
2 Tensor Notation

It will be convenient in this monograph to use the compact notation often
referred to as indicial or index notation . It allows a strong reduction in the
number of terms in an equation and is commonly used in the current litera-
ture when stress, strain, and constitutive equations are discussed. Therefore,
a basic knowledge of the index notation is helpful in studying continuum
mechanics, especially constitutive modelling of materials. With such a no-
tation, the various stress-strain relationships for materials under multi-axial
states of stress can be expressed in a compact form. Thus, greater attention
can be paid to physical principles rather than to the equations themselves.
A short outline of this notation should therefore be given in the following.
In comparison, some expressions or equations shall also be written in sym-
bolic or matrix notation , employing whichever is more convenient for the
derivation or analysis at hand, but taking care to establish the interrelation-
ship between the two distinct notations.

2.1 Cartesian Tensors

We consider vectors and tensors in three-dimensional EUCLIDean space.
For simplicity, rectangular Cartesian coordinates xi, i = 1, 2, 3, are used
throughout. Results may, if desired, be expressed in terms of curvlinear coor-
dinate systems by standard techniques of tensor analysis (BETTEN, 1987c),
as has been pointed out in Section 2.2 and used in Chapter 5.

In a rectangular Cartesian coordinate system, a vector V can be decom-
posed in the following three components

V = (V1, V2, V3) = V1e1 + V2e2 + V3e3 , (2.1)

where e1, e2, e3 are unit base vectors:

ei · ej = δij . (2.2)
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In 2.2 the Symbol δij is known as KRONECKER’s delta. Thus, the set of unit
vectors, {ei}, constitutes an orthonormal basis .

A very useful notational device in the manipulation of matrix, vector,
and tensor expressions is the summation convention introduced by EINSTEIN

(1916):

Whenever an index occurs twice in the same term, summation over
the values 1, 2, and 3 of that index is automatically assumed, and the
summation sign is omitted.

Thus, the decomposition (2.1) can be written in the more compact form

V = Viei ≡ Vkek . (2.1*)

The repeated index i or k in (2.1*) is often called summation index or dummy
index because the choice of the letter for this index is immaterial. However,
we have to notice that an index must not appear more than twice in the same
term of an expression or equation. Otherwise, there is a mistake. An expres-
sion such as AijkBkk would be meaningless.

Consider a sum in which one of the repeated indices is on the KRO-
NECKER delta, for example,

δikAij = δ1kA1j + δ2kA2j + δ3kA3j .

Only one term in this sum does not vanish, namely the term in which
i = k = 1, 2, 3. Consequently, the sum reduces to

δikAij = Akj .

A similar example is: δijVj = Vi. Notice that the summation, involving one
index of the KRONECKER delta and one of another factor, has the effect of
substituting the free index of the delta for the repeated index of the other
factor. For this reason the KRONECKER delta could be called substitution
tensor (BETTEN, 1987c).

Another example of the summation convention is the scalar product (dot
product, inner product) of two vectors U and V . It can be written as

U · V = U1V1 + U2V2 + U3V3 ≡ UkVk . (2.3)

Note that the expression

(Aii)
2 ≡ (A11 +A22 +A33)

2
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is different from the sum

A2
ii ≡ A2

11 +A2
22 +A2

33 ,

where the first one is the square of the sum Aii, while the second one is the
sum of the squares.

The vector product (cross product) has the following form:

C = A × B =

∣∣∣∣∣∣∣∣∣
e1 e2 e3

A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣∣∣∣
≡ εijkeiAjBk . (2.4a)

Its components are given by

Ci = εijkAjBk . (2.4b)

In (2.4a,b) the alternating symbol εijk (also known as permutation symbol
or third-order alternating tensor) is used. It is defined as:

εijk

⎧⎪⎨
⎪⎩

= +1 if ijk represents an even permutation of 123 ;

= 0 if any two of ijk indices are equal ;

= −1 if ijk represents an odd permutation of 123 .

(2.5)

It follows from this definition that εijk has the symmetry properties

εijk = εjki = εkij = −εikj = −εjik = −εkji . (2.6)

The triple scalar product can also be calculated by using the alternating
symbol:

(A × B) · C =

∣∣∣∣∣∣∣∣∣
A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣∣∣∣
= εijkAiBjCk . (2.7)

The following relation between the KRONECKER delta and the alternat-
ing tensor is very important and useful (BETTEN, 1987c):

εijkεpqr =

∣∣∣∣∣∣∣∣∣
δip δiq δir

δjp δjq δjr

δkp δkq δkr

∣∣∣∣∣∣∣∣∣
≡ 3! δi[p]δj[q]δk[r] , (2.8)
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where on the right-hand side the operation of alternation is used. This pro-
cess is indicated by placing square brackets around those indices to which
it applies, that is, the three indices pqr are permutated in all possible ways.
Thus, we obtain 3! terms. The terms corresponding to even permutations are
given a plus sign, those which correspond to odd permutations a minus sign,
and they are then added and divided by 3!.

From (2.8) we immediately obtain the contraction

εijkεpqk = δipδjq − δiqδjp , (2.9a)

for instance, i.e., the tensor of rank six in (2.8) is reduced to the fourth-order
tensor (2.9a). Other contractions are

εpqiεpqj = 2δij and εpqrεpqr = 6 , (2.9b,c)

for instance.
Now let us consider a coordinate transformation, i.e., we introduce a new

rectangular right-handed Cartesian coordinate system and new base vectors
e∗

i , i = 1, 2, 3. The new system may be regarded as having been derived
from the old by a rigid rotation of the triad of coordinate axes about the same
origin. Let a vector V have components Vi in the original coordinate system
and components V ∗

i in the new system. Thus, one can write:

V = Viei = V ∗
i e∗

i . (2.10)

We denote by aij the cosine of the angle between e∗
i and ej , so that

aij ≡ cos(e∗
i , ej) = e∗

i · ej , (2.11)

i.e., aij are the direction cosines of e∗
i relative to the first coordinate system,

or, equivalently, aij are the components of the new base vectors e∗
i , in the

first system. Thus
e∗

i = aijej . (2.12)

It is geometrically evident that the nine quantities aij are not independent.
Since e∗

i are mutually perpendicular unit vectors,

e∗
i · e∗

j = δij , (2.13)

we arrive at

e∗
i · e∗

j = aipep · ajrer = aipajrep · er = aipajrδpr = aipajp
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by considering (2.2) and (2.12). Hence

aipajp = δij or in matrix notation aat = δ , (2.14a)

where at is the transpose of the matrix a. Because of the symmetry δij = δji,
the result (2.14a) represents a set of six relations between the nine quantities
aij . Similarly to (2.14a), we find:

apiapj = δij or in matrix notation ata = δ . (2.14b)

It follows immediately from (2.14a,b) that |aij | = ±1 and, furthermore,
that the transpose at is identical to the inverse a−1. Thus, the matrix a is
orthogonal, and the reciprocal relation to (2.12) is

ei = ajie
∗
j . (2.15)

Inserting (2.15) or (2.12) into (2.10), we arrive at

V ∗
i = aijVj or Vi = ajiV

∗
j , (2.16a,b)

respectively. In particular, if V is the position vector x of the point P relative
to the origin, then

x∗i = aijxj and xi = ajix
∗
j , (2.17a,b)

where x∗i and xi are the coordinates of the point P in the new and original
coordinate systerns, respectively.

Now, let us consider a vector function

Y = f(X) or in index notation: Yi = fi(Xp) , (2.18a,b)

where X is the argument vector which is transformed to another vector Y .
The simplest form is a linear transformation

Yi = TijXj , (2.19)

where Tij are the cartesian components of a second-order tensor T , also
called second-rank tensor , i.e., a second-order tensor can be interpreted as a
linear operator which transforms a vector X into an image vector Y .

In extension of the law (2.16a,b), the components of a second-order ten-
sor T transform according to the rule

T ∗
ij = aipajqTpq or Tij = apiaqjT

∗
pq , (2.20a,b)
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which can be expressed in matrix notation:

T ∗ = aTat or T = atT ∗a . (2.21a,b)

Second-rank tensors play a central role in continuum mechanics, for in-
stance, strain and stress tensors are second-order tensors. It is sometimes
useful in continuum mechanics, especially in the theory of plasticity or in
creep mechanics, to decompose a tensor into the sum of its deviator and a
spherical tensor as follows:

Tij = T ′
ij + Tkkδij/3 . (2.22)

For instance, the stress deviator

σ′ij := σij − σkkδij/3 (2.23)

is responsible for the change of shape (distortion ), while the hydrostatic
stress σkkδij/3 produces volume change without change of shape in an
isotropic continuum, i.e., in a material with the same material properties in
all directions. Clearly, a uniform all-around pressure should merely decrease
the volume of a sphere of material with the same strength in all directions.
However, if the sphere were weaker in one direction, that diameter would be
changed more than others. Thus, hydrostatic pressure can produce a change
of shape in anisotropic materials.

The deviator (2.23) is often called a traceless tensor , since its trace
trσ′ ≡ σ′kk is identical to zero.

A second-order tensor has three irreducible invariants

J1 ≡ δijTji = Tjj ≡ Tkk , (2.24a)

J2 ≡ −Ti[i]Tj[j] = (TijTji − TiiTjj)/2 , (2.24b)

J3 ≡ Ti[i]Tj[j]Tk[k] = det(Tij) ≡ |Tij | , (2.24c)

which are scalar quantities appearing in the characteristic equation

det(λδij − Tij) = λ3 − J1λ
2 − J2λ− J3 = 0 . (2.25)

In (2.24b,c) the operation of alternation is used and indicated by placing
square brackets around those indices to which it applies. This process is al-
ready illustrated in the context with (2.8).

We read from (2.24a,b,c): The first (linear) invariant J1 is the trace of T ,
the second (quadratic) invariant J2 is defined as the negative sum of the three
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principal minors of order 2, while the third (cubic) invariant is given by the
determinant of the tensor. A deviator has only two non-vanishing invariants:

J ′2 = T ′
ijT

′
ji/2 , J ′3 = det(T ′

ij) . (2.26a,b)

Remark: Because of the definition (2.24b) the second invariant (2.26a) of
the deviator is always positive. Therefore, J2 is defined as the negative sum
of the principal minors in this text.

The invariants (2.24a,b,c) can be expressed through the principal values
TI , TII , TIII of the Tensor T , i.e., the elementary symmetric functions of
the three arguments TI , . . . , TIII are related to the irreducible invariants
(2.24a,b,c) as follows:

TI + TII + TIII = J1 , (2.27a)

TITII + TIITIII + TIIITI = −J2 , (2.27b)

TITIITIII = J3 . (2.27c)

After some manipulation one can arrive from (2.22), (2.24), and (2.26) at
the relations

J ′2 = J2 +
1

3
J2

1 , J ′3 = J3 +
1

3
J1J2 +

2

27
J3

1 . (2.28a,b)

In the theory of invariants the HAMILTON-CAYLEY theorem plays an
important role. It states that

T
(3)
ij − J1T

(2)
ij − J2Tij − J3δij = 0ij , (2.29)

where T (3)
ij ≡ TipTprTrj and T (2)

ij ≡ TipTpj are, respectively, the third and
the second power of the tensor T . Thus, every second-order tensor (linear
operator ) satisfies its own characteristic equation (2.25). BETTEN (1987c;
2001c) has proposed extended characteristic polynomials in order to find
irreducible invariants for fourth-order tensors (Section 4.3.2).

By analogy with (2.19), a fourth-order tensor A, having 81 components
Aijkl, can be interpreted as a linear operator:

Yij = AijklXkl (2.30)

where Xkl and Yij are the cartesian components of the second-rank tensors
X and Y . For example, the constitutive equation

σij = Eijklεkl (2.31)
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describes the mechanical behavior of an anisotropic linear-elastic material,
where σij are the components of CAUCHY’s stress tensor, εij are the compo-
nents of the infinitesimal strain tensor, and Eijkl are the components (elatic
constants) of the fourth-order material tensor characterising the anisotropy
of the material.

2.2 General Bases

In the foregoing Section we have introduced an orthonormal basis {ei} char-
acterized by (2.2), i.e., we have restricted ourselves to rectangular cartesian
coordinates. This is the simplest way to formulate the basic equations of
continuum mechanics and the constitutive or evolutional equations of var-
ious materials. However, solving particular problems, it may be preferable
to work in terms of more suitable coordinate systems and their associated
bases.

In particular, cylindrical polar coordinates are useful for configurations
which are symmetric about an axis, e.g., thick-walled tubes in Chapter 5. An-
other example is the system of spherical polar coordinates, which should be
preferred when there is some symmetry about a point. Thus, it is useful to ex-
press the basic equations of continuum mechanics and the constitutive laws
of several materials in terms of general (most curvlinear) coordinates. Thus,
in the following some fundamentals of curvlinear tensor calculus should be
discussed.

Let
xi = xi(ξ

p) ⇔ ξi = ξi(xp) (2.32)

be an admissible transformation of coordinates with JACOBIans

J ≡ |∂xi/∂ξ
j | and K ≡ |∂ξi/∂xj | ,

which does not vanish at any point of the considered region, then JK = 1.
Further important properties of admissible coordinate transformations are
discussed, for instance, by SOKOLNIKOFF (1964) and BETTEN (1974) in
more detail.

The coordinates xi in (2.32) referred to a right-handed orthogonal carte-
sian system of axes define a three-dimensional EUCLIDean space , while
the ξi are curvlinear coordinates . Because of the admissible transforma-
tion (2.32), each set of values of xi corresponds a unique set of values of
ξi, and vice versa. The values ξi therefore determine points in the defined
three-dimensional EUCLIDean space. Hence we may represent our space by
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the variables ξi instead by the cartesian system xi, but the space remains, of
course, EUCLIDean.

In this Section, we consider symbols characterized by one or several in-
dices which may be either subscripts or superscripts, such as Ai, Ai, Bij ,
Bij , Bi

j , etc., where indices as superscripts are not taken as powers. Some-
times it is necessary to indicate the order of the indices when subscripts and
superscripts occur together. In that case, for example, we write Ai

•j where
the dot before j indicates that j is the second index while i is the first one.

As explained later, the values Ai and Ai can be considered as the co-
variant and the contravariant components , respectively, of the vector A.
However, the position of the indices on the ”kernel” letters x and ξ in the
transformation of coordinates (2.32) has nothing to do with covariance or
contravariance and is therefore immaterial. In this context we refer to the
following remarks of other authors:

❒ FUNG (1965, p38): The differential dθi is a contravariant vec-
tor, the set of variables θi itself does not transform like a vector.
Hence, in this instance, the position of the index of θi must be
regarded as without significance.

❒ GREEN/ZERNA (1968, pp5/6): The differentials dθi transform
according to the law for contravariant tensors, so that the posi-
tion of the upper index is justified. The variables θi themselves
are in general neither contravariant nor covariant and the position
of their index must be recognized as an exception. In future the in-
dex in non-tensors will be placed either above or below according
to convenience. For example, we shall use either θi or θi.

❒ GREEN/ADKINS (1970, p1): The position of the index on coordi-
nates xi, yi and θi is immaterial and it is convenient to use either
upper or lower indices. The differential involving general curvi-
linear coordinates will always be denoted by dθi since dθi has a
different meaning and is not a differential. For rectangular coor-
dinates, however, we use either dxi, dxi for differentials, since
dxi = dxi.

❒ MALVERN (1969, p603): Warning: Although the differentials
dxm are tensor components, the curvilinear coordinates xm are
not, since the coordinate transformations are general functional
transformations and not the linear homogeneous transformations
required for tensor components.

According to the above remarks, it is immaterial, if we write ξi or
ξi. Since the differentials dξi transform corresponding to the law for con-
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travariant tensors, the position of the upper index, ξi, is justified. Thus, the
differential dT of a stationary scalar field T =T (ξi) should be written as
dT = (∂T/∂ξi)dξi.

The position of a point P can be determined by xi or, alternatively, by ξi

as illustrated in Fig.2.1.

P

3x

2x

1x

e1

e2

e3

R
g1

g2

g3

�
�

�
�

�
�

Fig. 2.1 Orthonormal and covariant base vectors

The position vector R of any point P (xi) can be decomposed in the form

R = xkek . (2.33)

Since the orthonormal base vectors ei are independent of the position of the
point P (xi), we deduce from (2.33) that

∂R/∂xi = ek(∂xk/∂xi) = ekδki = ei , (2.34)

i.e., the orthonormal base vectors can be expressed by partial derivatives of
the position vector R with respect to the rectangular cartesian coordinates
xi.

Analogous to (2.34), we find

∂R
/
∂ξi = (∂R /∂xp )

(
∂xp

/
∂ξi
)

= ep

(
∂xp

/
∂ξi
)

= gi , (2.35)

i.e., the geometrical meaning of the vector ∂R/∂ξi is simple: it is a base vec-
tor directed tangentially to the ξi-coordinate curve. From (2.35) we observe
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that the covariant base vectors gi are no longer independent of the coordi-
nates ξi, in contrast to the orthonormal base vectors. Furthermore, they need
not be mutually perpendicular or of unit length.

The inverse form to (2.35) is given by

ei ≡ ∂R/∂xi = (∂R/∂ξp) (∂ξp/∂xi) = gp (∂ξp/∂xi) . (2.36)

Besides the covariant base vectors defined in (2.35), (2.36), a set of con-
travariant base vectors gi is obtained from the constant unit vectors ei ≡ ei

as follows
gi =

(
∂ξi
/
∂xp

)
ep ⇔ ei = (∂xi/∂ξ

p) gp . (2.37)

This set of contravariant base vectors, gi, are often called the dual or recip-
rocal basis of the covariant basis gi, and they are denoted by superscripts.
In the special case of rectangular cartesian coordinates, the covariant and
contravariant base vectors are identical (ei ≡ ei).

From (2.35), (2.37) and considering the orthonormal condition we arrive
at the relation

gi · gj = δij ≡ δji . (2.38)

between the two bases. For example, the contravariant base vector g1 is or-
thogonal to the two covariant vectors g2 and g3. Since these vectors directed
tangentially to the ξ2- and ξ3-curves, the contravariant base vector g1 is per-
pendicular to the ξ1-surface (Fig.2.2).

�
�

g1

g2

g3 �
�

-surface�
�

-curve

-surface

e1

e2

e3 �
�

�
�

�
�

�
�
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�
�

-surface

�
�

-curve

xi=xi
�( )

covariant basisorthonormal basis

ei ej = �ij
gi gj = gij

p

Fig. 2.2 Coordinate surfaces and base vectors
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In addition to the relation (2.38) one can form the following scalar prod-
ucts:

gi · gj ≡ gij , gi · gj ≡ gij . (2.39a,b)

These quantities, gij and gij , are called the covariant and contravariant met-
ric tensors , respectively, and, because of (2.38), the KRONECKER tensor
δij can be interpreted as a mixed metric tensor . The metric tensors (2.38),
(2.39a,b) are symmetric since the scalar products of two vectors are commu-
tative.

Inserting the base vectors (2.35) or (2.37) into (2.39a,b), respectively, we
can express the covariant or contravariant metric tensors as

gij =
(
∂xk/∂ξ

i
)(
∂xk/∂ξ

j
)

gij =
(
∂ξi/∂xk

)(
∂ξj/∂xk

)
,

(2.40a,b)
from which we immediately arrive at the reciprocal relation

gikg
jk = δji . (2.41)

This result represents a system of linear equations from which the con-
travariant metric tensor can be calculated accordingly

gij = Gij/g with Gij ≡ (−1)i+jU(gij) , (2.42)

when the covariant metric tensor is given, where Gij is the cofactor of the
element gij in the determinant g ≡ |gij |. From the reciprocal relation (2.41)
we deduce the determinant of the contravariant metric tensor as |gij | = 1/g.

The magnitudes of the covariant and contravariant base vectors follow
directly from (2.39a,b):

|gi| =
√

gi · g(i) =
√
gi(i) ,

∣∣gi
∣∣ =√gi · g(i) =

√
gi(i) , (2.43a,b)

where the index is not summed, as indicated by parentheses.
An increment dR of the position vector R in Fig.2.1 can be decomposed

in the following ways

dR = ei dxi = gi dξ
i = gi dξi . (2.44)

Forming the scalar product
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gj · ei dxi = gj · gi dξ
i = δji dξ

i = dξj ,

and then inserting (2.37), we find the transformation

dξj =
(
∂ξj /∂xp

)
ep · ei dxi =

(
∂ξj /∂xp

)
dxp

or
dξi =

(
∂ξi /∂xp

)
dxp , (2.45a)

i.e., the dξi in (2.44) transforms contravariant (matrix ∂ξi/∂xp) and can be
identified with the usual total differential of the variable ξi, so that the use of
upper index is justified.

In a similar way one can find the covariant transformation

dξi =
(
∂xp

/
∂ξi
)
dxp , (2.45b)

which essentially differs from (2.45a) and cannot be interpreted as the total
differential.

Using (2.44) with (2.39a,b) the square of the line element ds can be writ-
ten in the form

ds2 = dR · dR = dxk dxk = gij dξ
i dξj = gij dξi dξj . (2.46)

Hence, the reason for the term metric tensor gij is account for. In addition
to (2.46), the mixed form ds2 = dξkdξ

k is also possible. This form follows
immediately from (2.46) because of the rule of raising (gijAj = Ai) and
lowering (gijAj = Ai) the indices.

Considering the decompositions of two vectors

A = Akgk = Akg
k , B = Bkgk = Bkg

k , (2.47a,b)

we then can represent the scalar product in the following forms

A · B = gijA
iBj = AkBk = AkB

k = gijAiBj , (2.48)

from which we can determine the length of a vector B ≡ A as

|A| ≡ A =
√
gijAiAj =

√
AkAk =

√
AkAk =

√
gijAiAj . (2.49)

Alternatively, the scalar product (2.48) can be expressed byAB cosα, so that
the angle between two vectors can be calculated from the following formula:

cosα = gijA
iBj /(AB) . (2.50)



22 2 Tensor Notation

In particular, the angle α12 between the ξ1-curve and ξ2-curve, i.e., between
the covariant base vectors g1 and g2 in Fig.2.2 can be determined in the
following way

g1 · g2︸ ︷︷ ︸ ≡ g12
|g1||g2| cosα12

}
⇒ cosα12 =

g12√
g11g12

, (2.51a)

where the relations (2.39a) and (2.43a) have been used. Cyclic permutations
yield

cosα23 =
g23√
g22g33

and cosα31 =
g31√
g33g11

. (2.51b,c)

From the result (2.51a,b,c) we deduce the following theorem:

A necessary and sufficient condition that a given curvlinear co-
ordinate system be orthogonal is that the gij vanish for i �= j at
every point in a region considered, i.e., the matrix (gij) has the
diagonal form.

According to (2.47a), there are two decompositions of a vector A: The
contravariant components Ak are the components of A in the directions of
the covariant base vectors gk, while the covariant components Ak are the
components of A corresponding with the contravariant base vectors gk, as
illustrated in Fig.2.3.

g gA1

g1

g1A

A

g g2

g2A

gA2

11

1

2

2

2

Fig. 2.3 Decomposition of a vector in covariant and contravariant components

A relation between the covariant and contravariant components, Ai and
Ai, can be achieved by forming the scalar products of (2.47a), respectively,
with the base vectors gi and gi according to
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Ai = gikA
k and Ai = gikAk . (2.52a,b)

These results express the rule of lowering and raising the indices , respec-
tively. This operation can also be applied to the base vectors in order to find
relations between the covariant and contravariant bases :

gi = gikg
k and gi = gikgk . (2.53a,b)

Comparing the decompositions (2.47a) with the decompositions

A = Āke
k ≡ Ākek (2.54)

with respect to the orthonormal basis ek≡ ek, and considering (2.36), (2.37),
one arrives at the folllowing relations between the covariant or contravariant
components, Ai or Ai, and the cartesian components Āk ≡ Āk of the vector
A:

Ai =
(
∂xp

/
∂ξi
)
Āp , Ai =

(
∂ξi /∂xp

)
Āp . (2.55a,b)

We see in (2.55a,b) the same transformation matrices (∂xp/∂ξ
i) and

(∂ξi/∂xp), respectively, as in (2.35) and (2.37).
In the tensor analysis the Nabla operator ∇, sometimes called del op-

erator , plays a fundamental role. It is a differential operator, and can be
decomposed with respect to the orthonormal basis:

∇ = ei∇i ≡ ei
∂

∂xi
. (2.56a)

Substituting ei ≡ ei in (2.56a) by (2.37), and utilizing the chain rule

∂

∂xi
=
∂ξp

∂xi

∂

∂ξp
,

we find the decomposition of the Nabla operator with respect to the con-
travariant basis:

∇ = gk ∂

∂ξk
. (2.56b)

The divergence of a vector field A is defined as the scalar product of the
Nabla operator (2.56b) and the vector (2.47a):
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div A = ∇ · A = ∂Ai/∂ξi +AiΓ j
.ij ≡ Ai|i . (2.57)

The functions T k
.ij in (2.57) are called the CHRISTOFFEL symbols of the sec-

ond kind . They are the coefficients in the following decompositions

∂gi/∂ξ
j ≡ Γ k

.ijgk ≡
{
k

ij

}
gk = Γijkg

k , (2.58a)

∂gi/∂ξj ≡ −Γ i
.kjg

k ≡ −
{
i

kj

}
gk . (2.58b)

Because of the definition (2.58a), and considering (2.35), (2.36), the CHRISTOF-
FEL symbols of the second kind can be expressed in the form

Γ k
.ij =

∂ξk

∂xp

∂2xp

∂ξi∂ξj
. (2.59a)

They are symmetric with respect to the lower indices (i, j) and can be related
to the metric tensors in the following way

Γ k
.ij ≡

{
k

ij

}
=

1

2
gkl
(
∂gil

/
∂ξj + ∂gjl

/
∂ξi − ∂gij

/
∂ξl
)
. (2.59b)

In addition, the CHRISTOFFEL symbols of the first kind are given by

Γkij ≡ [ij, k] = [ji, k] =
1

2

(
∂gik

/
∂ξj + ∂gjk

/
∂ξi − ∂gij

/
∂ξk
)
.

(2.60)
Comparing the two sets (2.59b) and (2.60), we read gklΓlij ≡ Γ k

.ij in agree-
ment with the rule of raising the indices.

Evidently there are n = 3 distinct CHRISTOFFEL symbols of each kind
for each independent gij , and, since the number of independent gij’s is

n(n+ 1)/2 ,

the number of independent CHRISTOFFEL symbols is

n2(n+ 1)/2 .

Note that the CHRISTOFFEL symbols, in general, are not tensors. This is
valid also for the partial derivatives ∂Ai/∂ξj and ∂Ai/∂ξ

j with respect to
curvlinear coordinates.
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However, the derivative

∂A/∂ξj = Ai|jgi = Ai|jgi (2.61)

is a tensor, where the expressions

Ai|j ≡ ∂Ai/∂ξj +AkΓ i
.kj and Ai|j ≡ ∂Ai/∂ξ

j −AkΓ
k
.ij (2.62a,b)

are the covariant derivatives of the contravariant and covariant vector com-
ponents, respectively. These derivatives transform like the components of a
second-rank-tensor. The trace of (2.62a) immediately yields the divergence
(2.57).

Let the vector A in (2.61) be the gradient of a scalar field. We then have

∂A
/
∂ξj = ∂(∇Φ)

/
∂ξj = Tijg

i , (2.63)

where

Tij = Tji =
∂2Φ

∂ξi∂ξj
− Γ k

.ij

∂Φ

∂ξk
≡ Φ,i| j (2.64)

is a symmetric second-rank covariant tensor.
The LAPLACE operatorΔ is defined asΔΦ=div gradΦ. Using (2.56b),

(2.57), (2.58), (2.39b), and the abbreviation (2.64), the following relation is
obtained:

ΔΦ = ∇ · ∇Φ =

(
gi ∂

∂ξi

)
·
(

gk ∂Φ

∂ξk

)
= gijTij ≡ gij Φ,i| j . (2.65)

The gradient of a vector A is formed by the dyadic product of the Nabla
operator (2.56b) and the field vector (2.47a) in connection with (2.62a,b):

T ≡ ∇⊗ A =

(
gj ∂

∂ξj

)
⊗ (Aigi

)
= Ai

∣∣
jg

j ⊗ gi ≡ T i
jg

j ⊗ gi

(2.66a)

T ≡ ∇⊗ A =

(
gj ∂

∂ξj

)
⊗ (Aig

i
)

= Ai| jg
j ⊗ gi ≡ Tijg

j ⊗ gi .

(2.66b)

In contrast to (2.64), the tensor Tij ≡ Ai|j in (2.66b) is not symmetric.
From the representations (2.66a,b) we read that the mixed components T i

j

and the covariant components Tij of dyadic T ≡ ∇ ⊗ A are identical with
the covariant derivatives (2.62a,b), respectively.



26 2 Tensor Notation

In curvlinear coordinates, the constitutive equation (2.31) of the linear
theory of elasticity should be expressed in the form

τ ij = Eijklγkl , (2.67)

where the infinitesimal strain tensor γ is formed by covariant derivatives
from the displacement vector w according to

γij = (wi| j + wj | i) /2 . (2.68)

In the absence of body forces the divergence of the stress tensor must be
equal to zero. Thus, the equations of equilibrium are then given by

τ ij |i = 0j . (2.69)

Note that for applications in solid mechanics the physical components of
the tensors τij , γij andwi, used in (2.67), (2.68), (2.69), have to be calculated
accordingly to

σij = τ ij√g(ii)g(jj) , εij = γij

√
g(ii)g(jj) , ui = wi

√
g(ii) , (2.70a,b,c)

where the bracketed indices should not be summed.
Considering a vector (2.47a) the components of which, A1g1, A2g2,

A3g3, form the edges of the parallelepiped whose diagonal is A. Since the
gi are not unit vectors in general, we see that the lengths of edges of this
parallelepiped, or the physical components of A, are determined by the ex-
pressions

A1√g11 , A2√g22 , A3√g33 ,

since g11 = g1 · g1, . . . , g33 = g3 · g3.
As an example, let us introduce cylindrical coordinates

x1 = ξ1 cos ξ2 , x2 = ξ1 sin ξ2 , x3 = ξ3 , (2.71)

where ξ1 ≡ r, ξ2 ≡ ϕ and ξ3 ≡ z. The covariant base vectors (2.35) are
then given by

g1 = e1 cosϕ+ e2 sinϕ ,
g2 = −e1r sinϕ+ e2r cosϕ ,
g3 = e3 ,

⎫⎬
⎭ (2.72a)

while the contravariant base vectors (2.37) are immediately found according
to
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g1 = g1 , g2 = g2

/
r2 , g3 = g3 . (2.72b)

Since the cylindrical coordinates (2.71) are orthogonal, the metric tensors
(2.39a,b), (2.40a,b) have the diagonal forms

gij =

⎛
⎜⎜⎜⎝

1 0 0

0 r2 0

0 0 1

⎞
⎟⎟⎟⎠ , gij =

⎛
⎜⎜⎜⎝

1 0 0

0 1/r2 0

0 0 1

⎞
⎟⎟⎟⎠ , (2.73a,b)

while the nonvanishing CHRISTOFFEL symbols (2.59a,b), (2.60) are given
by

Γ122 ≡ −[12, 2] = Γ 1
.22 = −r, Γ221 ≡ [21, 2] = [12, 2] = r, Γ 2

.12 = 1/r.
(2.74)

Taking the covariant derivative (2.62b) into account, the tensor (2.68) can
also be represented in the following way

γij =
(
∂wi

/
∂ξj + ∂wj

/
∂ξi
)
/2 − wkΓ

k
.ij . (2.75)

The physical components (2.70c) of the displacement vector are in cylindri-
cal coordinates because of (2.42b) very simple:

ur = w1 , uϕ = w2/r , uz = w3 , (2.76)

and, likewise, we calculate from (2.70b) the physical components

εr = γ11 , εϕ = γ22/r
2 , εz = γ33 ,

εrϕ = γ12/r , εrz = γ13 , εzϕ = γ32/r ,

}
(2.77)

of the infinitesimal strain tensor, so that we finally arrive at the following
components

εr = ∂ur /∂r , εϕ = (∂uϕ /∂ϕ + ur) /r , εz = ∂uz /∂z ,

εrϕ = [(∂ur /∂ϕ) /r + ∂uϕ /∂r − uϕ /r ] /2 ,

εrz = (∂ur/∂z + ∂uz/∂r)/2 ,

εzϕ = [(∂uz /∂ϕ) /r + ∂uϕ /∂z ] /2 ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.78)

by considering (2.74), (2.75), and (2.76).
Finally, the physical components of the stress tensor are deduced from

(2.70a):
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σr = τ11 , σϕ = r2τ22 , σz = τ33 ,

σrϕ = rτ12 , σϕz = rτ23 , σzr = τ31 ,

}
(2.79)

so that we arrive from (2.69) by considering

Aij |k = ∂Aij
/
∂ξk + Γ i

.kpA
pj + Γ j

.kpA
ip (2.80)

and (2.74) at the equations of equilibrium

∂σr /∂r + (∂σrϕ /∂ϕ) /r + ∂σzr /∂z + (σr − σϕ) /r = 0 ,

∂σrϕ /∂r + (∂σϕ /∂ϕ) /r + ∂σϕz /∂z + 2σrϕ /r = 0 ,

∂σzr /∂r + (∂σϕz /∂ϕ) /r + ∂σz /∂z + σzr /r = 0 .

⎫⎪⎬
⎪⎭ (2.81)

For isotropic materials the fourth-order elasticity tensor in (2.31) has the
form

Eijkl = λδijδkl + μ (δikδjl + δilδjk) , (2.82a)

while the material tensor in (2.67) is represented by

Eijkl = λgijgkl + μ
(
gikgjl + gilgjk

)
, (2.82b)

so that we find from (2.67) in connection with (2.77) and (2.79) the following
constitutive equations:

σr = 2μεr + λ(εr + εϕ + εz) ,

σϕ = 2μεϕ + λ(εr + εϕ + εz) ,

σz = 2μεz + λ(εr + εϕ + εz) ,

σrϕ = 2μεrϕ , σϕz = 2μεϕz , σzr = 2μεzr .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.83)

According (2.65) together with (2.64), the LAPLACE operator is defined
in general. In the special case of cylindrical coordinates with (2.73a,b), (2.74)
this operator takes the form

Δ =
∂2

∂r2
+

1

r2
∂2

∂ϕ2
+

1

r

∂

∂r
+
∂2

∂z2
, (2.84)

which occurs as a differential, for example, in the LAPLACE or POISSON

equation. These partial differential equations are fundamental for many ap-
plications in continuum mechanic.

In the representation theory of tensor functions the irreducible basic in-
variants
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S1 = δijĀji , S2 = ĀijĀji , S3 = ĀijĀjkĀki (2,85a,b,c)

or, alternatively, the irreducible main invariants

J1 ≡ S1 , J2 =
(
S2 − S2

1

)
/2 , (2.86a,b)

J3 =
2S3 − 3S2S1 + S3

1

6
(2.86c)

play a central role, since they form an integrity basis . In (2,85a,b,c) the Āij

are the components of the tensor A with respect to the orthonormal basis
ei. The invariants (2,85a,b,c), e.g., can be expressed in terms of covariant or
contravariant components of the tensor A. To do this we need the following
transformations

Aij =
∂xp

∂ξi
∂xq

∂ξj
Āpq ⇔ Āij =

∂ξp

∂xi

∂ξq

∂xj
Apq , (2.87)

and

Aij =
∂ξi

∂xp

∂ξj

∂xq
Āpq ⇔ Āij =

∂xi

∂ξp
∂xj

∂ξq
Apq , (2.88)

which are extended forms of (2.35), (2.36), and (2.37). Inserting the trans-
formation (2.87) in (2,85a,b,c) and considering (2.40a,b), we finally find the
irreducible basic invariants in the following forms:

S1 = gpqApq = gpqA
pq = Ak

k , (2.89a)

S2 = gipgjqAjiApq = gipgjqA
jiApq = Ai

kA
k
i , (2.89b)

S3 = gipgjqgkrAijAqkArp = · · · = Ai
jA

j
kA

k
i , (2.89c)

and then the main invariants (2.86a,b,c) also in terms of covariant, con-
travariant or mixed tensor components.

A lot of tensor operations are included in the MAPLE tensor package.
Examples are illustrated in the following MAPLE program, where the metric
tensors and the CHRISTOFFEL symbols have been calculated for cylindrical
and spherical coordinates ⊙

2 1.mws

> with(tensor):

> cylindrical_coord:=[r,phi,z]:

covariant metric tensor:
> g_compts:=array(symmetric,sparse,1..3,1..3):
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> g_compts[1,1]:=1: g_compts[2,2]:=rˆ2:

> g_compts[3,3]:=1:

> g:=create([-1,-1], eval(g_compts));

g := table([compts =

⎡
⎣1 0 0

0 r2 0
0 0 1

⎤
⎦ , index char = [−1, −1]])

> D1g:=d1metric(g,cylindrical_coord):
> Gamma[kij]:=[ijk];

> CHRISTOFFEL[first_kind][cylindrical]:=

> Gamma[kij]=Christoffel1(D1g):

Γkij := [ijk ]

The results are printed as a list on the CD-ROM. They are identical
to those values in (2.74).
> spherical_coord:=[r,phi,theta]:

covariant metric tensor:
> g_compts:=array(symmetric,sparse,1..3,1..3):

> g_compts[1,1]:=1: g_compts[2,2]:=rˆ2:

> g_compts[3,3]:=(r*sin(phi))ˆ2:

> g:=create([-1,-1], eval(g_compts));

g := table([compts =

⎡
⎣1 0 0

0 r2 0
0 0 r2 sin(φ)2

⎤
⎦ , index char = [−1, −1]])

> D1g:=d1metric(g,spherical_coord):
> Gamma[kij]:=[ijk];

> CHRISTOFFEL[first_kind][spherical]:=

> Gamma[kij]=Christoffel1(D1g):

Γkij := [ijk ]

The results are printed as a list on the CD-ROM. In a similar way one can
find the CHRISTOFFEL symbols of the second kind.
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