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1 Introduction and Overview

The theory of Gromov-Witten invariants was largely motivated by the study
of string theory on Calabi—Yau manifolds, and has now developed into one of
the most dynamic fields of algebraic geometry. During the last years there has
been enormous progress in the development of the theory and of its computa-
tional techniques. Roughly speaking, and restricting ourselves to Calabi—Yau
threefolds, we have the following mathematical approaches to the computation
of Gromov-Witten invariants:

1. Localization. This was first proposed by Kontsevich, and requires torus
actions in the Calabi—Yau in order to work. Localization provides a priori
a complete solution of the theory on toric (hence non-compact) Calabi—
Yau manifolds, and reduces the computation of Gromov-Witten invariants
to the calculation of Hodge integrals in Deligne-Mumford moduli space.
Localization techniques make also possible to solve the theory at genus
zero on a wide class of compact manifolds, see for example Cox and Katz
(1999) for a review.

2. Deformation and topological approach. This has been developed more re-
cently and relies on relative Gromov—Witten invariants. It provides a cut-
and-paste approach to the calculation of the invariants and seems to be
the most powerful approach to higher genus Gromov-Witten invariants
in the compact case.

3. D-brane moduli spaces. Gromov—Witten invariants can be reformulated in
terms of the so-called Gopakumar—Vafa invariants (see Hori et al. (2003)
for a summary of these). Heuristic techniques to compute them in terms
of Euler characteristics of moduli space of embedded surfaces, and one
can recover to a large extent the original information of Gromov—Witten
theory. The equivalence between these two invariants remains however
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conjectural, and a general, rigorous definition of the Gopakumar—Vafa
invariants in terms of appropriate moduli spaces is still not known. There
is another set of invariants, the so-called Donaldson—Thomas invariants,
that are also related to D-brane moduli spaces, which can be rigorously
defined and have been conjectured to be equivalent to Gromov—Witten
invariants by Maulik, Nekrasov, Okounkov and Pandharipande (2003).

Gromov—Witten invariants are closely related to string theory. It turns out
that type IIA theory on a Calabi—Yau manifold X leads to a four-dimensional
supersymmetric theory whose Lagrangian contains moduli-dependent cou-
plings Fy(t), where ¢ denotes the Kéhler moduli of the Calabi-Yau. When
these couplings are expanded in the large radius limit, they are of the form

(1) Fyt)y= Y Ngge

BEH2(X)

where Ny g are the Gromov-Witten invariants for the class § at genus g (see
Sect. 3 below for details on this). It turns out that there is a simplified version
of string theory, called topological string theory, which captures precisely the
information contained in these couplings. Topological string theory comes in
two versions, called the A and the B model (see Hori et al. (2003) and Marino
(2005) for a review). Type A topological string theory is related to Gromov—
Witten theory, and its free energy at genus g is precisely given by (1). Type
B topological string theory is related to the deformation theory of complex
structures of the Calabi—Yau manifold. In the last years, various dualities of
string theory have led to powerful techniques to compute these couplings,
hence Gromov-Witten invariants:

1. Mirror symmetry. Mirror symmetry relates type A theory on a Calabi-
Yau manifold X to type B theory on the mirror manifold X. When the
mirror of the Calabi-Yau X is known, this leads to a complete solution at
genus zero in terms of variation of the complex structures of X. For genus
g > 1, mirror symmetry can be combined with the holomorphic anomaly
equations of Bershadsky et al. (1994) to obtain F,(t). However, this does
not provide the full solution to the model due to the so-called holomorphic
ambiguity. On the other hand, mirror symmetry and the holomorphic
anomaly equation are very general and work for both compact and non-
compact Calabi—Yau manifolds.

2. Large N dualities. Large N dualities lead to a computation of the Fy(t)
couplings in terms of correlation functions and partition functions in
Chern—Simons theory. Although this was formulated originally only for
the resolved conifold, one ends up with a general theory — the theory of
the topological vertex, introduced in Aganagic et al. (2005) — which leads
to a complete solution on toric Calabi-Yau manifolds. The theory of the
topological vertex is closely related to localization and to Hodge integrals,
and it can be formulated in a rigorous mathematical way (see Li et al.
2004).
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3. Heterotic duality. When the Calabi—Yau manifold has the structure of a
K3 fibration, type ITA theory often has a heterotic dual, and the evaluation
of Fy(t) restricted to the K3 fiber can be reduced to a one-loop integral
in heterotic string theory. This leads to explicit, conjectural formulae for
Gromov—Witten invariants in terms of modular forms.

In this lectures, I will summarize the approach to Gromov—Witten invari-
ants on toric Calabi—Yau threefolds based on large N dualities. Since the large
N duality/topological vertex approach computes Gromov-Witten invariants
in terms of Chern—Simons knot and link invariants, Sect.2 is devoted to a
review of these. Section 3 reviews topological strings and Gromov—Witten in-
variants, and gives some information about the open string case. Section 4
introduces the class of geometries we will deal with, namely toric (noncom-
pact) Calabi-Yau manifolds, and we present a useful graphical way to rep-
resent these manifolds which constitutes the geometric core of the theory of
the topological vertex. Finally, in Sect.5, we define the vertex and present
some explicit formulae for it and some simple applications. A brief Appendix
contains useful information about symmetric polynomials.

It has not been possible to present all the relevant background and physical
derivations in this set of lectures. However, these topics have been extensively
reviewed for example in the book Marifio (2005), to which we refer for further
information and/or references.

2 Chern—Simons Theory

2.1 Basic Ingredients

In a groundbreaking paper, Witten (1989) showed that Chern—Simons gauge
theory, which is a quantum field theory in three dimensions, provides a phys-
ical description of a wide class of invariants of three-manifolds and of knots
and links in three-manifolds.! The Chern-Simons action with gauge group G
on a generic three-manifold M is defined by

2) S:ﬁ/ Tr(A/\dA+2A/\A/\A).
T Jur 3

Here, k is the coupling constant, and A is a G-gauge connection on the trivial
bundle over M. In the following, we will mostly consider Chern—Simons theory
with gauge group G = U(N).

Chern—Simons theory is an example of a topological field theory. The reason
is that the Chern—Simons theory action does not involve the metric of M in
order to be defined, and the partition function

) 200 = [Ipaes

! This was also conjectured by Schwarz (1987).
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should define a topological invariant of the manifold M. The fact, however,
that the classical Lagrangian is metric independent is not, in general, suf-
ficient to guarantee that the quantum theory will preserve this invariance,
since there could be anomalies in the quantization process that spoil the clas-
sical symmetry. A detailed analysis due to Witten (1989) shows that, in the
case of Chern—Simons theory, topological invariance is preserved quantum me-
chanically, but with an extra subtlety: the invariant depends not only on the
three-manifold but also on a choice of framing, i.e. a choice of trivialization
of the bundle TM & T M. The choice of framing changes the value of the
partition function in a very precise way: if the framing is changed by n units,
the partition function Z (M) changes as follows:

(4) 2(0) — exp[ 5] 7(0),
where

kd
(5) c= m

In this equation, d and y are, respectively, the dimension and the dual Coxeter
number of the group G (for G = U(N), y = N). As explained by Atiyah
(1990), for every three-manifold there is in fact a canonical choice of framing,
and the different choices are labelled by an integer s € Z in such a way that
s = 0 corresponds to the canonical framing. In the following, unless otherwise
stated, all the results for the partition functions of Chern—Simons theory will
be presented in the canonical framing.

Besides providing invariants of three-manifolds, Chern—Simons theory also
provides invariants of knots and links inside three-manifolds (for a survey of
modern knot theory, see Lickorish 1998, and Prasolov and Sossinsky 1997).
Some examples of knots and links are depicted in Fig. 1. Given an oriented
knot K in S3, we can consider the trace of the holonomy of the gauge con-
nection around X in a given irreducible representation R of U(N). This gives
the Wilson loop operator:

(6) Wiy (A) = TrrUx,

where

(7) Ux =P exp % A
K

is the holonomy around the knot. The operator in equation (6) is a gauge-
invariant operator whose definition does not involve the metric on the three-
manifold, therefore it is an observable of Chern—Simons theory regarded as
a topological field theory. The irreducible representations of U(N) will be
labelled by highest weights or equivalently by the lengths of rows in a Young
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Fig. 1. Some knots and links. In the notation 2%, z indicates the number of crossings,
L the number of components (when it is a link with L > 1) and n is a number used
to enumerate knots and links in a given set characterized by = and L. The knot 3;
is also known as the trefoil knot, while 4; is known as the figure-eight knot. The
link 27 is called the Hopf link

tableau, [;, where [y > Iy > ---. If we now consider a link £ with components
Ko, a = 1,---, L, we can in principle compute the normalized correlation
function,

L
8 Winem, (0) = Wi W) = oo [a(T] wite )

The unnormalized correlation function will be denoted by Zg,...r, (£). The
topological character of the action, and the fact that the Wilson loop operators
can be defined without using any metric on the three-manifold, indicate that
(8) is a topological invariant of the link £. Similarly to what happens with the
partition function, in order to define the invariant of the link we need some
extra information due to quantum ambiguities in the correlation function (8).
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For further use we notice that, given two linked oriented knots K, K,
one can define an elementary topological invariant, the linking number, by

9) k(XK,X2) = 1Z:G(Z?)7

2
P

where the sum is over all crossing points, and €(p) = +1 is a sign associated
to the crossings as indicated in Fig. 2. The linking number of a link £ with

components K., a =1,---, L, is defined by
(10) k(L) =) 1k(Ka, Kp).
a<f

For example, once an orientation is chosen for the two components of the Hopf

XX

Fig. 2. When computing the linking number of two knots, the crossings are assigned
a sign +1 as indicated in the figure

link 22 shown in Fig. 1, one finds two inequivalent oriented links with linking
numbers +1.

Some of the correlation functions of Wilson loops in Chern—Simons theory
turn out to be closely related to important polynomial invariants of knots and
links. For example, one of the most important polynomial invariants of a link
L is the HOMFLY polynomial Pp (g, A), which depends on two variables ¢
and A and was introduced by Freyd et al. (1985). This polynomial turns out
to be related to the correlation function (8) when the gauge group is U(N)
and all the components are in the fundamental representation R, = o. More
precisely, we have

A% — N3
(11) WDD(L> = )\lk(L) (W)PL(Q’)\)

where 1k(L) is the linking number of £, and the variables ¢ and \ are related
to the Chern-Simons variables as

(12) g=¢", x= =gV,
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When N = 2 the HOMFLY polynomial reduces to a one-variable polyno-
mial, the Jones polynomial. When the gauge group of Chern—Simons theory
is SO(N), Wq...g(L) is closely related to the Kauffman polynomial. For the
mathematical definition and properties of these polynomials, see, for example,
Lickorish (1998).

2.2 Perturbative Approach

The partition function and correlation functions of Wilson loops in Chern—
Simons theory can be computed in a variety of ways. We will here present the
basic results of Chern—Simons perturbation theory for the partition function.
Since our main interest will be the non-perturbative results of Witten (1989),
we will be rather sketchy. For more information on Chern-Simons perturba-
tion theory, we refer the reader to Dijkgraaf (1995) and Labastida (1999) for
a physical point of view, and Bar-Natan (1995) and Ohtsuki (2002), for a
mathematical perspective.

In the computation of the partition function in perturbation theory, we
have first to find the classical solutions of the Chern—Simons equations of
motion. If we write A = Y A°T,, where T, is a basis of the Lie algebra,
we find

95 - ﬁeuvp o

dAS  Ar ve
therefore the classical solutions are just flat connections on M. Flat connec-
tions are in one-to-one correspondence with group homomorphisms

(13) 771(M) — .

For example, if M = S3/Z, is the lens space L(p, 1), one has 1 (L(p, 1)) = Z,,
and flat connections are labelled by homomorphisms Z,, — G. Let us assume
that the flat connections on M are a discrete set of points (this happens,
for example, if M is a rational homology sphere, since in that case m (M)
is a finite group). In that situation, one expresses Z(M) as a sum of terms
associated to stationary points:

(14) Z(M) =Y 2(M),

where ¢ labels the different flat connections A(®) on M. Each of the Z(¢)(M)
will be an asympotic series in 1/k of the form

(15) Z2O(M) =29, (M) exp{z 5594 }

=1
In this equation, x is the effective expansion parameter:

(16) . 2mi
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which takes into account a quantum shift £ — k+y due to finite renormaliza-
tion effects. The one-loop correction ch_)lo OID(M ) was first analyzed by Witten

(1989), and has been studied in great detail since then (Freed and Gompf
1991; Jeffrey 1992; Rozansky 1995). It has the form

(27Tx)%(dimHg—dichl)

e—%Scs(A(C))—%W
vol(H..)

an  z9 7|

1—loop

(M) =

)

where HO'! are the cohomology groups with values in the Lie algebra of G
associated to the flat connection A(), 7'}(;) is the Reidemeister—Ray—Singer
torsion of A(®), H, is the isotropy group of A9, and ¢ is a certain phase.
Notice that, for the trivial flat connection A =0, H, = G.

Let us focus on the terms in (15) corresponding to the trivial connection,
which will be denoted by S,. Diagramatically, the free energy is computed by
connected bubble diagrams made out of trivalent vertices (since the interaction
in the Chern—Simons action is cubic). We will refer to these diagrams as
connected trivalent graphs. Sy is the contribution of connected trivalent graphs
with 2/ vertices and £+ 1 loops. For each of these graphs we have to compute
a group factor and a Feynman integral. However, not all these graphs are
independent, since the underlying Lie algebra structure imposes the Jacobi
identity:

(18) Z(fabefedc + fdaefebc + facefedb) =0.

€

This leads to the graph relation known as the IHX relation. Also, anti-
symmetry of fup. leads to the so-called AS relation (see, for example,
Bar-Natan 1995; Dijkgraaf 1995; Ohtsuki 2002). The existence of these
relations suggests to define an equivalence relation in the space of connected
trivalent graphs by quotienting by the IHX and the AS relations, and this
gives the so-called graph homology. The space of homology classes of con-
nected diagrams will be denoted by A(0)°°™. This space is graded by half
the number of vertices ¢, and this number gives the degree of the graph. The
space of homology classes of graphs at degree ¢ is then denoted by A(0)7°™".
For every ¢, this is a finite-dimensional vector space of dimension d(¢). The
dimensions of these spaces are explicitly known for low degrees, see, for ex-
ample, Bar-Natan (1995), and we have listed some of them in Table 1. Given
any group G, we have a map

(19) rg : A0)°"™ — R

that associates to every graph I' its group theory factor rg(I7). This map
is of course well defined, since different graphs in the same homology class
A(d)omn lead by definition to the same group factor. This map is an example
of a weight system for A(()°°™. Every gauge group gives a weight system
for A(@)°"®, but one may, in principle, find weight systems not associated to
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gauge groups, although so far the only known example is the one constructed
by Rozansky and Witten (1997), which instead uses hyperKéhler manifolds.
We can now state very precisely what is the structure of the Sy appearing in
(15): since the Feynman diagrams can be grouped into homology classes, we
have

Table 1. Dimensions d(¢) of A (D)™ up to £ = 10

£ |1|12(3[4|5(6]7|8|9]10
d)[1]1]1|2]2]3|4|5|6]| 8

(20) Se= S ra(DIn(M).

reA(®)sern

The factors Ir(M) appearing in (20) are certain sums of integrals of prop-
agators over M. It was shown by Axelrod and Singer (1992) that these are
differentiable invariants of the three-manifold M, and since the dependence
on the gauge group has been factored out, they only capture topological in-
formation of M, in contrast to Z(M), which also depends on the choice of
the gauge group. These are the universal perturbative invariants defined by
Chern—Simons theory. Notice that, at every order ¢ in perturbation theory,
there are d(¢) independent perturbative invariants. Of course, these invariants
inherit from A(0)§°™ the structure of a finite-dimensional vector space, and
in particular one can choose a basis of trivalent graphs. A possible choice for
¢ <5 is the following (Sawon 2004):

(21)

We will denote the graphs with k circles joined by lines by 6. Therefore, the
graph corresponding to ¢ = 1 will be denoted by 6, the graph corresponding
to £ = 2 will be denoted 65, and so on.

Notice that Chern—Simons theory detects the graph homology through
the weight system associated to Lie algebras, so in principle it could happen
that there is an element of graph homology that is not detected by these
weight systems. There is, however, a very elegant mathematical definition of
the universal perturbative invariant of a three-manifold that works directly in
the graph homology. This is called the LMO invariant (Le et al. 1998) and it
is a formal linear combination of homology graphs with rational coefficients:
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(22) wM)= Y IPMO(M)T e AWD)°™(Q].
reA(@)eonn

It is believed that the universal invariants extracted from Chern—Simons per-
turbation theory agree with the LMO invariant. More precisely, since the LMO
invariant w(M) is taken to be 0 for S3, we have:

(23) IPMO(M) = Ir(M) — Ir(S?),

as long as the graph I' is detected by Lie algebra weight systems. In that sense
the LMO invariant is more refined than the universal perturbative invariants
extracted from Chern—Simons theory; see Ohtsuki (2002) for a detailed intro-
duction to the LMO invariant and its properties.

The computation of Sy involves the evaluation of group factors of Feynman
diagrams, which we have denoted by r¢(I") above. Here, we give some details
about how to evaluate these factors when G = U(N), following the diagram-
matic techniques of Cvitanovic (1976) and Bar-Natan (1995). A systematic
discussion of these techniques can be found in Cvitanovic (2004).

! J
Fig. 3. Graphic representation of the generator (7,);; of a Lie algebra

The basic idea to evaluate group factors is very similar to the double-line
notation of ’t Hooft (1974), and it amounts to expressing indices in the adjoint
representation in terms of indices in the fundamental (and anti-fundamental)
representation. The resulting diagrams are often called fatgraphs. In the case of
U(N), the adjoint representation is just the tensor product of the fundamental
and the anti-fundamental representation. Let us first normalize the trace in
the fundamental representation by setting

Fig. 4. Graphic representation of the normalization condition (24)
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(24) Tr(TaTb):(sab, a,b=1,--- 7N2’
One can then see that

(25) Z(Ta)ij(Ta)kl = 0i10k;-

a

If we represent the generator (7,);; as in Fig. 3, the relation (25) can in
turn be represented as Fig. 5. This is simply the statement that the adjoint
representation of U(N) is given by Vy ® V3. Similarly, the normalization
condition (24) is graphically represented as Fig. 4. The evaluation of group

i k
i k
—_—
B S S
J 1 j 1

Fig. 5. Graphic representation of (25)

factors of Feynman diagrams involves, of course, the structure constants of
the Lie algebra f,u., associated to the cubic vertex. By tracing the defining
relation of the structure constants we find

(26) fabc =Tr (TaTbTC) —Tr (TbTaTC),

which we represent as Fig. 6. Putting this together with Fig. 5, we obtain the

e mm e m e m—

Fig. 6. Graphic representation of the relation (26) between structure constants and
generators
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graphical rule represented in Fig. 7. We can interpret this as a rule that tells us
how to split a single-line Feynman diagram of the U () theory into fatgraphs:
given a Feynman diagram, we substitute each vertex by the double line vertex
without twists, minus the double-line vertex with twists in all edges. If the
diagram has 2¢ vertices, we will generate 4° fatgraphs (some of them may
be equal), with a 4 sign, which can be interpreted as Riemann surfaces with
holes. The group factor of a fatgraph with h holes is simply N".

Example. As an example of the above procedure, One can use the above
rules to compute the group factor of the two-loop Feynman diagram

LAA

Fig. 7. Graphic rule to transform Feynman diagrams into double-line diagrams

(27)

By resolving the two vertices we obtain two different fatgraphs: the graph
in Fig. 8 with weight 2, and the graph in Fig. 9 with weight —2. One then
finds:

(28) ruvy () = 2N(N? = 1).
Similarly, the same procedure gives

(29) ruvy(02) = 4N?*(N? —1).

Fig. 8. A fatgraph obtained from the Feynman diagram (27)
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Fig. 9. Another fatgraph obtained from (27)

It is easy to see from the evaluation of group factors that the perturba-
tive expansion of the free energy of Chern—Simons theory around the trivial
connection can be written in the form

o0

(30) F =Y Fyua® **"N".
=0 h=1

In fact, this structure for the partition function holds for any quantum theory
containing only fields in the adjoint representation ('t Hooft 1974). One can
also reorganize the perturbative series (30) as

o0

(31) F =% Fyt)g?
g=0

where t is called the ¢t Hooft coupling of Chern—Simons theory and it is
given by

(32) t= Nz,

and F(t) is defined by summing over all holes keeping the genus g fixed:
(33) Fy(t) = Fynt".
h=1

We will see later in this section how to compute the coefficients Fy j, and the
function F,(t) for Chern-Simons theory on S3.

2.3 Non-Perturbative Solution

As was shown by Witten (1989), Chern—Simons theory is exactly solvable by
using non-perturbative methods and the relation to the Wess—Zumino—Witten
(WZW) model. In order to present this solution, it is convenient to recall some
basic facts about the canonical quantization of the model.

Let M be a three-manifold with boundary given by a Riemann surface
). We can insert a general operator O in M, which will, in general, be a
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product of Wilson loops along different knots and in arbitrary representations
of the gauge group. We will consider the case in which the Wilson loops do
not intersect the surface Y. The path integral over the three-manifold with
boundary M gives a wavefunction ¥y o(A) that is a functional of the values
of the field on Y. Schematically, we have:

(34) Upro(A) = (AlWr0) = / DA® 0.
A‘Z‘:.A

In fact, associated to the Riemann surface X' we have a Hilbert space H(X),
which can be obtained by doing canonical quantization of Chern—Simons the-
ory on Y x R. Before spelling out in detail the structure of these Hilbert
spaces, let us make some general considerations about the computation of
physical quantities.

In the context of canonical quantization, the partition function can be com-
puted as follows. We first perform a Heegaard splitting of the three-manifold,
i.e. we represent it as the connected sum of two three-manifolds M; and M,
sharing a common boundary Y, where X' is a Riemann surface. If f: Y — ¥
is a homeomorphism, we will write M = M; Uy My, so that M is obtained by
gluing My to My through their common boundary and using the homeomor-
phism f. This is represented in Fig.10. We can then compute the full path
integral (3) over M by computing first the path integral over M; to obtain a
state |@py, ) in H(X). The boundary of Ms is also X, but with opposite ori-
entation, so its Hilbert space is the dual space H*(X'). The path integral over
My then produces a state (¥, | € H*(X). The homeomorphism f: X — X
will be represented by an operator acting on H(X),

(35) Up : H(X) — H(D).
and the partition function can be finally evaluated as
(36) Z(M) = (Wng, |Us|¥nr,)-

Therefore, if we know explicitly what the wavefunctions and the operators
associated to homeomorphisms are, we can compute the partition function.
The result of the computation is, of course, independent of the particular
Heegaard splitting of M.

Fig. 10. Heegaard splitting of a three-manifold M into two three-manifolds M; and
My with a common boundary X
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One of the most fundamental results of Witten (1989) is a precise descrip-
tion of H(X): it is the space of conformal blocks of a WZW model on X with
gauge group G and level k (for an extensive review of the WZW model, see,
for example, Di Francesco et al. 1997). In particular, H(X') has finite dimen-
sion. We will not review here the derivation of this fundamental result. Instead
we will use the relevant information from the WZW model in order to solve
Chern—Simons theory in some important cases.

The description of the space of conformal blocks on Riemann surfaces can
be made very explicit when X is a sphere or a torus. For ¥ = S2, the space of
conformal blocks is one-dimensional, so 3{(S?) is spanned by a single element.
For ¥ = T2, the space of conformal blocks is in one-to-one correspondence
with the integrable representations of the affine Lie algebra associated to G at
level k. We will use the following notations: the fundamental weights of G will
be denoted by A;, and the simple roots by a;, i = 1,--- ,r, where r denotes
the rank of G. The weight and root lattices of G are denoted by A¥ and A",
respectively, and | A, | denotes the number of positive roots. The fundamental
chamber J; is given by A" /IA", modded out by the action of the Weyl group.
For example, in SU(N) a weight p = >""_, p;A; is in F if

(37) Zpi<l, and p; >0,i=1,---,7.
i=1

We recall that a representation given by a highest weight A is integrable if p+A
is in the fundamental chamber F;, where | = k+y (p denotes as usual the Weyl
vector, given by the sum of the fundamental weights). In the following, the
states in the Hilbert state of the torus H(T?) will be denoted by |p) = |p+ A)
where p + A € JF}, as we have stated, is an integrable representation of the
WZW model at level k. We will also denote these states by |R), where R is
the representation associated to A. The state |p) will be denoted by |0). The
states |R) can be chosen to be orthonormal (Witten 1989; Elitzur et al. 1989;
Labastida and Ramallo 1989), so we have

(38) (R|R'Y = bpp.

There is a special class of homeomorphisms of T? that have a simple expression
as operators in H(T?); these are the SL(2,Z) transformations. Recall that
the group SL(2,Z) consists of 2 X 2 matrices with integer entries and unit
determinant. If (1,0) and (0, 1) denote the two one-cycles of T?, we can specify
the action of an SL(2,Z) transformation on the torus by giving its action on
this homology basis. The SL(2,Z) group is generated by the transformations
T and S, which are given by

(39) T:((l)i), S:<(1)01>.

Notice that the S transformation exchanges the one-cycles of the torus. These
transformations can be lifted to 3(T?), and they have the following matrix
elements in the basis of integrable representations:
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_ 27i(hyp—c/24)
Tpp = Oppre v )

14+ (volAv )\ ? 27 ,
(40) Spr = Gy <VO1 G ) wgf(“’) e~ w):

In the first equation, c is the central charge of the WZW model, and h,, is the
conformal weight of the primary field associated to p:

2 2
p —p
41 h, = ,

where we recall that p is of the form p+A. In the second equation, the sum over
w is a sum over the elements of the Weyl group W, e(w) is the signature of the
element w, and Vol A* (Vol A") denote, respectively, the volume of the weight
(root) lattice. We will often write Sgrgs for Sy, , where p=p+ A, p' =p+ A’
and A, A’ are the highest weights corresponding to the representations R, R’'.

Fig. 11. Performing the path integral on a solid torus with a Wilson line in repre-
sentation R gives the state |R) in J(T?)

What is the description of the states |R) in H(T?) from the point of view
of canonical quantization? Consider the solid torus T = D x S!, where D is
a disc in R2. This is a three-manifold whose boundary is a T2, and it has a
non-contractible cycle given by the S!. Let us now consider the Chern—Simons
path integral on the solid torus, with the insertion of the operator O = TrrU
given by a Wilson loop in the representation R around the non-contractible
cycle, as shown in Fig.11. In this way, one obtains a state in 3((T?), and
one has

(42) P7.05) = |R).

In particular, the path integral over the solid torus with no operator insertion
gives |0), the ‘vacuum’ state.

These results allow us to compute the partition function of any three-
manifold that admits a Heegaard splitting along a torus. Imagine, for example,
that we take two solid tori and we glue them along their boundary with the
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identity map. Since a solid torus is a disc times a circle, D x S*, by performing
this operation we get a manifold that is S! times the two discs glued together
along their boundaries. Therefore, with this surgery we obtain S2 x S!, and
(36) then gives

(43) Z(S* x 81 = (0/0) = 1.

If we do the gluing, however, after performing an S-transformation on the T?
the resulting manifold is instead S2. To see this, notice that the complement
to a solid torus inside S? is indeed another solid torus whose non-contractible
cycle is homologous to the contractible cycle in the first torus. We then find

(44) Z(87) = (015]0) = Soo.

By using Weyl’s denominator formula,

(45) 3 e(w)er® = [ 2sinh %
weW a>0

where o > 0 are positive roots, one finds

1 Vol A% : . (m(a-p)
(46) 7(8%) = CESTE (VolAT) (E)Qsm(lﬁ_y).

The above result can be generalized in order to compute path integrals
in S3 with some knots and links. Consider a solid torus where a Wilson line
in representation R has been inserted. The corresponding state is |R), as we
explained before. If we now glue this to an empty solid torus after an S-
transformation, we obtain a trivial knot, or unknot, in S3. The path integral
with the insertion is then,

(47) Zr = (0|S|R).

It follows that the normalized vacuum expectation value for the unknot in S2,
in representation R, is given by

27i
S — iy pw(A+p)
(48) Wr(unknot) = PO0R Zwew e(w)e .

Soo ZwGW e(w) o rryrw(p)

This expression can be written in terms of characters of the group G. Re-
member that the character of the representation R, evaluated on an element
a € A" ® R is defined by

(49) chp(a) = ) e,
HEMR

where My is the set of weights associated to the irreducible representation R.
By using Weyl’s character formula we can write
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(50) Wr(unknot) = chp [— 2 ]

k;+yp

Moreover, using (45), we finally obtain

in( o (A
(51) W(unknot) = [ ] Sm(“ya ( +p)).
a>0 sin(ﬁya-p)

This quantity is often called the quantum dimension of R, and it is denoted
by dimyR.

We can also consider a solid torus with a Wilson loop in representation
R, glued to another solid torus with the representation R’ through an S-
transformation. What we obtain is clearly a link in S with two components,
which is the Hopf link shown in Fig.1. Carefully taking into account the
orientation, we find that this is the Hopf link with linking number +1. The
path integral with this insertion is:

(52) Zrr = (R'|S|R),
so the normalized vacuum expectation value is
S+ S_,l
(53) WRR’ = WRR’(HOPerl) = “RR — ﬂ)
Soo Soo

where the superscript 41 refers to the linking number. Here, we have used that
the bras (R| are canonically associated to conjugate representations R, and
that Sp , = Sp'g (see for example Di Francesco et al. 1997). Therefore, the
Chern—Simons invariant of the Hopf link is essentially an S-matrix element.
In order to obtain the invariant of the Hopf link with linking number —1, we
notice that the two Hopf links can be related by changing the orientation of one
of the components. Since this is equivalent to conjugating the representation,
we find

Sr'R
Soo

When we take G = U(N), the above vacuum expectation values for unknots
and Hopf links can be evaluated very explicitly in terms of Schur polynomials.
It is well known that the character of the unitary group in the representation
R is given by the Schur polynomial si (see for example Fulton and Harris
1991). There is a precise relation between the element a on which one evaluates
the character in (49) and the variables entering the Schur polynomial. Let u;,
i =1, ---, N, be the weights associated to the fundamental representation of
U(N). Notice that, if R is given by a Young tableau whose rows have lengths
li >--- > 1y, then Ag =", l;;1;. We also have

(54) Wrr (Hopf ') =

(55) p:Z%(N—2i+1),ui.

i=1
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Let a € A ® R be given by

N
(56) a= Zai,ui.
i=1

Then,
(57) chrla] = sp(z; = ™).

For example, in the case of the quantum dimension, one has dim,R = dim,R,
and we find

(58) dlqu = SR(-'L"L‘ — q%(N—Qi-‘rl))7

where ¢ is given in (12). By using that sp is homogeneous of degree ¢(R) in
the variables x; we finally obtain

dim,R = N 25 (3, = g~ 7)
where A\ = ¢V as in (12), and there are N variables x;. The quantum dimension

can be written very explicitly in terms of the g-numbers:

a

—q %, [aa=A2q2 - X EgE

vl

(59) [a] = q

If R corresponds to a Young tableau with cg rows of lengths [;, i =1,--- | cg,
the quantum dimension is given by:

(60) dimR= ] Ui_lﬁj—i]ﬁ [To= il

. lz‘ . N
1<i<j<cr 7~ 1] i1 i lv — i+ crl

It is easy to check that in the limit K + N — oo (i.e. in the semi-classical
limit) the quantum dimension becomes the dimension of the representation
R. Notice that the quantum dimension is a rational function of qi%, AEz,
This is a general property of all normalized vacuum expectation values of
knots and links in S2.

The S-matrix elements that appear in (53) and (54) can be evaluated
through the explicit expression (40), by using the relation between U(N)
characters and Schur functions that we explained above. Notice first that

(AR, + P)} chr, {;Tmyp}

—1 .
SR1R2 o 27

(61) k+vy

If we denote by lf2, i=1,---,cg, the lengths of rows for the Young tableau
corresponding to Ro, it is easy to see that

o(Ry)

R- .
(62) Wrra(0,0) = (\g) 2 sg, (2 = ¢ ~")dimg R,
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where we set lfz = 0 for ¢ > cp,. A convenient way to evaluate sg, (z; =
ql?*i) for a partition {I*} ;=1 ,... c,} associated to R is to use the Jacobi-Trudi
formula (188). It is easy to show that the generating functional of elementary
symmetric functions (184) for this specialization is given by

LU T ql?_jt
63 Er(t) = Ep(t _
(63) ) = £ [T T557
where
(64) Ey(t) =1+ ant",

n=1
and the coefficients a,, are defined by
n
1— A—lqr—l

65 n = _
©) =111

r=1

The formula (62), together with the expressions above for Eg(t), provides an

explicit expression for (53) as a rational function of qi%, )\i%, and it was first
written down by Morton and Lukac (2003).

2.4 Framing Dependence

In the above discussion on the correlation functions of Wilson loops we have
glossed over an important ingredient. We already mentioned that, in order to
define the partition function of Chern—Simons theory at the quantum level,
one has to specify a framing of the three-manifold. It turns out that the
evaluation of correlation functions like (8) also involves a choice of framing of
the knots, as discovered by Witten (1989).

A good starting point to understand the framing is to take Chern—Simons
theory with gauge group U(1). The Abelian Chern—Simons theory turns out
to be extremely simple, since the cubic term in (2) drops out, and we are left
with a Gaussian theory (Polyakov 1988). U(1) representations are labelled by
integers, and the correlation function (8) can be computed exactly. In order
to do that, however, one has to choose a framing for each of the knots X,.
This arises as follows: in evaluating the correlation function, contractions of
the holonomies corresponding to different X,, produce the following integral:

1 — P
(66) (Ko, Kg) = — 7{ dat 74 Ay’ e, E=Y)
4T Joc, K g

m [z —y*
This is a topological invariant, i.e. it is invariant under deformations of the
knots K., Kg, and it is, in fact, the Gauss integral representation of their

linking number 1k(X,,Kz) defined in (9). On the other hand, contractions of
the holonomies corresponding to the same knot X involve the integral
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(67) 000 = 3= § do § dy“wﬁ:%-

This integral is well defined and finite (see, for example, Guadagnini et al.
1990), and it is called the cotorsion or writhe of XK. It gives the self-linking
number of XK: if we project X on a plane, and we denote by n4 (X) the number
of positive (negative) crossings as indicated in Fig. 2, then we have that

(68) P(XK) = 1y (X) —n_(X).

The problem is that the cotorsion is not invariant under deformations of the
knot. In order to preserve topological invariance of the correlation function,
one has to choose another definition of the composite operator ( §3< A)? by
means of a framing. A framing of the knot consists of choosing another knot
K7/ around X, specified by a normal vector field n. The cotorsion ¢(X) then
becomes

_ 1 m v (.’13 _ y)p _ f
(69) 6(%) = 47T7§<d3: é{f A . = TR(C. %)
The correlation function that we obtain in this way is a topological invariant
(since it only involves linking numbers) but the price that we have to pay is
that our regularization depends on a set of integers p, = Ik(K,,XZ) (one for
each knot). The correlation function (8) can now be computed, after choosing
the framings, as follows:

(70) <1;[exp(na ?i A)> = exp{?(; niPa+ > Nang 1k(9<a,3<ﬁ)) }

a#f

This regularization is simply the ‘point-splitting’” method familiar in the con-
text of quantum field theory.

Let us now consider Chern—Simons theory with gauge group U(N), and
suppose that we are interested in the computation of (8), in the context of
perturbation theory. It is easy to see that self-contractions of the holonomies
lead to the same kind of ambiguities that we found in the Abelian case, i.e.
a choice of framing has to be made for each knot X,. The only difference
from the Abelian case is that the self-contraction of X, gives a group fac-
tor Trg, (7,T,), where T, is a basis of the Lie algebra (see, for example,
Guadagnini et al. 1990). The precise result can be better stated as the effect
on the correlation function (8) under a change of framing, and it says that,
under a change of framing of X, by p, units, the vacuum expectation value
of the product of Wilson loops changes as follows (Witten 1989):

L
(71) Whgy..r, — eXp[QWizpahRa]WleRL.

a=1

In this equation, hp is the conformal weight of the WZW primary field cor-
responding to the representation R. One can write (41) as
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Cr

(72) hR = ma

where Cr = Trg(T,T,) is the quadratic Casimir in the representation R. For
U(N) one has

(73) Cr = NU(R) + kg,

where ((R) is the total number of boxes in the tableau, and
(74) kr=L(R)+ > (17 —2il;).

In terms of the variables (12) the change under framing (71) can be written
as

(75) WRI"'RL — q% Zé:l KRqPa A% Zé:l L(Ra)pa WRl'“RL .

Therefore, the evaluation of vacuum expectation values of Wilson loop opera-
tors in Chern—Simons theory depends on a choice of framing for knots. It turns
out that for knots and links in S3, there is a standard or canonical framing,
defined by requiring that the self-linking number is zero. The expressions we
have given before for the Chern—Simons invariant of the unknot and the Hopf
link are all in the standard framing. Once the value of the invariant is known
in the standard framing, the value in any other framing specified by non-zero
integers p,, can be easily obtained from (71).

2.5 The 1/N Expansion in Chern—Simons Theory

As we explained above, the perturbative series of Chern—Simons theory around
the trivial connection can be re-expressed in terms of fatgraphs. In particular,
one should be able to study the free energy of Chern—Simons theory on the
three-sphere in the 1/N expansion, i.e. to expand it as in (30) and to resum
all fatgraphs of fixed genus in this expansion to obtain the quantities Fy(t). In
this section we will obtain closed expressions for Fy , and Fj(t) in the case of
Chern—Simons theory defined on S3, following Gopakumar and Vafa (1998a,
1999). For earlier work on the 1/N expansion of Chern—Simons theory, see
Camperi et al. (1990), Periwal (1993) and Correale and Guadagnini (1994).

A direct computation of F ; from perturbation theory is difficult, since it
involves the evaluation of integrals of products of propagators over the three-
sphere. However, in the case of S? we have an exact expression for the partition
function and we can expand it in both z and N to obtain the coefficients of
(30). The partition function of CS with gauge group U(N) on the three-sphere
can be obtained from the formula (46) for SU(N) after multiplying it by an
overall NY/2/(k 4+ N)Y/2, which is the partition function of the U(1) factor.
The final result is
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1 - p)
70 R S PN CACH))
(76) (k+N)N/2ag0 M EEN

Using the explicit description of the positive roots of SU(N), one gets

N—1 .

N j
7 F=1 Z:——l (k+ N) E —7)log|2 .
(77) og og(k + +J:1 7) og{ Smk—i—N}

We can now write the sin as

oo 22
(78) sinwz =z H <1 - ﬁ)’

and we find that the free energy is the sum of two parts. We will call the first
one the non-perturbative part:

N2 1 e
(79) F“p:—7log(k+N)+§N(N—1 log 2w + Z —j)logj,

and the other part will be called the perturbative part:

N

J gs
(80) FP =) (N —j) Zlog[ i 2},
j=1
where we have denoted
2
81 F R —
(81) PTkTN

which, as we will see later, coincides with the open string coupling constant
under the gauge/string theory duality.
To see that (79) has a non-perturbative origin, we rewrite it as

(271'95)%1\]

(82) F"? =log W,

where we used the explicit formula

(271.)%N(N+1)

and G3(NN) is Barnes function. This indeed corresponds to the volume of the
gauge group in the one-loop contribution (17), where A(®) is in this case the
trivial flat connection. Therefore, F™P is the log of the prefactor of the path
integral, which is not captured by Feynman diagrams.
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Let us now work out the perturbative part (80), following Gopakumar and
Vafa (1998a, 1999). By expanding the log, using that - | n=2* = ((2k), and
the formula

N LS, k1
4 k& —1 k—I+1 B _ Nl
v 0l R L
j=1 =1

where B,, are Bernoulli numbers, we find that (80) can be written as
oo o

(85) P — Z Z ng’hgzgf2+hNh’
g=0 h=2

where F, is given by:

Bi_s|

o |Bh—2
P 1 |By
P _

(86) Lh ™12 hal”

Notice that Fé’ ,, vanishes for A < 3. For g > 2 one obtains

_C(2g—2+h) (29-3+h\ B
(87) Fih—W< h )29(2992)

This gives the contribution of connected diagrams with two loops and be-
yond to the free energy of Chern—Simons theory on the sphere. The non-
perturbative part also admits an asymptotic expansion that can be easily
worked out by expanding the Barnes function that appears in the volume
factor (Periwal 1993; Ooguri and Vafa 2002). One gets:

2
(88) 7 = l(log(Ngs)—% _*logJ\H—C Z N2—29,
2 2 2g 2)

In order to find Fj(t) we have to sum over the holes, as in (33). The
Hooft parameter is given by t = N = igs N, and

(89) Z (i)

Let us first focus on g > 2. To perform the sum explicitly, we again write the
¢ function as ((2g — 2+ 2p) = Y o—, n?7297?P_ and use the binomial series,

(90) (llz)qzi(ﬁg‘l)zn
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to obtain:

—1)9|BoyBoy— B 1
(o) (= CDIBaBayal | B > — Tt
29(2g — 2)(2g — 2)!  2¢(2g — 2) = (—it + 27n)29

where ’ means that we omit n = 0. Now we notice that, if we write

o0

(92) Fr> =Y FP (g%,
g=0

then for, g > 2, FJP(t) = Bay/(29(29 — 2)(—it)*~2, which is precisely the
n = 0 term missing in (91). We then define:

(93) Fo(t) = Fp(t) + Fg (D).

g

Finally, since

(94) Z 1 2mi

s n+z 1 — e—2miz’

by taking derivatives w.r.t. z we can write

_ _(=1)9IB3gBay | | Bay|
29(29 —2)(29 —2)! * 29(29 —2)

again for g > 2. The function Li; appearing in this equation is the polyloga-
rithm of index j, defined by

(96) Lij(z) = ==

CORNAC [Lia—2(e™),

This gives the resummed functions F,(¢) introduced in (33) for all g > 0.

3 Topological Strings

In this section we give a rough presentation of Gromov—Witten invariants.
Detailed definitions and constructions can be found for example in Cox and
Katz (1999).
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3.1 Topological Strings and Gromov—Witten Invariants

In order to define Gromov-Witten invariants, the starting point is the moduli
space of possible metrics (or equivalently, complex structures) on a Riemann
surface with punctures, which is the famous Deligne-Mumford space M ,, of
n-pointed stable curves (the definition of what stable means can be found
for example in Harris and Morrison 1998). Let X be a Kéhler manifold. The
relevant moduli space in Gromov—Witten theory is denoted by

(98) My (X, 0)

where 3 € Hy(X). This is a generalization of M, and depends on a choice
of a two-homology class 3 in X. Very roughly, a point in M, ,(X,3) can
be written as (f, Xy,p1,- - ,pn) and is given by (a) a point in M, ,, i.e. a
Riemann surface with n punctures, (Xg,p1,---,pn), together with a choice
of complex structure on Xy, and (b) a map f : ¥y, — X that is holomorphic
with respect to this choice of complex structure and such that f.[Xy] = 8. The
set of all such points forms a good moduli space provided a certain number
of conditions are satisfied (see for example Cox and Katz (1999) and Hori
et al. (2003) for a detailed discussion of these issues). M, (X, 3) is the basic
moduli space we will need in the theory of topological strings. Its complex

virtual dimension is given by
(99) (1-gd-3)+n+ [ f(@lo)
29

We also have two natural maps

T Mg (X,8) — X7,
(100) T : Mg,n(Xa B) — Mg,n-

The first map is easy to define: given a point (f, Xy, p1, -+ ,ppn) in My, (X, 3),
we just compute (f(p1),---, f(pn)). The second map essentially sends (f, Xy,
D1, ,Pn) to (Xg,p1,- -+ ,pn), i.e. forgets the information about the map and
keeps the information about the punctured curve.

We can now formally define the Gromov-Witten invariant I ,, 3 as follows.
Let us consider cohomology classes ¢1,- -+ , ¢, in H*(X). If we pull back their
tensor product to H*(M,,(X,/)) via 71, we get a differential form on the
moduli space of maps that we can integrate (as long as there is a well-defined

fundamental class for this space):

100 (b= [ m@iee e o)
Mg .n(X,8)
The Gromov-Witten invariant Iy, g(¢1,- - , ¢,) vanishes unless the degree

of the form equals the dimension of the moduli space. Therefore, we have the
following constraint:
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(102) deegqbz (1—g)(d—3) +n+/ F(er(X)).

Notice that Calabi—Yau threefolds play a special role in the theory, since for
those targets the virtual dimension only depends on the number of punctures,
and therefore the above condition is always satisfied if the forms ¢; have degree 2.
When n = 0, one gets an invariant I, o g that does not require any inser-
tions. This is the Gromov—Witten invariant on which we will focus, and we
will denote it by Ny 5. Notice that these invariants are in general rational, due
to the orbifold character of the moduli spaces involved. It is very convenient
to introduce the generating functional of these invariants at fixed genus. This
is defined as follows. First, choose a basis [¥;] € Hz(X) in such a way that

hhH(X)

(103) =Y B[z

i=1

We also introduce h*(X) complezified Kdhler parameters t;. They are de-
fined as

(104) t = A w.

In this equation, w is the complexified Kahler class,

(105) w=J+1B,

where J is the Kéhler class and B is the B-field. Finally, we introduce
Rt (X)

(106) Z Bit; = /

With these ingredients, we define the topological string amplitude at genus g
as the generating functional

(107) F)= 3 Nyge o

BEH2(X)

The total topological string amplitude sums this to all genera,
o0

(108) F(ge,t) =Y Fy(t)g2?>.
g=0

It is also convenient to consider the exponentiated functional, which is called
the topological string partition function,

(109) Z(gs:t) = exp F(gs,t).
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An important goal in Gromov—Witten theory is to provide effective tools for
the computation of these quantities. The main reason why physics is useful in
doing this is because the F () are couplings in type II string theory, and can be
also obtained as free energies of topological string theory, a topological version
of string theory which is obtained by coupling topological sigma models to
topological gravity (hence the name of topological string quantities for these
quantities). For an exposition of some of the relevant physics background, see
Marino (2005).

3.2 Integrality Properties and Gopakumar—Vafa Invariants

It was shown by Gopakumar and Vafa (1998b) that the total free energy
F(gs,t) can be expressed in terms of integer numbers n} as follows

00 e 1 dg 2g—2
(110) Flgs,t) = Zzzngd<2sm 25) Q.
s

The integers n% are known as Gopakumar—Vafa invariants. They are true
invariants of the Calabi—Yau manifold X, in the sense that they do not depend
on smooth deformations of the target geometry, This is in contrast to the
quantities ngL ’]R), which do depend on deformations. As usual, by tracing
over a non-invariant quantity with signs we obtain an invariant quantity.
The structure result (110) implies that Gromov—Witten invariants of closed
strings, which are in general rational, can be written in terms of these integer
invariants. In fact, by knowing the Gromov-Witten invariants N, 3 we can
explicitly compute the Gopakumar—Vafa invariants from (110) (an explicit
inversion formula can be found in Bryan and Pandharipande 2001). By ex-
panding in gs, it is easy to show that the Gopakumar—Vafa formula (110)
predicts the following expression for F(¢):
(111)

|Boglny  2(=1)n} -2 .
F t = :l: o g g L _ ﬁ
(1) %:(29(29—2)! - (29 — 2)! 12 s +”5> 13-24(Q"),

where Li; is the polylogarithm defined in (96). The appearance of the poly-
logarithm of order 3 — 2g in F, was first predicted from type IIA/heterotic
string duality by Marifio and Moore (1999).

The structure found by Gopakumar and Vafa solves some longstanding is-
sues in the theory of Gromov—Witten invariants, in particular the enumerative
meaning of the invariants. Two obstructions to finding obvious enumerative
meaning to Gromov—Witten invariants are multicovering and bubbling. Multi-
covering arises as follows. Suppose one finds a holomorphic map z : P! — X
in genus zero and in the class #. Then, simply by composing this with a de-
gree d cover P! — P!, one can find another holomorphic map in the class dg.
Therefore, at every degree, in order to count the actual number of ‘primitive’
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holomorphic curves, one should subtract from the corresponding Gromov—
Witten invariant the contributions coming from multicovering of curves with
lower degree. Another geometric effect that has to be taken into account is
bubbling (see, for example, Bershadsky et al. 1993, 1994). Imagine that one
finds a map = : ¥y, — X from a genus g Riemann surface to a Calabi-Yau
threefold. By gluing to X, a small Riemann surface of genus h, and making
it very small, one can find an approximate holomorphic map from a Riemann
surface whose genus is topologically g+ h. This means that ‘primitive’ maps at
genus g contribute to all genera ¢’ > ¢, and in order to count curves properly
one should take this effect into account.

The formula (111) gives a precise answer to these questions. Consider, for
example, the structure of Fy. According to the above formula, the contribution
of a Gopakumar—Vafa invariant is given by the function Lis:

[e%e] dg
(112) > %—3.

d=1

This gives the contribution of all the multicoverings of a given ‘primitive’
curve, where d is the degree of the multicovering. In addition, it says that
each cover has a weight 1/d3. Therefore, the invariant n% corresponds to
primitive holomorphic maps, and the non-integrality of genus-zero Gromov—
Witten invariants is due to the effects of multicovering. The multicovering
phenomenon in genus 0 was found experimentally in Candelas et al. (1991)
and later derived in the context of Gromov—Witten theory by Aspinwall and
Morrison (1993). The structure result of Gopakumar and Vafa also predicts
that the multicovering of degree d of a genus g curve contributes with a
weight d>729 (coming from Liz_,). Moreover, the formula (111) implies that
a genus h < g Gopakumar—Vafa invariant contributes to Fy(t) with a precise
weight, and this corresponds to the bubbling effects we mentioned before. For
example, a genus 0 Gopakumar—Vafa invariant contributes to F, with a weight

| Bagl/(29(29 — 2)!).

3.3 Open Topological Strings

So far we have discussed the Gromov—Witten theory for the case of closed
Riemann surfaces, but the theory can be (at least formally) extended to the
open case. The natural starting point is to consider maps from a Riemann
surface X, 5 of genus g with h holes. Such models were analysed in detail by
Witten (1995). The main issue is, of course, to specify boundary conditions
for the maps f : X, — X. It turns out that the relevant boundary conditions
are Dirichlet and given by Lagrangian submanifolds of the Calabi-Yau X. A
Lagrangian submanifold £ is a cycle on which the Kéhler form vanishes:

(113) Jle =0.
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If we denote by Cj, @ = 1,--- ,h, the boundaries of ¥, we have to pick a
Lagrangian submanifold £, and consider holomorphic maps such that

(114) f(C) L.

Once boundary conditions have been specified, we look at holomorphic
maps from open Riemann surfaces of genus g and with A holes to the Calabi—
Yau X, with Dirichlet boundary conditions specified by L. These holomorphic
maps are called open string instantons, and can also be classified topologically.
The topological sector of an open string instanton is given by two different
kinds of data: the boundary part and the bulk part. For the bulk part, the
topological sector is labelled by relative homology classes, since we are requir-
ing the boundaries of f.[X, ] to end on L. Therefore, we will set

(115) felZgn] =0 € Ho (X, L).

To specify the topological sector of the boundary, we will assume that
b1 (L)=1, so that H,(L) is generated by a non-trivial one-cycle . We then
have

(116) flCil =wiy, w;, €Z, i=1,---,h,

in other words, w; is the winding number associated to the map f restricted
to C;. We will collect these integers into a single h-uple denoted by w =
(wl, s ,wh).

The free energy of open topological string theory at fixed genus and bound-
ary data w, which we denote by F,, 4(t), can be computed as a sum over open
string instantons labelled by the bulk classes:

(117) Fug(t) =Y Fugpe ™"
B

In this equation, the sum is over relative homology classes 3 € Ho(X,L). The
quantities I, 4 g are open Gromov—Witten invariants. They ‘count’ in an ap-
propriate sense the number of holomorphically embedded Riemann surfaces of
genus ¢ in X with Lagrangian boundary conditions specified by £, and in the
class represented by (3, w. They are in general rational numbers. In contrast to
conventional Gromov—Witten invariants, a rigorous theory of open Gromov—
Witten invariants is not yet available. However, localization techniques make
it possible to compute them in some situations (Katz and Liu 2002; Li and
Song 2002; Graber and Zaslow 2002; Mayr 2002).

In order to consider all topological sectors, we have to introduce the string
coupling constant g, which takes care of the genus, as well as a Hermitian
M x M matrix V', which takes care of the different winding numbers w. The
total free energy is defined by

o0 oo .h
(118) FV=YY ¥ %g§972+th79(t)Tr | VA7
Tl

g=0h=1w1i, " ,w
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The factor i is introduced for convenience, while h! is a symmetry factor
which takes into account that the holes are indistinguishable. Notice that, in
order to distinguish all possible topological sectors, one has to take V' to have
infinite rank, and formally we can think about the different traces in (118) as
symmetric functions in an infinite number of variables.

If the winding numbers w; in (118) are all positive, the product of traces
of V in (118) can be written in terms of Trg V for representations R with a
small number of boxes:

(119) F(V) =Y Fr(gs,t)TrRrY,
R

Negative winding numbers can be introduced through another set of repre-
sentations. We have also assumed that the boundary conditions are specified
by a single Lagrangian submanifold with a single non-trivial one-cycle. When
there are more one-cycles in the geometry, say L, providing possible boundary
conditions for the open strings, the above formalism has to be generalized in
an obvious way: one needs to specify L sets of winding numbers w(®), and the
generating functional (119) depends on L different matrices V,,, « = 1,--- , L.
The total partition function is the formal exponential of the total free energy
and it has the structure

2L
(120) Z(‘/;) = Z ZR]“'R2L (gS’t) H TrRa Vs
Ry, ,Ror a=1

where the Ro,_1, Ra, correspond to positive and negative winding numbers,
respectively, for the a-th cycle.

4 Toric Geometry and Calabi—Yau Threefolds

4.1 Non-Compact Calabi—Yau Geometries: An Introduction

One of the main insights in the study of Gromov—Witten theory on Calabi—Yau
threefolds is that the simplest models to study are associated to non-compact
Calabi—Yau geometries based on manifolds of lower dimension. To construct
these geometries, we start with complex manifolds in one or two complex
dimensions, which in general will have a non-zero first Chern class. We then
consider vector bundles over them (with the appropriate rank and curvature)
that lead to a total three-dimensional space with zero first Chern class. In this
way, we obtain Calabi—Yau threefolds whose non-trivial geometry is encoded
in a lower-dimensional manifold, and therefore they are easier to study.

Let us first consider non-compact Calabi—Yau manifolds whose building
block is a one-dimensional compact manifold. These manifolds will be given
by a Riemann surface together with an appropriate bundle over it, and geomet-
rically they can be regarded as the local geometry of an embedded Riemann
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surface in a general Calabi-Yau space. Indeed, consider a Riemann surface X,
holomorphically embedded inside a Calabi—Yau threefold X, and let us look
at the holomorphic tangent bundle of X restricted to X;. We have

(121) TX|5, = TX,®Ns,,

where Ny, is a holomorphic rank-two complex vector bundle over Xy, called
the normal bundle of X, and the Calabi-Yau condition ¢;(X) = 0 gives

(122) Cl(NEQ) == Qg — 2.
The Calabi-Yau X ‘near Y,’ then looks like the total space of the bundle
(123) N—2X,

where N is regarded here as a rank-two bundle over Xy satisfying (122). The
non-compact space (123) is an example of a local Calabi—Yau threefold.

When g = 0and Y = P! it is possible to be more precise about the bundle
N. A theorem due to Grothendieck says that any holomorphic bundle over P
splits into a direct sum of line bundles (for a proof, see for example Griffiths
and Harris 1977, pp.516-7). Line bundles over P! are all of the form O(n),
where n € Z. The bundle O(n) can be easily described in terms of two charts
on P': the north-pole chart, with co-ordinates z,® for the base and the fibre,
respectively, and the south-pole chart, with co-ordinates z’, ®’. The change of
co-ordinates is given by

(124) 2 =1/z, & =2".

We also have that ¢1(O(n)) = n. We then find that local Calabi-Yau manifolds
that are made out of a two-sphere together with a bundle over it are all of
the form

(125) O(—a) @ O(a — 2) — P,

since the degrees of the bundles have to sum up to —2 due to (122). An
important case occurs when a = 1. The resulting non-compact manifold,

(126) 0(-1) ® O(~1) — P!,

is called the resolved conifold for reasons that will be explained later.

We can also consider non-compact Calabi—Yau threefolds based on com-
pact complex surfaces. Consider a complex surface S embedded in a Calabi—
Yau manifold X. As before, we can split the tangent bundle as

(127) TX|S =TS & Ng,

where the normal bundle Ng is now of rank one. The Calabi—Yau condition
leads to
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(128) Cl(Ns> = Cl(Ks),

where Kg is the canonical line bundle over S, and we used that ¢;(T'S) =
—c1(Kg). Therefore, we have Ng = Kg. The Calabi-Yau X ‘near S’ looks
like the total space of the bundle

(129) Ks — 8.

This construction gives a whole family of non-compact Calabi—Yau manifolds
that are also referred to as local Calabi—Yau manifolds. A well-known example
is S = P?, the two-dimensional projective space, which leads to the Calabi-
Yau manifold

(130) 0(-3) — P?,

also known as local P2. Another important example is S = P! x P!, which
leads to local P! x P*.

4.2 Constructing Toric Calabi—Yau Manifolds

Many of the examples of non-compact Calabi—Yau threefolds considered above
are toric, i.e. they have the structure of a torus fibration, and can be con-
structed in a systematic way by a ‘cut and paste’ procedure. In this section
we will develop these techniques, following the approach of Aganagic et al.
(2005).

C3

The elementary building block for the technique we want to develop is a very
simple non-compact Calabi-Yau threefold, namely C3. We will now exhibit
its structure as a T2 xR fibration over R?, and we will encode this information
in a simple trivalent, planar graph.

Let z; be complex co-ordinates on C3, i = 1,2,3. We introduce three
functions or Hamiltonians

(131) r(2) = Im(z12923).

These Hamiltonians generate three flows on C? via the standard symplectic
form w = izj dzj A dz; on C? and the Poisson brackets

(132) avzi = {'f'vg Zi}wa v = a»ﬁ»’%

This gives the fibration structure that we were looking for: the base of the
fibration, R3, is parameterized by the Hamiltonians (131), while the fibre T2 x
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R is parameterized by the flows associated to the Hamiltonians. In particular,
the T? fibre is generated by the circle actions

(133) e thrs . (21,29,23) — (ei“zheiBZQ7e_i(“+B)23),

while 7, generates the real line R. We will call the cycle generated by 7, the
(0,1) cycle, and the cycle generated by rg the (1,0) cycle.

Notice that the (0,1) cycle degenerates over the subspace of C? described
by 21 = 0 = z3, which is the subspace of the base R? given by r, = r, = 0,
rg > 0. Similarly, over zo = 0 = z3 the (1,0)-cycle degenerates over the
subspace rg = ry = 0 and r, > 0. Finally, the one-cycle parameterized by
a + 3 degenerates over z; = 0 = 22, where 7o — 73 = 0 = and 7, < 0.

We will represent the C? geometry by a graph that encodes the degen-
eration loci in the R3 base. In fact, it is useful to have a planar graph by
taking 7, = 0 and drawing the lines in the r, — 73 plane. The degeneration
locus will then be straight lines described by the equation pr, 4 grg = const.
Over this line the (—¢q,p) cycle of the T? degenerates. Therefore we corre-
late the degenerating cycles unambiguously with the lines in the graph (up
to (¢,p) — (—¢,—p)). This yields the graph in Fig.12, drawn in the r, = 0
plane.

(0,1)

(1,0)

=1, -1)

Fig. 12. This graph represents the degeneration locus of the T2 x R fibration of
C? in the base R?® parameterized by (7o, 75,7,)

There is a symmetry in the C? geometry that makes it possible to find
other representations by different toric graphs. These graphs are characterized
by three vectors v; that are obtained from those in Fig.12 by an SL(2,Z)
transformation. The vectors have to satisfy
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(134) > wi=0.
i

The SL(2,Z) symmetry is inherited from the SL(2,Z) symmetry of T? that
appeared in Sect.2 in the context of Chern—Simons theory. In the above dis-
cussion the generators H;(T?) have been chosen to be the one-cycles associ-
ated to 7o and rg, but there are other choices that differ from this one by an
SL(2, Z) transformation on the T?2. For example, we can choose r,, to generate
a (p,q) one-cycle and rg a (t,s) one-cycle, provided that ps — gt = 1. These
different choices give different trivalent graphs. As we will see in the examples
below, the construction of general toric geometries requires these more general
graphs representing C3.

The General Case

The non-compact, toric Calabi—Yau threefolds that we will study can be de-
scribed as symplectic quotients. Let us consider the complex linear space
CN*3 described by N + 3 co-ordinates z1,---,2x43, and let us introduce
N real equations of the form

N+3 .
(135) pa=Y Q4lzlP=ta, A=1--- N

j=1

In this equation, QQ are integers satisfying

(136) S Q) =0,

This condition is equivalent to ¢1(X) = 0, i.e. to the Calabi-Yau condition.
We consider the action of the group Gy = U(1)" on the zs where the A-th
U(1) acts on z; by

zj — exp(iQ’y aa)z;.

The space defined by (135), quotiented by the group action Gy,

IDE

(137) X = () py'(ta)/Gn

A=1

turns out to be a Calabi-Yau manifold (it can be seen that the condition
(136) is equivalent to the Calabi—Yau condition). The N parameters t4 are
Kahler moduli of the Calabi-Yau. This mathematical description of X ap-
pears in the study of the two-dimensional linear sigma model with N = (2,2)
supersymmetry (Witten 1993). The theory has N + 3 chiral fields, whose low-
est components are the zs and are charged under N vector multiplets with
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charges Qil. The equations (135) are the D-term equations, and after dividing
by the U(1)" gauge group we obtain the Higgs branch of the theory.

The Calabi-Yau manifold X defined in (137) can be described by C3
geometries glued together in an appropriate way. Since each of these C3s is
represented by the trivalent vertex depicted in Fig. 12, we will be able to
encode the geometry of (137) into a trivalent graph. In order to provide this
description, we must first find a decomposition of the set of all co-ordinates
{# }jV:J{?’ into triplets U, = (2i,, %, , 2k, ) that correspond to the decomposition
of X into C? patches. We pick one of the patches and we associate to it two
Hamiltonians 7., rg as we did for C® before. These two co-ordinates will
be global co-ordinates in the base R3, therefore they will generate a globally
defined T? fibre. The third co-ordinate in the base is 7., = Irn(]_[;.\zrl5 zj), which
is manifestly gauge invariant and moreover, patch by patch, can be identified
with the co-ordinate used in the C® example above. Equation (135) can then
be used to find the action of r, s on the other patches.

We will now exemplify this procedure with two important examples: the
resolved conifold and the local P? geometry, which were introduced before as
local Calabi—Yau geometries.

Example. The resolved conifold. The resolved conifold (126) has a de-
scription of the form (137), with N = 1. There is only one constraint given by

(L1

Fig. 13. The graph associated to the resolved conifold O(—1) @ O(—1) — P*. This
manifold is made out of two C® patches glued through a common edge

(138) 21]? + [2a]? = |22]* — |25]* = ¢,
and the U(1) group acts as

(139) 21,29,23, 24 — € %21, Y29, 07 %23, 6'%24.
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Notice that, for zo = 23 = 0, (138) describes a P! whose area is proportional
to t. Therefore, (21,24) can be taken as homogeneous co-ordinates of the P!
that is the basis of the fibration, while z5, z3 can be regarded as co-ordinates
for the fibres.

Let us now give a description in terms of C? patches glued together. The
first patch will be defined by z4 # 0. Using (138) we can solve for the modulus
of z4 in terms of the other co-ordinates, and using the U(1) action we can gauge
away its phase. Therefore, the patch will be parameterized by Uy = (21, 22, 23).
The Hamiltonians will be, in this case,

ra(z) = |22l — |21,
(140) ra(2) = |zsl® — |21]?,

which generate the actions
(141) e tOTE L (21 29, 23) — (e OFP) 2 612y 0P 25).

This patch will be represented by the same graph that we found for C3. The
other patch will be defined by z; # 0, therefore we can write it as U; =
(24, 22, 23). However, in this patch z; is no longer a natural co-ordinate, but
we can use (138) to rewrite the Hamiltonians as

ra(2) = |zal” —|2s]* — t,
(142) rp(2) = lzal* = |z2f” — 1,

generating the action
(143) e tBE L (24 29, 23) — (/@D 2y 0Pz 07 12).

The degeneration loci in this patch are the following: (1) z4 = 0 = 29,
corresponding to the line rg = —t where a (—1,0) cycle degenerates; (2)
z4 = 0 = z3, corresponding to the line r, = —t, and with a (0,1) cycle de-
generating; (3) finally, 2o = 0 = 23, where 7o, — 73 = 0, and a (1,1) cycle
degenerates. This patch is identical to the first one, and they are joined to-
gether through the common edge where zo = 0 = z3. The full construction is
represented in Fig. 13. Notice that the common edge of the graphs represents
the P! of the resolved conifold: along this edge, one of the S's of T? has de-
generated, while the other only degenerates at the endpoints. An S! fibration
of an interval that degenerates at its endpoints is simply a two-sphere. The
length of the edge is ¢, the Kahler parameter associated to the P!.

Example. Local P2. Let us now consider a more complicated example,
namely local P2, which is the total space of the bundle (130). We can describe
it again as in (137) with N = 1. There are four complex variables, zg, - -, 23,
and the constraint (135) now reads

(144) ‘Zl|2+ |252|2—|-|Z3|2 —3|Z0|2 =t.
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The U(1) action on the zs is

(145) (20, 21, 22, 23) — (€7 31%2, €121, €% 29, €% 23).
Notice that z1 23 describe the basis P2, while zy parameterizes the complex
direction of the fibre.

Let us now give a description in terms of glued C? patches. There are
three patches U, defined by z; # 0, for i = 1,2, 3, since at least one of these
three co-ordinates must be non-zero in X. All of these three patches look like
C3. For example, for z3 # 0, we can ‘solve’ again for z3 in terms of the other
three unconstrained co-ordinates that then parameterize C3: Uz = (20, 21, 22).
Similar statements hold for the other two patches. Let us now construct the
corresponding degeneration graph. In the Us = (zo, 21, 22) patch we take as
our Hamiltonians

re = |21)* = |20/,
(146) rg = |22|* — |20

The graph of the degenerate fibres in the 7, — rg plane is the same as in the
C? example, Fig. 12. The third direction in the base, r, is now given by the
gauge invariant product r., = Im(zyz12223). The same two Hamiltonians r, g

-12)

(07_1)

©.1) LD

Uy 2,-1)

(1,0) (-1,0)

(_1 9_1) U1

Fig. 14. The graph of O(—3) — P2. This manifold is built out of three C* patches

generate the action in the Uy = (zp, 21, 23) patch, and we use the constraint
(144) to rewrite them as follows: since both zy and z; are co-ordinates of this
patch r, does not change. On the other hand, r3 must be rewritten since z,
is not a natural co-ordinate here. We then find:
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ra = |21|* = |20|%,
(147) rg = t+ 2|ZO|2 — |Zl|2 — |Z'3,|2,

hence 4 4 4
e@Tathrs (20,21,23) — (e‘(*a”ﬁ)zo,e‘(o‘*ﬁ)zl,e*‘ﬁzg).

We see from the above that the fibres degenerate over three lines (1) ro +7r3 =
t, corresponding to zyp = 0 = z3, and where a (—1,1) cycle degenerates; (2)
there is a line over which a (—1,2) cycle degenerates where z; = 0 = 23,
2ro + g = t, and finally, (3) there is a line over which r, = 0, and a (0, 1)-
cycle degenerates. The Uy patch is similar, and we end up with the graph for
O(-3) — P? shown in Fig. 14.

Example. Lagrangian submanifolds. In order to consider open string am-
plitudes in the above Calabi—Yau geometries, we have to construct Lagrangian
submanifolds providing boundary conditions, as we explained in Sect. 4.4. Let
us start by considering the C? geometry discussed above. In this case, one can
easily construct Lagrangian submanifolds following the work of Harvey and
Lawson (1982). In terms of the Hamiltonians in (131), we have three types of
them:

Ly re =0, Tg =T1, Ty > 0.
Lo: Ta = T2, 7'5:0’ 7720'
(148) L3: ro=rg=rs, Ty >0,

where 7;, 1 = 1,2, 3, are constants. It is not difficult to check that the above
submanifolds are indeed Lagrangian (they turn out to be Special Lagrangian
as well). In terms of the graph description we developed above, they corre-
spond to points in the edges of the planar graph spanned by (r4,73), and
they project to semi-infinite straight lines on the basis of the fibration, R?,
parameterized by r, > 0. Since they are located at the edges, where one of
the circles of the fibration degenerates, they have the topology of C x S!.

It is easy to generalize the construction to other toric geometries, like the
resolved conifold or local P?: Lagrangian submanifolds with the topology of
C x S! are just given by points on the edges of the planar graphs. Such La-
grangian submanifolds were first considered in the context of open topological
string theory by Aganagic and Vafa (2000), and further studied by Aganagic
et al. (2002).

4.3 Examples of Closed String Amplitudes

Now that we have presented some detailed constructions of Calabi—Yau three-
folds, we can come back totopological string amplitudes, or equivalently to
Gromov—Witten invariants. The Gromov—Witten invariants of Calabi—Yau
threefolds can be computed in a variety of ways. A powerful technique that
can be made mathematically rigorous is the localization technique pioneered
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by Kontsevich (1995). For compact Calabi-Yau manifolds, only N,—o g have
been computed in detail, but for non-compact, toric Calabi—Yau manifolds
localization techniques make it possible to compute Ny g for arbitrary genus.
We will now present some results for the topological string amplitudes F, of
the geometries we described above.

The resolved conifold O(—1) ® O(—1) — P! has a single Kéhler parameter
t corresponding to the P! in the base, and its total free energy is given by

(149) Flgat) =S —— 01,
d=1 d<2 sin %)

where Q = e~*. We see that the only non-zero Gopakumar-Vafa invariant
occurs at degree one and genus zero and is given by nY = 1. On the other
hand, this model already has an infinite number of non-trivial N, g invariants,
which can be obtained by expanding the above expression in powers of g;.
The above expression was obtained in Gromov-Witten theory by Faber and
Pandharipande (2000).

The space O(—3) — P? also has one single Kihler parameter, correspond-
ing to the hyperplane class of P?. By using the localization techniques of
Kontsevich, adapted to the non-compact case, one finds (Chiang et al. 1999;
Klemm and Zaslow 2001)

3 45Q%  244Q% 12333Q*
Fo(t) = —— — —
o(t) 5 H3¢ s 9 64
o Q 3Q 23Q%  3437Q°
Al =-5+7 8 3 T 16
x(X)  Q 3Q% 514Q*
1 Fot) =22 4 % L 7%
(150) 2() 5720 T80 T 20 T 5 ’

and so on. In (150), ¢ is the Kihler class of the manifold, Q = e™!, and
X(X) = 2 is the Euler characteristic of local P2. The first term in F, is
proportional to the intersection number H? of the hyperplane class, while the
first term in F} is proportional to the intersection number H -co(X). The first
term in Fj is the contribution of constant maps.

As we explained above, we can express the closed string amplitudes in
terms of Gopakumar—Vafa invariants. Let us introduce a generating functional
for integer invariants as follows:

(151) f(zQ) =) n%27Q",
9,8

where z is a formal parameter. For local P? one finds

(152)
f(2,Q) =3Q—-6Q%+(27—102) Q> —(192—231 2+102 22 —15 2%) Q* + O(Q°).
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It should be mentioned that there is a very powerful method to compute
the amplitudes F,, namely mirror symmetry. In the mirror symmetric com-
putation, the F, amplitudes are deeply related to the variation of complex
structures on the Calabi-Yau manifold (Kodaira-Spencer theory) and can be
computed through the holomorphic anomaly equations of Bershadsky et al.
(1993, 1994). Gromov—Witten invariants of non-compact, toric Calabi-Yau
threefolds have been computed with mirror symmetry by Chiang et al. (1999),
Klemm and Zaslow (2001) and Katz et al. (1999).

5 The Topological Vertex

5.1 The Gopakumar—Vafa Duality

For topological string theory on the resolved conifold, the result in (149)
shows that there is only one nontrivial Gopakumar—Vafa invariant. If we now
take into account (111), we see that the free energies Fy(t) are precisely the
resummed functions (33) of Chern—Simons theory, after we identify the string
coupling constant gs with the gauge theory coupling constant as in (81), and
the Kahler parameter of the resolved conifold is identified with the 't Hooft
coupling

(153) t =igsN = zN.

Based on this and other evidence, Gopakumar and Vafa (1998b) conjectured
that Chern—Simons theory on S® is equivalent to closed topological string the-
ory on the resolved conifold.

From the point of view of topological string theory, this equivalence only
illuminates the resolved conifold geometry, which on the other hand is easy
to compute. The fundamental question is: can we use this duality to obtain
information about more general Calabi—Yau threefolds? The answer is yes, and
the underlying reasoning is heavily based on the idea of geometric transitions,
which we won’t explain here (see Marifio 2005, for a detailed exposition). This
line of reasoning leads directly to the idea of the topological vertex.

5.2 Framing of Topological Open String Amplitudes

As we will see, the topological vertex is an open string amplitude, and in
order to understand it properly we have to discuss one aspect of open string
amplitudes that we have not addressed yet: the framing ambiguity. The fram-
ing ambiguity was discovered by Aganagic et al. (2002). They realized that
when the boundary conditions are specified by non-compact Lagrangian sub-
manifolds like the ones described in (148), the corresponding topological open
string amplitudes are not unambiguously defined: they depend on a choice of
an integer (more precisely, one integer for each boundary). For the Lagrangian
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submanifolds considered in Sect. 5, the framing ambiguity can be specified by
specifying a vector f = (p, q) attached to the edge where the submanifold is
located (see for example Marino (2005) for a full justification of this). The
procedure is illustrated in Fig.15. It is useful to introduce the symplectic

Fig. 15. Specifying a framing

product of two vectors v = (vy,v2) and w = (wy,ws) as
(154) VAW = VjwWy — VaWi.

This product is invariant under SL(2,Z) transformations. If the original La-
grangian submanifold is located at an edge v, the choice of framing has to
satisfy

(155) fAv=1

Clearly, if f satisfies (155), so does f — nv for any integer n. The choice of
the integer n is precisely the framing ambiguity found by Aganagic et al.
(2002). In the case of the Lagrangian submanifolds of C? that we constructed
in Sect.5, A particular choice of framing that will be very important in the
following is shown in Fig. 16.

What is the effect of a change of framing on open topological string am-
plitudes? A proposal for this was made by Aganagic et al. (2002) and further
studied by Marino and Vafa (2002), based on the duality with Chern—Simons
theory. As pointed out by Ooguri and Vafa (2000), vacuum expectation values
of Wilson loops in Chern-Simons theory on S? compute open string ampli-
tudes. On the other hand, we explained in Sect. 2 that Wilson loop correlation
functions depend on a choice of framing. This suggests that the framing am-
biguity of Chern—Simons theory corresponds to the ambiguity of topological
open string amplitudes that we have just described. This also leads to a very
precise prescription to compute the effect of a change of framing for open
string amplitudes. Let us consider for simplicity an open string amplitude
involving a single Lagrangian submanifold, computed for a framing f. If we
now consider the framing f — nv, the coefficients Zr of the total partition
function (120) change as follows
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nk

‘R
2 ZR7

(156) Zp — (—1)" g

where kg was defined in (74), and ¢ = €*9:. This is essentially the behaviour of
Chern—Simons invariants under change of framing spelled out in (75). The ex-
tra sign in (156) is crucial to guarantee integrality of the resulting amplitudes,
as was verified in Aganagic et al. (2002) and Marifio and Vafa (2002). If the
open string amplitudes involves L boundaries, one has to specify L different
framings n,, and (156) is generalized to

L L
(157) ZR,Ry — (_1)Za:1 nal(Ra) g3 o1 TLQKRQ/QZRI.”RL.

5.3 Definition of the Topological Vertex

In Sect.5 we showed that we can construct one Lagrangian submanifold in
each of the vertices of the toric diagram of C3. Since each of these submanifolds
has the topology of C x S', we can consider the topological open string am-
plitude associated to this geometry. The total open string partition function
will be given by

3
(158) Z(V;) = Z CR1R2R3 HTI‘R«LV;’
R17R27R3 i=1

where V; is a matrix source associated to the i-th Lagrangian submanifold.
The amplitude Cr, r,r, is a function of the string coupling constant ¢, and,
in the genus expansion, it contains information about maps from Riemann
surfaces of arbitrary genera into C® with boundaries on L;. This open string
amplitude is called the topological verter, and it is the basic object from which,
by gluing, one can obtain closed and open string amplitudes on arbitrary toric
geometries. Since the vertex is an open string amplitude, it will depend on
a choice of three different framings. As we explained in the previous section,
this choice will be given by three different vectors fi, fo and f3. Let us see
how to introduce this choice.

We saw in Sect.5 that the C® geometry can be represented by graphs
involving three vectors v;. These vectors can be obtained from the set in Fig. 12
by an SL(2,Z) transformation, and satisfy (134). We will then introduce a
topological vertex amplitude C’I(%il’gﬁﬁ that depends on both a choice of three
vectors v; for the edges and a choice of three vectors f; for the framings. Due
to (155) we require

fi Nv; = 1.

We will orient the edges v; in a clockwise way. Since wedge products are
preserved by SL(2,Z), we also have

(159) vg A1 =wv3 Avg = v Avg = 1.
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However, not all of these choices give independent amplitudes. First of all,
there is an underlying SL(2, Z) symmetry relating the choices: if g € SL(2,Z),
then the amplitudes are invariant under

(fiavi) — (g fi,g- Ui)-

Moreover, if the topological vertex amplitude C’I(;f 1}{2}33 is known for a set of

framings f;, then it can be obtained for any set of the form f; — n;v;, and it
is given by the general rule (157)

(v, fi—nvy) _ -n;l(R; M /2 ~(vi, fi)
(16()) CRU1R2R;W - (_1)Zln ( )qZ," i/ CvaRst’
for all admissible choices of the vectors v;. Since any two choices of framing
can be related through (160), it is useful to pick a convenient set of f; for
any given choice of v;, which we will define as the canonical framing of the
topological vertex. This canonical framing turns out to be

(f17f27f3) = (U27U37v1)~

Due to the SL(2,Z) symmetry and the transformation rule (160), any topo-
logical vertex amplitude can be obtained from the amplitude computed for
a fized choice of v; in the canonical framing. A useful choice of the v; is
vy = (—1,—1),v3 = (0,1),v3 = (1,0), as in Fig. 12. The vertex amplitude for
the canonical choice of v; and in the canonical framing will be simply denoted
by Cr,r,Rrs- Any other choice of framing will be characterized by framing
vectors of the form f; — n;v;, and the corresponding vertex amplitude will be
denoted by
Cn17n27n3.
RiR2R3
Notice that n; = f; A v;y1 (where ¢ runs mod 3).

Fig. 16. The canonical choice of framing for the topological vertex
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One of the most important properties of Cr, r, R, is its cyclic symmetry.
To see this, notice that the SL(2, Z) transformation g = T'S~! takes

(vi, fi) = (Vig1, fiv1),
where again ¢ runs mod 3. It then follows that

(161) CRriRoRs = CRyR Ry = CRyRs R, -

Finally, it will sometimes be useful to consider the vertex in the basis of
conjugacy classes Cyny 2k , which is obtained from Cgr, r,r, by

3
(162) Ck(l)k(2)k(3) = Z H XR; (C(k(i)))ORleRE,'

R; i=1

5.4 Gluing Rules

We saw in Sect.b that any non-compact toric geometry can be encoded in
a planar graph that can be obtained by gluing trivalent vertices. It is then
natural to expect that the string amplitudes associated to such a diagram
can be computed by gluing the open topological string amplitudes associated
to the trivalent vertices, in the same way that one computes amplitudes in
perturbative quantum field theory by gluing vertices through propagators.
This idea was suggested by Aganagic et al. (2004) and Igbal (2002), and was
developed into a complete set of rules by Aganagic et al. (2005). The gluing
rules for the topological vertex turn out to be quite simple. Here we will state
three rules (for a change of orientation in one edge, for the propagator, and
for the matching of framings in the gluing) which make it possible to compute
any closed string amplitude on toric, non-compact Calabi-Yau threefolds.
They also make it possible to compute open string amplitudes for Lagrangian
submanifolds on edges that go to infinity. The case of Lagrangian submanifolds
on inner edges is also very easy to analyze, but we refer the reader to the paper
by Aganagic, Klemm, Marino, and Vafa (2005) for the details. A mathematical
point of view on the gluing rules can be found in Diaconescu and Florea (2005)
and Li et al. (2004):

1) Orientation. Trivalent vertices are glued along their edges, and this cor-
responds to gluing curves with holes along their boundaries. In order to do
that, the boundaries must have opposite orientations. This change of orienta-
tion will be represented as an inversion of the edge vector, therefore in gluing
the vertices we will have an outgoing edge on one side, say v1, and an ingoing
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edge on the other side, —v;. It can be shown that the under this operation
the topological vertex changes as

Cryrors — (1) Cri g,

Of course, a similar equation follows for the other v;.

2) Propagator. Since gluing the edges corresponds to gluing curves with
holes along their boundaries, we must have matching of the number of holes
and winding numbers along the edge. After taking into account the change
of orientation discussed above, and after a simple analysis (Aganagic et al.
2005), one finds that the propagator for gluing edges with representations R,
R, is given by

(163) (—I)E(Rl)e%(Rl)tﬁsRlR@

where ¢ is the Kihler parameter that corresponds to the P! represented by
the gluing edge.

3) Framing. When gluing two vertices, the framings of the two edges in-
volved in the gluing have to match. This means that, in general, we will have
to change the framing of one of the vertices. Let us consider the case in which
we glue together two vertices with outgoing vectors (v;,v;, vx) and (v, v}, vy),
respectively, and let us assume that we glue them through the vectors v;,
v = —v;. We also assume that both vertices are canonically framed, so that
fi=wv;, fl = 1)3». In order to match the framings we have to change the fram-
ing of, say, v}, so that the new framing is — f; (the opposite sign is again due
to the change of orientation). There is an integer n; such that f/ —n;vl = —f;
(since fi Av; = fIAv; =1, f;+ f! is parallel to v;), and it is easy to check that

n; = v; Avj.
The gluing of the two vertex amplitudes is then given by

(164) 3 Crymye 0 (<) (kDR g 20,
R;

where we have taken into account the change of orientation in the (v}, v, v})
to perform the gluing, and ¢; is the K&hler parameter associated to the edge.

Given then a planar trivalent graph representing a non-compact Calabi—
Yau manifold, we can compute the closed string amplitude as follows: we give
a presentation of the graph in terms of vertices glued together, as we did
in Sect.5. We associate the appropriate amplitude to each trivalent vertex
(labelled by representations), and we use the above gluing rules. The edges
that go to infinity carry the trivial representation, and we finally sum over all
possible representations along the inner edges. The resulting quantity is the
total partition function Zeeseq = e’ for closed string amplitudes.
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5.5 Explicit Expression for the Topological Vertex

Once we have defined the topological vertex, we need an explicit expression
for it. This turns out to be a difficult problem which can however be explicitly
solved. The basic idea is to use an extension of the Gopakumar—Vafa dual-
ity to open string amplitudes. As shown by Ooguri and Vafa (2000), the duality
between Chern—Simons theory and the resolved conifold leads to a correspon-
dence between Chern—Simons invariants for knots in S* and open topological
string amplitudes with Lagrangian boundary conditions in the resolved coni-
fold. This idea applies in principle to Lagrangian submanifolds in the resolved
conifold, but one can extend it to other contexts, and in particular to the con-
figuration considered above involving three Lagrangian submanifolds in C3.

It turns out that the open topological string amplitude for the three
Lagrangian submanifolds in C? can be written by using only the Chern-
Simons invariant of the Hopf link that we studied in Sect. 2. Let Wg, r, is the
Hopf link invariant defined in (54) and evaluated in (62). We now consider
the limit

_L(R))+E(R)

(165) WR1R2 = tli}rgoe 2 tWRle.

e . . £(R1)+2(R) _
This limit exists, since Wg, g, is of the form A 2 Wr,r, +0(e™") (recall

that A = e!). The quantity Wg, r,, which is the ‘leading’ coefficient of the Hopf
link invariant (54), is the building block of the topological vertex amplitude. It
is a rational function of qi%, therefore it only depends on the string coupling
constant. We will also denote W = Wgg. The limit (165) was first considered
by Aganagic et al. (2004). The final expression for the vertex, in the canonical
framing defined above, is

mRy*trRy m o~ REWRQWRLQ
(166)  Cripor, =q 2 > NogiNog, = 2Vt1/R —
Q1,Q3,Q 2

where N 11%%1 R, 18 the Littlewood-Richardson coefficient which gives the multi-
plicity of R in the tensor product R; ® Rs.

Let us now give some more explicit formulae for the vertex. The basic
ingredient in (166) is the quantity Wg, g, defined in (165). Using (62) it is
possible to give an explicit expression for Wg, g, that is useful in computa-
tions. It is easy to see that the leading coefficient of A in (62) is obtained by
taking the leading coefficient of A in dim,Ry and the A-independent piece in
(65). The generating function of elementary symmetric polynomials (63) then
becomes

CR

R .

1+t
167 st ] ——
(167) ()j:1 1+qit’
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where

oo _r(r41)
2

(168) S(t) = ﬁ(l +gt) =1+

r=1

tT‘
H:rbzl [m]
Notice that (167) is the generating function of elementary symmetric polyno-

R .
mials for an infinite number of variables given by x; = qli 1_3, j=12,---.

One then deduces that the A — oo limit of ¢*(%1)/2sp (z; = qlfz*i) is given
by the Schur polynomial

Ro .
SR, (1,z _ qli 271+%)

)

which now involves an infinite number of variables z;. This finally leads to
the following expression for Wg, r,:

R . .
(169) Wryr,(q) = sg, (21 = ¢~ %)sp, (2= ¢~ 'F3).
We will also write this as
R
(170) Wy R, (q) = sr, ("7 )sr, ("),

where the arguments of the Schur functions indicate the above values for the
polynomial variables x;. Using (170) one can write (166) in terms of skew
Schur polynomials (Okounkov et al. 2003):

(171)  Crirory = @252 5550 (7)Y sy ("2 ) spy 10 (0" H2F7).
Q

5.6 Applications

We will now present some examples of computation of topological string am-
plitudes by using the topological vertex.

Example. Resolved conifold. The toric diagram for the resolved conifold
geometry is depicted in Fig. 13. Our rules give immediately:

(172) Zp =) Copre (—1) e Cpyp.
R

Since Croo = Wgr = sg(x; = q‘i+%), we can use well-known formulae for
Schur polynomials to obtain

i e—dt
(173) Tpr = exp{— }
d(gr —q7)?

in agreement with the known result (149).
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Example. Local P2. The toric diagram is depicted in Fig. 14. Using again
the rules explained above, we find the total partition function

(174) Zp> = Z (,1)21.e(Ri)efZie(Ri)tquim,iCORgRBCOR%RQCORgRN
Ri1,R2,R3

where ¢ is the Kéhler parameter corresponding to the hyperplane class in
P2, Using that C, RoRt = WhryRryq "™ /2 one recovers the expression for Zps
first obtained by Aganagic et al. (2004). Notice that the free energy has the
structure

(175) Fp2 = log{l +) ag(q)e“} => al? (q)e .
(=1 (=1

The coefficients a;(q), aéc)(q) can be easily obtained in terms of Wg, g,. One
finds, for example,

a(c) = aq = — 3
1 (9) = ar(q) PEpesT
(176) o(g) = 2+ Lae).

If we compare to (110) and take into account the effects of multicovering, we
find the following values for the Gopakumar—Vafa invariants of O(—3) — P2:

n? =3, n{ =0 forg >0,
(177) ny = —6, ng =0 forg > 0,

in agreement with the results listed in (152). In fact, one can go much further

with this method and compute the Gopakumar—Vafa invariants to high degree.
We again see that the use of exact results in Chern—Simons theory leads
to the topological string amplitudes to all genera. A complete listing of the
Gopakumar—Vafa invariants up to degree 12 can be found in Aganagic et al.
(2004). The partition function (174) can also be computed in Gromov—Witten
theory by using localization techniques, and one finds indeed the same result
(Zhou 2003).

%)

4 4

15}

Fig. 17. The toric diagram of local P! x P*
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Example. Local P! x P'. The local P! x P! geometry is the non-compact
Calabi-Yau manifold given by the four-manifold P* x P! together with its
anti-canonical bundle. It also admits a symplectic quotient description of the
form (137), this time with N = 2 and two Kahler parameters ¢, to. The

charges QJLQ, 7 =1,---,5 can be grouped into two vectors
Ql = (_27 1a la 0) 0)7
(178) Q2 = (—2,0,0,1,1).

The toric diagram for this geometry can be easily worked out from this de-
scription, and it is represented in Fig. 17. Using the gluing rules we find the
closed string partition function

Tptypr = Z e—(5(31)+€(33))t1—(5(32)+3(R4))t2q2i KR, /2

R;

(179) XCor,rt Cory r, Coryrt Corg vy -
This amplitude can be written as
Ze*(l(Rl)Jrf(RS))tl*(Z(R2)+Z(R4))t2
R;

(180) XWRyr, WR, R, WR2R3 WRsR4'

This is the expression first obtained by Aganagic et al. (2004). It has been
shown to agree with Gromov—Witten theory by Zhou (2003).

Example. The closed topological vertex. Consider the Calabi—Yau geome-
try whose toric diagram is depicted in Fig. 18. It contains three P! touching at
a single point. The local Gromov—Witten theory of this geometry was studied
by Bryan and Karp (2005), who called it the closed topological vertex, and
also by Karp et al. (2005). The vertex rules give the following expression for
the total partition function:

Zpiypr =

(181)
5) — T8 Nt
Z(t1, o, t3) = Z CR1R2R3WR§WREWRE(_1)2(R1)+£(R2)+Z(R5)e Yi=1 H(Ri)ti
R1,R2,R3

t t

Fig. 18. The toric diagram of the closed topological vertex
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It turns out that this can be evaluated in closed form (Karp et al. 2005)

. 1
Z(t17t27t3) - eXp(—Z d

( E d) (e—dtl 4 e—dtg + e—dt;;
— q2 —q 2
(182) d=1

_ e*d(t1+t2) o e*d(t1+t3) _ e*d(t2+t3) + ed(7514r152+t3))>7

in agreement with the algebro-geometric results of Bryan and Karp (2005).
Notice from the above expression that there is only a finite number of non-
vanishing Gopakumar—Vafa invariants for the above geometry.

A Symmetric Polynomials

In this brief Appendix we summarize some useful ingredients of the elementary
theory of symmetric functions. A standard reference is Macdonald (1995).

Let x1,--- ,xn denote a set of N variables. The elementary symmetric
polynomials in these variables, e,,(z), are defined as:

(183) em(x) = Z Ty T,

11 <<l

The generating function of these polynomials is given by

N

(184) E(t) =Y em(x)t™ =[]+ it).

m>0 i=1

The complete symmetric function h,, can be defined in terms of its generating
function

N
(185) H(t) =Y hpt™ =[]0 —zt)"",
m>0 i=1
and one has
(186) E(t)H(—t) = 1.

The products of elementary symmetric polynomials and of complete symmet-
ric functions provide two different basis for the symmetric functions of N
variables.

Another basis is given by the Schur polynomials, sr(x), which are labelled
by representations R. We will always express these representations in terms
of Young tableaux, so R is given by a partition (I1,l2,- -+ ,l.,), where [; is the
number of boxes of the i-th row of the tableau, and we have [y > lo > --- > [..
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The total number of boxes of a tableau will be denoted by ¢(R) = . 1;. The

Schur polynomials are defined as quotients of determinants,

i

(187) ) = 2
S r) = —"-
a det zé\f—’

They can be written in terms of the symmetric polynomials e;(x1, -, zn),
i > 1, as follows:

(188) SR = det MR,

where
My = (e qj—i)-

Mpg is an r x r matrix, with r = cp:, and R? denotes the transposed Young
tableau with row lengths If. To evaluate sg we put ey = 1, e, = 0 for k < 0.
The expression (188) is known as the Jacobi-Trudi identity.

A third set of symmetric functions is given by the Newton polynomials
Py (x). These are labelled by vectors k = (kq, ko, ---), where the k; are non-
negative integers, and are defined as

(189) Pi(z) = [[ P (),
where
(190) Pi(x) = i,

are power sums. The Newton polynomials are homogeneous of degree ¢ =
> j jk; and give a basis for the symmetric functions in xi,--- ,zy with ra-
tional coefficients. They are related to the Schur polynomials through the
Frobenius formula

(191) Pe(z) =Y xr(C(k)sg(x),
R

where the sum is over all tableaux such that ¢(R) = ¢.
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