
2

On the Positive Solution to a Linear System
with Nonnegative Coefficients

This chapter deals with a positive solution p to the following system of linear
equations with nonnegative coefficients:

p = u + Xp . (2.1)

Here and hereafter, u ∈ R
K
++ is a given positive vector, X ∈ R

K×K
+ is a given

nonnegative matrix (not necessarily irreducible), and p ∈ R
K
++ is a sought

vector, provided that it exists.

2.1 Basic Concepts and Definitions

Before starting with the analysis, we need to address the fundamental problem
of the existence of a positive solution p to (2.1). This problem is addressed in
App. A.4.4. In particular, by Theorem A.51, we know that a necessary and
sufficient condition for p ≥ 0,p �= 0, to exist is that ρ(X) < 1 where ρ(X) is
the spectral radius of X. Moreover, as u is positive, there is a unique solution
p, which is strictly positive and given by

p = (I−X)−1u .

Theorem A.39 asserts that λp := ρ(X) is an eigenvalue of X, that is to say
λp ∈ σ(X) where σ(X) is used to denote the spectrum of X (Definition A.10).

Remark 2.1. Note that except for the nonnegativity, there are no additional
constraints on X. In particular, X does not need to be irreducible. However, it
is worth pointing out that if X is irreducible and its Perron root λp = ρ(X) > 0
satisfies λp < 1, then u �= 0 does not need to be positive for (2.1) to have a
unique positive solution p. This is one part of the assertion of Theorem A.52.

Analogous to the previous chapter, we allow the entries of X to continu-
ously depend on some parameter vector ω ∈ Ω where the parameter set Ω is
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defined by (1.53) and is an open convex subset of R
K . The only difference is

that here the matrix is not required to be irreducible for all parameter vectors.
In fact, X(ω) can even be identically the zero matrix, in which case, however,
the problems addressed in this chapter are trivial. To be precise, let

X(ω) := (xk,l(ω))1≤k,l≤K

be a matrix-valued function whose entries xk,l : Ω → R+ are continuous
functions defined on Ω. Considering Definition 1.35, this is formally written
as X ∈ NK(Ω), in which case X is said to be nonnegative on Ω. To conform
with the applications in wireless networks, we let each entry of the vector u
in (2.1) be a continuous positive function of the parameter vector ω as well.
We indicate this by writing u ∈ R

K
++(Ω).

Now it follows from (2.1) and Theorem A.51 that, for any fixed ω ∈ Ω,
there exists a unique positive vector p(ω) satisfying1

p(ω) = X(ω)p(ω) + u(ω) (2.2)

if and only if
λp(ω) := ρ(X(ω)) < 1 . (2.3)

Moreover, for any ω ∈ Ω with λp(ω) < 1,

p(ω) =
(
I−X(ω)

)−1
u(ω) . (2.4)

Let F be the set of those parameter vectors ω ∈ Ω for which a positive solution
p(ω) to (2.2) exists. Formally, we have

F := {ω ∈ Ω : λp(ω) < 1} . (2.5)

Note that each entry of the vector p(ω) is a continuous map from F into the
set of positive reals R++. This is because if ω ∈ F, then the Neumann series∑∞

l=0(X(ω))l converges (Theorem A.16) and (I −X(ω))−1 =
∑∞

l=0(X(ω))l.
Therefore, since a composition of continuous maps is continuous, it follows
from

pk(ω) = eT
k

(
I−X(ω)

)−1
u(ω), ω ∈ F, 1 ≤ k ≤ K (2.6)

that pk : F→ R++ is continuous. In particular, this implies that the l1-norm
of p(ω) given by

‖p(ω)‖1 =
∑

k∈K
pk(ω) = 1T (I−X(ω))−1u(ω), ω ∈ F (2.7)

is a continuous function on F as well.

1 However, as xk,l : Ω → R+ are not one-to-one maps, there may exist ω̂, ω̌ ∈
Ω, ω̂ �= ω̌, such that p(ω̂) = p(ω̌).
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In this chapter, we analyze both pk(ω) and ‖p(ω)‖1 as functions of the
parameter vector ω ∈ F. In doing so, most of our interest is devoted to matrix-
valued functions X(ω) of the form X(ω) = Γ(ω)V with V ∈ NK and

Γ(ω) = diag
(
γ1(ω1), . . . , γK(ωK)

)
.

Here and hereafter, γk : Qk → R++ is a continuous strictly monotonic (bi-
jective) function and Qk ⊆ R is some open interval (see also Sect. 1.3.1).
Formally, this is denoted by X ∈ NK,Γ(Ω) where

NK,Γ(Ω) := {Γ(ω)V,ω ∈ Ω : V ∈ NK} ⊂ NK(Ω) (2.8)

is the set of all nonnegative matrix-valued functions X(ω) of the form X(ω) =
Γ(ω)V for some given γk : Qk → R++, k = 1, . . . , K. In this special case, it
will also be assumed that u(ω) = (γ1(ω1), . . . , γK(ωK)). Exceptions are only
Sects. 2.3.1 and 2.3.2, where X(ω) and u(ω) are not confined to this special
form.

2.2 Feasibility Sets

The set F defined by (2.5) contains all parameter vectors such that a positive
solution to our system of linear equations exists. For this reason, if there are
no additional constraints on p, F is referred to as the feasibility set. Notice
that the definition is analogous to Definition 1.41, except that now the spec-
tral radius must be strictly smaller than 1. Therefore, the parameter vectors
satisfying λp(ω) = 1 are not members of F.2

In wireless networks, however, some additional constraints on p are im-
posed, which gives rise to the definition of some subset of F as the feasibility
set. Constraints on the l1-norm of p(ω) are common to applications in wireless
communications networks. More precisely, we say that p(ω) is constrained in
the l1-norm if

‖p(ω)‖1 ≤ Pt, ω ∈ Ω

must hold for some given constant Pt > 0, referred to as a sum (or total)
constraint. Consequently, in this case, the parameter vector ω ∈ Ω is feasible
if and only if ω ∈ F(Pt) where

F(α) = {ω ∈ F : ‖p(ω)‖1 ≤ α, α > 0} ⊆ F . (2.9)

Notice that due to continuity of ‖p(ω)‖1, F(α) is monotonic in α > 0 with
respect to set inclusion in the following sense: For any 0 < α ≤ β, there holds
F(α) ⊆ F(β). Therefore, since F(α) ⊆ F for all α > 0, we have

2 In the previous chapter, F is the set of all the parameter vectors for which the
homogenous system of linear equations (I − X(ω))p(ω) = 0, with X(ω) being
irreducible for all ω ∈ Ω, has a positive solution p(ω).
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F =
⋃

α>0

F(α) (2.10)

where the union is taken with respect to all α > 0.
Another common situation encountered in wireless networks is that of

constraining each element of p(ω) individually. Therefore, if there are positive
constants P1, . . . , PK such that pk(ω) ≤ Pk must hold for each 1 ≤ k ≤ K,
we say that p(ω) is subject to individual constraints. Clearly, in this case, the
set of all feasible parameter vectors is given by

F(P1, . . . , PK) :=
⋂

α∈{P1,...,PK}
Fk(α) (2.11)

where
Fk(α) := {ω ∈ F : pk(ω) ≤ α} . (2.12)

These two types of constraints are often combined by imposing both in-
dividual and sum constraints on p(ω). Therefore, in this case, the feasibility
set becomes

F(Pt;P1, . . . , PK) := F(Pt) ∩ F(P1, . . . , PK) . (2.13)

Note that F(Pt;P1, . . . , PK) = F(Pt) if Pt ≤ Pk for each 1 ≤ k ≤ K, and
F(Pt;P1, . . . , PK) = F(P1, . . . , PK) if

∑
k Pk ≤ Pt. Thus, both F(Pt) and

F(P1, . . . , PK) can be viewed as special cases of F(Pt;P1, . . . , PK).

Remark 2.2. In what follows, we exclude the trivial case where the feasibility
set is an empty set.

The next observation immediately follows from the connectedness of Ω,
continuity of λp(ω),ω ∈ Ω, and p(ω),ω ∈ F, as well as [39, Theorem 4.22] .

Observation 2.3. F(Pt;P1, . . . , PK) is a connected set (see Definition B.1).

It is important to emphasize that the geometry of the feasibility sets de-
pends on the choice of X(ω) and u(ω),ω ∈ Ω. In particular, the feasibility
set is not convex in general. To illustrate the definitions, let us consider an
elementary example.

Example 2.4. Let X(ω) = 0 for all ω ∈ Ω and u(ω) = (γ(ω1), . . . , γ(ωK))
where γ : Q → R++ is any continuous bijective function. We see that (2.4)
reduces to p(ω) = (γ(ω1), . . . , γ(ωK)), and hence one obtains

F = Ω = QK

F(Pt) = {ω ∈ F :
∑

k
γ(ωk) ≤ Pt}

F(P1, . . . , PK) = {ω ∈ F : γ(ωk) ≤ Pk, 1 ≤ k ≤ K} .
Clearly, F and F(P1, . . . , PK) are both convex sets, regardless of the choice
of γ(x). In contrast, F(Pt) is not convex in general. A sufficient condition for
F(Pt) (and also F(Pt;P1, . . . , PK)) to be a convex set is that γ(x) is convex.
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An important example of a convex function is γ(x) = ex − 1, x > 0.
Assuming X(ω) = 0 for all ω ∈ Ω = R

2
++ and u(ω) = (eω1 − 1, eω2 − 1), Fig.

2.1 depicts the feasibility set F(Pt;P1, P2) ⊂ R
2
++ defined by (2.13) for some

P1, P2 and Pt.

F(Pt; P1, P2)

γ−1(P1) ω1

γ(ω1) + γ(ω2) = Pt

γ−1(P2)

ω2

Fig. 2.1: Illustration of Example 2.4: The feasibility set F(Pt; P1, P2) with X(ω) ≡ 0,
γ(x) = ex − 1, x > 0, and u(ω) = (eω1 − 1, eω2 − 1). The constraints P1, P2 and Pt

are chosen to satisfy 0 < P1, P2 < Pt and Pt < P1 + P2.

Unfortunately, as the example below shows, convexity of γ(x) is not suffi-
cient for F(Pt) to be a convex set if X(ω) = Γ(ω)V �= 0.

Example 2.5. Suppose that X(ω) =
( 0 γ(ω1)


γ(ω2)
 0

)
for some � ≥ 0. Further-

more, assume that u(ω) = (γ(ω1), γ(ω2)) and γ(x) = ex − 1, x > 0. Thus,

Ω = R
K
++

F = {ω ∈ Ω : λp(ω) = �
√

(eω1 − 1)(eω2 − 1) < 1} .
Now we claim that F is not a convex set if � > 0. To see this, we write
λp(ω) = 1 with � > 0 as a function of ω1 > 0 to obtain ω2 = f(ω1) =
log 1+
2eω1−
2


2(eω1−1) , � > 0. The function f(x), x > 0, is twice differentiable and its
second derivative is strictly positive for all x > 0. Consequently, instead of
the feasibility set F, its complement in R

K
++ (Fc = R

K
++ \ F) is convex.

Now let us consider F(Pt) with � ≥ 0. Applying (2.7) to our special case
yields

‖p(ω)‖1 =
eω1 + eω2 − 2 + 2�(eω1 − 1)(eω2 − 1)

1− �2(eω1 − 1)(eω2 − 1)
, ω ∈ F .

Hence, writing ‖p(ω)‖1 = Pt as a function of ω1 ∈ [0, log(1+Pt)], one obtains
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ω2 = g(ω1) = log
(1− �) (2 + Pt + Pt �) + eω1 (� (2 + Pt �)− 1)

1 + �
(
eω1 − 1

)(
2 + Pt�

)

where the argument under the logarithm is positive. Now if � = 0, g(x) is
concave on x ∈ [0, log(1 + Pt)] since then g′′(x) = − ex(2+Pt)

(2+Pt−ex)2 is strictly
negative on [0, log(1 + Pt)]. This implies that F(Pt) is a convex set, which is
in total agreement with the preceding example. On the other hand, if � = 1,
the second derivative of g(x), x ∈ [0, log(1 + Pt)], is

g′′(x) =
ex (1 + Pt) (2 + Pt)

(1 + Pt − ex (2 + Pt))
2 , , x ∈ [0, log(1 + Pt)]

which is positive. Thus, if � = 1, F(Pt) is not convex but its complement
Fc(Pt) = R

K
+ \F(Pt) is a convex set. An examination of the second derivative

of g(x), x ∈ [0, log(1 + Pt)], shows that

g′′(x)

⎧
⎪⎨

⎪⎩

< 0 � < h(Pt)
> 0 � > h(Pt)
= 0 � = h(Pt)

h(x) =
√

1 + x− 1
x

.

Since h(x) → 0 as x → ∞, we have g′′(x) > 0 for any � > 0, which complies
with the above discussion that f(x) is convex for any � > 0. On the other
hand, if x→ 0, then h(x)→ 1/2. So, at small values of Pt, convexity of F(Pt)
changes to convexity of Fc(Pt) around the value � ≈ 1/2.

The example above demonstrates that the feasibility set may be a non-
convex set even if each entry of X(ω) is convex on Ω. As a consequence, a
stronger property than convexity is necessary to guarantee convexity of F. In
the following section, we show that if X(ω) is log-convex on Ω (see Definition
1.37), then pk(ω) is a log-convex function of ω ∈ F for each 1 ≤ k ≤ K.

2.3 Convexity Results

In this section, we show that if X ∈ NK(Ω) and u ∈ R
K
++(Ω) are both log-

convex on Ω, then pk : F→ R++ given by (2.6) is log-convex for each 1 ≤ k ≤
K. This in turn implies that the feasibility set F(Pt;P1, . . . , PK) is a convex
set, regardless of the choice of P1, . . . , PK > 0 and Pt > 0. Following that, we
consider the problem of strict convexity.

Recall that according to Definition 1.37, the notation X ∈ LCK(Ω) means
that X ∈ NK(Ω) is log-convex on Ω. Furthermore, note that by this definition,
the identically zero function is a log-convex function (see also the remark in
Sect. 1.3). In an analogous manner, we say that u ∈ R

K
++(Ω) is log-convex on

Ω if each entry of the vector u(ω) is a continuous log-convex function defined
on Ω. Let us indicate this by writing u ∈ lc(Ω) ⊂ R

K
++(Ω).



2.3 Convexity Results 67

2.3.1 Log-Convexity of the Positive Solution

Let ω(μ) with μ ∈ [0, 1] be a convex combination of two arbitrary vectors
ω̂, ω̌ ∈ Ω:

ω(μ) = (1− μ)ω̂ + μω̌, μ ∈ [0, 1] .

Unless otherwise stated, assume that ω̂, ω̌ ∈ F ⊆ Ω, which implies that both
pk(ω̂) > 0 and pk(ω̌) > 0 exists.

Theorem 2.6. Let X ∈ LCK(Ω) ⊂ NK(Ω) and u ∈ lc(Ω) ⊂ R
K
++(Ω) be

arbitrary. Then, pk(ω) is log-convex on F for each 1 ≤ k ≤ K, i.e., we have

pk(ω(μ)) ≤ pk(ω̂)1−μpk(ω̌)μ, 1 ≤ k ≤ K (2.14)

for all μ ∈ (0, 1) and ω̂, ω̌ ∈ F.

Proof. Let ω̂, ω̌ ∈ F be arbitrary. Then, by Theorem 1.39 as well as by Sect.
1.7, we know that λp(ω(μ)) < 1 for all μ ∈ (0, 1). Thus, for every μ ∈ (0, 1),
there exists a unique positive pk(ω(μ)) given by (see (2.6))

pk(ω(μ)) = eT
k

[
I−X(ω(μ))

]−1
u(ω(μ)), 1 ≤ k ≤ K .

Now let μ ∈ (0, 1) be arbitrary but fixed. Since ω(μ) ∈ F, we can expand
(I−X(ω(μ)))−1 into a Neumann series (see Theorem A.16) to obtain

[
I−X(ω(μ))

]−1 =
∞∑

l=0

(
X(ω(μ))

)l
.

From this it follows that

pk(ω(μ)) = eT
k

∞∑

l=0

(
X(ω(μ))

)l
u(ω(μ)) =

∞∑

l=0

eT
k

(
X(ω(μ))

)l
u(ω(μ))

=
∞∑

l=0

gl

(
ω(μ)
)
.

By assumption, all the entries of X(ω) and u(ω) are log-convex on F. Hence,
(2.14) immediately follows from the above equation when one considers the
following properties of log-convex functions:

(i) If two positive functions f and g are log-convex, then f + g and f · g are
log-convex.

(ii) For any convergent sequence fn of log-convex functions, the limit f =
limn→∞ fn is log-convex provided that the limit is strictly positive.

Due to (i), gl : F → R++ is log-convex for each l ≥ 0 and
∑M

l=0 gl(ω) is
log-convex for any M > 0. Furthermore, since

∑M
l=0 gl(ω) is monotonically

increasing in M and gl is positive, it must converge to a positive limit as
M → +∞. Hence, by (ii), pk(ω) is log-convex on F and (2.14) must hold.
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Remark 2.7. Recall that the spectral radius of X ∈ NK(Ω) can be expressed
as follows (Theorem A.15)

λp(ω) = lim
m→+∞

‖X(ω)m‖1/m .

Thus, considering the two properties (i) and (ii) of log-convex functions in the
proof of Theorem 2.6 and the fact that if f is log-convex, so also is fα for
every positive α, shows that if the entries of X(ω) are log-convex functions
on Ω, then λp(ω) is log-convex on Ω. This leads to an alternative proof of
log-convexity of the spectral radius (see for instance [32]).

A trivial but important consequence of the theorem is the following.

Corollary 2.8. If X ∈ LCK(Ω) ⊂ NK(Ω) and u ∈ lc(Ω) ⊂ R
K
++, then

‖p(ω)‖1 =
∑

k∈K pk(ω) is log-convex on F, that is to say,

‖p(ω(μ))‖1 ≤ ‖p(ω̂)‖1−μ
1 ‖p(ω̌)‖μ1 (2.15)

for all μ ∈ (0, 1) and ω̂, ω̌ ∈ F.

Proof. As log-convex functions are closed under addition, it is clear that the
log-convexity property carries over to the l1-norm of p(ω).

More generally, we can say that if X ∈ LCK(Ω) and u ∈ lc(Ω), then

F (p1(ω(μ)), . . . , pK(ω(μ))) ≤ F (p1(ω̂), . . . , pK(ω̂))1−μF (p1(ω̌), . . . , pK(ω̌))μ

for all μ ∈ (0, 1) and ω̂, ω̌ ∈ F where F : R
K
++ → R++ is any function that

preserves log-convexity. Standard examples of such functions are

1. weighted sum: F (x1, . . . , xK) =
∑

k∈K wkxk,
2. weighted pointwise multiplication: F (x1, . . . , xK) =

∏K
k=1 wkxk, and

3. pointwise maximum and supremum: F (x1, . . . , xK) = max1≤k≤K xk.

The weighted sum operation and the pointwise multiplication operation pre-
serve log-convexity as log-convex functions are closed under both addition
and multiplication. The claim about the pointwise maximum operation fol-
lows since

max{pk(ω(μ)) :1 ≤ k ≤ K}
≤ max{pk(ω̂)1−μpk(ω̌)μ : 1 ≤ k ≤ K}
≤ max{pk(ω̂)1−μ : 1 ≤ k ≤ K}max{pk(ω̌)μ : 1 ≤ k ≤ K}
= max{pk(ω̂) : 1 ≤ k ≤ K}1−μ max{pk(ω̌) : 1 ≤ k ≤ K}μ

for all μ ∈ (0, 1) and ω̂, ω̌ ∈ F.
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2.3.2 Convexity of the Feasibility Set

Since the geometric mean is bounded above by the arithmetic mean (B.18),
we have

pk(ω̂)1−μpk(ω̌)μ ≤ (1− μ)pk(ω̂) + μpk(ω̌) ≤ max{pk(ω̂), pk(ω̌)}

for all ω̂, ω̌ ∈ F and μ ∈ (0, 1). Thus, if pk(ω) is log-convex on F, then the
above inequality implies that Fk(Pk) defined by (2.12) is a convex set. By
Theorem 2.6, we know that if X(ω) and u(ω) are both log-convex on Ω, then
pk : F → R++ is log-convex for each 1 ≤ k ≤ K. Consequently, since the
intersection of convex sets is convex, it follows from (2.11) that F(P1, . . . , PK)
is a convex set if X ∈ LCK(Ω) and u ∈ lc(Ω). By Corollary 2.8 and (2.13), we
see that this also true for F(Pt) and F(Pt;P1, . . . , PK). We summarize these
observations in a corollary.

Corollary 2.9. Suppose that X ∈ LCK(Ω) ⊂ NK(Ω) and u ∈ lc(Ω) ⊂
R

K
++(Ω). Then, F(P1, . . . , PK),F(Pt) and F(Pt;P1, . . . , PK) are convex sets,

regardless of the choice of Pt, P1, . . . , PK > 0.

To illustrate the results, let us consider a simple example.

Example 2.10. Let X(ω) and u(ω) be defined as in Example 2.5 except that
now γ(x) = ex, x ∈ R. Clearly, the exponential function is log-convex on R.
Thus, by Theorem 1.39 (note that the matrix X(ω) is irreducible for all ω ∈
R

2), the Perron root is log-convex and, by Corollary 1.42, F is a convex set. In
contrast to the previous example, all pairs satisfying λp(ω) = �

√
eω1eω2 = 1

lie on a line given by ω2 = −ω1− 2 log �, which, of course, is both convex and
concave.

The nonnegative solution (2.4) yields

p(ω) =

(
eω1+
eω1+ω2

1−
2eω1+ω2

eω2+
eω1+ω2

1−
2eω1+ω2

)
, �2eω1+ω2 < 1 .

By Theorem 2.6, both entries are log-convex on R
2. All pairs (ω1, ω2) satisfying

p1(ω) = P1 and p2(ω) = P2 are ω2 = f(ω1) = log[(P1 − eω1)/(�(1 + �P1))]−
ω1, ω1 < log P1, and ω2 = g(ω1) = log[P2/(1 + eω1� + eω1�2P2)], ω2 < log P2,
respectively. It may be verified that f(x) is concave on (−∞, log P1) and g(x)
is concave on R implying that F1(P1),F2(P2) and F(P1, P2) are all convex
sets. Similarly, ‖p(ω)‖1 = Pt can be rewritten to give ω2 = h(ω1) = log[(Pt−
eω1)/(1+2eω1�+eω1�2P2)], ω1 < log Pt. Again, h(x) can be seen to be concave
on (−∞, log Pt), from which convexity of F(Pt) follows.

In the preceding example, instead of γ(x) = γ1(x) = γ2(x) = ex, x ∈ R,
we could consider any log-convex functions γ1 : Q1 → R++ and γ2 : Q2 →
R++. In such a case, the unique positive solution p(ω) exists if and only if
ω ∈ F = {ω ∈ Ω : λp(ω) = �

√
γ1(ω1)γ2(ω2) < 1} and is given by
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p(ω) =

(
γ1(ω1)+
γ1(ω1)γ2(ω2)

1−
2γ1(ω1)γ2(ω2)
γ2(ω2)+
γ1(ω1)γ2(ω2)

1−
2γ1(ω1)γ2(ω2)

)
, ω ∈ F . (2.16)

It may be verified that if γ1 and γ2 are both log-convex, then each entry
of p(ω) is log-convex on F. This in turn implies that the feasibility set
F(Pt;P1, . . . , PK) is a convex set, regardless of the choice of Pt > 0 and
P1, . . . , PK > 0.

Finally, it is worth pointing out that the results presented in this chap-
ter straightforwardly extends to the case when pk(ω) is either subject to
‖p(ω)‖1 ≤ Pt(ω) or pk(ω) ≤ Pk(ω), 1 ≤ k ≤ K, for all ω ∈ Ω where
Pt : Ω → R++ and Pk : Ω → R++ are given concave functions. So if
pk(ω) is convex for each 1 ≤ k ≤ K, then {ω ∈ Ω : ‖p(ω)‖1 ≤ Pt(ω)}
and {ω ∈ Ω : pk(ω) ≤ Pk(ω)}, 1 ≤ k ≤ K, are convex sets.

2.3.3 Strict Log-Convexity

When X(ω) and u(ω) are log-convex on Ω, Theorem 2.6 asserts that pk(ω)
is a log-convex function of ω ∈ F. In this section, we strengthen this result by
proving conditions on strict log-convexity. In the second part of the book, we
will exploit these results to prove some interesting properties of the addressed
power control problem.

For the analysis in this section, it is assumed that X ∈ NK(Ω) and u ∈
R

K
++(Ω) are restricted to be of the following form:

u(ω) = Γ(ω)z
X(ω) = Γ(ω)V with trace(V) = 0 .

(2.17)

Here and hereafter, z = (z1, . . . , zK) is any fixed positive vector, V ∈ NK and
γk : Qk → R++, k = 1 . . . K are continuous and strictly monotonic (bijective)
functions. Formally, we have X ∈ N0

K,Γ(Ω) which is the subset of NK,Γ(Ω)
defined by (2.8) such that trace(V) = 0.

Lemma 2.11. Let X ∈ N0
K,Γ(Ω) and u(ω) = Γ(ω)z,ω ∈ Ω, be arbitrary.

Then, p : F→ R
K
++ defined by (2.4) is a bijection.

Proof. By Theorem A.51, z > 0 and (2.5), p(ω) > 0 exists and is unique if
and only if ω ∈ F. Thus, p(ω) is a function from F into R

K
++. It is a bijection

as γk : Qk → R++ is bijective, in which case there is a function φ : R
K
++ → F

given by

φ(p) =
(
γ−1
1

(
p1/(Vp + z)1

)
, . . . , γ−1

K

(
pK/(Vp + z)K

))

such that p(φ(p)) = p,p > 0, and φ(p(ω)) = ω,ω ∈ F. So, the lemma
follows from Theorem B.7.
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It is important to emphasize that the positivity of the vector z is crucial
for the results to hold. In contrast, the assumption trace(V) = 0 is merely
motivated by practical applications and could be easily dropped. Note that
due to this assumption, (Vs)k for any s ∈ R

K is independent of sk for each
1 ≤ k ≤ K.

In what follows, we extensively exploit the following special form of
Hölder’s inequality (Theorem A.4): For any μ ∈ (0, 1) and u,v ∈ R

K
+ , there

holds
〈u,v〉 ≤ ‖u‖p‖v‖q, p =

1
1− μ

and q =
1
μ

, (2.18)

with equality if and only if there exists a constant c > 0 such that

vk = c up−1
k = c u

μ
1−μ

k , 1 ≤ k ≤ K .

Finally, recall that γk : Qk → R++, 1 ≤ k ≤ K, is said to be strictly log-
convex if γk(x(μ)) < γk(x̂)1−μγk(x̌)μ for all μ ∈ (0, 1) and x̂, x̌ ∈ Qk with
x̂ �= x̌ and x(μ) = (1 − μ)x̂ + μx̌. Similarly, we say that pk : F → R++

given by (2.6) is strictly log-convex for some 1 ≤ k ≤ K if pk(ω(μ)) <
pk(ω̂)1−μpk(ω̌)μ for all μ ∈ (0, 1) and ω̂, ω̌ ∈ F with ω̂ �= ω̌. The following
result is a straightforward extension of Theorem 2.6 to the case of strictly
log-convex functions γ1, . . . , γK .

Theorem 2.12. Let V ≥ 0 be arbitrary, and let γk : Q → R++ be strictly
log-convex for each 1 ≤ k ≤ K. Then, for all ω̂, ω̌ ∈ F with ω̂ �= ω̌, there
exists an index 1 ≤ k0 ≤ K such that pk0(ω(μ)) < pk0(ω̂)1−μpk0(ω̌)μ for all
μ ∈ (0, 1).

Proof. Let ω̂, ω̌ ∈ F be arbitrary, and let k0 be an index such that ω̂k0 �= ω̌k0 .
By Theorem 2.6, we know that ω(μ) = (1− μ)ω̂ + μω̌ ∈ F for all μ ∈ (0, 1).
Therefore, for any μ ∈ (0, 1), it follows from (2.2) that

pk0(ω(μ)) = γk0(ωk0(μ))
(
Vp(ω(μ)) + z

)
k0

.

So, by strict log-convexity of γk0 and positivity of the vector z, we have

pk0(ω(μ)) < γk0(ω̂k0)
1−μγk0(ω̌k0)

μ
(
Vp(ω(μ)) + z

)
k0

.

Considering Theorem 2.6 and Hölder’s inequality (2.18) yields

pk0(ω(μ)) < γk0(ω̂k0)
1−μγk0(ω̌k0)

μ
[∑

l∈K

(
vk0,lpl(ω̂)

)1−μ(
vk0,lpl(ω̌)

)μ + zk0

]

≤ γk0(ω̂k0)
1−μγk0(ω̌k0)

μ
[(

Vp(ω̂)
)1−μ

k0

(
Vp(ω̌)

)μ
k0

+ z1−μ
k0

zμ
k0

]

= 〈û, ǔ〉
where3

3 For any vector u ∈ R
K and any constant c ∈ R, (u)c

k = [(u)k]c = uc
k, 1 ≤ k ≤ K.
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û =

(
(Γ(ω̂)Vp(ω̂))1−μ

k0

(Γ(ω̂)z)1−μ
k0

)
ǔ =
(

(Γ(ω̌)Vp(ω̌))μ
k0

(Γ(ω̌)z)μ
k0

)
.

By repeated application of (2.18), we obtain

pk0(ω(μ)) < ‖û‖ 1
1−μ
‖ǔ‖ 1

μ

=
(
Γ(ω̂)Vp(ω̂) + Γ(ω̂)z

)1−μ

k0

(
Γ(ω̌)Vp(ω̌) + Γ(ω̌)z

)μ
k0

= pk0(ω̂)1−μpk0(ω̌)μ .

This completes the proof.

Remarkably, there are no additional restrictions on V ≥ 0. As shown
below, we obtain a similar property if we drop the requirement on strict log-
convexity of γk, 1 ≤ k ≤ K, and instead put some constraints on V.

Theorem 2.13. Let γk : Qk → R++ be log-convex for each 1 ≤ k ≤ K.
Suppose that V ∈ R

K×K
+ is chosen such that for each 1 ≤ l ≤ K, there exists

k �= l with vk,l > 0. Then, for any fixed ω̂, ω̌ ∈ F with ω̂ �= ω̌, there exists
k0, 1 ≤ k0 ≤ K, so that pk0(ω(μ)) < pk0(ω̂)1−μpk0(ω̌)μ for all μ ∈ (0, 1).

Proof. Let ω̂, ω̌ ∈ F with ω̂ �= ω̌ be arbitrary. Since p(ω) is a bijection
(Lemma 2.11), we have p(ω̂) �= p(ω̌). Choose l0, 1 ≤ l0 ≤ K, such that

pl0(ω̂) �= pl0(ω̌) (2.19)

and let k0 �= l0 be any index with vk0,l0 > 0. Note that by assumption, there
exists such an index. Using

û =

⎛

⎜⎝

∑
l∈Kl0

(
γk0(ω̂k0)vk0,lpl(ω̂)

)1−μ

(γk0(ω̂k0)zk0)
1−μ

(
γk0(ω̂k0)vk0,l0pl0(ω̂)

)1−μ

⎞

⎟⎠ ǔ =

⎛

⎝

∑
l∈Kl0

(
γk0(ω̌k0)vk0,lpl(ω̌)

)μ

(γk0(ω̌k0)zk0)
μ

(
γk0(ω̌k0)vk0,l0pl0(ω̌)

)μ

⎞

⎠

and considering log-convexity of γk, 1 ≤ k ≤ K, one obtains

pk0(ω(μ)) =
(
Γ(ω(μ))Vp(ω(μ)) + Γ(ω(μ))z

)

k0

(a)

≤ 〈û, ǔ〉
(b)

≤ ‖û‖ 1
1−μ
‖ǔ‖ 1

μ
= pk0(ω̂)1−μpk0(ω̌)μ

for any μ ∈ (0, 1), where (a) follows from Theorem 2.6 and (b) from (2.18).
Therefore, since vk0,l0 > 0 and zk0 > 0, we can have equality in (b) only if
pl0(ω̂) = pl0(ω̌) which contradicts (2.19), and hence completes the proof.

It is important to emphasize that Theorems 2.12 and 2.13 do not imply
the existence of an index k such that pk(ω) is strictly log-convex on F. In fact,
the theorems only assert that for any fixed ω̂, ω̌ ∈ F, ω̂ �= ω̌, there is an index
k such that pk(ω(μ)) < pk(ω̂)1−μpk(ω̌)μ for all μ ∈ (0, 1). However, this is
sufficient to deduce the following corollary.
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Corollary 2.14. Suppose that at least one of the following holds.

(i) For each 1 ≤ k ≤ K, γk : Qk → R++ is strictly log-convex.
(ii) Each column of the matrix V has at least one positive entry.

Then ‖p(ω)‖1 is strictly log-convex on F.

Proof. Let ω̂, ω̌ ∈ F with ω̂ �= ω̌ be arbitrary. For any fixed μ ∈ (0, 1), we
have

‖p(ω(μ))‖1 =
∑

k∈K
pk(ω(μ))

(a)
<
∑

k∈K
(pk(ω̂))1−μ(pk(ω̌))μ

(b)

≤
(∑

k∈K
pk(ω̂)
)1−μ(∑

k∈K
pk(ω̌)
)μ

= ‖p(ω̂)‖1−μ
1 ‖p(ω̌)‖μ1

where (a) is either due to Theorem 2.12 or due to Theorem 2.13 depending
on whether (i) or (ii) holds, and (b) follows from (2.18).

Obviously, condition (ii) of the corollary, which is equivalent to the condi-
tion of Theorem 2.13, is weaker than irreducibility. For instance, the following
two reducible matrices satisfy the condition of Theorem 2.13:

V =

⎛

⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎠ and V =

⎛

⎝
0 1 1
1 0 0
0 0 0

⎞

⎠ .

With these particular choices of V and with γ1(x) = γ2(x) = γ3(x) = ex, x ∈
R, we have (respectively)

p1(ω) = eω1p2(ω) + eω1z1

p2(ω) = eω2p1(ω) + eω2z2

p3(ω) = eω3p4(ω) + eω3z3

p4(ω) = eω4p3(ω) + eω4z4

p1(ω) = eω1p2(ω) + eω1p3(ω) + eω1z1

p2(ω) = eω2p1(ω) + eω2z2

p3(ω) = eω3z3 .

In the first case, we see that p1(ω) and p2(ω) are strictly log-convex with
respect to (ω1, ω2) but they are independent of (ω3, ω4). For p3(ω) and p4(ω),
the situation is reversed so that ‖p(ω)‖1 remains strictly log-convex on F. In
the second example, we can write p1(ω) as

p1(ω) = eω1
eω2z2 + eω3z3 + z1

1− eω1eω2

which is strictly log-convex on F. In contrast, the transpose matrix V =( 0 1 0
1 0 0
1 0 0

)
does not satisfy the conditions of Theorem 2.13 since vk,3 = 0 for each

1 ≤ k ≤ K. In this case, the nonnegative solution p(ω),ω ∈ R
3, is given by
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p1(ω) = eω1p2(ω) + eω1z1

p2(ω) = eω2p1(ω) + eω2z2

p3(ω) = eω3p1(ω) + eω3z3 .

We see that whereas p1(ω) and p2(ω) are independent of ω3, p3(ω) is a log-
convex function of ω3, though not strictly log-convex. Therefore, there is no
index k such that pk(ω) is strictly log-convex along the third coordinate of ω
(with ω1 and ω2 being fixed).

Finally we show that if V is irreducible, pk(ω) is strictly log-convex on F
for each 1 ≤ k ≤ K, regardless of whether γk is strictly log-convex or only
log-convex.

Theorem 2.15. Let γk : Qk → R++, 1 ≤ k ≤ K, be log-convex, and let
V ∈ XK . Then, pk(ω) is strictly log-convex on F for each 1 ≤ k ≤ K.

Proof. Let ω̂, ω̌ ∈ F with ω̂ �= ω̌ be arbitrary. Suppose that the theorem is
false. Then, there exists k0 and μ0 ∈ (0, 1) such that

pk0(ω(μ0)) = pk0(ω̂)1−μ0pk0(ω̌)μ0 .

So, by log-convexity of γk, Theorem 2.6 and Hölder’s inequality,

pk0(ω(μ0))

= γk0(ωk0(μ0))
(∑

l∈K
vk0,lpl(ω(μ0)) + zk0

)

(a)

≤ γk0(ωk0(μ0))
(∑

l∈K
vk0,lpl(ω̂)1−μ0pl(ω̌)μ0 + zk0

)

≤ γk0(ω̂k0)
1−μ0γk0(ω̌k0)

μ0

(∑

l∈K
(vk0,lpl(ω̂))1−μ0(vk0,lpl(ω̌))μ0 + zk0

)

≤ γk0(ω̂k0)
1−μ0γk0(ω̌k0)

μ0

·
[(∑

l∈K
vk0,lpl(ω̂)

)1−μ0
(∑

l∈K
vk0,lpl(ω̌)

)μ0

+ z1−μ0
k0

zμ0
k0

]

(b)

≤
(
γk0(ω̂k0)

(∑

l∈K
vk0,lpl(ω̂) + zk0

))1−μ0
(
γk0(ω̌k0)

(∑

l∈K
vk0,lpl(ω̌) + zk0

))μ0

= pk0(ω̂)1−μ0pk0(ω̌)μ0 .

So, in each step, we have equality. Now let N1 ⊂ {1, . . . , K} be a set of those
indices l for which vk0,l > 0. As V is irreducible, we have N1 �= ∅. Hence, since
z is positive, it follows from (2.18) that there can be equality in (b) only if
∀l∈N1 pl(ω̂) = pl(ω̌). Now suppose thatN2 ⊂ {1, . . . , K} withN2 �= N1 is a set
of all indices l such that there exists k1 ∈ N1, k1 �= k0, with vk1,l > 0. Again,
due to irreducibility of V, it holds N2 �= ∅. Moreover, since there is equality
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in (a) if only if pk1(ω(μ0)) = pk1(ω̂)1−μ0pk1(ω̌)μ0 for each k1 ∈ N1, we can
reason along the same lines as above to show that ∀l∈N2 pl(ω̂) = pl(ω̌). Now
since V is irreducible, we can proceed in this way until there are no indices
left to obtain

∀1≤k≤K pk(ω̂) = pk(ω̌) .

Clearly, since z is positive and p(ω) is a bijection, this implies that ω̂ = ω̌,
which contradicts ω̂ �= ω̌ and therefore completes the proof.

Figure 2.2 depicts ‖p(ω(μ))‖1 as a function of μ ∈ [0, 1] for three different
log-convex functions γ(x) = γ1(x) = . . . = γK(x), x > 0, and a randomly
chosen irreducible matrix V. Since γ(x) = ex/(1 − ex) is strictly log-convex
on Q = (−∞, 0) and γ(x) = 1/x is strictly log-convex on (0,+∞), it follows
from Theorem 2.12 that ‖p(ω)‖1 is strictly log-convex on QK . In contrast,
γ(x) = ex is not strictly log-convex on R. Nevertheless, since V is irreducible,
Theorem 2.15 asserts that the l1-norm is strictly log-convex.

‖p
(ω

(μ
))
‖ 1

1

γ(x) = 1
x

γ(x) = exp(x)
1−exp(x)

γ(x) = exp(x)

0.2 0.4 0.6 0.8

4

8

12
‖p(ω̂)‖1−μ

1 ‖p(μ̌)‖μ1

0
μ

Fig. 2.2: The l1-norm ‖p(ω(μ))‖1 as a function of μ ∈ [0, 1] for some fixed ω̂, ω̌ ∈ QK

chosen such that ‖p(ω̂)‖1 and ‖p(ω̌)‖1 are independent of the choice of γ.

2.3.4 Strict Convexity of the Feasibility Sets

The results in the preceding section may be used to deduce strict convexity
of the feasibility set in the following sense (see also Definition 1.44).

Definition 2.16. F(Pt) (respectively, F(P1, . . . , PK)) is said to be strictly
convex (or s-convex) if ω(μ) = (1 − μ)ω̂ + μω̌ is interior to F(Pt) (re-
spectively, F(P1, . . . , PK)) for all μ ∈ (0, 1) and ω̂, ω̌ ∈ ∂F(Pt) (respectively,
ω̂, ω̌ ∈ ∂F(P1, . . . , PK)), ω̂ �= ω̌, where
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∂F(Pt) = {ω ∈ F : ‖p(ω)‖1 = Pt}
∂F(P1, . . . , PK) = {ω ∈ F : ∃1≤k≤K pk(ω) = Pk} .

(2.20)

Under the setup of Corollary 2.14, F(Pt) is a strictly convex set for all
Pt > 0 since then ‖p(ω)‖1 is strictly log-convex. These conditions however
are not necessary for F(Pt) to be a strictly convex set (see Example 2.4).
As far as F(P1, . . . , PK) is concerned, the set is strictly convex when pk(ω)
is strictly log-convex for each 1 ≤ k ≤ K. Therefore, we have the following
corollary.

Corollary 2.17. Under the setup of Theorem 2.15, F (P1, . . . , PK) is a strictly
convex set for any P1, . . . , PK > 0.

Of course, if F(P1, . . . , PK) is strictly convex, so also is F (Pt;P1, . . . , PK).

2.4 The Linear Case

In this section, we further focus on the special case (2.17) except that now

γ(x) = γ1(x) = · · · = γK(x) = x, x > 0 .

Hence, we have Ω = QK = R
K
++.

The linear case has already been considered in Sect. 1.5 where it is shown
that Fc is not a convex set in general. More precisely, Theorem 1.60 asserts
that there exist V ∈ XK and K > 1 such that neither F nor its complement
Fc = R

K
++\F is a convex set. In this section, we will use this result to show that

Fc(Pt) = R
K
++ \F(Pt) is in general not convex either. However, note that this

does not exclude the possibility of convexity of Fc(Pt) for some special choices
of Pt,K and V. For instance, consider K = 2, z = (1, 1) and V =

( 0 


 0

)
for

any fixed � > 0. Then, we see that the set of pairs (ω1, ω2) ∈ ∂F(Pt) (see
Definition 2.16) must satisfy ω2 = f(ω1) = (Pt − ω1)/(1 + 2�ω1 + �2ω1Pt).
Now it may be verified that

f ′(x) =
−(1 + �Pt)2

(1 + �(2 + �Pt)x)2
, x > 0 .

Thus, as the numerator is independent of x and the denominator is monotoni-
cally increasing in x > 0, we must have f ′′(x) ≥ 0 for every x > 0. From this, it
follows that f(x) is not concave but convex on R++. As a consequence of this,
Fc(Pt) = R

2
++ \ F(Pt) is a convex set if K = 2 and γ1(x) = γ2(x) = x, x > 0.

As in Sect. 1.5, this simple example might suggest that Fc(Pt) is a convex
set in general, which in turn would allow us to draw some interesting conclu-
sions with respect to optimal link scheduling in wireless networks. Unfortu-
nately, simple reasoning shows that such a general statement is not possible.

Theorem 2.18. There exist at least one Pt > 0 and an irreducible matrix
V ≥ 0 for some K > 1 such that Fc(Pt) is not convex.
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Proof. The proof is by contradiction. So, assume that Fc(Pt) is convex for all
Pt > 0,K > 1 and all V ∈ XK . Therefore, as the intersection of convex sets
is convex, it follows from (see (2.10))

Fc =
⋂

Pt>0

Fc(Pt)

that Fc is a convex set for all K > 1 and all V ∈ XK . However, this contradicts
Theorem 1.60, and therefore prove the assertion.

Notice that the theorem only deals with the feasibility set when p(ω) is
constrained in the l1-norm. When each element of p(ω) is constrained indi-
vidually, the complement of the feasibility set defined by (2.11) is not convex
even if K = 2. Indeed, proceeding essentially as before shows that p1(ω) = P1

and p2(ω) = P2 are both convex if they are written explicitly as functions of
ω1. However, even though Fc

1(P1) and Fc
2(P2) are both convex sets, the set

Fc(P1, P2) = (F1(P1) ∩ F2(P2))c = Fc
1(P1) ∪ Fc

2(P2)

does not need to be convex as the union of convex sets is not convex in general.
This is illustrated in Fig. 2.3. Obviously, the same reasoning applies to hybrid

F(P1, P2)

p2(ω) = P2

ω2

ω1

‖p(ω)‖1 = Pt

p1(ω) = P1

Fig. 2.3: F(P1, P2) is equal to the intersection of F1(P1) and F2(P2). Thus, Fc(P1, P2)
is equal to the union of Fc

1(P1) and Fc
2(P2), each of which is a convex set if γ(x) =

x, x > 0. However, the union of these sets is not convex in general.
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constraints, in which case neither the feasibility set F(Pt;P1, . . . , PK) given by
(2.13) nor its complement is a convex set in general. This immediately follows
from (2.13) and the above discussion.
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