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Analytic Expressions of Elementary
Trajectories

The basic trajectories are illustrated, classified into three main cat-
egories: polynomial, trigonometric, and exponential. Trajectories ob-
tained on the basis of Fourier series expansion are also explained. More
complex trajectories, able to satisfy desired constraints on velocity, ac-
celeration and jerk, can be obtained by means of a suitable composition
of these elementary functions. The case of a single actuator, or axis
of motion, is specifically considered. The discussion is general, and it
is therefore valid to define both a trajectory in the joint space and a
motion law in the operational space, see Chapter 8 and Chapter 9.

2.1 Polynomial Trajectories

In the most simple case, a motion is defined by assigning the initial and final
time instant ¢y and ¢;, and conditions on position, velocity and acceleration
at to and ¢1. From a mathematical point of view, the problem is then to find
a function

q= q(t), te [to, tl}

such that the given conditions are satisfied. This problem can be easily solved
by considering a polynomial function

q(t) = ag + a1t + ast® + ... + apt"

where the n+ 1 coefficients a; are determined so that the initial and final con-
straints are satisfied. The degree n of the polynomial depends on the number
of conditions to be satisfied and on the desired “smoothness” of the resulting
motion. Since the number of boundary conditions is usually even, the degree
n of the polynomial function is odd, i.e. three, five, seven, and so on.
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Position

Velocity

Acceleration

Fig. 2.1. Position, velocity and acceleration profiles of a polynomial trajectory
computed by assigning boundary and intermediate conditions (Example 2.1).

In general, besides initial and final conditions on the trajectory, other
conditions could be specified concerning its time derivatives (velocity, acceler-
ation, jerk, ...) at generic instants t; € [to, t1]. In other words, one could be in-
terested in determining a polynomial function ¢(t) whose k-th time-derivative
assumes a specific value ¢(*) (t;) at a given instant ¢;. Mathematically, these
conditions can be specified as

n!

k! ak—i-(k—l-l)!akﬂ tj"‘r...‘f'm

ap 775 = ¢® (1))

or, in matrix form, as

Ma=0>b

where M is a known (n 4+ 1) x (n 4+ 1) matrix, b collects the given (n + 1)
conditions to be satisfied, and a = [ag, a1, ..., a,]’ is the vector of the
unknown parameters to be computed. In principle this equation can be solved
simply as

a=M""b

although, for large values of n, this procedure may lead to numerical problems.
These considerations are analyzed in more details in Chapter 4.
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Example 2.1 Fig. 2.1 shows the position, velocity and acceleration profiles
of a polynomial trajectory computed by assigning the following conditions:
qo = 107 q1 = 203 to = 07 ty = 107
vg =0, vi =0, v(t=2)=2, a(t=8)=0.

There are four boundary conditions (position and velocity at to and ¢1) and
two intermediate conditions (velocity at ¢ = 2 and acceleration at ¢ = 8).
Note that with six conditions it is necessary to adopt a polynomial at least of
degree five. In this case, the coefficients a; result

ap = 10.0000,  a; = 0.0000,  a»
as = —0.2806, a4 = 0.0267, as

1.1462,
—0.0009.

2.1.1 Linear trajectory (constant velocity)

The most simple trajectory to determine a motion from an initial point ¢ to
a final point ¢, is defined as

q(t) =ag + al(t — to).

Once the initial and final instants g, 1, and positions gy and g; are specified,
the parameters ag, a; can be computed by solving the system

o m=e = =[]

where T' = t1 — tg is the time duration. Therefore

ao = qo
o= _h
T h—ty T

where h = ¢; —qq is the displacement. The velocity is constant over the interval
[to, t1] and its value is

q(t) = = (= ).

Obviously, the acceleration is null in the interior of the trajectory and has an
impulsive behavior at the extremities.

Example 2.2 Fig. 2.2 reports the position, velocity and acceleration of the
linear trajectory with the conditions ty = 0, t; =8, g0 = 0, ¢1 = 10. Note
that at ¢ = tg, t1, the velocity is discontinuous and therefore the acceleration
is infinite in these points. For this reason the trajectory in this form is not
adopted in the industrial practice. O
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Fig. 2.2. Position, velocity and acceleration of a constant velocity trajectory, with
t():O, 1‘11287 qo=0, q1:10.

2.1.2 Parabolic trajectory (constant acceleration)

This trajectory, also known as gravitational trajectory or with constant ac-
celeration, is characterized by an acceleration with a constant absolute value
and opposite sign in the acceleration/deceleration periods. Analytically, it is
the composition of two second degree polynomials, one from g to ty (the flex
point) and the second from ¢, to ¢1, see Fig. 2.3.

Let us consider now the case of a trajectory symmetric with respect to its
middle point, defined by t; = % and ¢(ty) =q5 = %. Note that in this
case T, = (ty —to) =T/2, (¢r —qo) = h/2.

In the first phase, the “acceleration” phase, the trajectory is defined by

qa(t) = ap +ay (t —to) +az (t —ty)?, t € [to, tf].

The parameters ag,a; and as can be computed by imposing the conditions
of the trajectory through the points gg,qs and the condition on the initial
velocity vg

da(to) = qo = ao
qa(ts) = 45 = ao +ay (ty —to) +az (ty —to)?
da(to) = vo = ay.
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One obtains

i(h - VoT).

ao = o, ai = Vo, az = T2

Therefore, for ¢ € [tg, ty], the trajectory is defined as

Ga(t) = g0 + Vo(t — to) + —(h — voT)(t — t)?

T2
. 4
qa(t) = vgp + ﬁ(h - VoT)(t — to)
Ga(t) = %(h —voT) (constant).

The velocity at the flex point is

h
Vmazr = Qa(tf) = 2? — Vo-

19

Note that, if vy = 0, the resulting maximum velocity has doubled with respect
to the case of the constant velocity trajectory. The jerk is always null except
at the flex point, when the acceleration changes its sign and it assumes an

infinite value.

In the second part, between the flex and the final point, the trajectory is

described by

@(t) =az+ay (t —ty) +as(t —ty)? t € [ty, t).

If the final value of the velocity v; is assigned, at ¢ = t¢;, the parameters

as, a4, as can be computed by means of the following equations
W(ty) = q5 = a3

a(t1) = q1 = as + ag (L — tg) + a5 (1 — tg)?

Qb(tl) =vy = a4 + 2a;5 (tl — tf)

towTa Jjty Sl

Fig. 2.3. Trajectory with constant acceleration.
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from which

qo +q1 2
as = qf = 5 a4:2f—v1, a5:ﬁ(v1T—h)
The expression of the trajectory for ¢ € [tf, t1] is
h 2 9
Wlt) = a5 + (25 — V)t~ 1) + g (1T~ )t~ 1)
. h 4
Qb(t) = 2? — vy + ﬁ(‘HT — h)(t — tf)
. 4
Gp(t) = ﬁ(vlT —h).

Note that, if vg # vy, the velocity profile of this trajectory is discontinuous at

t=ty.

Example 2.3 Fig. 2.4 reports the position, velocity and acceleration for this
trajectory. The conditions tg =0, t1 =8, ¢ =0, ¢ = 10, vg = v; = 0 have

been assigned.

Position
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Fig. 2.4. Position, velocity and acceleration of a trajectory with constant accelera-

tion, with to =0, t1 =8, g0 =0, 1 = 10.
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If the constraint on the position at ¢t =ty (i.e. q(ty) = ¢y = ©F%) is not

assigned, the six parameters a; may be determined in order to have a contin-
uous velocity profile, i.e. ¢q(ty) = ¢u(ty).
As a matter of fact, by imposing the six conditions

qa(to) = ao = qo
da(to) = as = vy
T T\?
an(t1) :a3+a4§+a5 b) =q
) T
(1) = as + 26155 =V
T T\?
Galty) = a0t ag +ar {5 ) =as =alty)
) T )
da(ty) :a1+2a2§ =as = qGp(ty)

where T'/2 = (t; — to) = ({1 — t), one obtains

aop = qo
a; = Vo
4h — T(3vo + v1)
ag =
277
_ 4go+q1) +T(vo —v1)
az = 3
4h — T(VO + V1)
a4 = —————=
* 2T
—4h + T(vg + 3vq)
a =
° 272
Example 2.4 Fig. 2.5 reports the position, velocity and acceleration for this
trajectory. The conditionsty =0, t; =8, go =0, ¢ =10, vg = 0.1, vy = —1
have been assigned. |

2.1.3 Trajectory with asymmetric constant acceleration

This trajectory is obtained from the previous one by considering the flex point
at a generic instant ¢y < ty < t;, as shown in Fig. 2.3, and not necessarily at
t = (t1 + to)/2. The trajectory is described by the two polynomials

qa(t) = ap + a1 (t —to) + az (t — to)?, to <t <ty
a(t) = ag + as(t —ty) +as(t —tg)?, tr<t<ty
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Fig. 2.5. Position, velocity and acceleration of a trajectory with constant acceler-
ation and continuous velocity, with to = 0, t1 = 8, g0 = 0, ¢1 = 10, vo = 0.1,
V1 = —1.

where the parameters ag, a1, as, as,as and as are obtained by imposing the
four conditions on the position and velocity at tg, t1, and the two continuity
conditions (position and velocity) at t:

a(to) = ao = qo
a(t1) = az+as(ty —ts) +as(ti —t5)> = q
da(to) = a1 = Vo
Gp(t1) = asa + 2as5(t1 — ty) =
Ga(ty) = ao + ar(ty —to) +az(ty —to)® = as (= @(ty))
da(ty) = a1 + 2ax(ty —to) = as (= G@(ty))-

By defining T, = (ty — to) and Tq = (t1 — tf), the resulting parameters are
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ap = qo
a; = Vo
2h — Vo(T + Ta) - V1Td
a =
2 27T,
_2q1To + Ta(2q0 + T (vo — v1))
4= o7
2h — V()Ta - V1Td
a =
4 T
o 2h — VQT(L — Vl(T + Td)
= oTT,

Velocity and acceleration for ¢y <t <ty are

2h — V()(T + Ta) - V1Td
TT,

(ja(t) =a1 + 20,2(t — to) =V + (t — to)

.. 2h —vo(T + Ty,) — viTy
=92 =
Ga(t) a2 TT,

while for ¢ty < ¢ < t; they result

. 2h — V()Ta — V1Td 2h — V()Ta — Vi (T + Td)
@(t) =as+2a5(t —t5) = —
b(t) =as+2as5(t —ty) T T,

. 2h — VoTa — Vl(T + Td)
t) = 2 = — .
Go(t) = 205 TT,

(t—tf)

Note that, in case vg = v = 0, the value of the maximum velocity is the same
as in the previous case (symmetric flex point):

. h
Umax = Qa(tf) = 2?

Obviously, if t; = LF the previous trajectory is obtained.

Example 2.5 Fig. 2.6 shows the position, velocity and acceleration for this
trajectory with the same conditions as in the Example 2.3. |

2.1.4 Cubic trajectory

In case both position and velocity values are specified at tg and t1 (qo, g1,
and vg, vq respectively), there are four conditions to be satisfied. Therefore, a
third degree polynomial must be used

q(t) = ag + a1 (t — to) + as(t — to)* + as(t — to)>, to<t<t; (2.1)

and, from the given conditions, the four parameters ag, a1, as, ag are
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Position

Velocity

Acceleration

Fig. 2.6. Position, velocity and acceleration od a trajectory with asymmetric con-
stant acceleration and tp = 0,t1 = 8,tf = 2,90 = 0,¢q1 = 10.

ao = qo
ayp = Vo
3h — (2vo +v1)T (2.2)
ag = T2
_ =2h+ (vo +v1)T
az = T3 .

By exploiting this result, it is very simple to compute a trajectory with contin-
uous velocity through a sequence of n points. The overall motion is subdivided
into n—1 segments. Each of these segments connects the points g, and gx41 at
tg, tr+1 and has initial/final velocity vi, vis1 respectively. Then, equations
(2.2) are used for each of these segments to define the 4(n — 1) parameters
aok, @1k, A2k, A3k

Example 2.6 Fig. 2.7(a) shows position, velocity and acceleration for this
trajectory with go = 0,¢q; = 10,t9 = 0,¢; = 8 and null initial and final veloc-
ities. If these are not null, motion profiles such as those shown in Fig. 2.7(b)
are obtained, where the conditions vo = —5, vi = —10 have been assigned. O



2.1 Polynomial Trajectories 25

5

Position
Position
3

o

Velocity
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Fig. 2.7. Position, velocity and acceleration of a third degree polynomial trajectory
with the conditions ¢o = 0, g1 = 10, to = 0, t1 = 8. In (a) the initial and final
velocities are null (vo = vi = 0), while in (b) the values vo = —5, vi = —10 have
been assigned.

Example 2.7 Fig. 2.8 reports the plots of position, velocity and acceleration
for a multipoint trajectory with

to =0, t1 =2, ty = 4, t3 =8, ty = 10,
qo = 10, q1 = 20, g2 =0, q3 = 30, qs = 40,
Vo = 0, vy = —107 Vo = 10, V3 = 3, Vg4 = 0.

In defining a trajectory through a set of points qq,...,q,, not always the
velocities in the intermediate points are specified. In these cases, suitable
values for the intermediate velocities may be determined with heuristic rules
such as

Vo (assigned)
0 sign(dy) # sign(dy41)

Vi = (23)
5(dr + diy1)  sign(dy) = sign(dy41)

Vn (assigned)

where dr, = (qx — qk—1)/(tx — tp—1) is the slope of the line segment between
the instants t;_1 and tg, and sign(-) is the sign function.

Example 2.8 The plots obtained with the same sequence of points as in Ex-
ample 2.7 are reported in Fig. 2.9. In this case, the intermediate velocities are
computed with (2.3). O
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Fig. 2.8. Position, velocity and acceleration for a cubic polynomial through a se-
quence of points.

2.1.5 Polynomial of degree five

A trajectory through the points ¢g, ..., ¢n, based on third degree polyno-
mials, is characterized by continuous position and velocity profiles, while in
general the acceleration is discontinuous, see the examples in Fig. 2.8 and
Fig. 2.9.

Although this trajectory is in general “smooth” enough, acceleration discon-
tinuities can generate in some applications undesired effects on the kinematic
chains and on the inertial loads. This happens in particular when the mini-
mization of time is of concern, and therefore high acceleration (and velocity)
values are assigned, or when relevant mechanical elasticities are present in the
actuation system. These aspects are discussed with more details in Chapter
7.

In order to obtain trajectories with continuous acceleration, besides condi-
tions on position and velocity it is also necessary to assign suitable initial and
final values for the acceleration. Therefore, since there are six boundary con-
ditions (position, velocity, and acceleration), a fifth degree polynomial must
be adopted:

q(t) = qo+ai(t—to)+as(t—to)* +as(t—to)* +as(t—to)* +as(t—to)® (2.4)
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Position

Velocity

Acceleration

Fig. 2.9. Position, velocity and acceleration of a cubic polynomial trajectory
through a sequence of points with the intermediate velocities computed according
to (2.3).

with the conditions

q(to) = qo, qt) =q
q(to) = vo, q(t1) = vy
q(to) = a0, 4(t1) = ar.

In this case, by defining T' = t; — tg, the coefficients of the polynomial result

ao = 4o
ap = Vo
1
as = §ao
az = %[20}1 — (8vy + 12vo)T — (329 — a1)T”] e
ay = ﬁ[—zmh + (14vy + 16v0)T + (3a0 — 2a1)T"]
as = %[12/1 —6(v1 +vo)T + (a1 — ag)T”].
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Fig. 2.10. Position, velocity and acceleration of a fifth degree polynomial with gy =
0, (]1:107 V0:V1:0, ao:a1:0, t():O, t1:8(a), andv0:75, V1:710

(b).

Example 2.9 A fifth degree trajectory is shown in Fig. 2.10. The initial and
final conditions are gqg = 0, g1 =10, v =v; =0, ag =a; =0, tc =0, t; =8
in Fig. 2.10(a), and vo = —5, v; = —10, in Fig. 2.10(b). Compare these plots
with those in Fig. 2.7. Note that, by adopting a cubic polynomial it is not
possible to assign boundary values on the acceleration. a

For a motion through a sequence of points, the considerations illustrated for
a third degree polynomial can be applied in the same manner, see eq. (2.3).

Example 2.10 Fig. 2.11 reports a fifth degree polynomial, with automatic
computation of the intermediate velocities and null intermediate accelerations
(compare with Fig. 2.9). Notice the improved “smoothness” in this case. O

2.1.6 Polynomial of degree seven

In particular cases, it might be necessary to define higher degree polynomials
in order to obtain smoother profiles. With polynomials of degree seven such
as

q(t) = ag + al(t — t(]) + ag(t — t())2 + ag(t — t())3 + a4(t — t(])4 —+
tas(t — o) + ag(t — o) +ar(t —to)” (2.6)

it is possible to specify eight boundary conditions
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Fig. 2.11. Position, velocity and acceleration with a fifth degree polynomial through
a sequence of points (compare with Fig. 2.9).

q(to) = qo, q(to) = vo, G(to) = ao, a®(to) = Jo,
q(t1) = a1, q(t1) = v, 4(t1) = au, a®t) = j;.

By defining T'=t; — tp and h = ¢; — qo, the coeflicients a;, i =0,...,7 are

ai

a2

as

Qy4

as

ae

ar

apg =

q0
Vo

(]

0
2

0
6

a,
210h — T[(30ag — 15a1)T + (434 + j,)T2 + 120vg + 90v4]

67T+

—168h + T'[(20a9 — 14a1)T + (23 + j1)T? + 90vo + 78v]

27°

420h — T[(45a0 — 39a1)T + (4jo + 3j1)T? + 216vq + 204v]

676
—120h + T[(1229 — 12a1)T + (o + 3,)T? + 60vg + 60v4]

677
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Position
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Fig. 2.12. Position, velocity, acceleration and jerk of a seventh degree polynomial
(compare with Fig. 2.7 and Fig. 2.10).

Example 2.11 A seventh degree polynomial trajectory is shown in Fig. 2.12,
obtained with the boundary conditions qo =0, ¢4 = 10, v =v; =0, ag =
a1:O,jO:O,j1:07t0:0,t1:8. O

Obviously, in case of a desired motion through a sequence of points, the
considerations illustrated for third and fifth degree polynomials can be ap-
plied.

2.1.7 Polynomials of higher degree

In particular applications it is necessary to adopt polynomials of high degree in
order to impose several constraints, such as boundary conditions on velocity,
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acceleration, jerk, snap and even higher order derivatives or conditions in
the intermediate points. In these cases, it may be convenient to express the
polynomial function of degree n in normalized form, i.e. as

qn(T) = ao + ar 7 + e + azm + . 4 ap " (2.7)

with unitary displacement h = ¢; — ¢o = 1 and duration T'= 71 — 19 = 1 (for
the sake of simplicity it is also assumed 79 = 0).
In order to determine the parameters a;, it is possible to define an equation
of the type
Ma=b (2.8)

where a = [ag, a1, az, ..., a,]?. The vector b, containing the boundary con-
ditions on position, velocity, acceleration and so on, is in the form!

— : . T

b— [C]O7 Vo, ag, JO""’ qi1, V1, a1, _‘]17 ] .

Finally, matrix M can be easily defined by imposing the boundary conditions
on (2.7):

1. ag = 0: polynomial trough the first point (g5 (0) = 0).

2. a1 = vo, az = ag, az = jg, -..: initial conditions on velocity, acceleration,
...; in general there are n.; initial conditions on the derivatives of gy (7).

3. i, a; = 1: polynomial trough the last point (gy(1) = 1).
4. Y% | da; = vq: final condition on velocity.

5. 3" 5i(i — 1)a; = a;: final condition on acceleration.

6. > 5i(i —1)(i — 2)a; = j;: final condition on jerk.

(DY ﬁai = ¢gy: final condition on the d-th derivative of ¢y (7) (with
nes final conditions).

The polynomial gy (7), of degree n, has n + 1 coefficients a; and therefore
matrix M has dimensions (n+ 1) x (n+ 1), where n+1 = n¢; +nep + 2. The
parameters a are determined from @ = M~ 'b. Note that also for relatively

! The values of the initial/final velocity, acceleration, ..., (vnj, ang,.-,3 = 1,0)

are obtained by “normalizing” the corresponding boundary conditions v;, aj, ...
(k)
as q](\fj) = hq/JTk , being q§k> the given constraint on the derivative of order k of the

desired trajectory ¢(t) from go to ¢1 (h = g1 — qo) and of duration T'. For the sake
of simplicity, also the normalized boundary conditions vy,, Vn,, ... are denoted
here as vo,v1, a0, as,....
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low values of n (e.g. n = 18,19,...), the computation of M ™' may give
numerical problems due to bad conditioning.

For this reason, if necessary, it is possible to compute the coefficients a;
with other approaches, more robust from the computational point of view. As
a matter of fact, it is possible to exploit the so-called Bézier/Bernstein form
of polynomials, i.e.

g (1) = Z: <7;> F(l—7) iy, 0<r<1 (2.9)

n
where <) are binomial coefficients defined as

() =7

(%) 7" (1 = 7)"~" are the Bernstein basis polynomials, and p; are scalar coeffi-
cients called control points, see also Sec. B.3. Obviously, the expressions (2.7)
and (2.9) are equivalent, and it is possible to express a polynomial in both
the forms. Accordingly, the relationship between the coefficients a; and the

parameters p; is:

—1)itd

J
: i =0,1,...,n, 2.10
U= ;Z ]_Z,p j n (2.10)

see also (B.22). The parameters p; in (2.9) can be computed by imposing the
boundary conditions on gy (7), i.e

QN<0) =0, QN(l) =1
4n(0) = vo, in(1) = vy
(2.11)

‘iN(O) = ao, dN(]‘) =ai

An interesting property of the expression (2.9) is that it allows to solve
independently the two problems tied to the imposition of boundary conditions
at the initial and at the final points (these problems must be solved together
if eq. (2.8) is used). As a matter of fact, the derivatives of ¢y (7) in (2.9) for
7=0and 7 =1 are

dn(0) = n(—po+p1)

Gn(0)  =n(n—1)(po — 2p1 + p2)
: (2.12)
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and

Q.
Z
—~~
—_
~—
Il

n(pn 7pn—1)
QN(I) = n(n - 1)(pn - 2pn—l +pn—2)
: (2.13)

: k
W0 = 7 2 () Ve

As already pointed out, in order to meet all the conditions the degree n of
the polynomial must be at least equal to n.; +n.s 4+ 1. Note that the problem
(2.12) depends only on the value of the first n.;+ 1 control points p;. Likewise,
the problem (2.13) involves only the last n.y + 1 control points.

From (2.12) and the obvious condition ¢y (0) = ¢o (in this case go = 0) it is
possible to define an equation of the type

Mo py = bo (2.14)
with
T1.0 0 0 0 0...07 0
Vo
-1 1 0 0 0 0...0 "
ap
_ n(n—1)
M,y — 1-2 1 0 0 0...0 , by — i
-1 3-3 1 0 0...0 n(n—1)(n—2)
Sg
1-4 6-4 1 0...0 n(n—1)(n—2)(n—3)
and the vector of the n¢; + 1 unknowns p, = [po, p1, P2 ---» Pn., | " Note

that matrix M has a triangular structure, and therefore the procedure for
its inversion, necessary to find the solution p, results numerically robust.
The last n.y + 1 control points p; = [pn, Pn-1, Pn-2, - -, pn,ncf]T are
the solution of a system of equations similar to (2.14) (in this case the first
equation is gy (1) = ¢1 = 1):

Mip, =b; (2.15)
with
1 00 0 0 0...07 1
vy
1-1 0 0 0 0...0 n
a
— n(n—1)
M, = 1-2 1 0 0 0...0 7 by = :
1-3 3-1 0 0...0 =)
s
1-4 6—-4 1 0...0 n(n—1)(n—2)(n—3)
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Once all the control points p = [po, P1,- -+, Pness Proness -+ Pt pn]T in
(2.9) are known, it is possible to determine the parameters a; in (2.7) accord-
ing to (2.10).

After the computation of the parameters which define the normalized poly-
nomial gy (7) either in the form (2.7) or (2.9), the function describing the
motion between the two generic points (o, qo) and (t1,q1) is

t—1t
a(t) = qo+ an(r) b, with 7= = (2.16)
and the velocity, acceleration, ... profiles are
. h
q(t) = dw(7)
h
q(t) =dqn(T) =
T (2.17)

dg'()  dgh(n) h
dtd — drd T

see also Sec. 5.2.1.

Example 2.12 Let us define a polynomial function with the following con-
ditions

q0:10, V0:5, a0:0, jOZO, SOZO

(]1:307 V1:0, a1:10, j1:0, 31:0
and typ = 1, t; = 5. In this case, the boundary conditions on the derivatives
of the polynomial are 4 at the initial point and 4 at the final point (n. =
nes = 4). Therefore, the degree n of the polynomial function must be 9. In
order to find the coefficients p; which define the Bézier /Bernstein polynomial,
it is necessary to normalize the constraints. With h = ¢ — go = 20 and
T = t; — tg = 4 the normalized boundary conditions result

qOZO, V():l7 a0:O7 jOZO, SOZO
q1:17 V1:O7 31:87 j1:O7 81:0-

Therefore, the matrices M ; and the vectors b; in (2.14) and (2.15) are re-
spectively

1 0 0 0 07 [0
110 0 0 1

9

My=| 1-2 1 0 0|, bo=1]0
-1 3-3 1 0 0

| 1-4 6-4 1 | L 0 ]
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and
T 1 0 0 0 0] 17
1-1 0 0 0 0
M;=| 1-2 1 0 0}, b, = %
1-3 3-1 0 0
| 14 6 -4 1] L0

The control points are
1
p=500. 1,2 3 4,15 12,10, 9, 9"

and the relative normalized trajectory is

an(7) = (1 =787+ 8(1 — 7)"12 +28(1 — 7)573 + 56(1 — 7)°7* +
+210(1 = 7)'77 +112(1 = 7)°7° +40(1 = 7)*77 + 9(1 — 7)7° + 77,

By exploiting (2.10), this trajectory can be rewritten in the standard polyno-
mial form as

an(7) = 7+ 1407° — 5047° + 68477 — 4157° + 9577,

The profiles of position, velocity and acceleration of ¢ (7) are shown in
Fig. 2.13(a).

Finally, by adopting (2.16) and (2.17), the expression of the desired tra-
jectory with displacement A = 20 and duration 7" = 4 is obtained. The
corresponding profiles of position, velocity and acceleration are shown in
Fig. 2.13(b).

O

If the standard form (2.7) is assumed, the coefficients of the polynomial ¢(t)

and of its derivatives can be easily deduced from (2.16) and (2.17) as functions

of a;, T, and h. As a matter of fact, if we denote with b; 5, the coefficients of
&) (). i

g™ (1), i.e.

n—k
g® () = bk (t—to) (2.18)
=0

the expressions of the position, velocity, acceleration, ... profiles become
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o

35

30

Position
Position

Velocity
Velocity

Acceleration
Acceleration

Fig. 2.13. Normalized polynomial trajectory of degree 9 (a) and corresponding
trajectory from (to, qo) to (t1, ¢1) (b), Example 2.12.

n ) q0 + ha[), 1=0
position: q(t) = Z bio(t —to)' — bio= h _
= T aq, 1>0

n—1

. . i . h
velocity:  §(t) = Z bia(t —to)" — bi1=(i+1) TirT Gt
i=0

n—2
acceleration:  §(t) = Z bio(t —to)" — bia=(i+1)(i+2) Tiga Gi+2
i=0
at d « i (i+d)! h
d-th derivative: ¢( )(t) = Z bia(t —t0)" — bia= i Tird Qitd-
i=0
(2.19)
Of particular interest is the case of null boundary conditions:
Vo = 0, vy = 0
ag = O, a; = 0

jO = 07 jl =0
Under this hypothesis the control points, which determine (2.9) and are solu-

tion of (2.14) and (2.15), are

p=10,0,0,0,...,01,1,1,1,..., 1]T.

neit1 nep+1
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The corresponding expression of the coefficients a; in (2.7) can be determined
from p with (2.10). Their values, for polynomials gy (7) up to degree 21, are
reported in Tab. 2.1.

3 5 7 9 11 13 15 17 19 21

al 0 0 O 0 0 0 0 0 0 0
aifl 0 0 O 0 0 0 0 0 0 0
a2l 3 0 O 0 0 0 0 0 0 0
az| -2 10 O 0 0 0 0 0 0 0
as| - -15 35 0 0 0 0 0 0 0
as| - 6 -84 126 0 0 0 0 0 0
as| - - 70 -420 462 0 0 0 0 0
ar| - - -20 540 -1980 1716 0 0 0 0
ag| - - - -315 3465 -9009 6435 0 0 0
ag| - - - 70 -3080 20020 -40040 24310 0 0
ao| - - - - 1386 -24024 108108 -175032 92378 0
ai| - - - - -252 16380 -163800 556920 -755820 352716
ai2| - - - - - -6006 150150 -1021020 2771340 -3233230
az| - - - - - 924 -83160 1178100 -5969040 13430340
ai4| - - - - - - 25740 -875160 8314020 -33256080
ais| - - - - - - -3432 408408 -7759752 54318264
as| - - - - - - - -109395 4849845 -61108047
air| - - - - - - - 12870 -1956240 47927880
ag| - - - - - - - - 461890 -25865840
aig| - - - - - - - - -48620 9189180
azo| - - - - - - - - - -1939938
az| - - - - - - - - - 184756

Table 2.1. Per
degree n = 3,5,...,21, with null boundary conditions on their derivatives up to
order 10. The degree of the polynomials is n = 2n. + 1, being n. the number of null
initial (and final) conditions.

column: coefficients a; of the normalized polynomials gx (7) with

The polynomial functions obtained in this manner, i.e with null boundary
conditions and h = 1, T' = 1, have some peculiar properties:

1. gn(7) =1 —gn(1 — 7).

2.ap=a1=...=ay, =0.



38 2 Analytic Expressions of Elementary Trajectories

3. a; € IN.
4. sign(an,,+1) =1, sign(an,,+2) = -1, sign(an,,3)=1, ...
5. Z;L:O a; = 1.

From the coefficients of Tab. 2.1 and the above equations (2.19) it is simple
to compute the coefficients of the polynomials of the normalized velocity,
acceleration, ..., profiles (functions ¢y (7), gx(7), ...) or of the polynomials
q(t), 4(t), ¢(t),... for a generic displacement. The coefficients of ¢y (7) and
Gn(7) are reported in Appendix A.1.

The position, velocity, acceleration and jerk profiles for these polynomials are
shown in Fig. 2.14. Note the increasing smoothness of the profiles, and the
corresponding higher values for the maximum velocity, acceleration and jerk,
whose numerical values are reported in Tab. 2.2, denoted with C,, C,, and
C; respectively.

Example 2.13 Let us define a polynomial function with the following con-
ditions

q =10, vo=0, ap=0, jOZO, so=0

Q1:30, V1:0, a1:0, j1:O, 81:0
and tg = 1, t; = 5. There are 10 conditions to be satisfied, and therefore
the polynomial must be at least of degree 9. The expression of the normal-

ized polynomial gy (7) in the Bézier/Bernstein form (2.9) with null boundary
conditions is:

an(7) =126(1 — 7)*7° +84(1 — 7)°7% +36(1 — 7)*1" + 9(1 — 7)7° + 7°.

(n] Co | A% | Ca | A% | C; | A% |
3 15 0 6 0 12 0
5 1.875 25 5.7735 | -3.78 60 400
7 2.1875 45.83 7.5132 25.22 52.5 337.5
9 24609 64.06 9.372 56.2 78.75 556.25

11 2.707 80.47 11.2666 87.78 108.2813 802.34
13|  2.9326 95.51 13.1767| 119.61| 140.7656| 1073.05
15| 3.1421| 109.47| 15.0949| 151.58 175.957 1366.31
17)  3.3385| 122.56 17.018 183.63| 213.6621| 1680.52
19]  3.5239| 134.93| 18.9441| 215.73| 253.7238| 2014.36
21| 3.7001| 146.68| 20.8723| 247.87 296.011 2366.76

Table 2.2. Maximum values of velocity (C,), acceleration (C,) and jerk (Cj)
for normalized polynomials of degree 3 - 21: smoother (higher degree) polynomials
present higher velocity and acceleration values. The variations with respect to the
3-rd degree polynomial are also reported.
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Fig. 2.14. Position, velocity, acceleration and jerk profiles for normalized polyno-
mial functions of degree 3 - 21 with null boundary conditions.

From Tab. 2.1, the coefficients @ = [ag, a1, ..., ag]’ of the standard poly-
nomial form are:

a=10, 0,0, 0,0, 126, —420, 540, —315, 70]T.

By using (2.16), the desired trajectory with displacement A = 20 and duration
T = 4 is computed as

¢ t—1
q(t) = 10 + 20 (1267° — 4207° + 54077 — 3157° + 7077), with 7 = (4) :

Alternatively, from (2.19), one can directly write the expression of ¢(¢) and
of its derivatives:
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Position
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-
o

Acceleration
o u
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1 15 2 25 3 3.5 4 4.5 5

Fig. 2.15. Polynomial function of degree 9 of Example 2.13.

126 540

5 —420
q(t) =10 +20- = (t = 1)° + 20— = (t ~ D¢+ 20 (t - )+
-315 70
+20—3 (t—1)°%+ 204—9(15 —1)°

= 10 4 2.4609(t — 1)° — 2.0508(t — 1)° +0.6592(t — 1)"+
—0.0961(t — 1)® +0.0053(¢ — 1)°
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126 —420 540

q(t):5~204—5(t—1)4+6~20 5 (t—1)5+7‘20f(t—1)6+
-315 70
+8-20—3 (t71)7+9~204—9(t71)8

= 12.3047(t — 1)* — 12.3047(t — 1)° + 4.6143(t — 1)°+

—0.7690(¢t — 1) + 0.0481(t — 1)®

G(t) = 5~4-2012,6(t— 1)° +6-5-20_420(t— 1)* +7-6-20@(t— 1)°+
45 46 47
—315 70
+8 7 20— (t—1)6+9~8~204—9(t—1)7
= 49.2188(t — 1)® — 61.5234(¢ — 1)* + 27.6855(t — 1)°+
—5.3833(t — 1)° +0.3845(t — 1)".
These functions are shown in Fig. 2.15. a

The maximum value of the velocity, acceleration, jerk, ..., of a (normal-

ized) polynomial gy (7) increases with the degree n, as illustrated in Fig. 2.14
and reported in Tab. 2.2. It is interesting to note, as illustrated in Fig. 2.16,
that the rates of growth of C,, C, and C; are proportional to v/n, n, and n?
respectively.

Although the determination of polynomials in the Bézier/Bernstein form
is quite robust from the numerical point of view, for large values of n (eg. 37,
39, ...) the computation of polynomials is in any case affected by relevant
numerical errors, and therefore it is advisable to use other functions to define
smooth motion profiles, like trigonometric or exponential functions.
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Velocity
w

Acceleration

Degree n

Fig. 2.16. Maximum values of the velocity, acceleration and jerk profiles of normal-
ized polynomials of degree 3 - 33 with null boundary conditions, plotted as function
of n (x-marks); interpolation with functions depending respectively on /n, n, n?
(solid lines).

2.2 Trigonometric Trajectories

In this section, the analytical expressions of trajectories based on trigono-
metric functions are described. These trajectories present non-null continuous
derivatives for any order of derivation in the interval (¢g, t1). However, these
derivatives may be discontinuous in ¢ty and t1.

2.2.1 Harmonic trajectory

An harmonic motion is characterized by an acceleration profile that is propor-
tional to the position profile, with opposite sign. The mathematical formula-
tion of the harmonic motion can be also deduced graphically, see Fig. 2.17.

Let the point g be the projection on the diameter of point p. If point p
moves on the circle with constant velocity, the motion of ¢, called harmonic,
is described by

s(0) = R(1 — cos ) (2.20)
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h

N

Fig. 2.17. Geometric construction of the harmonic motion.

where R is the radius of the circle. In a more general form, the harmonic
trajectory can be defined as

q(t) = g (1 — cos 7T(t;t0)> + qo (2.21)

with h = q1 — qo and T' = t; — tg, from which

ﬁ cos Lt_to)
272 T

T P, <7T(t;’50)> .

Example 2.14 Fig. 2.18 reports the position, velocity, acceleration and jerk
of an harmonic trajectory with the conditions tg =0, t; =8, g0 =0, ¢1 = 10.
O

2.2.2 Cycloidal trajectory

As shown in Fig. 2.18, the harmonic trajectory presents a discontinuous ac-
celeration and, therefore, infinite instantaneous jerk at tg, t;. As already dis-
cussed, a discontinuous acceleration profile may generate undesired effects
when flexible mechanisms are present. A continuous acceleration profile is ob-
tained with the cycloidal trajectory, described by a circle with circumference
h rolling along a line see Fig. 2.19,

t— to 1 . 27T(t — to)
t = — — —
a(t) = (@~ a) <t1 M )T

t—t 1 L 2m(t—t
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Position

Velocity

Acceleration
o

|
o
&)

Fig. 2.18. Position, velocity, acceleration and jerk of an harmonic trajectory when
t():o7 151 :8, qOZO, q1 = 10.

from which

02 (1 s 20=10)

2rh . 2w(t —tg)

i(t) = 7 sin T
Amn?h  2m(t—t
@) = ;3 cos W(T O).

In this case, the acceleration is null in ¢t = tg,%;, and therefore it presents a
continuous profile.

Example 2.15 Fig. 2.20 shows position, velocity, acceleration and jerk for
a cycloidal trajectory with the same conditions as in the previous example. 0O
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Fig. 2.20. Position, velocity, acceleration and jerk of a cycloidal trajectory with
toIO7 t1 :8, qo=O, q1 = 10.
2.2.3 Elliptic trajectory

As shown in Fig. 2.17, the harmonic motion can be obtained graphically by
projecting on the diameter a point moving on a circle. An elliptic motion is
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Fig. 2.21. Geometric construction of the elliptic motion.

obtained by projecting the motion of a point moving on an ellipse on the minor
axis, of length equal to the desired displacement h = ¢q1 — qq, see Fig. 2.21.
The resulting equation is

Tr(t—tg)
COs -7

g0 (2.23)

h
qt) =5 (1-
2 \/1 —a sin® Lt;m)

2_ . . . . .
where o = *3 L and n is the ratio between the major and minor ellipse axes.

The velocity and the acceleration are

7h si

2T 3
.2 w(t—to)
n? \/(1 — « sin %)

i(t) = 72h 7(t — o) 14 2 o sin? ﬂ%to)
@)= 572 T — 5
2 (1 —« sin? LtTt"))

Obviously, the harmonic trajectory is obtained by setting n = 1.

o m(t—to)
n—r

q(t) =

Example 2.16 Fig. 2.22 shows position, velocity, acceleration and jerk of
this trajectory. Fig. 2.23 reports the profiles of position, velocity and acceler-
ation with different choices of n. Note that the maximum values of velocity
and acceleration increase with n. a
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Position

Velocity

Acceleration

Jerk

Fig. 2.22. Position, velocity, acceleration and jerk of an elliptic trajectory with
to=0,t1=8, g =0, ¢1 =10, n = 2.

2.3 Exponential Trajectories

As discussed in Chapter 7, natural vibrations induced on the machine by the
actuation system should always be minimized.

This involves also the choice of proper motion profiles, since discontinu-
ities in the desired trajectory may generate vibrations in the machine due
to the induced discontinuities in the applied forces and the elastic effects of
the mechanical system itself. Therefore, it may be convenient to introduce
trajectories whose smoothness can be adjusted according to the needs, [14].

For this purpose, it is possible to consider an exponential function for the
velocity, as

q(1) = vee SN
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Fig. 2.23. Elliptic trajectories when: n = 1.2 (solid), n = 2 (dashed), n = 3
(dotted).

where o and \ are free parameters. Possible choices for the function f(7, )
are

(27)2 sin? 77
T,\A\) = ————~ or )= ———— .
flm ) = T PN = T
If a normalized motion profile is considered, i.e. with unit displacement and
duration, and in particular with the conditions ¢y = —0.5, ¢ = 0.5, and
70 = —0.5, 74 = 0.5, then the constant v. can be computed as
1
Ve =

2/05 —of(r,\)dr
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Fig. 2.24. Maximum values of the residual spectrum v, of the exponential trajec-
tory for different values of o and A.

At this point, the normalized motion ¢y (7) is defined by the following equa-
tions

e
0

i (r) = v 1 224
A
i (r) = —veo LT oot

The choice of the function f, (7, A) or fy(7,A) has only a little influence on the
actual motion profile and therefore, being f, simpler from a computational
point of view, it is adopted in the following discussion. More important is the
choice of ¢ and A\, whose values may be assigned in order to minimize the
maximum amplitude of the high frequency components of the acceleration
profile, responsible of vibrations induced in the machine. The maximum values
of the residual spectrum v,? of Gy for frequencies greater than 5 Hz, obtained
for several values of the parameters o, A, are shown in Fig. 2.24.

In particular, the numerical values of v, obtained for some values of o and
with the corresponding A which minimizes the residual spectrum are reported
in Tab. 2.3. It is possible to show that the minimum value v, ;in = 0.018 is
obtained for A = 0.20, o = 7.1, [14].

In case of a trajectory from an initial point gg to a final one ¢;, with
h = q1 — qo, and time instants tg and t1, with T" = t; — tg, the actual position
q(t), velocity ¢(t) and acceleration ¢(¢) profiles may be obtained from (2.24)

2 The residual spectrum is defined here as the maximum amplitude of the frequency
spectrum of the acceleration profile for frequencies higher than a given threshold.
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ol 20| 25| 30| 35| 40| 45| 50| 55| 60| 65| 70| 7.5
Al 061 049| 0.41| 0.34] 0.29| 0.25| 0.22| 0.19| 0.18| 0.18 | 0.19| 0.28
v, | 4.364| 2.736| 1.697| 1.034| 0.625| 0.370| 0.217| 0.125| 0.071| 0.039] 0.019| 0.043

Table 2.3. Parameters o and A for exponential trajectories and the related maxi-
mum amplitude of the frequency content of the acceleration profiles (> 5 Hz).

Position

Velocity

Acceleration

Fig. 2.25. Position, velocity, acceleration profiles of an exponential trajectory with
oc="7.1and A =0.2.

Q(t) =qo+h (; + QN(T)> , Q(t) = TQN(T)7 C](t) = ﬁqN(T)

t—1o

with 7 = ( — 0.5), see also Chapter 5.

Example 2.17 An exponential trajectory with the conditions
qo =0, q1 = 10, to =0, t; =38, A =0.20, oc="7.1

is shown in Fig. 2.25. a
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Example 2.18 The exponential trajectories obtained with the conditions
%0=0, =10, t1=0, 1 =38

and the parameters o, A as in Tab. 2.3 are shown in Fig. 2.26. a

A final comment concerns the computation of eq. (2.24), where an integral
function explicitly appears. If the computation of ¢y (7) by using integrals,
with possibly variable upper bounds, is unsuitable for the online generation
of the motion profile, it is possible to adopt a series expansion of the function
gn(T), truncated at a proper order r, as

,
gn(T) =ag 7+ Z asy sin (2kmT)
E
Gn (T) =ao+ 27 Z kasy cos (Qk‘ﬂ’r)
k=1
v (1) = =47 Y " kagy sin (2kwT)
k=1
where
9 (3%
ap =1, Qg = %/0 G(7) cos (2knT) dr.

2.4 Trajectories Based on the Fourier Series Expansion

Besides quite obvious conditions about continuity of the position profile and its
derivatives up to a given order, and the given boundary constraints, it might
be of interest to pursue also other goals. Among the different possibilities, it
could be desirable to minimize the amplitude of the acceleration profile, in
order to avoid efforts on the load due to inertial forces or vibrational effects
of the mechanical structure.

The minimization of the amplitude of the acceleration in general is in con-
trast with the continuity of the profile: a discontinuous acceleration profile
minimizes the peak of acceleration but, on the other hand, may generate os-
cillations and/or vibrations because of the related discontinuity of the inertial
forces. For example, the trapezoidal velocity trajectory (discussed in the fol-
lowing Chapter 3) presents, other conditions being equal, smaller values for the
acceleration but, at the same time, an higher harmonic content that usually
implies possible vibrations in the mechanical structure. On the contrary, the
cycloidal trajectory is characterized by a low harmonic content but presents
higher acceleration values. It is possible to define trajectories that represent a
compromise between these two opposite features. As an example, trajectories
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Position
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Acceleration

Fig. 2.26. Position, velocity, acceleration profiles of exponential trajectories with
o and A as in Tab. 2.3.

derived from a Fourier series expansion of the motion profiles illustrated in
the previous sections are now considered.

It is well known that a fundamental tool for the analysis in the frequency
domain w of a signal z(t) defined in the time domain is the Fourier Transform
X(w) = F{z(t)}, see Appendix D. On the other hand, it is worth noticing that
trajectories for high speed automatic machines are often a cyclic repetition of
a basic motion: therefore, the trajectory ¢(t) can be assumed to be periodic.
Under this hypothesis, ¢(t) can be analyzed by means of the Fourier series
eTpansion.

The Fourier series is a mathematical tool often used for analyzing periodic
functions by decomposing them into a weighted sum of sinusoidal compo-
nent functions, sometimes referred to as normal Fourier modes, or simply
modes. Given a piecewise continuous function z(t), periodic with period T,
and square-integrable over the interval [—T/2, T/2], that is

T/2
/ lz(2)]? dt < 400,
—T/2
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the corresponding Fourier series expansion is

x(t) = %ao + Z[ak cos(kwot) + by, sin(kwot)]

k=1

where wy = 27/T is the fundamental frequency (rad/sec) of the function and,
for any non-negative integer k,

T/2

a = — / ) cos(kwot) dt  are the even Fourier coefficients of x(t)
T/2
T/2

b = —/ )sin(kwot)dt  are the odd Fourier coefficients of x(t).
T/2

An alternative expression of the Fourier series expansion is

z(t) = vo + Z v, cos(kwot — wr) (2.25)
k=1

where

a b
’U():?O, vp = y/ai + b3, 1, = arctan (ai)

Eq. (2.25) defines the signal as a linear combination of a constant term (wvg)
and of an infinite number of sinusoidal functions (the harmonic functions) at
frequencies kwg; vi represents the weight of the k-th harmonic function on
z(t), and ¢y, its phase. The mazimum frequency of the signal corresponds to
the maximum k for which v, # 0 from a practical point of view. On the basis
of the Fourier series expansion of a signal, it is then possible to understand
its properties in the frequency domain.

The basic idea of the techniques for planning the motion profiles illustrated
below is to compute a Fourier series expansion of a function ¢(t) defined by
one of the methods presented in the previous sections and, then, define a new
trajectory ¢(t) by considering only the first N terms of the series. In this
manner, it is possible to obtain a function that presents specific properties in
the frequency domain, see also Sec. 7.3.

2.4.1 Gutman 1-3

This trajectory is obtained as Fourier series expansion of the parabolic profile,
Sec. 2.1.2, by taking into consideration only the first two elements, [15]:
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q(t) 231(1—12&)52”(21150)_116 cos G(tTto))
G(t) :;;<15sinw+3sinW)
¢(t) = g (15COS27T<75T—150) +9COSG7T(tT_tO))

where h is the displacement and T the time duration. The maximum acceler-
ation is 5.15h/T?, i.e. 28.75% larger than the maximum acceleration of the
parabolic trajectory (4h/T?) and, for example, 18.04% smaller than the max-
imum acceleration of the cycloidal trajectory (27h/T?). On the other hand,
the frequency content is lower with respect to the parabolic profile, and higher
than the cycloidal one, see Chapter 7.

Example 2.19 Fig. 2.27 reports the position, velocity, acceleration and jerk
for the Gutman 1-3 trajectory with h =20 and T =10 (¢o =0, tc =0). O

2.4.2 Freudenstein 1-3

As in the previous case, only the first and the third terms of the Fourier series
expansion of the parabolic trajectory are considered, but the trajectory is
defined as [16]

R N L
q(t) =;<1—§;COS%(tT_tO)—21SCOSG7T(tT_tO)>
i(t) 2;3(3; i 270 t0) 3 6<tT—t>>
90 = T (B U109, O 10)),

This trajectory has a maximum acceleration value equal to 5.39h/T?, i.e
34.75% larger than the parabolic profile and 14.22% smaller than the cycloidal
trajectory.

Example 2.20 Fig. 2.28 shows the position, velocity, acceleration and jerk
for the Freudenstein 1-3 trajectory, with h =20 and T' = 10 (¢o = 0, to = 0).
O
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Position

Velocity

Acceleration

Fig. 2.27. Position, velocity, acceleration and jerk of the Gutman 1-3 trajectory
with A = 20 and T = 10.

2.4.3 Freudenstein 1-3-5

This trajectory is defined as

h(t—to) h (SiHQTI'(tft()) 1 . 6r(t—to) 1. 1O7r(t7t0))

T T T T 1wt T
qit) = %a(sinm—&-ésinw_yisinw)
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Fig. 2.28. Position, velocity, acceleration and jerk of the Freudenstein 1-3 trajectory
with A = 20 and T = 10.

where a = % = 0.9438. This trajectory has a maximum acceleration value

equal to 5.06 h/T?, i.e. 26.5% larger than the parabolic motion, and 19.47%
smaller than the cycloidal profile.

Example 2.21 Fig. 2.29 shows the position, velocity, acceleration and jerk
for the Freudenstein 1-3-5 trajectory, with h = 20 and 7" = 10 (go = 0, tx = 0).
O

If a larger number of terms of the Fourier series expansion is considered, pro-
files with lower acceleration values but higher frequency components are ob-
tained. As discussed in Chapter 7, this could generate undesired vibrations in
the mechanical structure. A compromise has then to be obtained between the
requirements of low acceleration values and frequency bandwidth of the cor-
responding signal. An empiric rule could be to limit the maximum frequency
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Position
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Acceleration

Fig. 2.29. Position, velocity, acceleration and jerk of the Freudenstein 1-3-5 trajec-
tory with h = 20 and 7" = 10.

of the trajectory to w,/10, being w, the lower resonance frequency of the
mechanical structure under consideration. This can be obtained by truncat-

. . . . 1
ing, for example, the Fourier series expansion to N, where N = floor (“’Li/oo),

where wg = 27 /T, T is the period of the trajectory, and floor(x) is the function
which gives the largest integer less than or equal to z.
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