2

On the Positive Solution to a Linear System
with Nonnegative Coefficients

This chapter deals with a positive solution p to the following system of linear
equations with nonnegative coefficients:

p=u-+Xp. (2.1)

Here and hereafter, u € Rﬁ_ is a given positive vector, X € RfXK is a given
nonnegative matrix (not necessarily irreducible), and p € Rf 4 is a sought
vector, provided that it exists.

2.1 Basic Concepts and Definitions

Before starting with the analysis, we need to address the fundamental problem
of the existence of a positive solution p to (2.1). This problem is addressed in
App. A.4.4. In particular, by Theorem A.51, we know that a necessary and
sufficient condition for p > 0,p # 0, to exist is that p(X) < 1 where p(X) is
the spectral radius of X. Moreover, as u is positive, there is a unique solution
P, which is strictly positive and given by

p=1-X)"u.

Theorem A.39 asserts that A, := p(X) is an eigenvalue of X, that is to say
Ap € 0(X) where o(X) is used to denote the spectrum of X (Definition A.10).

Remark 2.1. Note that except for the nonnegativity, there are no additional
constraints on X. In particular, X does not need to be irreducible. However, it
is worth pointing out that if X is irreducible and its Perron root A, = p(X) > 0
satisfies A, < 1, then u # 0 does not need to be positive for (2.1) to have a
unique positive solution p. This is one part of the assertion of Theorem A.52.

Analogous to the previous chapter, we allow the entries of X to continu-
ously depend on some parameter vector w € 2 where the parameter set € is
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defined by (1.53) and is an open convex subset of RX. The only difference is
that here the matrix is not required to be irreducible for all parameter vectors.
In fact, X(w) can even be identically the zero matrix, in which case, however,
the problems addressed in this chapter are trivial. To be precise, let

X(w) == (wg1(w))1<k, 1<K

be a matrix-valued function whose entries zx; : @ — Ry are continuous
functions defined on 2. Considering Definition 1.35, this is formally written
as X € Ng(Q), in which case X is said to be nonnegative on 2. To conform
with the applications in wireless networks, we let each entry of the vector u
in (2.1) be a continuous positive function of the parameter vector w as well.
We indicate this by writing u € R¥_ (Q).

Now it follows from (2.1) and Theorem A.51 that, for any fixed w € Q,
there exists a unique positive vector p(w) satisfying’

p(w) = X(w)p(w) + u(w) (2.2)
if and only if
Ap(w) = p(X(w)) < 1. (2.3)
Moreover, for any w € Q with A,(w) < 1,

p(w) = (I-X(w)) u(w). (2.4)

Let F be the set of those parameter vectors w € € for which a positive solution
p(w) to (2.2) exists. Formally, we have

Fi={weQ:)\(v) <1}. (2.5)

Note that each entry of the vector p(w) is a continuous map from F into the
set of positive reals R4 . This is because if w € F, then the Neumann series
Y2 o(X(w))! converges (Theorem A.16) and (I — X(w)) ™! = 372, (X(w))".
Therefore, since a composition of continuous maps is continuous, it follows
from

pr(w) = ef 1-X(w)) u(w), weF,1<k <K (2.6)

that pp : F — R, is continuous. In particular, this implies that the I!-norm
of p(w) given by

Ip@)llr = pr(w) =171 - X(w)) 'u(w), w € F (2.7)
kek

is a continuous function on F as well.

! However, as x1; : @ — Ry are not one-to-one maps, there may exist &, €
Q,w # @, such that p(w) = p(w).
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In this chapter, we analyze both pi(w) and ||p(w)||1 as functions of the
parameter vector w € F. In doing so, most of our interest is devoted to matrix-
valued functions X(w) of the form X(w) = I'(w)V with V € Nk and

D(w) = diag(y1(w1), - -+, & (WK)) -

Here and hereafter, v : Qr — R4y is a continuous strictly monotonic (bi-
jective) function and Qi C R is some open interval (see also Sect. 1.3.1).
Formally, this is denoted by X € Ng r(2) where

Nir(Q) = {T(w)V,w e Q: Ve Ng} € Ni(9) (2.8)

is the set of all nonnegative matrix-valued functions X(w) of the form X(w) =
T'(w)V for some given v, : Qx — Ryi, k= 1,..., K. In this special case, it
will also be assumed that u(w) = (71(w1), ..., vk (wk)). Exceptions are only
Sects. 2.3.1 and 2.3.2, where X(w) and u(w) are not confined to this special
form.

2.2 Feasibility Sets

The set F defined by (2.5) contains all parameter vectors such that a positive
solution to our system of linear equations exists. For this reason, if there are
no additional constraints on p, F is referred to as the feasibility set. Notice
that the definition is analogous to Definition 1.41, except that now the spec-
tral radius must be strictly smaller than 1. Therefore, the parameter vectors
satisfying A\p(w) = 1 are not members of F.?

In wireless networks, however, some additional constraints on p are im-
posed, which gives rise to the definition of some subset of F' as the feasibility
set. Constraints on the /*-norm of p(w) are common to applications in wireless
communications networks. More precisely, we say that p(w) is constrained in
the I'-norm if

Ip@)h <P, weQ

must hold for some given constant P, > 0, referred to as a sum (or total)
constraint. Consequently, in this case, the parameter vector w € € is feasible
if and only if w € F(P;) where

Fla)={weF:|pw)|i <a,a>0} CF. (2.9)

Notice that due to continuity of |p(w)]||1, F(«) is monotonic in o > 0 with
respect to set inclusion in the following sense: For any 0 < o < 3, there holds
F(a) C F(B). Therefore, since F(a) C F for all @ > 0, we have

2 In the previous chapter, F is the set of all the parameter vectors for which the
homogenous system of linear equations (I — X(w))p(w) = 0, with X(w) being
irreducible for all w € Q, has a positive solution p(w).
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F=[]JF() (2.10)
a>0
where the union is taken with respect to all a > 0.

Another common situation encountered in wireless networks is that of
constraining each element of p(w) individually. Therefore, if there are positive
constants P, ..., Pk such that pg(w) < P, must hold for each 1 < k < K,
we say that p(w) is subject to individual constraints. Clearly, in this case, the
set of all feasible parameter vectors is given by

F(Py,...,Pg) = (1 Fila) (2.11)
OéE{Pl,‘..,PK}

where
Fr(a) ={weF :pp(w) < a}. (2.12)

These two types of constraints are often combined by imposing both in-
dividual and sum constraints on p(w). Therefore, in this case, the feasibility
set becomes

F(P; P1,...,Pg) =F(P)NF(Py,...,Pg). (2.13)

Note that F(P;; Py,...,Px) = F(P,) if P, < P for each 1 < k < K, and
F(P;Py,...,Px) = F(Py,...,Pg) if ¥, P« < P. Thus, both F(P,) and
F(P1,..., Pk) can be viewed as special cases of F(P;; Py,..., Pk).
Remark 2.2. In what follows, we exclude the trivial case where the feasibility
set is an empty set.

The next observation immediately follows from the connectedness of 2,
continuity of A\, (w),w € Q, and p(w),w € F, as well as [39, Theorem 4.22] .
Observation 2.3. F(P;; P1,..., Pk) is a connected set (see Definition B.1).

It is important to emphasize that the geometry of the feasibility sets de-
pends on the choice of X(w) and u(w),w € Q. In particular, the feasibility
set is not convex in general. To illustrate the definitions, let us consider an
elementary example.

Ezample 2.4. Let X(w) = 0 for all w € Q and u(w) = (y(w1),...,7(wk))
where v : Q — R, is any continuous bijective function. We see that (2.4)
reduces to p(w) = (y(w1),...,¥(wk)), and hence one obtains

F=0=QF
F(Pt>:{weFZZk’Y(Wk)SPt}

Clearly, F and F(Py,..., Pg) are both convex sets, regardless of the choice
of v(z). In contrast, F(P;) is not convex in general. A sufficient condition for
F(P,) (and also F(P;; Py, ..., Pk)) to be a convex set is that «(x) is convex.
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An important example of a convex function is v(z) = e* — 1,z > 0.
Assuming X(w) =0 for all w € @ =R? | and u(w) = (e** — 1,e*2 — 1), Fig.

2.1 depicts the feasibility set F(Py; P, P2) C R%, defined by (2.13) for some
Pl; P2 and Pt.

%]

v (P)

Y(wi) +v(w2) = B

(PP Py) —— A~

v (P) w1

Fig. 2.1: llustration of Example 2.4: The feasibility set F(Ps; P1, P») with X(w) = 0,
y(z) =€ — 1,2 > 0, and u(w) = (e** — 1,e*2 — 1). The constraints Pi, P» and P;
are chosen to satisfy 0 < Pi, P, < P, and P, < P; + P».

Unfortunately, as the example below shows, convexity of () is not suffi-
cient for F(P;) to be a convex set if X(w) =T'(w)V # 0.

Ezample 2.5. Suppose that X(w) = (7(:))2)9 7(“61)9) for some o > 0. Further-

more, assume that u(w) = (y(w1),v(wz2)) and y(x) = €® — 1,2 > 0. Thus,

Q=R{,
F={weQ:\(w)=oy(er —1)(evz — 1) < 1}.

Now we claim that F is not a convex set if o > 0. To see this, we write
Ap(w) = 1 with ¢ > 0 as a function of w; > 0 to obtain wy = f(w1) =

log %, 0 > 0. The function f(z),z > 0, is twice differentiable and its
second derivative is strictly positive for all x > 0. Consequently, instead of
the feasibility set F, its complement in R, (F® = RX, \ F) is convex.

Now let us consider F(P;) with ¢ > 0. Applying (2.7) to our special case

yields

el 4 e¥? — 24 2p(e¥r — 1)(e¥2 — 1)
1—p%(evr —1)(ew2 — 1)

p(w)lls = ,wekF.

Hence, writing ||p(w)|j1 = P, as a function of w; € [0,log(1+ P,)], one obtains
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(1-0 @+P+Po)+e (0(2+F0)—1)
1—1—9(6‘”1 —1)(2+Ptg)

we = g(wr) = log

where the argument under the logarithm is positive. Now if o = 0, g(x) is
concave on z € [0,log(l + P;)] since then ¢"(z) = —% is strictly
negative on [0,log(1 + P;)]. This implies that F(P;) is a convex set, which is
in total agreement with the preceding example. On the other hand, if p = 1,

the second derivative of g(x), z € [0,log(1 + P,)], is

(14 P, —e* (2+ P))*

g"(x) = ;o € [0,log(1 + P)]

which is positive. Thus, if ¢ = 1, F(P) is not convex but its complement
Fe(P,) = RE\F(P,) is a convex set. An examination of the second derivative
of g(z),z € [0,log(1 + P;)], shows that

<0 o<h(P)
S@){>0 o>hp)  h@ =TI
=0 o=h(P)

Since h(z) — 0 as x — oo, we have ¢”(z) > 0 for any ¢ > 0, which complies
with the above discussion that f(z) is convex for any ¢ > 0. On the other
hand, if x — 0, then h(x) — 1/2. So, at small values of P, convexity of F(P;)
changes to convexity of F¢(P;) around the value ¢ = 1/2.

The example above demonstrates that the feasibility set may be a non-
convex set even if each entry of X(w) is convex on . As a consequence, a
stronger property than convexity is necessary to guarantee convexity of F. In
the following section, we show that if X (w) is log-convex on 2 (see Definition
1.37), then pg(w) is a log-convex function of w € F for each 1 < k < K.

2.3 Convexity Results

In this section, we show that if X € Nk () and u € RE, () are both log-
convex on §, then p, : F — R4 given by (2.6) is log-convex for each 1 < k <
K. This in turn implies that the feasibility set F(P;; Py,..., Pk) is a convex
set, regardless of the choice of Py,..., Px > 0 and P, > 0. Following that, we
consider the problem of strict convexity.

Recall that according to Definition 1.37, the notation X € LCk (£2) means
that X € N (Q) is log-convex on 2. Furthermore, note that by this definition,
the identically zero function is a log-convex function (see also the remark in
Sect. 1.3). In an analogous manner, we say that u € R, (Q) is log-convex on
Q if each entry of the vector u(w) is a continuous log-convex function defined
on . Let us indicate this by writing u € le(Q) C REX, (Q).
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2.3.1 Log-Convexity of the Positive Solution

Let w(p) with p € [0,1] be a convex combination of two arbitrary vectors
w,w e

wip) =1 - pw+pe, pel0,1].
Unless otherwise stated, assume that @,w € F C €2, which implies that both
(@) > 0 and pi (@) > 0 exists.

Theorem 2.6. Let X € LCk(Q) C Ng(Q) and u € 1c(Q) € RE,(Q) be
arbitrary. Then, pr(w) is log-convex on F for each 1 < k < K, i.e., we have

pr(w(p) < pe(@) " Fpp(@)*, 1<k<K (2.14)
for all p € (0,1) and @,w € F.

Proof. Let w,w € F be arbitrary. Then, by Theorem 1.39 as well as by Sect.
1.7, we know that A,(w(p)) < 1 for all p € (0,1). Thus, for every p € (0,1),
there exists a unique positive pg(w(p)) given by (see (2.6))

() = ef [1 = X(w(w)] uw(w), 1<k<K.

Now let p € (0,1) be arbitrary but fixed. Since w(u) € F, we can expand
(I —X(w(i)))! into a Neumann series (see Theorem A.16) to obtain

- X(w()] " = > (Xw(n)".

=0

From this it follows that

1=0 =0

Zgl (w(ﬂ))~

By assumption, all the entries of X(w) and u(w) are log-convex on F. Hence,
(2.14) immediately follows from the above equation when one considers the
following properties of log-convex functions:

(i) If two positive functions f and g are log-convex, then f 4 g and f - g are
log-convex.

(ii) For any convergent sequence f, of log-convex functions, the limit f =
lim,, . fr is log-convex provided that the limit is strictly positive.

Due to (i), g1 : F — Ry is log-convex for each [ > 0 and Z;\io gi(w) is
log-convex for any M > 0. Furthermore, since Zl]\io g1(w) is monotonically
increasing in M and g; is positive, it must converge to a positive limit as
M — +o0. Hence, by (ii), pg(w) is log-convex on F and (2.14) must hold.
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Remark 2.7. Recall that the spectral radius of X € Ny () can be expressed
as follows (Theorem A.15)

Ap(w) = Tim[[X(w)™ "

Thus, considering the two properties (i) and (ii) of log-convex functions in the
proof of Theorem 2.6 and the fact that if f is log-convex, so also is f for
every positive a, shows that if the entries of X(w) are log-convex functions
on €, then A\,(w) is log-convex on ). This leads to an alternative proof of
log-convexity of the spectral radius (see for instance [32]).

A trivial but important consequence of the theorem is the following.

Corollary 2.8. If X € LCk(Q) C Ng(Q) and u € 1c(Q) C RE,, then
[p(w)ll1 = > pex Pr(w) is log-convex on F, that is to say,

Ip(@ ()l < [p@)l " [p@)lIf (2.15)
for all p € (0,1) and w,w € F.

Proof. As log-convex functions are closed under addition, it is clear that the
log-convexity property carries over to the ['-norm of p(w).

More generally, we can say that if X € LCk(2) and u € lc(Q2), then
F(pr(w(p)), - pr(W(p) < Fpu(@), ..., pr (@) " F(p1(@), ..., pr (@)

for all pn € (0,1) and @,& € F where F : RE, — Ry is any function that
preserves log-convexity. Standard examples of such functions are

1. weighted sum: F(z1,...,2K) = Y _pcxc WkTk,
2. weighted pointwise multiplication: F'(x1,...,2x) = Hszl wg X, and
3. pointwise maximum and supremum: F(z1,...,Zx) = MaxXij<p<k Tk-

The weighted sum operation and the pointwise multiplication operation pre-
serve log-convexity as log-convex functions are closed under both addition
and multiplication. The claim about the pointwise maximum operation fol-
lows since
max{pe(w() 1 < k < K}
< max{pg (&) Fpp(@) 1<k <K}
< max{pp(@)' " : 1<k < K}ymax{pp(@)":1<k <K}
= max{py(@) : 1 <k < K} P max{pp(w): 1 <k < K}*

for all 4 € (0,1) and w,w € F.
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2.3.2 Convexity of the Feasibility Set

Since the geometric mean is bounded above by the arithmetic mean (B.18),
we have

Pr(@) Fpr(@0) < (1 — w)pr(@) + ppr (@) < max{p (@), pr(@)}

for all @,w € F and p € (0,1). Thus, if px(w) is log-convex on F, then the
above inequality implies that Fy(Pg) defined by (2.12) is a convex set. By
Theorem 2.6, we know that if X(w) and u(w) are both log-convex on , then
pr : F — R,y is log-convex for each 1 < k < K. Consequently, since the
intersection of convex sets is convex, it follows from (2.11) that F(P;,..., Px)
is a convex set if X € LCk(Q) and u € 1¢(Q2). By Corollary 2.8 and (2.13), we
see that this also true for F(P;) and F(P;; P, ..., Px). We summarize these
observations in a corollary.

Corollary 2.9. Suppose that X € LCk(Q) C Ng(Q) and u € 1c(Q) C
Rﬁ(ﬂ). Then, F(P1,...,Pk),F(P) and F(P;; Py, ..., Px) are convex sets,
regardless of the choice of P;, Py,..., Px > 0.

To illustrate the results, let us consider a simple example.

Ezample 2.10. Let X(w) and u(w) be defined as in Example 2.5 except that
now vy(z) = e”, 2 € R. Clearly, the exponential function is log-convex on R.
Thus, by Theorem 1.39 (note that the matrix X(w) is irreducible for all w €
R?), the Perron root is log-convex and, by Corollary 1.42, F is a convex set. In
contrast to the previous example, all pairs satisfying \,(w) = ovev1ewz =1
lie on a line given by ws = —w; — 2log g, which, of course, is both convex and
concave.
The nonnegative solution (2.4) yields

€1 4 gew1tw2
_ 1—p2ew1tw2 2 witws
p((.U) - (e“’2ﬁ—ge“’1+“’2 ’ oe ! <1.

1_92€w1+w2

By Theorem 2.6, both entries are log-convex on R2. All pairs (wy, ws) satisfying
pr(@) = Pi and paw) = P are ws = f(wn) = logl(Pi — e)/(o(1+ 0P4)] —
wi,w; < log P, and we = g(wy) = log[Pe/(1 + e*1 o + e“10? )], ws < log Ps,
respectively. It may be verified that f(z) is concave on (—oo,log P;) and g(x)
is concave on R implying that Fi(P;),Fa(P;) and F(P;, Py) are all convex
sets. Similarly, ||p(w)||1 = P can be rewritten to give wg = h(wy) = log[(P; —
e“1)/(142e%1 p+e*1 9* P2)], w1 < log P;. Again, h(z) can be seen to be concave
on (—oo,log P,), from which convexity of F(F;) follows.

In the preceding example, instead of y(z) = y1(x) = y2(x) = e*,z € R,
we could consider any log-convex functions v; : Q1 — Ry and 5 : Qg —
Ry . In such a case, the unique positive solution p(w) exists if and only if
weF={we:A\w)=oy7(w)y(ws) <1} and is given by
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71(w1);-9“/1(W1)72(w2)

p(w) = <"/2%°—’2Q)1£1)“(:(12’B’(Y‘;az)> , weF. (2'16)
1-0%v1(w1)v2(w2)

It may be verified that if ; and 79 are both log-convex, then each entry

of p(w) is log-convex on F. This in turn implies that the feasibility set

F(P; Py, ..., Pk) is a convex set, regardless of the choice of P, > 0 and

Py,...,Pg > 0.

Finally, it is worth pointing out that the results presented in this chap-
ter straightforwardly extends to the case when pg(w) is either subject to
Ip(w)]l1 € Pi(w) or pyp(w) < Py(w),l < k < K, for all w € Q where
P, :Q — Ryy and P, : Q@ — Ry, are given concave functions. So if
pr(w) is convex for each 1 < k < K, then {w € Q : ||pw)|1 < P(w)}
and {w € Q: pp(w) < Pr(w)},1 <k < K, are convex sets.

2.3.3 Strict Log-Convexity

When X(w) and u(w) are log-convex on 2, Theorem 2.6 asserts that py(w)
is a log-convex function of w € F. In this section, we strengthen this result by
proving conditions on strict log-convexity. In the second part of the book, we
will exploit these results to prove some interesting properties of the addressed
power control problem.

For the analysis in this section, it is assumed that X € Ng(Q2) and u €
RE, (€2) are restricted to be of the following form:

u(w) =T(w)z
_ (2.17)
X(w) =T(w)V with trace(V)=0.
Here and hereafter, z = (z1,. .., zx) is any fixed positive vector, V € N and

Ykt Qr — Rij,k=1... K are continuous and strictly monotonic (bijective)
functions. Formally, we have X € N(IJ(I(Q) which is the subset of Ng r(Q2)
defined by (2.8) such that trace(V) = 0.

Lemma 2.11. Let X € N% 1(Q) and u(w) = T(w)z,w € Q, be arbitrary.
Then, p : F — REX_ defined by (2.4) is a bijection.

Proof. By Theorem A.51, z > 0 and (2.5), p(w) > 0 exists and is unique if
and only if w € F. Thus, p(w) is a function from F into Rﬁ. It is a bijection
as v : Qr — Ry is bijective, in which case there is a function ¢ : Rﬁ —F
given by

() = (1 1/ (VP +2)1), 75 (o / (VD + 7)) )

such that p(¢(p)) = p,p > 0, and ¢(p(w)) = w,w € F. So, the lemma
follows from Theorem B.7.
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It is important to emphasize that the positivity of the vector z is crucial
for the results to hold. In contrast, the assumption trace(V) = 0 is merely
motivated by practical applications and could be easily dropped. Note that
due to this assumption, (Vs); for any s € R¥ is independent of s, for each
1<k<K.

In what follows, we extensively exploit the following special form of
Holder’s inequality (Theorem A.4): For any p € (0,1) and u,v € R, there
holds

1
and ¢ = —, 2.18

with equality if and only if there exists a constant ¢ > 0 such that

(u,v) <llallplvlle, »=

K
vk:cup_lzcu,i"‘, 1<k<K.

Finally, recall that v, : Qr — Ry4,1 < k < K, is said to be strictly log-
convex if yp(x(p)) < Vi (2)1Hyi(2)* for all p € (0,1) and 2,7 € Qg with
Z # & and z(p) = (1 — p)& + p&. Similarly, we say that py : F — Ry
given by (2.6) is strictly log-convex for some 1 < k < K if pgp(w(p)) <
(@) Fpp(@)* for all p € (0,1) and w,w € F with @ # @. The following
result is a straightforward extension of Theorem 2.6 to the case of strictly
log-convex functions vy, ..., Vk.

Theorem 2.12. Let V > 0 be arbitrary, and let vy, : Q — Ry be strictly
log-convex for each 1 < k < K. Then, for all ®,0 € F with & # @, there
ezists an index 1 < kg < K such that pg,(w(p)) < pro (@) "Fpr, (@) for all
we (0,1).

Proof. Let w,& € F be arbitrary, and let ky be an index such that @y, # W, .
By Theorem 2.6, we know that w(u) = (1 — p)@ + pw € F for all p € (0,1).
Therefore, for any u € (0, 1), it follows from (2.2) that

Pro (W (1)) = Yo (Wio () (VP(w(W)) +2), -
So, by strict log-convexity of v, and positivity of the vector z, we have
Preo (@(1)) < Vi (@rg) ™0 (0 ) (VP (w (1)) +2) -

Considering Theorem 2.6 and Holder’s inequality (2.18) yields

Pro (@ (1)) < Yo (@ro) ™ Vo Dk )" [Z(%,zpz (@) ™" (ko upe(@))" + zko]
lex
< Vho (@ho ) ™ Vo (@) [(VP(Q));#(VP(‘Z’))ZO + Zlio_uzll:o}
= <ﬁ7 ﬁ>
where?

3 For any vector u € R¥ and any constant ¢ € R, (u)§ = [(u)x]® = u§,1 < k < K.
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1— - .
oz (T@Ve@)L* - (VRO
(T(w)z)y,, "
By repeated application of (2.18), we obtain

Pro(w(p)) < [fafl _1_|aflx
1—p Iz

= (I‘(L?J)Vp(dz) +r(a;)z>17”( (@)Vp(

ko

&
Jr
=
N
\_/
F

= Pho (@) " prg (@)
This completes the proof.
Remarkably, there are no additional restrictions on V. > 0. As shown

below, we obtain a similar property if we drop the requirement on strict log-
convexity of y;,1 < k < K, and instead put some constraints on V.

Theorem 2.13. Let vy, : Qr — R4 be log-convex for each 1 < k < K.
Suppose that V € RfXK is chosen such that for each 1 <1 < K, there exists
k # 1 with vy > 0. Then, for any fivzed w,&w € F with @ # @, there exists
Koo 1 < ko < K, 50 that pr, (w(1)) < pro (@)1 piy (@)* for all 1€ (0, 1),

Proof. Let w,w € F with @ # & be arbitrary. Since p(w) is a bijection
(Lemma 2.11), we have p(@) # p(w). Choose ly,1 < Iy < K, such that

Pl (@) # iy (@) (2.19)

and let kg # [y be any index with vy, ;, > 0. Note that by assumption, there
exists such an index. Using

Zlel(:lo (71@0 (d)k'o )U/fmlpl ((‘:J)) o Zlel(:lo (’Yko (a)k'o )Uko,lpl (“b))#
u= (Vko (@ro )20 ) " ) u= (Vho (Who ) 210 )
(’yko( ko)vko,loplo ((‘:’)) - (/yko (&)k())vko,loplo ("b))u

and considering log-convexity of vx,1 < k < K, one obtains

Pro( (1) = (T@()VP@(p) + Tlw(m)z) < (aw)

ko
® 5 o B
< 6l il = pry (@) pr, (@)

for any pu € (0,1), where (a) follows from Theorem 2.6 and (b) from (2.18).
Therefore, since vy, 1, > 0 and 2, > 0, we can have equality in (b) only if
Dl (@) = plo( ) which contradlcts (2.19), and hence completes the proof.

It is important to emphasize that Theorems 2.12 and 2.13 do not imply
the existence of an index k such that pg(w) is strictly log-convex on F. In fact,
the theorems only assert that for any fixed w,w € F,w # w, there is an index
k such that pg(w(i)) < pr(@)Hpg(w)* for all p € (0,1). However, this is
sufficient to deduce the following corollary.
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Corollary 2.14. Suppose that at least one of the following holds.

(i) For each 1 <k < K, v : Qr — Ry is strictly log-convex.
(ii) Each column of the matriz 'V has at least one positive entry.

Then ||p(w)||1 is strictly log-convex on F.

Proof. Let @,w € F with @ # @ be arbitrary. For any fixed p € (0,1), we
have

ol = 3 pr@) € S (@) (pr())"

kel ke
© (kgcpkwa))l_“ (k;pk(w))“ — Ip(@) I lp()

where (a) is either due to Theorem 2.12 or due to Theorem 2.13 depending
on whether (i) or (ii) holds, and (b) follows from (2.18).

Obviously, condition (ii) of the corollary, which is equivalent to the condi-
tion of Theorem 2.13, is weaker than irreducibility. For instance, the following
two reducible matrices satisfy the condition of Theorem 2.13:

s

V = and V=100
0001 000
0010

With these particular choices of V and with v1 (z) = y2(z) = v3(z) = e*,z €
R, we have (respectively)

p1(w) = ' pa(w) + €' 21
pa(w) = e“?py (w) + €22 p1(w) = e pa(w) + ' p3(w) + € 21
2 - 1 2
p3(w) = e py(w) + e 23 p2(w) = e”p1(w) + €25
_ w4 w4 p?)(w) = 6w3Z3
pa(w) = e p3(w) + ez

In the first case, we see that p;(w) and p2(w) are strictly log-convex with
respect to (wy,ws) but they are independent of (w3, w,). For p3(w) and ps(w),
the situation is reversed so that |p(w)]||; remains strictly log-convex on F. In
the second example, we can write p;(w) as

w2 w3
wy € 20+ €323 + 21

1 — ewiew2

pr(w)=e

which is strictly log-convex on F. In contrast, the transpose matrix V =
010 . . .

(% 0 8) does not satisfy the conditions of Theorem 2.13 since vy 3 = 0 for each

1<k

< K. In this case, the nonnegative solution p(w),w € R3?, is given by
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p1(w) = eI pa(w) + e 2
pa(w) = e2p1(w) + €225
p3(w) = epr(w) + e“3z5 .

We see that whereas p;(w) and ps(w) are independent of ws, ps(w) is a log-
convex function of ws, though not strictly log-convex. Therefore, there is no
index k such that py(w) is strictly log-convex along the third coordinate of w
(with w; and ws being fixed).

Finally we show that if V is irreducible, pg(w) is strictly log-convex on F
for each 1 < k < K, regardless of whether 7 is strictly log-convex or only
log-convex.

Theorem 2.15. Let v, : Qr — Riy,1 < k < K, be log-convex, and let
V € Xk. Then, pip(w) is strictly log-convex on F for each 1 <k < K.

Proof. Let w,w € F with @ # & be arbitrary. Suppose that the theorem is
false. Then, there exists ko and pg € (0, 1) such that

Do (W(110)) = Pro (@) H0 P (wW)H0 .

So, by log-convexity of 7y, Theorem 2.6 and Hoélder’s inequality,

Pro (@ (10))
= Vo (Who (10)) (Z Ugo 1P1 (W )+zk0)
lek
(@) - )
< Vio (Wi (120) (Z Vo iP1(@) " Hopr(w)He + zko)
lek
< Yo (@ro )Yk (o) (Z (Vo1 (@)) 0 (Vke 101 (@)1 + 21 >
ex

< Vi (@ho) ko (ko )10

1— Mo L
'li(ZUko,lpl( ) (kao,lpl ) _1_21;0%5}

lex

(b) 1—po 1o
(’Wco Wry) kao,mz w) + Zko)) (%o Wig ) kao,zpl w) + Zk0)>

lek lek
= Pro (@)1 0y (@)H0 .

So, in each step, we have equality. Now let A7 C {1,..., K} be a set of those
indices [ for which vg, ; > 0. As V is irreducible, we have N; # (). Hence, since
z is positive, it follows from (2.18) that there can be equality in (b) only if
Vien, pi(@) = pi(@). Now suppose that Ny C {1,..., K} with My # N7 is aset
of all indices [ such that there exists k1 € N7, k1 # ko, with v, ; > 0. Again,
due to irreducibility of V, it holds N5 # (). Moreover, since there is equality
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in (a) if only if py, (w(po)) = pr, (W) Hopy, (w)Ho for each ky € N7, we can
reason along the same lines as above to show that Vien, pi1(w) = pi(w). Now
since V is irreducible, we can proceed in this way until there are no indices
left to obtain

Vick<k pr(@) = pr(@).

Clearly, since z is positive and p(w) is a bijection, this implies that @ = @,
which contradicts w # @ and therefore completes the proof.

Figure 2.2 depicts ||p(w(p))||1 as a function of p € [0, 1] for three different
log-convex functions y(z) = y1(z) = ... = vx(x),x > 0, and a randomly
chosen irreducible matrix V. Since y(z) = €®/(1 — €®) is strictly log-convex
on Q = (—00,0) and y(z) = 1/x is strictly log-convex on (0,400), it follows
from Theorem 2.12 that ||p(w)l|; is strictly log-convex on Q¥. In contrast,
v(x) = €* is not strictly log-convex on R. Nevertheless, since V is irreducible,
Theorem 2.15 asserts that the ['-norm is strictly log-convex.

Ip(@) "Il

0 0.2 0.4 0.6 0.8 1
14

Fig. 2.2: The I*-norm ||p(w(p)) |1 as a function of u € [0, 1] for some fixed &, @ € Q¥
chosen such that ||p(@)||:1 and ||p(@)||1 are independent of the choice of ~.

2.3.4 Strict Convexity of the Feasibility Sets

The results in the preceding section may be used to deduce strict convexity
of the feasibility set in the following sense (see also Definition 1.44).

Definition 2.16. F(P;) (respectively, F(Py,...,Pk)) is said to be strictly
conver (or s-convex) if w(p) = (1 — p)w + pw is interior to F(P;) (re-
spectively, F(Py, ..., Pg)) for all p € (0,1) and @,w € IF(P;) (respectively,
w,w € JF(Py,...,Px)), @ # w, where
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OF(P) ={w e F: [[p(w)l = P}

2.20
OF(Py,...,Px) ={w € F: Ji<i<ik pr(w) = P} . (220)

Under the setup of Corollary 2.14, F(P,) is a strictly convex set for all
P; > 0 since then ||p(w)]; is strictly log-convex. These conditions however
are not necessary for F(FP;) to be a strictly convex set (see Example 2.4).
As far as F(P,..., Pk) is concerned, the set is strictly convex when pg(w)
is strictly log-convex for each 1 < k < K. Therefore, we have the following
corollary.

Corollary 2.17. Under the setup of Theorem 2.15, F(P, ..., Pk) is a strictly
convez set for any Py,..., Px > 0.

Of course, if F(Py, ..., Px) is strictly convex, so also is F'(P; P, ..., Pk).

2.4 The Linear Case
In this section, we further focus on the special case (2.17) except that now

y(@)=m(z)=-=vk(x) =2z, z>0.

Hence, we have Q = Q¥ = Rf+.

The linear case has already been considered in Sect. 1.5 where it is shown
that F¢ is not a convex set in general. More precisely, Theorem 1.60 asserts
that there exist V € Xx and K > 1 such that neither F nor its complement
Fe = Rff +\F is a convex set. In this section, we will use this result to show that
F¢(P,) = RE_ \F(P) is in general not convex either. However, note that this
does not exclude the possibility of convexity of F¢(P;) for some special choices
of P, K and V. For instance, consider K = 2,z = (1,1) and V = (2 8) for
any fixed ¢ > 0. Then, we see that the set of pairs (wy,ws) € OF(P;) (see
Definition 2.16) must satisfy wy = f(w1) = (P — w1)/(1 + 20w + 0*w1 ).
Now it may be verified that

—(1+4 QPt)2
(14 02+ oP;)x)?’

f(z) = x>0.
Thus, as the numerator is independent of x and the denominator is monotoni-
cally increasing in = > 0, we must have f”(z) > 0 for every z > 0. From this, it
follows that f(z) is not concave but convex on R ;. As a consequence of this,
Fe(P) =R2, \ F(P,) is a convex set if K =2 and v (z) = y2(z) = z,z > 0.
As in Sect. 1.5, this simple example might suggest that F¢(P;) is a convex
set in general, which in turn would allow us to draw some interesting conclu-
sions with respect to optimal link scheduling in wireless networks. Unfortu-
nately, simple reasoning shows that such a general statement is not possible.

Theorem 2.18. There exist at least one P, > 0 and an irreducible matriz
V >0 for some K > 1 such that F¢(P;) is not convex.
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Proof. The proof is by contradiction. So, assume that F¢(P;) is convex for all
P, > 0,K > 1 and all V € Xk. Therefore, as the intersection of convex sets
is convex, it follows from (see (2.10))

Fe= ] F(P)

P>0

that F€ is a convex set for all K > 1 and all V € X . However, this contradicts
Theorem 1.60, and therefore prove the assertion.

Notice that the theorem only deals with the feasibility set when p(w) is
constrained in the [!-norm. When each element of p(w) is constrained indi-
vidually, the complement of the feasibility set defined by (2.11) is not convex
even if K = 2. Indeed, proceeding essentially as before shows that p;(w) = Py
and pa(w) = Py are both convex if they are written explicitly as functions of
w1. However, even though F§(P;) and F§(P2) are both convex sets, the set

Fe(Pr, P2) = (F1(Pr) NF2(F2))° = F{(P1) UF5(P2)

does not need to be convex as the union of convex sets is not convex in general.
This is illustrated in Fig. 2.3. Obviously, the same reasoning applies to hybrid

w2

w1

Fig. 2.3: F(P1, P») is equal to the intersection of F1(Py) and Fo(P,). Thus, F°(P1, P,)
is equal to the union of F{(P1) and F5(P%), each of which is a convex set if v(z) =
x,x > 0. However, the union of these sets is not convex in general.
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constraints, in which case neither the feasibility set F(P;; Pi,. .., Pk) given by
(2.13) nor its complement is a convex set in general. This immediately follows
from (2.13) and the above discussion.
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