q = vy.

In the next theorem, we collect some consequences of the independence
properties of Poisson k-flat processes. We say that two linear subspaces L, L’
of R? are in general position if
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lin(LUL)=R? or dim(LNL)=0.

Two k-planes E, E’ are said to be in general position if their direction spaces
mo(E), mo(E") are in general position.

Theorem 4.4.5. Let X be a stationary Poisson k-flat process in RY.
(a) If k < d/2, then a.s. any two k-flats of X are disjoint.

(b) If the directional distribution Q of X has no atoms, then a.s. any two
k-flats of the process X are mot translates of each other.

(c) If the directional distribution of X is absolutely continuous with respect to
the invariant measure vy, then a.s. any two k-planes of the process X are
in general position.

Proof. Let A € B(A(d, k)?). From Theorem 3.1.3, Corollary 3.2.4, Theorem
4.1.2 we get

B Z 14(E1, Es) =/ 1,dA®

2
(E1,E2)EX? A(d;k)

:/ / 1a(Er, By) O(dE,) O(dEy)
A(d,k) J A(d,k)

:72/ / / / ]_A(L1 +£C17L2-|—(E2)
c@r Jawr Jot Jot

X )\Lll (dl‘l) )\LZL (dxg) Q(dLl) Q(dLg)
To prove (a), suppose that k < d/2 and choose
A= {(Ey, Ey) € A(d,k)? : Ey N By # 0}.

For fixed k-flats L1 € G(d, k), Ey € A(d, k), the integral
/ ]-A(Ll +.’L’1,E2>)\L%(dl’1)
Li

gives the (d — k)-dimensional Lebesgue measure of the image of E under the
orthogonal projection to Li-, which is zero. We deduce that

E ) 14(E1,Ey) =0,
(E1,B2)eX?

and from this the assertion (a) follows.
To prove (b), let m € N and

A= {(Fy, Ey) € A(d, k)? : E;nmBe # 0, i = 1,2, Ey is a translate of Ey}.
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Then we get

E ) 1a(Ey,Ey)

(Ev,B2)eX?

< (’Ymdklid—k)Q/G( )/G( )1A(L17L2)Q(dL1)Q(dL2)
d.k d.k

= (i) [ QL)) QL)
G(d,k)
=0,

since Q has no atoms. Assertion (b) follows, since m € N was arbitrary.
To prove (c), suppose that Q has a density f with respect to v. Form € N
we choose

A= {(E1, Ey) € A(d, k)* : E;nmBY £ 0, i = 1,2,
E1, Es not in general position}.
As above, we obtain similarly

E ) 1a(Ey,Ey)

(B1,B2)€X2

<Gt wa)' [ ) m@L) f(La) mde)
G(d,k) JA(L2)
pr— ()7

since the set A(La) := {L1 € G(d, k) : (L1,L2) € A} satisfies v4(A(L2)) =0,
as can be deduced from Lemma 13.2.1. Since m € N was arbitrary, assertion
(c) follows. 0

When considering section processes in the following, we shall also meet j-
flat processes for j = 0. These can be considered as ordinary point processes.
Namely, we identify every one-pointed set {x} with z, observing that the
mapping {x} + x maps the subspace {{z} : € R?} of F/ homeomorphically
to RY.

Sections with a Fixed Plane

We turn to sections with fixed planes, a topic which, at least in small dimen-
sions, is important for applications. Let X be a stationary k-flat process in R%
(ke{l,...,d—1}), and let S be a fixed (d — k + j)-flat with 0 < j <k — 1.
We recall the definition of the section process,

(XNnS)w)= > bdgns

EeX, ENS#()
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As we shall see below, X NS is a j-flat process. Its realizations lie in the section
plane S and it is stationary with respect to S. Therefore, in the following
X NS is considered as a stationary j-flat process in S. The question arises how
intensity and directional distribution of X NS are related to the corresponding
parameters of X. This will now be investigated.

Because of the stationarity of the process X it is no restriction to assume
that S € G(d,d — k + j). The nonempty intersections £ N S, E € X, can
be r-flats with » € {4,..., min(k,d — k + j) }; we show, however, that almost
surely they are j-flats. Let

A:={E e A(dk): dim(ENS) > j}

(with the usual convention that dim ) := —1). By (4.25),
EX(A) = O(A) = 7/ / 1a(L + ) A (de) QL)
G(d,k) J L+

If 14(L+2) =1, then L and S span only a proper subspace U of R?, and we
have € U and dim (L+ N U) < dim L*. This gives

EX(A) <7 /G . Ao (LT NU)Q(AL) = 0.

Hence, almost surely we have dim(ENS) = jor ENS = for £ € X.
Therefore, X NS is a j-flat process in S (which may have intensity 0, though).
Similarly we obtain that X NS is a.s. simple. In fact, if a j-flat in S is generated
as the intersection of two distinct k-flats Fy, Eo with S, then Fq N Es is an
i-flat with j <4 < k — 1. For given i, we consider all i-flats which are the
intersection of two flats of X (counting every such i-flat only once, even if it is
generated in two different ways). In this way, a process Y; of i-flats is obtained
(the measurability is not difficult to prove). The process Y; is stationary. By
the argument used above and because of i < k — 1, the flats of Y; intersect
the plane S a.s. in planes of dimension less than j. This shows that X N S is
a.s. simple.

First we consider now the case dim S = d — k, where X NS is an ordinary
point process in S. In the next theorem, we determine the intensity of this
point process. For the subspace determinant [-,-] occurring in the following
we refer to Section 14.1.

Theorem 4.4.6. Letk € {1,...,d—1}, and let X be a stationary k-flat process
in R with intensity v and directional distribution Q. Let S € G(d,d—k), and
let yxns be the intensity of the point process X NS. Then

s = / 1S, L] Q(dL).
G(d,k)
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Proof. Let B%~* be the unit ball in S. By the definition of the intensity of
the point process X NS,

Rd—kYXNS = E(X n S)(de—k)
— EX(Fpat) = O(Fpa )

- 7/c;(d,k) /LL 17 pas (L + @) Aps (dz) Q(dL)

= 7/ A (BERILY) Q(dL).
G(d,k)

Here B4=%|L* is the image of B?~* under the orthogonal projection to L*.
The (d — k)-volume of this image is given by Ag(B4~¥)[S, L], from which the
assertion follows. O

In the cases k = 1 and k = d — 1 it is convenient to replace the direc-
tional distribution Q by the spherical directional distribution (. This is
the measure on the unit sphere S?~! which, for a set A € B(S?~!) without
antipodal points, is defined by

1
p(A) = 5@({L(u) tu € A}) ifk=1,

for L(u) :=lin{u}, respectively
©(A) = %Q({uL cu € A}) if k=d— 1. (4.30)

(The factor 3 appears here since L(u) = L(—u) and u* = (—u)*.) By ad-
ditivity, ¢ is then defined for all A € B(S9~1). Thus, ¢ is an even prob-
ability measure on S?~. Writing ~vx (u) :== Yxnr) if k& = 1, respectively
vx (u) :=vxaur if K =d —1, we then have

) =7 [ )] efdn). (431

The right side of (4.31) defines the support function of a centrally symmetric
convex body, which can be associated with the measure . This body belongs
to the class of zonoids. Such associated zonoids will be studied and applied in
Section 4.6.

A corresponding uniqueness theorem (Theorem 14.3.4) shows that the
function vy in (4.31) uniquely determines the measure ¢ (and therefore also
~v and ¢). In particular, for a stationary Poisson line or hyperplane process
X, the distribution Px is uniquely determined by the section intensities
vxns, S € G(d,d — 1), respectively S € G(d,1) (see also Section 4.6). For
1 < k < d— 1, however, a stationary Poisson k-flat process X is in general
not uniquely determined by the section intensities yxng, S € G(d,d — k); see
Note 2 of this section.
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Now we consider also the case of higher-dimensional section planes S,
where we obtain in S an intersection process of j-flats with j > 0. Let X be a
stationary k-flat process, and let S € G(d,d — k + j), with j € {1,...,k — 1},
be a fixed plane. As shown above, X NS is a.s. a j-flat process. Its intensity
measure, @xng, is concentrated on the space

G(S,j)={LeG(d,j): LCS}.

Theorem 4.4.7. Letk € {2,...,d—1}, and let X be a stationary k-flat process
in R with intensity v and directional distribution Q. Let j € {1,...,k — 1}
and S € G(d,d — k+ j); let vxns be the intensity and Qxng the directional
distribution of the j-flat process X N S. Then, for A € B(G(d, 7)),

xsQxns (A) = v /G o, TN SIL S| Q).

(If vxns = 0, then Qxng is not defined, and the expression vxnsQxns has
to be read as the zero measure.)

Proof. Let P € B(A(d, j)). By Campbell’s theorem and Theorem 4.4.2,

Oxns(P) =E(XNS)(P)=E Y 1p(ENS)
EeX

:/ 1p(EN S) O(dE)
A(d,k)

:v/G(dJc) /LL 1p((L+2)NS) Aps(dw) Q(dL).

The intensity measure ©xng is concentrated on the j-flats in S and is in-
variant under the translations of S into itself. By (4.24) (applied in S) and
the definition of intensity and directional distribution, for A € B(G(d, j)) and
Bg := BN S we get

YxnsQxns(A)

1 _
= Oxns(Fps Ny (A))
Kd—k

gl

ok / / Lrpgrmyt ) (L +2) N.8) A (de) Q(AL)
d—k Jad,k) J Lt

v
Rd—k

/ 14(L N S)Ag_r(Bs|LY) Q(dL),
G(d,k)

since (L +x) NS € Fp, Ny (A) obviously holds if and only if LN S € A
and z € Bg|L*. If T denotes the orthogonal complement of L NS in S, then

Bs|Lt = (Bg|T)|L* = Br|L*.
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The orthogonal projection from T' to L+ has the absolute determinant [L, S],
hence
Ai—k(Bs|L*Y) = ka_x[L, S].

This yields the assertion. a

Intersection Processes

By intersecting flats in a k-flat process among themselves, we obtain new
lower-dimensional flat processes. We shall now study such intersection pro-
cesses in the case of stationary Poisson flat processes. In particular, we are
interested in how the intensity and the directional distribution of an intersec-
tion process depend on the data of the original process. We restrict ourselves to
two cases: intersecting k-tuples of hyperplanes, or intersecting pairs of r-flats,
where r > d/2. In some cases we shall be able to obtain sharp inequalities
between the intensities of the intersection process and the original process;
this will be explained in Section 4.6.

First we consider hyperplane processes. It is convenient to represent hy-
perplanes in the form

H(u,7):={zx € RY: (x,u) = 7} (4.32)

with a unit vector « € S¢~! and a number 7 € R. Every hyperplane H €
A(d,d— 1) has two such representations. Instead of H (u,0), we shall write u™
again.

Let X be a stationary hyperplane process in R? with intensity v # 0
and directional distribution Q. Using the spherical directional distribution ¢
introduced by (4.30), the decomposition of the intensity measure @ given by
Theorem 4.4.2 can be written in the form

/A(d,dl) o =1 /S«H [ _ JUH(w, 7)) dr o(du). (4.33)

Let k € {2,...,d}. For every realization of X, we consider the intersection
of any k hyperplanes in the process which are in general position. We want
to show that in this way we obtain a stationary (d — k)-flat process Xj; we
shall call this the intersection process of order k of the process X. For
P € B(A(d,d — k)), define the function fp : A(d,d — 1)*¥ — R by

fe(Hy, ..., Hy) = (4.34)

1, if HyN...NH € P,
0 else.

The set of all (Hy, ..., Hy) € A(d,d—1)* with dim (H;N...N Hg) =d—k is

open, and on this set the mapping (Hq, ..., H;) — HyN...NHy is continuous.

Hence, fp is measurable. By Theorem 3.1.3, the function
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Xi(P) ::% > fp(Hy, ... Hy)

" (Hy,..,Hy)EXE

is measurable. If P is compact, there exists a ball that is hit by all (d— k)-flats
in P and hence also by all hyperplanes Hy, ..., H; with fp(Hy,...,H) = 1.
It follows that Xy (P) is a.s. finite. Thus, X}, is a point process in A(d,d — k).
Obviously, it is stationary, but it may have intensity zero and need not be
simple. If X is a stationary Poisson hyperplane process, then almost surely
either the intersection Hy N ... N Hy is empty or Hy,..., Hy are in general
position, as follows by the method used in the proof of Theorem 4.4.5. There-
fore, X is a.s. simple. That X}, is not a Poisson process, in general, is already
seen in the case d = 2, k = 2, since for a stationary Poisson point process in
R? a.s. no three points are collinear.

In the following, for vectors ui,...,u, € R* m < d, we denote by
Vo (1, ..., uy) the m-dimensional volume of the parallelepiped spanned by
ULy ooy Umy-

Theorem 4.4.8. Let X be a stationary Poisson hyperplane process in R% with
intensity v # 0 and spherical directional distribution ¢. Let k € {2,...,d},
and let Xy, be the intersection process of order k of X. Then the intensity yi
and the directional distribution Q. of Xi are given by

Y6 Qr(A)
k

z%/ / Ta(ui N Nud)Vi(ur, ... ug) @(duy) - - - o(dug)
. Sd—1 Sd—1

for A€ B(G(d,d — k).

(For k = d, Qx(A) and 14(ui N...Nug) have to be omitted from the
formula. If v, = 0, the measure Qj is not defined; then ~;Qy has to be read
as the zero measure.)

Proof. Let Oy be the intensity measure of the intersection process Xy (the
subsequent proof also yields that Oy is locally finite). For P € B(A(d,d — k))
let fp be the function defined by (4.34). Then

O, (P) = EX(P)

:lE Z fp(Hy, ..., Hy)

k!
(H17...,Hk)EX§
1
= fpdA®),
k') aa,a—1)r

by Theorem 3.1.3. Here A®*) = ©F by Corollary 3.2.4. Together with (4.33)
this gives
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k1O (P) = /dd L /A(dd ) fo(Hy,... Hy) O(dH,) - O(dHy)

ko /S/ et H )

X dry - dr o(duy) - - p(duyg).
Let A € B(G(d,d — k)) and choose P := Fga N7, '(A). By (4.26),

k"yk(@k(A) = :—’i@k(]:Bd n W(;l(A))

:Z_:/Sd_l,,,/Sd_l/_O:O.../_pr(H(uhnLn.,H(UkaTk))

xdry - dr p(dug) - - - p(dug),
where

‘]‘lp(I‘I(’u,]_,7'1)7 e 7H(uk77—k))
=T1a(uynN... ﬂué‘)ly.—Bd(H(ul,n) N...NH(ug, 1%))-

For the computation of the integral

1 ::/ / 1_7:Bd(H(’U,1,T1)ﬂ...ﬂH(uk7Tk))dT1-~-di7

we first assume that wq,...,u; are linearly independent. Let & = d. For
T = (Tl,...,Td) let T(7) be the intersection point of the hyperplanes
H(uy,711),...,H(ug,7q4). Then I is the d-dimensional Lebesgue measure of
the set T~ ( 4). The mapping T is injective, and its inverse is given by
T~Yx) = ((z,u1),...,{w,uq)); the Jacobian of T~ is Vg(us,...,uq). There-
fore,

Id = HdVd(ul, ce ,ud).

For k < d we obtain
Ik = nkvk(ul, e ,’U,k),

by applying the obtained result in the space lin {uy, ..., u;}. Thus we get

/ / fe(H(uy,m), ..., H(ug, 7)) dry - - d7ge

=1a(uf 0. N ) ke Vi(u, ... ug).

This equation also holds if uy, . .., uy are linearly dependent, since in that case
both sides are zero. This completes the proof. ]
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Now we consider a stationary process X of r-flats, where d/2 <r <d—1.
In every realization of X, we take the intersection of any two flats in the
process which are in general position. By similar arguments to those used
for hyperplanes, we see that we obtain in this way a stationary process of
(2r — d)-flats. We denote it by X5 and call it the intersection process of
order 2 of X.

Theorem 4.4.9. Let d/2 < r < d—1, let X be a stationary Poisson process of
r-flats in R with intensity v # 0 and directional distribution Q. Let X5 be the
intersection process of order 2 of X. Then the intensity vo and the directional
distribution Qo of X5 are given by

_7
W@ =T [ [ 1.EnRE FouE) o)

for A € B(G(d,2r — d)).

(If 42 = 0, the measure Q2 is not defined; then 12Qy has to be read as the
Zero measure. )

Proof. Let ©y be the intensity measure of X5. For A € B(G(d,2r — d)) we
obtain, similarly to the proof of Theorem 4.4.8,

72Q2(A)
1

K/2(d—7‘)

i / / LA(E N F)Ls,, (B +2) 0 (F +))
2"»2d r Jaw,r) Jar Jer SRt
X )\FJ_ (dy) )\EJ_ (dx) Q
In the integral

1) = [ 1ru((B+2) 0 (P 9) A ),

Oo(Fpa Nyt (A))

the integrand is equal to 1 if and only if y € (B4 N (E + z))|F+. As in the
proof of Theorem 4.4.7 (observing that B N (E + ) is now a ball of radius
1 —||z]]?), we obtain

I(x) = Ka—r[E, FI(1 = [Ja*)=7/2.
This gives

L] 1m0 (F 4 ) A (@) A ()
EL JFL

_ md,T[E,F]/ (1 — [[]2) @72 7. (da)
BiNEL

= K2(d—r) [E', F]
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This yields the assertion. O

The Proximity of Non-intersecting Poisson Flats

The considered intersection densities of stationary Poisson hyperplane pro-
cesses are examples of real parameters that describe the geometric behavior
of such processes and are not determined by the intensity alone. We now
suggest a similar parameter for r-flat processes, where r < d/2. For these,
we cannot work with intersections. The proposed parameter is a means to
measure how close flats in general position of the process approach each other,
in the mean. (If the directional distribution of a Poisson r-flat process is
absolutely continuous, then by Theorem 4.4.5 almost surely any two flats in
the process are in general position.)

Let 1 <r < d/2 and Ey,Ey € A(d,r). If Ey, E5 are in general position,
there are uniquely determined points x1 € E; and x9 € F5 such that

d(Ey, Ey) := ||z1 — 22| = inf{[|y1 — y2|[ : y1 € E1, y2 € Ea}.

We call the point
1
m(Ey, Ey) := 5(1‘1 + z2)

the midpoint of Fy and Fs.

Let X be a stationary r-flat process in R?, where 1 < r < d/2. For every
realization of X we take the midpoint m(E1, Es) of any two flats Eq, By of
the realization which are in general position and satisfy d(Fy, E3) < 1. (The
bound 1 for the distance is only chosen for convenience; for a Poisson process,
a different bound would result in an additional factor in (4.35).) In this way,
we obtain a stationary point process in R%, the midpoint process of X. Its
intensity is denoted by 7(X) and called the proximity of the flat process X.
(Here 7(X) = 0 is possible, for example, if the directional distribution of X
is degenerate.)

Theorem 4.4.10. Let 1 < r < d/2, and let X be a stationary Poisson r-flat
process in RY with intensity v > 0 and directional distribution Q. Then the
prozimity of X is given by

1

w0 =grua? [ ] B RQEBQER). @)

Proof. For Ey, Ey € A(d,r), define

1, if Fq, E5 are in general position,
9(Ey, By) = d(E1, E;) <1 and m(E,, Es) € BY,

0 otherwise.
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Since the proximity 7(X) is the intensity of the midpoint process of X, it is
given by the expectation

X)) =—E Y g(BE).

2
(E1,B2)EX2

By Theorems 3.1.3, 4.4.2 and Corollary 3.2.4, we obtain
/ / 9(Er, By) O(dE,) O(dE)
25(1 A(d,r) JA(d,r)

_ / / // 9(E +2,F +y)
24 G(dr) Jar) Jer Jre

X Ap(dy) A (de) Q(AE) Q(AF).

m(X)

We compute the inner double integral
EF) = [ [ o+t e (@) s (d2)
Bt JFL

for two fixed subspaces E, F € G(d,r) in general position.
Let E4+ F =V and U := V*. Vectors 2 € E+ and y € F'+ have unique
decompositions

r =21+ T2, IE1€ELQV,$2€U,
y=yi+y2, w1 €EFNV, yel,

which gives

](E7F>:/ / J(E,F,x2,y2) Av(dea) Ay (dy2)
with
J(E, F,x2,y2)
:/Emv /F‘Lmvg(E‘Fxl+x2aF+y1+y2))‘FLﬂV(dyl)>\ELﬂV(dxl)~

To compute this double integral, let z € V' be the intersection point of F + 21
and F' + y;. The distance of £ + x1 + x5 and F + y1 + yo is realized by the
points z + 29 and z 4 ya, hence d(E + 21 + x2, F + y1 + y2) = ||x2 — y2|| and
m(E+x; + a0, F4+y1+y2) =2+ (x2+y2)/2 . Thus, J(E, F,x2,y2) = 0 if
||[x2—y2]| > 1. Assume that ||xo—ys2|| < 1. Then g(E+x1+x2, F+y1+y2) =1
if and only if 2z + (z2 + y2)/2 € B The set V N (B — (z2 + y2)/2) is a 2r-
dimensional ball with radius (1 — ||(z 4+ y2)/2||?)*/?. Tt follows that

J(E,F,w3,y2) = kior (1 = ||(z2 +y2)/2|*)"[E, F],
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if |2 —y2| <1 and ||[(z2 + y2)/2|| < 1, and 0 otherwise. This yields
Kar
0=z [ B Qe QuWE) - K
Kd G(d,r) JG(d,r)
with
K= /U2 w2 — ol < T}1{[|(22 + y2)/2]] < 1}

X (1= [l(w2 +52)/2]*)" Ap(d(22,72)).-

The substitution xo — yo = u, (z2 + y2)/2 = v allows us to compute this
integral, which completes the proof. ]

Remark. Let X be as in Theorem 4.4.10. Let Q* be the image measure
of Q under the mapping L — Lt from G(d,r) to G(d,d — r). There is a
stationary Poisson (d — r)-flat process X+ with directional distribution Q-+
and intensity . A comparison of Theorems 4.4.9 and 4.4.10 shows that the
second intersection density 72(X ) of the process X+ and the proximity 7(X)
of the process X are related by

1
§K3d72r72(XL) = m(X).
Therefore, inequalities for the second intersection density of a stationary Pois-
son flat process, as they are treated in Section 4.6, can be transferred to the
proximity.

Notes for Section 4.4

1. Flat processes, in particular under Poisson assumptions, were first studied inten-
sively by Miles [521, 523] and Matheron [460, 461, 462]. In the book by Matheron
[462] one finds most of the results of Section 4.4, though partially with different
proofs. For example, Theorem 4.4.1 appears there (p. 66) with a proof involving an
extension of conditional probabilities, whereas we have preferred to give a direct and
more elementary proof.

2. In the discussion following Theorem 4.4.6, we have mentioned the result (first
pointed out by Matheron) that the distribution Px of a stationary Poisson k-flat
process X is uniquely determined by the section intensities vxns, S € G(d,d — k),
if either £k = 1 or k = d — 1. That there is no corresponding uniqueness result for
1 <k < d—1, was shown by Goodey and Howard [271]. Sections with planes S of
dimension d—k-+7, 7 € {1,...,k—1}, raise at least two questions: whether the section
intensities yxng, or whether the intensity measures of X NS, S € G(d,d — k + j),
are sufficient to determine the distribution of the Poisson k-flat process X. These
questions were answered partially by Goodey and Howard [271, 272] and completely
by Goodey, Howard and Reeder [273].

The distribution Px of a stationary Poisson hyperplane process X is, more
generally, determined by the section intensities yxns, S € G(d,r), for fixed
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r € {1,...,d — 1}. Corresponding inversion formulas (for the intensity measure of
X)) are discussed in Spodarev [733, 734] (in a purely analytic setting, more general
inversion formulas are treated by Rubin [653]).

3. Theorem 4.4.10, together with Theorem 4.6.6, is found in Schneider [699], though
with a factor 1/2 missing.

4. In analogy to the idea of proximity, Spodarev [733, 735] introduced the rose of
neighborhood 4, of a stationary k-flat process X, as a function on G(d, r) where
k+r < d.For S € G(d,r), vk (S) is the intensity of the (stationary) process of points
in S arising as projections of midpoints m(E, S), E € X, with distance d(E,S) <1
(say). Relating X to a ‘dual’ process X' of (d — k)-flats, vi,(S) transforms into
the section intensity 7yy/ng1 of X’. Therefore, the uniqueness, respectively non-
uniqueness, results for section intensities (see Note 2 above) carry over to the roses
of neighborhood.

For a similar situation, a process X of k-flats and a fixed r-plane S with r+s < d,
Hug, Last and Weil [360] discussed the question whether distance measurements
from S to (the union set of) the flats in X suffice to determine the directional
distribution of X. Their results also hold for non-stationary processes X (see the
Notes to Section 11.3).

5. The complementary theorem of Miles (see Note 5 of Section 3.2), in its versions
for Poisson flat processes due to Miles [523] and to Mgller and Zuyev [555], was con-
siderably extended by Baumstark and Last [86]. They considered stationary Poisson
processes of k-flats (k € {0,...,d — 1}) in R? and obtained that the integral geo-
metric contents of several closed sets constructed on such processes have conditional
Gamma distributions.

4.5 Surface Processes

After studying processes of k-dimensional flats, it is a natural next step to
consider processes of k-dimensional surfaces. Since unbounded surfaces can be
represented as unions of countably many bounded surfaces, we may restrict
ourselves to the latter. In particular, we shall consider particle processes where
the particles are compact surfaces. For example, a surface process in R3
is obtained if the particles are almost surely two-dimensional surfaces, and a
particle process consisting of curves is a curve process or fiber process, etc.
The technical requirements for a theory of particle processes of k-dimensional
surfaces depend very much on the generality of the notion of k-surface that is
employed. A suitable general concept is that of a H¥-rectifiable closed set. We
refer to Section 14.5 for the definition of H*-rectifiable sets, and to Zihle [823]
for a proof of the fact that the system X'*) of H¥-rectifiable closed sets in R%
is a measurable subset of F. Therefore, a k-surface process can be defined as
a point process in F the intensity measure of which is concentrated on X (k).
The treatment of such processes, however, requires methods from geometric
measure theory, which are outside the scope of this book. For that reason, in
the following we treat, with complete proofs, only an elementary version of
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surface processes, namely special processes in the convex ring R. For this, we
consider k-dimensional surfaces (k= 1,...,d — 1) that can be represented as
finite unions of k-dimensional compact convex sets, for example, polyhedral
surfaces of dimension k.

For k € {1,...,d — 1}, we denote by K% the set of all convex sets K € K
of dimension k and by R®*) c R the set of all finite unions of elements from
K*) . Elements of R(*) are briefly called k-surfaces in the following. Obvious
modifications of the proof of Theorem 2.4.2 show that K*) and R*) are
Borel subsets of F. By a k-surface process in R? we understand a particle
process with intensity measure concentrated on R(*). This elementary case
is sufficient for demonstrating the typical questions and results about surface
processes. The extension to more general models then requires no principally
new ideas, but is technically more involved. The methods and results from
[823] allow us to obtain the results below with the system R*) of elementary
k-surfaces replaced by the system X*) of H¥-rectifiable closed sets, but this
is not carried out here.

Let X be a stationary k-surface process with intensity measure © # 0.
According to Theorem 4.1.1, this process has an intensity 7 and a grain dis-
tribution Q. The intensity v has to be distinguished from the k-volume den-
sity or specific k-volume. The latter is the intensity of the induced random
k-volume measure (and is, therefore, by some authors called the ‘intensity’ of
X). Tt can be introduced as follows. First we note that for C' € R%*) we have

Vi(C) = H*(0), (4.36)

where V}, is the additive extension of the kth intrinsic volume to the convex
ring R (see Sections 14.2 and 14.4) and ‘H* is the k-dimensional Hausdorff
measure. This follows by additivity, since (4.36) is true for C € K*). The
function C' — V4 (C), C € R¥) . which we call the k-volume, is measurable by
Theorem 14.4.4 (the additive extension of Vj is measurable on R). By (4.36)
it is nonnegative.

According to (4.6), the k-volume density of X is defined by

Co
We call Vi (X) the specific k-volume of X (the possibility of Vi (X) = oo is
not excluded).
We define a random measure 7 by

n = Z HFLC.
ceX

Almost surely 7 is locally finite, since X is a particle process, and each particle
C € R™ satisfies H*(C) < oo. The following theorem shows that the specific
k-volume, if finite, can be interpreted as the intensity of the stationary random
measure 7).
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Theorem 4.5.1. Let X be a stationary k-surface process in R® with Vi, (X) <

0o. Then
> HLC
Ccex

is a stationary random measure, and Vk(X ) is its intensity, that is,

— 1

Vie(X) A E Y HMCNA) (4.38)

ceX
for all A € B(RY) with 0 < M\(A) < co.
Proof. Let A € B(R?) be given. We define
f(C):=HLC)A) =HFANC)  for Ce RW.

Assume, first, that A is compact and that K;, K € K*) satisfy K; — K in the
Hausdorff metric. Let E € A(d, k) be the plane with K C E. There exist rigid
motions g;, converging to the identity, such that ¢;K; C E and ¢;K; — K.
For every = € R?,

limsup 1y, (anr,) (z) < 1ank (2).

As in the proof of Theorem 12.3.6, we get

HM(ANK) :/

Lan () H*(dz) > / lim sup 1, (an i) (2) H* (da)
E E

> limsup/ 1y, (ank:) (2) HF (dz) = limsup H"(A N K;).
E

Thus, on K*) the function f is upper semicontinuous and, therefore, mea-
surable. Modifying the proof of Theorem 14.4.4, we see that f is measurable
on R™ . Since this holds for all compact sets A, it holds for all Borel sets
A. Now the Campbell theorem shows that > v (H"LC)(A) is measurable.
It follows that » ..y H¥L_C is a random measure; clearly it is stationary.
Campbell’s theorem further shows that

ES (ML CO)(4) = 7/ HE(AN (C + o)) A(dz) Q(dC)

cex Co JRY
=7, Vi(C)A(A) Q(dC)
= Vi(X)A(4),

where Theorem 5.2.1 (with o := H*L_C) and (4.37) were used. This proves
(4.38). Now the assumption V4(X) < oo implies that ... H*L_C has lo-

cally finite intensity measure and intensity Vj(X). 0
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A E-surface has, at H*-almost every point, a k-dimensional tangent plane.
For a k-surface process, this leads to the notion of its directional distribution.
Let C € R®), and let C' = Ui~ C; be a representation with C; € K for
i =1,...,m. The set of all y € C lying in some C; and some C}, where Cj
and C; have different affine hulls, is of H"*-measure zero. For the remaining
y € C, we can choose ¢ with y € C; and then define the tangent plane 7;,,C
of C at y as the linear subspace of R? which is parallel to the affine hull of
C;. Thus, at H*-almost all y € C, the tangent plane is uniquely determined.

Theorem 4.5.2. Let X be a stationary k-surface process in R? with specific k-
volume satisfying 0 < Vi (X) < oco. Then there is a unique probability measure
T on the Grassmannian G(d, k) satisfying

ECZX /B LA, M (dy) = Ta(X)N(B)T(A)

for all B € B(RY) with 0 < \(B) < oo and all A € B(G(d, k)).

Proof. From the Campbell theorem and from Theorem 5.2.1 we obtain

k
E 02; /B La(B,0) M )

_ 1k )
7/co /]Rd /Bm(cﬂ) 14(Ty(C + z)) H"(dy) A(dz) Q(dC)
_ i )

N ,y/co /Rd /(B—z)ﬂC ]—A(TyC) H (dy) )\(d ) Q(dC)

—A(B) /c /C 14(T,C) H* (dy) Q(AC).

The mapping
Ay [ [ L@o @) eEe), A€ BG@R),
Co JC

is a measure n with 1n(G(d, k)) = Vi(X). Defining T := 1/V;(X), we obtain
the assertion. The uniqueness is clear. O

For later use, we note that

T =7 [ [ 141,01 @y e, (4.39)

We call the probability measure T the directional distribution of the k-
surface process X (another common name is rose of directions, in particular
for fiber processes). The directional distribution can be interpreted as the
distribution of the tangent plane in a typical point of the surface process.
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Now we consider section processes derived from k-surface processes. Let
X be a stationary k-surface process with positive, finite specific k-volume,
and let S € G(d,d — k + j) be a (d — k + j)-plane, where 0 < j < k — 1. In
Section 3.6 we have defined the section process X NS. It is a particle process
in S. Because of the elementary notion of k-surface that we employ, it is not
difficult to show that X NS is almost surely a j-surface process in S. We
do not carry out the proof here, since very similar arguments were already
employed when we treated processes of flats (before Theorem 4.4.6). It is clear
that the j-surface process X N S is stationary in S.

Theorem 4.5.3. Let X be a stationary k-surface process in R® with positive,
finite specific k-volume Vi(X) and with directional distribution T. Let S €
G(d,d—k+j),0<j<k—1, and let V;(X NS) be the specific j-volume of
the section process X NS. Then

Vi(XNS)=Vi(X) v [S, L] T(dL).

Proof. Let A C S be a compact set with Ag(A) = 1. By Theorem 4.5.1 and
Campbell’s theorem,

Vi(XNS)=E > H/(CNA)
CceX

= [ [ #(©+2)n ) r@)C)
Co JRE

Let C = Ji~, C; with C; € K™ . By the inclusion—exclusion principle (with
the notation used in (14.48)) we have

H(C+z)nA)Mdz) = > (=)= [ HI((Cy +2) N A) Mda)

Re veS(m) R
= > (=DPITS aff C)Vi(Cy)
veS(m)
= 3 (il / 1S, T,Cu] H (dy)
veS(m) Co

/ 1S, T, C] H* (dy)
C

(observe that Vi (C,) =0 if dim C, < k). This yields
V(XNS) =~ / / 1S, T, C] H* (dy) Q(AC)
¢ Je

“Tx) [ (ST,
G(d,k)
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where we have used (4.39), extended from indicator functions to nonnegative
measurable functions on G(d, k). O

In the cases k = 1 (fiber processes) and k = d — 1 (hypersurface processes)
it is again convenient (as after Theorem 4.4.6) to interpret the directional
distribution as an even measure on the sphere S4~!. For a unit vector u €
891" L(u) denotes the one-dimensional linear subspace spanned by wu, and
ut is the (d — 1)-dimensional linear subspace orthogonal to u. Corresponding
to a directional distribution T we define a spherical directional distribution ¢
by setting, for a set A € B(S9~1) without pairs of antipodal points,

o(A) = %T({L(u) ued))  ifk=1

and .
p(A) = iT({uL cu € A}) ifk=d—-1

For the specific 0-volumes (intersection point densities) of the section processes
found in Theorem 4.5.3, we now obtain, for v € S4-1,

Vo(X Not) = Vi (X) / (o) p(du) k=1 (4.40)
gd—1

and

Vo (X N L)) = V1 (X) /S (,0) p(du)  ifk=d—1.  (441)

Note for Section 4.5

The investigation of the directional distribution (also called ‘rose of directions’) of
fiber and surface processes was initiated in papers by Mecke and Stoyan, beginning
with [501], which was generalized by Mecke and Nagel [495]. Pohlmann, Mecke and
Stoyan [606] treated stereological formulas for stationary surface processes. For a
very general investigation of fiber and surface processes (using Hausdorff rectifiable
sets), we refer to Zahle [822].

4.6 Associated Convex Bodies

For a stationary particle process X in R¢ and a suitable translation invariant
function ¢ on Cy, the p-density P was defined in Section 4.1 by

B(X) =1 /c o dQ.

This procedure is not restricted to real-valued functions . In particular, on
the space of convex bodies, there are some geometrically meaningful trans-
lation invariant mappings into spaces of functions or measures which can be
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employed. In this way one can associate with a particle process, besides inten-
sities of real-valued functionals, also measures or convex bodies as describing
parameters. Similar procedures are possible for other geometric processes,
such as processes of flats, fibers, or surfaces, or even for certain random closed
sets. One motivation for this comes from the fact that associated measures
or convex bodies contain more information than real-valued parameters, and
may yet be accessible to estimation procedures. Another reason for introduc-
ing auxiliary convex bodies lies in the observation that sometimes the appli-
cation of results from convex geometry to associated auxiliary bodies leads to
results, for example to solutions of extremal problems, which otherwise would
be out of reach. Such results from convex geometry are applied in this section;
they are collected in Section 14.3, with references to sources where proofs can
be found.

Processes of Convex Particles

First we consider a stationary process X of convex particles in R? with inten-
sity v > 0 and grain distribution Q.
Since a convex body K is determined by its support function h(K,-),
defined by
h(K,u) := max{{(z,u) : € K}, u € RY,

it appears natural to consider the density of the functional h(-,u) for u € R
However, the support function is not translation invariant. This is remedied
by introducing the centered support function, by

h*(Kv u) = h(Kv u) - <S(K)vu> = h(K - S(K)vu)a (442)
where s(K) is the Steiner point of K (see (14.28)). We have
h*(K +x,-) = h*(K,) for 2 € R?

and h*(K,-) > 0. From (14.7) and (14.28) we obtain an estimate of the form
h*(K,u) < ¢(d)Vi(K)|ul with a constant ¢(d). Since V7 is Q-integrable by
Theorem 4.1.2, h*(-,u) is Q-integrable. Hence, we can define

h(X,u) := 'y/K h*(K,u)Q(dK)  for u € R%

Obviously, the function h(X,-) is again convex and positively homogeneous,
hence it is the support function of a uniquely determined convex body. We
denote this body by M(X) and call it the mean body of the particle pro-
cess X.

In a similar way, the surface area measure Sq_1(K,-) (see (14.22)) can
be employed. For A € B(S?!), the function Sy ;(-, A) is measurable and
translation invariant. Further, 0 < Sy_1(K,-) < Sy_1(K, 541 = 2V,;_1(K),
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where Vz_1 is one of the intrinsic volumes (see Section 14.2). Since Vy_; is
Q-integrable by Theorem 4.1.2, we can define

Sana(X,4) =1 [ Saa(K.4)QK) (4.43)

for A € B(S471). By monotone convergence, Sy_1(X,-) is a measure.

We indicate how this measure-valued parameter can be interpreted in the
case where the particles of the process X are a.s. of dimension d. From the pro-
cess X we then also obtain a hypersurface process, by replacing each particle
by its boundary. For such a hypersurface process, a directional distribution can
be defined, similarly to Section 4.1. In contrast to the case k = d—1 of Theorem
4.5.2, we now consider an oriented directional distribution, taking into account
that for the boundary of a d-dimensional convex body one can distinguish be-
tween an outer and an inner normal direction. For the boundary hypersurface
bd K of a convex body it is convenient to describe the direction of a tangent
hyperplane by its outer normal vector. For H% !-almost all 4 € bd K, the
outer unit normal vector ng (y) of K at y is uniquely determined. For a Borel
set A C S9! we have Sy_1(K,A) = H¥ ' (ng'(A)). For A € B(S%!) and
B € B(R?) with \(B) < oo, the mapping K — H% (B Nng'(A)) is mea-
surable (as follows from Schneider [695, Theorem 4.2.1]), and the Campbell
theorem together with (4.3) gives

E Y HH(Bnng'(A))

KeX
. /K /R HI-1 (B Angd, (4)) Adz) Q(K)
= [ [ M~ ) i (4) Mde) Q)
Ko JRA
= /K ABYH! (' (A)) QK)
= VA(B) . Sd—l(Ka A) Q(dK)7
where Theorem 5.2.1 was used. Thus, for B € B(RY) with A\(B) = 1 we have

Sa1(X,A)=E Y H"' (Bnng'(A)).
KeX

For this reason, the normalized measure Sy_1(X,-)/2V4_1(X) can be inter-
preted as the distribution of the normal vector in a typical boundary
point of the particle process X.

The measure Sy_1(X, ) is called the mean normal measure of X (also
in the case where the particles are not necessarily d-dimensional).
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Starting from the measure-valued parameter Sy_1(X, ), we now associate
two convex bodies with the particle process X. This requires a preliminary
consideration.

For a convex body K and for u € R?\ {0}, we denote by Vy_1(K|ub)
the (d — 1)-dimensional volume of the orthogonal projection of K to u*. The
density of the function K ~ V;_1(K|u') for the particle process X is denoted
by vd—l(‘X|uL)v thus

Vooa (XJut) =~ /}C Va1 (Kub) Q(dK).

With Fubini’s theorem for kernels and with (14.41), for unit vectors u € S9!
we get

V. =2 W, v 1 v
Var Xy =3 [ [ ol Saca (. vy @)

1

- /S )] Sa (X o). (4.44)

From the Campbell theorem and Theorem 4.1.2; we get for > 0

E > Va1 (K |ut)

KeX,c(K)erBd
_ 7/ / 1, 50 (c(K + 2))Va_1 (K + 2)ut) A(dz) Q(dK)
Ko /R
= kgr® Vy_1(X|ub).
Thus, Vy_1(X|ut) = 0 holds if and only if

> Vaa(Klut) =0

KeX

almost surely. If there exists a vector u € S?~! with this property, we say that
the particle process X is degenerate.

We assume now that X is not degenerate. Then (4.44) shows that the
measure Sy_1(X, ) is not concentrated on a great subsphere. Since

/ uSq—1(K,du) =0
Sd—l
always holds, we also have
/ uSq_1(X,du) = 0.
gd—1

By the Theorem of Minkowski (Theorem 14.3.1), there exists a uniquely de-
termined convex body B(X) € Ky with
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Su1(B(X),-) = 8a_1(X, ). (4.45)

We call B(X) the Blaschke body of the particle process X. (The name
reflects the fact that the addition of surface area measures induces the so-
called Blaschke addition of the corresponding convex bodies.)

For a convex body K, we denote by IIx its projection body (see Section
14.3, in particular (14.40)). The projection body of the Blaschke body, that
is,

HX = HB(X)a (446)

is called the associated zonoid of the particle process X. (The name refers
to the fact that projection bodies belong to the special class of convex bodies
known as zonoids; these are precisely the bodies which can be approximated
by vector sums of line segments.) Using (14.40), (14.41), (4.44), (4.45), we get

1

M) =5 [ )] S (X, do)

= Va1 (X[u™)

=5 [ h(llg,u)Q(dK). (4.47)
Ko
Thus, the support function of the associated zonoid has a simple geometric
meaning: on unit vectors, it represents the density of the projection volume
in the direction of the vector. Moreover, IIx can be interpreted as the mean
projection body of the particle process X.
Rewriting (4.47) in the form

(T, w) = 1 / / (1, 0} Su1 (K, dv) Q(AK),
Ko J§d-1
integrating over S%~! with respect to the spherical Lebesgue measure, and
observing Sy_1(K, 8% 1) =2V, _1(K) as well as (14.7), we obtain the identity
Vi(llyx) = 2Vy_1(X), (4.48)

The intrinsic volume V; appearing here is essentially the mean width; hence,
the identity says that the mean width of the associated zonoid is, up to a
constant factor, the surface area density of the particle process X.

Next we show how further geometric quantities of the particle process X
are related to the associated zonoid Ilx. First we determine

f(u):=E Y card ([0,u] Nbd K),
KeX

the expected number of points in which the segment with endpoints 0 and
u € R?\ {0} meets the boundaries of the bodies of the particle process.
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Thus, for a unit vector u, the value f(u) gives the intensity vz, of the point
process that is generated by intersecting the hypersurface process induced by
the boundaries of the particles with the line L(u) (as considered similarly in
Theorem 4.5.3 for a different class of surface processes). With the Campbell
theorem and the decomposition (4.2) we obtain

) :V/K /R card ([0, 4] N bd (K + )) A(dz) Q(dK)

e /K lull Vi (K |ut) QUK)

= 2fJu|[ Va1 (X[u')

= Qh(Hx,u).
Thus, we have
1 1
h(Ix,u) = §E%card ([0,u] DA K) = Zllullvz ). (4.49)

which provides a further interpretation of the support function of the associ-
ated zonoid. In particular, for the intersection intensity we obtain from (4.47)
the formula

VLu) = /Sd_1 |(u, )] Sa-1(X, dv). (4.50)

Since S4-1(X,-)/2Va_1(X) is a probability measure, this equation is analo-
gous to (4.41). However, it must be observed that X in (4.41) is a hypersurface
process, whereas in (4.50) it is a process of convex particles (for a convex body
K, 2V;_1(K) is the surface area).

Applications to Boolean Models

The associated zonoid is particularly useful when dealing with stationary
Boolean models with convex grains. Therefore, we assume now in addition
that X is a Poisson process. We still assume that X is nondegenerate, that
is, it satisfies Vy_1(X|u’) # 0 for all u € S?~1. In this case, also the Boolean
model Z = Zx is called nondegenerate (this property depends only on Z,
since Z determines the particle process X up to equivalence). Hence, the
Boolean model Z is degenerate if and only if there is a direction u such that
the orthogonal projection of Z to u' a.s. has Lebesgue measure zero.
For F € F and z € R?, we write

Sy (F):={yeR?: [z,y)nF =0}

for the region visible from z; here F is regarded as opaque. The set S, (F)
is open and star-shaped with respect to x; it is empty if x € F. For the
stationary Boolean model Z = Zx, the conditional expectation
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Vi(Z) :==E(\(S0(2)) | 0 ¢ Z)

is called the mean visible volume outside Z (note that we always have
P(0 ¢ Z) > 0, by (9.5)). The measurability of the function A\(Sp(Z)) and of
the function (u,w) +— s,(Z(w)) used below follows from the measurability of
the set

{(wyu,a) € 2 x ST X RS [0, au]NZ(w) =0} .

The quantity Vi(Z) is a further simple parameter which, besides volume and
surface area density, can be used for the description of a Boolean model.
(Here, volume and surface area density refer to the underlying particle process
X; a connection with corresponding parameters of the union set Zx will be
established later in Section 9.1.)

First we observe that also the visible domain Sy(Z) can itself be averaged
in a natural way, namely by averaging its radial function p(Sy(Z),-). For
we S

$u(Z) == p(So(Z),u) =sup{a > 0:[0,au]NZ = 0}
defines the visibility range from 0 in direction u. For r > 0, we have
P(su(2) <7]0¢ 2) = H" (r) = 1 — e Ve (X1,

as will be proved in Theorem 9.1.1. Thus, the visibility range s,,(Z) has (under
the condition 0 ¢ Z) an exponential distribution with parameter Vy_;(X|u™b)
(which is positive, since X was assumed to be nondegenerate). Therefore,
the kth moment of the visibility range s,(Z) is equal to k!Vy_ (X |ut)"%; in
particular, the expectation is Vz_1(X|ut)~!. We define the mean visible
region K, outside Z as the star-shaped set with radial function

thus o
Ki={oau:ue S 0<a<E(s,(2)]0¢ 2)}.

Because of o -
p(K,u) = Vg1 (X|ut)™t = h(Ilx,u)~?

for u € S9!, the set K is the polar body of the associated zonoid, which in
the following will be denoted by II%. In particular, it follows that the mean
visible region is convex.

The volume of the visible region Sy(Z) is given by

Va(S0(2)) = é/g, su(Z)1o(du),

where o denotes spherical Lebesgue measure. Therefore, for the mean visible
volume outside Z we obtain
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Vi(Z) =E(X(S0(2)) |0 ¢ Z)

_ % E(su(Z)"| 0 ¢ Z) o(du)
Sd—l

b, e

= dIVy(II%).

We resume this as a theorem.

Theorem 4.6.1. Let Z = Zx be a nondegenerate stationary Boolean model
with convex grains in R®. The mean visible region outside Z is the polar body
11 of the associated zonoid of X ; the mean visible volume outside Z is given
by
Vi(Z) = (d - 1)!/ Va1 (X uh) "% o(du) = d'Vy(1T%). (4.51)
gd—1

We are now in a position to establish a few sharp inequalities between dif-
ferent parameters of the Boolean model Zx, respectively of the corresponding
particle process X. From (4.48) and (14.43) we obtain the inequality

—d
V.(2) 2 v (S22, (0)) (4.52)
dﬁd
Here, equality holds if and only if the associated zonoid Ily is a ball. This
occurs, for instance, if the density Sy_1(X,-) of the surface area measure is
rotation invariant (and, hence, the Blaschke body is a ball). Therefore, we can

formulate the following result.

Theorem 4.6.2. Let Z = Zx be a nondegenerate stationary Boolean model
with convex grains in R?, generated by a Poisson particle process X with given
surface area density. The mean visible volume outside Zx is minimal if the
process 18 isotropic.

This raises the question whether there also exists an upper estimate of the
mean visible volume V,(Z) in terms of a functional density of X. In terms of
the surface area density this is not possible, as can be shown by examples.
A suitable functional for such an estimate is given by lefl/ ¢ (which is of
the same degree of homogeneity as the surface area). For this, we employ the
Blaschke body B(X). Applying successively (14.23), (4.45), (14.23), (14.30)
and making use of mixed volumes (see Section 14.2) we obtain

Va(BOO) = 5 [ BB Saa(BEF).du

d
—-l u 1 u
— d/ico /Sdilh(B(X), ) Sa—1 (¥, du) Q(dK)
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7 [ VBEO.K.. . K)QE)
Ko
> Va(B(X) %y [ Va(K)'™*Q(dK),

hence
Va(B(X))'7V4 > v 7).

From (4.51), (4.46), (14.44) we now obtain, as a counterpart to (4.52), the
inequality .
Vi(2) < dl (“Z—lvd“/d()()) . (4.53)
d
Here, equality holds if and only if the grain distribution @Q is concentrated
on a set of homothetic ellipsoids. This follows from the available information
about the equality cases in the inequalities (14.30) and (14.44).

As a further parameter for a geometric description of a Poisson parti-
cle process X we introduce the intersection density of the boundaries. For a
bounded Borel set B C R?, let s(X, B) be the number of points in B arising
as intersection points of the boundaries of any d distinct bodies of the process.
The intersection density of X is the number v4(X) satisfying

Es(X, B) = 7a(X)A(B)

for all bounded Borel sets B. In order to show its existence and to compute
it, we use Theorem 3.1.3, Corollary 3.2.4, and Theorem 4.1.1 and obtain

1
Es(X,B)=—E Y  card(BNnbdK;n...NbdKy)

d!
(K1, Ka)EXS

1
= card (BNbd Ky N...Nbd Ky) AD(A(Ky,... Ky))
. /Cd

_Z;/ / I(Ky,...,Kq)Q(dK;)---Q(dKy)
b Ko Ko
with
I(Ky,... Ky) =
/Rd.../Rdcard(Bﬁbd(Kl—l—atl)ﬁ...ﬁbd(Kd—i—xd)))\(dxl)-~-)\(dxd).
We abbreviate B Nbd (K; + z) =: F, and bd K; =: F; for i = 2,...,d.

Using the body Iy, given by (5.31) and applying Theorem 5.4.4, (14.21) and
Theorem 5.2.1, we get
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I(Ky,...,K

d)
/Rd . /R card (Fy N (Fy + ) O ... 0 (Fy + 24)) A(daa) - - - A(daza) A(da)
=d [ V(e T, T Ada)
:(dfl)!/Rd /SH h(Ilp, ,u) S(Ik,, ... Tk, du) A(dz)
—(d— 1)!/%1 /R h(ILp, ,u) A(dz) S(Ig, . ... T, du)

= (d—l)!/ h(Tk,,u) Sk, . .. Tk, du) A(B)
Sgd—1
= AV (g, Mg, ... TOg,)\B).

Thus, we obtain

Es(X,B) :’yd/ / V(Ig,,...,g,) Q(AK;)---Q(dKy) A(B).
Ko Ko
Here we have, by (14.21) and (4.47),

7/’C V(lg,,...,Og,) Q(dK;)

= %/ / h(HKUU) S(HK277HK¢”du)Q(dK1)
’CO Sd—1
1

:C_l/ h(Hx,U)S<HKz,...,HKd,dU)
Sd—1

=V(Ix,Ogk,,...,Igk,).
Repeating this procedure, we finally get
Es(X, B) = Vy(Ilx)\(B),

and thus the existence of the intersection density, together with the represen-
tation

Ya(X) = Va(llx). (4.54)
From (4.54), (4.48) and (14.31) we obtain a sharp inequality between the in-
tersection density and the surface area density, namely

d
va(X) < Kq (222;1%_1@)) . (4.55)

Here equality holds if and only if the associated zonoid IIx is a ball, which
occurs, for example, if the Poisson particle process X is isotropic.
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It is intuitively plausible that a large intersection density indicates that
much overlapping of particles occurs and that, therefore, the mean visible
volume must be small. This intuition is indeed precise, in so far as the product

~vd(X)V5(X) does not depend on the intensity of the process. For this quantity,
we are able to establish sharp inequalities.

Theorem 4.6.3. Let Z = Zx be a nondegenerate stationary Boolean model
with convex grains in R?. The intersection density and the mean visible volume
satisfy the inequalities

44 < 4y (X)Vo(Z) < dIR3. (4.56)

On the right side, equality holds if the process X is isotropic. On the left side,
equality holds if and only if the particles of X are almost surely parallelepipeds
with edges of d fized directions.

Proof. The inequalities follow from (4.51), (4.54), and (14.45). On the right
side, equality holds if and only if the associated zonoid IIx is an ellipsoid, thus
in particular if the process is isotropic. On the left side, equality holds if and
only if ITx is a parallelepiped. This is equivalent to the existence of d linearly
independent vectors vy,...,vq € S4=1 guch that the measure ?d,l(X, )) is
concentrated on {£v; : i = 1,...,d}. By (4.43), this holds if and only if
for Q-almost all K € Ky the measure S;_1(K,-) is concentrated on {+v; :
i =1,...,d}, hence if K is a parallelepiped with facet normal vectors +wv;.
We conclude that equality in the left inequality of (4.56) holds if and only if
the particles of X are almost surely parallelepipeds whose facet normals are
parallel to d fixed directions. The facet normals determine also the directions
of the edges. O

Processes of Flats

We turn now to processes of flats and want to show how associated zonoids
can be utilized for them. We describe a general construction, which is not
only applicable to flat processes, but also, for instance, to fiber and surface
processes. We begin with a finite Borel measure 7 on the space G(d, k) of k-
dimensional linear subspaces of R%, k € {1,...,d — 1}. There exists a convex
body IT*(7) with support function

(I (7), ) = % /G(d k) h(L* N BY,-) 7(dL). (4.57)

That this is indeed a support function, is clear, since the integrand is a support
function. Since L+ N B4 is a ball (of dimension d— k) and thus a zonoid, IT%(7)

is a zonoid, too. We have h(L*+ N B u) = [L*,u*] = [L, L(u)] for u € S,
hence also
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R(TT* (1), u) = ;/G(d k)[L,L(u)]T(dL), ue St (4.58)

Now we consider, first, a stationary hyperplane process X in R%. Let v > 0
be its intensity and Q its directional distribution. We put

IIx ="' (7Q)

and call TIx the associated zonoid of the hyperplane process X. By (4.58),
we have

px =3 [ lwole),  weRr?, (4.59)

where ¢ is the spherical directional distribution of X. According to Theorem
14.3.4, IIx determines the measure ¢ uniquely, hence also the intensity ~
and the spherical directional distribution ¢ of X are uniquely determined by
IIx. In particular, a Poisson process X is isotropic if and only if Il x is a ball.
From Theorem 4.4.1 we get the following.

Theorem 4.6.4. For every centered zonoid Z C R? there is up to equivalence

precisely one stationary Poisson hyperplane process X with associated zonoid
Z.

The support function of the associated zonoid is again connected with
intersection densities. As in Section 4.4, let vxnr () denote the intensity of
the point process X N L(u). By (4.59) and (4.34) we have

2h(Ilx,u) = |ullvxnrew) = EX(Flo)  foru e R (4.60)

From (4.60) we see immediately how to obtain the associated zonoid of a
section process. For an r-dimensional linear subspace S € G(d,r) with r €
{1,...,d—1}, let X NS be the section process (see Section 4.4). Its associated
zonoid ITxng is defined as a convex body in S. For u € S we have, by (4.60),

Qh(HXms, u) = E(X N S)(f[qﬂ) = EX(}-[O,u]) = 2h(Hx, u)

For the orthogonal projection IIx|S, we have h(Ilx|S,u) = h(Ilx,u) for u €
S, hence
xns = y|S. (4.61)

This means that the associated zonoid of the section process X NS is the
orthogonal projection of the associated zonoid of X to the linear subspace S.

Now we assume, in particular, that X is a stationary Poisson hyperplane
process with intensity v > 0. With the aid of the associated zonoid, we can ob-
tain information on the intersection processes of X of higher order. In Section
4.4 we have defined, for k € {2,...,d}, the intersection process of order k of
X, as the (d — k)-flat process X}, that is obtained if one takes the intersection
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of any k hyperplanes of the process X which are in general position. Simi-
lar intersection processes can be formed more generally for stationary surface
processes. As a different special case, we have previously considered the inter-
section point density 4 of the boundary hypersurfaces of a stationary process
of convex particles. Now, for the stationary Poisson hyperplane process X,
let v be the intensity and Qj the directional distribution of the intersection
process X. By Theorem 4.4.8 we then have, for A € B(G(d,d — k)),

7, Qx (4)
k

:l/ / La (ui NeooNugp) Vi(ur, ..o ug) e(dur) - o(duy),
k! Jga gd—1

where ¢ is the spherical directional distribution of X. The associated zonoid
IIx of X is given by

h(x,u) = / [{(u, v)| p(dv) for u € RY,
gd—1

where p := /2. Hence, if p(;) is the kth projection generating measure of
IIx, as defined by (14.36), then, for A € B(G(d,d — k)),

1.Qr(A) = ffk/ LA(L") pay (AL) = Krpiy (A),
Gdk)

where p(Lk) is the image measure of p() under the mapping L — L+ from
G(d, k) to G(d,d — k). Therefore, we have

WQk = Krpys (4.62)

saying that the intensity measure of the intersection process of order k of X is
determined by the kth projection gemerating measure of the associated zonoid
IIx.

The intensity v of the intersection process of order k of X is called the kth
intersection density of X. Here, v; = . By the definition of the intersection
processes and by Theorem 4.4.3, the kth intersection density is given by

1
%:WE Z N W(HyN...N HyNBY).
d (Hy,...,Hp)EXk

Here X, (A) is the (d — k)-dimensional volume of A if dimA = d — k, and
is zero otherwise. For the intersection densities, we can obtain inequalities.
They are based on the fact that v, = krp)(G(d, k)) by (4.62) and hence, by
(14.37),

Y = Vi(Ix); (4.63)

thus, the kth intersection density is the kth intrinsic volume of the associated
zonoid. In particular, the dth intersection density, which is the density of the
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intersection points generated by X, is nothing but the volume of the associated
zonoid. An analog of this fact is (4.54); both equations are special cases of a
corresponding result for general stationary hypersurface processes (with the
k-volume density instead of 7). Also (4.55) and (4.56) can be generalized in
this sense.

Now, from (14.31) we obtain the inequality

k J
(“@5ﬁm> zf£j<ﬁé;n%> (4.64)

for 1 < j < k < d. If y; > 0, then equality in (4.64) holds if and only if
ITx is a ball. By the uniqueness theorem 14.3.4, this holds if and only if the
spherical directional distribution ¢ of X is the normalized spherical Lebesgue
measure, hence, if and only if the Poisson hyperplane process X is isotropic.
The case v; = 0 occurs, by (4.63), if and only if dimITx < 7, hence if and only
if the spherical directional distribution ¢ is concentrated on S¢~1N L for some
subspace L € G(d,j — 1). An equivalent condition is that the hyperplanes of
the process almost surely contain a translate of the (d 4+ 1 — j)-dimensional
plane L*.
We formulate the special case j = 1 as a theorem.

Theorem 4.6.5. The kth intersection density, k € {2,...,d}, of a stationary
Poisson hyperplane process of intensity v > 0 in R? satisfies the inequality

(g) "95—1 k

ke k—1
d Rd—kRg

Vi <

Equality holds if and only if the process is isotropic.

Thus, the isotropic processes are characterized here by an extremal prop-
erty of isoperimetric type: for given intensity, they have maximal intersection
densities.

If X; and X, are independent stationary Poisson hyperplane processes,
then their superposition X; + X5 is also a stationary Poisson process, with
intensity measure @1 + O,, if ©; is the intensity measure of X;. It follows that
the associated zonoids also add:

HX1+X2 = HXI + HXZ'
If v, (X) denotes the kth intersection density of X, then (4.63) and (14.32)
yield the inequality
(X1 4 Xo)VE 2 (X)) VE - () VE, (4.65)

for k = 2,...,d. Equality in (4.65) holds at least if the hyperplane processes
X7 and X5 have the same directional distribution, since then their associated
zonoids are homothetic.

We can also derive a sharp estimate for the proximity (defined before
Theorem 4.4.10) of a Poisson line process.
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Theorem 4.6.6. Let X be a stationary Poisson line process of given intensity
~v > 0. The prozimity 7(X) attains its mazimum if and only if X is isotropic.

Proof. This follows from the remark after Theorem 4.4.10 and the case k = 2
of Theorem 4.6.5. 0

For a k-flat process X and a fixed (d — k)-plane S, we have considered in
Section 4.4 the section process XNS. There it was mentioned that a stationary
Poisson k-flat process is uniquely determined, up to stochastic equivalence, by
its intersection densities yxng, S € G(d,d — k), if either k =1 or k =d — 1,
but not in the cases 1 < k < d — 1. However, for kth-order intersection pro-
cesses of stationary Poisson hyperplane processes, there exists a corresponding
uniqueness result. An even stronger assertion is expressed by the subsequent
theorem. Here it has to be observed that

Yxens = (X NS).

A stationary hyperplane process is nondegenerate if the hyperplanes of the
process are not almost surely parallel to a fixed line.

Theorem 4.6.7. Let X be a nondegenerate stationary Poisson hyperplane
process of intensity v in R%, letr € {1,...,d—1} and k € {1,...,r}. Then X
is uniquely determined (up to stochastic equivalence) by the kth intersection
densities v(X N S) of the section processes X N S, S € G(d,r).

Proof. By (4.63) and (4.61) we have
(X NS) = Vi(llxns) = Vi(Ix|S)

for S € G(d,r). Since X is nondegenerate, dimIIx > d, as was remarked ear-
lier. By a theorem from convex geometry (Aleksandrov’s Projection Theorem;
see Gardner [244, Theorem 3.3.6]), the convex body Iy, which is centrally
symmetric with respect to 0, is uniquely determined by the intrinsic volumes
Vi(Ilx|S), S € G(d,r). Now the assertion follows from Theorem 4.6.4. O

Flat Processes Hitting Convex Bodies

Now we consider more general flat processes. Let X be a stationary k-flat
process of intensity v > 0 in R, We suppose that a convex ‘test body’ K € K’
is hit by the flats of the process, and we want to measure in different ways
how intensively it is hit. We could, for example, be interested in deciding
which shape a convex body of given volume must have so that in the mean
it is hit by as few flats as possible. This depends on how the intensity of
hitting is measured. For instance, if we use the k-dimensional volume of the
intersections as a measure, then Theorem 4.4.3 gives the answer

E Y Vi(KNE)=Va(K),

EeX
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saying that the left side is independent of the shape of K. Instead of the
k-dimensional volume of the intersections, we could ask for the number of
nonempty intersections or, more generally, using the jth intrinsic volume V;,
j€40,...,k}, ask for

E Y Vi(KnE). (4.66)

EeX

The number of nonempty intersections is included here, for j = 0. If X is in
addition isotropic, then Theorem 9.4.8, to be proved later, gives the result

EY " Vi(KNE) =y 9V w(K),
FeX

with certain constants c;’;l_kﬂ . For j < k and given positive volume, the
functional Vi, (K) attains its minimum if and only if K is a ball (cf.
(14.31)). Here the assumption of isotropy cannot be deleted; without it, the
quantity (4.66) will not only depend on the intrinsic volume Vg ;1 (K), but
the shape of K will play an essential role. To see this, at least in some special
cases, we first compute the expectation (4.66). Let © be the intensity measure
and Q the directional distribution of X. From the Campbell theorem and
Theorem 4.4.2 we get

ES Vi(KNE)= Vi(KNE)O(dE
%(m)/A(M(m)H

=7 [ [ VKA o) A () QL)
G(dk) J L+
Using the integral geometric formula (6.39), we obtain

E > Vi(KNE)
EeX
(%))

= i) / V(K[d+j— K, (L0 BYE— ) QdL),  (4.67)
G(d,k)

REk—j

where the integrand is a mixed volume. For 5 = 0, the integral geometric
formula is not needed, and one obtains directly

= 1
EEXE;(VO(KQE) _V/G(d,k) Vi x(K|LT)Q(dL). (4.68)

A further treatment of the integral (4.67) has only been successful in spe-
cial cases. First we consider the case j = k — 1, that is, the surface area of the
k-dimensional sections K N E. If Sg_1 (K, -) denotes the surface area measure
of K, then formula (14.23) for mixed volumes and (4.57) give
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/ V(K,...,K,LNBY)Q(dL)
G(d,k)
1
= f/ / h(L N B u) Sq_1(K,du) Q(dL)
d Jaar) Jsi
1
= f/ / h(L N B u)Q(AL) Sq_1 (K, du).
d Jsa-1 Ja(dr)
We define a zonoid I1;(Q) by

M@ = 5 | BN B WD)

N |

Thus,
1,(Q) = ¥ *(Q"),

where Q7 is the image measure of Q under the mapping L +— L* from G(d, k)
to G(d,d — k). Then we put

¥ = 411,(Q).

We obtain

/ V(K,...,K,LNnBY QL)

G(d,k)
_ / 1/ h(L N B u) Sq_1(K,du) Q(dL)
G(d,k) d Jga-—
2
= g h(Hk(@)7U) Sdfl(K7 du)
Sd—l

= QV(Hk(Q)7K7 s 7K)7

hence

EY Vioi(KNE)=dV(II¥ K,..., K).
EeX
From Minkowski’s inequality (14.30), we now deduce the following extremal
property.

Theorem 4.6.8. Let X be a stationary k-flat process of intensity v > 0 in
R?, and let K be a convex body of given positive volume. Then the expected
value
EY Vii(KNE)
EEX

is manimal if and only if K is homothetic to the zonoid IIX.
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In the case of a line process (k = 1), the quantity E) 5y Vi1 (K N E)
is just the expected number of lines hitting the body K.

Further information on the expected number of hitting k-planes is avail-
able in the case kK = d — 1. Let X be a stationary hyperplane process of
intensity v > 0 and with spherical directional distribution ¢. We assume that
X is nondegenerate, so that the hyperplanes of the process are not almost
surely parallel to a fixed line. Under this assumption, the measure ¢ is not
concentrated on a great subsphere, and it follows that V4 (ILx) > 0. Since ¢ is
an even measure, it follows from Theorem 14.3.1 that there exists a uniquely
determined convex body B(X), centrally symmetric with respect to 0, for
which

Sa-1(B(X), ) = ve.

We call B(X) the Blaschke body of the hyperplane process X. Thus, by
(4.59) we have

IIx = px),

in analogy to (4.46).
Now from (4.68) and (14.23), we obtain

EY VknE) = [ W(K|LH)euD)

hex G(d,d—1)
. / [h(K,u) + (K, —u)] ¢(du)
Sd—l

. / h(K, ) Sa_1 (B(X), du)
Sd,—l
— 24V (K, B(X), ..., B(X)). (4.69)

Again, we can apply Minkowski’s inequality (14.30), and deduce the following
result.

Theorem 4.6.9. Let X be a nondegenerate stationary hyperplane process of
intensity v > 0 in R, and let K € K be a convex body with given volume
Va(K) > 0. The expected number of hyperplanes of the process X hitting the
convez body K is minimal if and only if K is homothetic to the Blaschke body
B(X) of X.

Notes for Section 4.6

1. The associated zonoid of a stationary process X of convex particles was intro-
duced here as the projection body of the Blaschke body of X; this is equivalent to
the original definition. The construction of the Blaschke body requires Minkowski’s
existence theorem (Theorem 14.3.1). This existence theorem was first used in Schnei-
der [686] for associating a convex body with a directional distribution (of finitely
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many random hyperplanes in that case) and then applying results from convex ge-
ometry. Extensive use of this association in the case of random hypersurfaces was
made by Wieacker [817, 818]. The Blaschke body B(X) of a particle process X was
introduced in Weil [796]; that paper also provides information on the mean body
M(X). In Weil [797], Blaschke bodies were also suggested and investigated for ran-
dom closed sets with values in the extended convex ring. For Boolean models, for
example, this paper established a connection between the Blaschke body and the
contact distribution function.

2. The associated zonoid of a stationary Poisson hyperplane process was introduced
by Matheron [461, 462], under the name of ‘Steiner compact set’. The book by Math-
eron [462] has already the formulas (4.61) and (4.63), and in principle also (4.62).
Associated zonoids for random hyperplanes were also used in Schneider [685, 686].
Generalization and systematic application of associated zonoids then followed in the
work of Wieacker [816, 817, 818]; see also Sections 6 and 7 in the survey article of
Weil and Wieacker [806] and Section 6 of Schneider and Wieacker [720]. Wieacker
has introduced different types of associated zonoids, and he has applied them to
random surfaces, surface processes, k-flat processes, particle processes, and random
mosaics. In Wieacker [817] one finds, for example, the assertions (4.48), (4.49), The-
orem 4.6.1 (essentially), (4.52), (4.54), (4.55), (4.56) (the right-hand inequality), and
a generalization of Theorem 4.6.5. For extensions and supplements (such as (4.56)
(left side) and (4.53), see Schneider [689]; that paper treats Poisson processes of con-
vex cylinders, which includes as special cases flat processes and processes of convex
particles. Compare also inequality (10.52) and Note 4 for Section 10.4.

3. Inequality (4.64) and with it Theorem 4.6.5 are due to Thomas [756]. Similar
arguments, but with different interpretations, appear in Schneider [686, 697]. Alter-
native proofs for special cases were found by Mecke [480, 484].

Theorem 4.6.5 raises the question which stationary Poisson k-flat processes of
given (positive) intensity, where d/2 < k < d — 1, have maximal second intersection
density. According to Theorem 4.4.9, this amounts to finding the maximum of the

integral
[ [ iBredsar)
G(d,k) Jad,k)

over all probability measures Q on G(d, k). For k = d — 1, the maximum is attained
precisely by the rotation invariant probability measures, by Theorem 4.6.5. For
k < d — 1, however, the maximum is not attained by invariant measures, as was
discovered by Mecke and Thomas [504] (see also Mecke [489]). Mecke [486, 487] was
able to determine explicitly the extremal measures for d = 2k. Keutel [401] has
completely settled the case where k < d —2 and d — k divides d. The general case is
still open.

Theorem 4.6.6 goes back, in principle, to Janson and Kallenberg [378], though
with a different approach.

Theorems 4.6.8 and 4.6.9 are special cases of considerably more general assertions
in Wieacker [818]. Theorem 4.6.7 and related results were first published in Schneider
and Weil [717].



2 Springer
http://www.springer.com/978-3-540-78858-4

Stochastic and Integral Geometry
Schneider, R.; Weil, W,

2008, Xll, 694 p., Hardcover

ISBN: 278-3-540-7BB58-4



