
2

Analytic Expressions of Elementary
Trajectories

The basic trajectories are illustrated, classified into three main cat-
egories: polynomial, trigonometric, and exponential. Trajectories ob-
tained on the basis of Fourier series expansion are also explained. More
complex trajectories, able to satisfy desired constraints on velocity, ac-
celeration and jerk, can be obtained by means of a suitable composition
of these elementary functions. The case of a single actuator, or axis
of motion, is specifically considered. The discussion is general, and it
is therefore valid to define both a trajectory in the joint space and a
motion law in the operational space, see Chapter 8 and Chapter 9.

2.1 Polynomial Trajectories

In the most simple case, a motion is defined by assigning the initial and final
time instant t0 and t1, and conditions on position, velocity and acceleration
at t0 and t1. From a mathematical point of view, the problem is then to find
a function

q = q(t), t ∈ [t0, t1]

such that the given conditions are satisfied. This problem can be easily solved
by considering a polynomial function

q(t) = a0 + a1t + a2t
2 + . . . + antn

where the n+1 coefficients ai are determined so that the initial and final con-
straints are satisfied. The degree n of the polynomial depends on the number
of conditions to be satisfied and on the desired “smoothness” of the resulting
motion. Since the number of boundary conditions is usually even, the degree
n of the polynomial function is odd, i.e. three, five, seven, and so on.
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Fig. 2.1. Position, velocity and acceleration profiles of a polynomial trajectory
computed by assigning boundary and intermediate conditions (Example 2.1).

In general, besides initial and final conditions on the trajectory, other
conditions could be specified concerning its time derivatives (velocity, acceler-
ation, jerk, ...) at generic instants tj ∈ [t0, t1]. In other words, one could be in-
terested in determining a polynomial function q(t) whose k-th time-derivative
assumes a specific value q(k)(tj) at a given instant tj . Mathematically, these
conditions can be specified as

k! ak + (k + 1)! ak+1 tj + . . . +
n!

(n − k)!
an tn−k

j = q(k)(tj)

or, in matrix form, as
M a = b

where M is a known (n + 1) × (n + 1) matrix, b collects the given (n + 1)
conditions to be satisfied, and a = [a0, a1, . . . , an]T is the vector of the
unknown parameters to be computed. In principle this equation can be solved
simply as

a = M−1 b

although, for large values of n, this procedure may lead to numerical problems.
These considerations are analyzed in more details in Chapter 4.
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Example 2.1 Fig. 2.1 shows the position, velocity and acceleration profiles
of a polynomial trajectory computed by assigning the following conditions:

q0 = 10, q1 = 20, t0 = 0, t1 = 10,

v0 = 0, v1 = 0, v(t = 2) = 2, a(t = 8) = 0.

There are four boundary conditions (position and velocity at t0 and t1) and
two intermediate conditions (velocity at t = 2 and acceleration at t = 8).
Note that with six conditions it is necessary to adopt a polynomial at least of
degree five. In this case, the coefficients ai result

a0 = 10.0000, a1 = 0.0000, a2 = 1.1462,

a3 = −0.2806, a4 = 0.0267, a5 = −0.0009.

�

2.1.1 Linear trajectory (constant velocity)

The most simple trajectory to determine a motion from an initial point q0 to
a final point q1, is defined as

q(t) = a0 + a1(t − t0).

Once the initial and final instants t0, t1, and positions q0 and q1 are specified,
the parameters a0, a1 can be computed by solving the system{

q(t0) = q0 = a0

q(t1) = q1 = a0 + a1(t1 − t0)
=⇒

[
1 0
1 T

] [
a0

a1

]
=
[

q0

q1

]

where T = t1 − t0 is the time duration. Therefore⎧⎨
⎩

a0 = q0

a1 =
q1 − q0

t1 − t0
=

h

T

where h = q1−q0 is the displacement. The velocity is constant over the interval
[t0, t1] and its value is

q̇(t) =
h

T
(= a1).

Obviously, the acceleration is null in the interior of the trajectory and has an
impulsive behavior at the extremities.

Example 2.2 Fig. 2.2 reports the position, velocity and acceleration of the
linear trajectory with the conditions t0 = 0, t1 = 8, q0 = 0, q1 = 10. Note
that at t = t0, t1, the velocity is discontinuous and therefore the acceleration
is infinite in these points. For this reason the trajectory in this form is not
adopted in the industrial practice. �
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Fig. 2.2. Position, velocity and acceleration of a constant velocity trajectory, with
t0 = 0, t1 = 8, q0 = 0, q1 = 10.

2.1.2 Parabolic trajectory (constant acceleration)

This trajectory, also known as gravitational trajectory or with constant ac-
celeration, is characterized by an acceleration with a constant absolute value
and opposite sign in the acceleration/deceleration periods. Analytically, it is
the composition of two second degree polynomials, one from t0 to tf (the flex
point) and the second from tf to t1, see Fig. 2.3.
Let us consider now the case of a trajectory symmetric with respect to its
middle point, defined by tf = t0+t1

2 and q(tf ) = qf = q0+q1
2 . Note that in this

case Ta = (tf − t0) = T/2, (qf − q0) = h/2.
In the first phase, the “acceleration” phase, the trajectory is defined by

qa(t) = a0 + a1 (t − t0) + a2 (t − t0)2, t ∈ [t0, tf ].

The parameters a0, a1 and a2 can be computed by imposing the conditions
of the trajectory through the points q0, qf and the condition on the initial
velocity v0 ⎧⎪⎨

⎪⎩
qa(t0) = q0 = a0

qa(tf ) = qf = a0 + a1 (tf − t0) + a2 (tf − t0)2

q̇a(t0) = v0 = a1.
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One obtains

a0 = q0, a1 = v0, a2 =
2

T 2
(h − v0T ).

Therefore, for t ∈ [t0, tf ], the trajectory is defined as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

qa(t) = q0 + v0(t − t0) +
2

T 2
(h − v0T )(t − t0)2

q̇a(t) = v0 +
4

T 2
(h − v0T )(t − t0)

q̈a(t) =
4

T 2
(h − v0T ) (constant).

The velocity at the flex point is

vmax = q̇a(tf ) = 2
h

T
− v0.

Note that, if v0 = 0, the resulting maximum velocity has doubled with respect
to the case of the constant velocity trajectory. The jerk is always null except
at the flex point, when the acceleration changes its sign and it assumes an
infinite value.
In the second part, between the flex and the final point, the trajectory is
described by

qb(t) = a3 + a4 (t − tf ) + a5 (t − tf )2 t ∈ [tf , t1].

If the final value of the velocity v1 is assigned, at t = t1, the parameters
a3, a4, a5 can be computed by means of the following equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩
qb(tf ) = qf = a3

qb(t1) = q1 = a3 + a4 (t1 − tf ) + a5 (t1 − tf )2

q̇b(t1) = v1 = a4 + 2a5 (t1 − tf )

h1

h

T
Ta

q1

qf

q0

tt0 tf
t1

Fig. 2.3. Trajectory with constant acceleration.
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from which

a3 = qf =
q0 + q1

2
, a4 = 2

h

T
− v1, a5 =

2
T 2

(v1T − h).

The expression of the trajectory for t ∈ [tf , t1] is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

qb(t) = qf + (2
h

T
− v1)(t − tf ) +

2
T 2

(v1T − h)(t − tf )2

q̇b(t) = 2
h

T
− v1 +

4
T 2

(v1T − h)(t − tf )

q̈b(t) =
4

T 2
(v1T − h).

Note that, if v0 �= v1, the velocity profile of this trajectory is discontinuous at
t = tf .

Example 2.3 Fig. 2.4 reports the position, velocity and acceleration for this
trajectory. The conditions t0 = 0, t1 = 8, q0 = 0, q1 = 10, v0 = v1 = 0 have
been assigned. �
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Fig. 2.4. Position, velocity and acceleration of a trajectory with constant accelera-
tion, with t0 = 0, t1 = 8, q0 = 0, q1 = 10.
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If the constraint on the position at t = tf (i.e. q(tf ) = qf = q0+q1
2 ) is not

assigned, the six parameters ai may be determined in order to have a contin-
uous velocity profile, i.e. q̇a(tf ) = q̇b(tf ).
As a matter of fact, by imposing the six conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qa(t0) = a0 = q0

q̇a(t0) = a1 = v0

qb(t1) = a3 + a4
T

2
+ a5

(
T

2

)2

= q1

q̇b(t1) = a4 + 2a5
T

2
= v1

qa(tf ) = a0 + a1
T

2
+ a2

(
T

2

)2

= a3 = qb(tf )

q̇a(tf ) = a1 + 2a2
T

2
= a4 = q̇b(tf )

where T/2 = (tf − t0) = (t1 − tf ), one obtains⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 = q0

a1 = v0

a2 =
4h − T (3v0 + v1)

2T 2

a3 =
4(q0 + q1) + T (v0 − v1)

8

a4 =
4h − T (v0 + v1)

2T

a5 =
−4h + T (v0 + 3v1)

2T 2
.

Example 2.4 Fig. 2.5 reports the position, velocity and acceleration for this
trajectory. The conditions t0 = 0, t1 = 8, q0 = 0, q1 = 10, v0 = 0.1, v1 = −1
have been assigned. �

2.1.3 Trajectory with asymmetric constant acceleration

This trajectory is obtained from the previous one by considering the flex point
at a generic instant t0 < tf < t1, as shown in Fig. 2.3, and not necessarily at
t = (t1 + t0)/2. The trajectory is described by the two polynomials

qa(t) = a0 + a1 (t − t0) + a2 (t − t0)2, t0 ≤ t < tf

qb(t) = a3 + a4(t − tf ) + a5(t − tf )2, tf ≤ t < t1
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Fig. 2.5. Position, velocity and acceleration of a trajectory with constant acceler-
ation and continuous velocity, with t0 = 0, t1 = 8, q0 = 0, q1 = 10, v0 = 0.1,
v1 = −1.

where the parameters a0, a1, a2, a3, a4 and a5 are obtained by imposing the
four conditions on the position and velocity at t0, t1, and the two continuity
conditions (position and velocity) at tf :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qa(t0) = a0 = q0

qb(t1) = a3 + a4(t1 − tf ) + a5(t1 − tf )2 = q1

q̇a(t0) = a1 = v0

q̇b(t1) = a4 + 2a5(t1 − tf ) = v1

qa(tf ) = a0 + a1(tf − t0) + a2(tf − t0)2 = a3 (= qb(tf ))

q̇a(tf ) = a1 + 2a2(tf − t0) = a4 (= q̇b(tf )).

By defining Ta = (tf − t0) and Td = (t1 − tf ), the resulting parameters are
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 = q0

a1 = v0

a2 =
2h − v0(T + Ta) − v1Td

2TTa

a3 =
2q1Ta + Td(2q0 + Ta(v0 − v1))

2T

a4 =
2h − v0Ta − v1Td

T

a5 = −2h − v0Ta − v1(T + Td)
2TTd

.

Velocity and acceleration for t0 ≤ t < tf are

q̇a(t) = a1 + 2a2(t − t0) = v0 +
2h − v0(T + Ta) − v1Td

TTa
(t − t0)

q̈a(t) = 2a2 =
2h − v0(T + Ta) − v1Td

TTa

while for tf ≤ t < t1 they result

q̇b(t) =a4+2a5(t − tf ) =
2h − v0Ta − v1Td

T
− 2h − v0Ta − v1(T + Td)

TTd
(t − tf )

q̈b(t) = 2a5 = −2h − v0Ta − v1(T + Td)
TTd

.

Note that, in case v0 = v1 = 0, the value of the maximum velocity is the same
as in the previous case (symmetric flex point):

vmax = q̇a(tf ) = 2
h

T
.

Obviously, if tf = t0+t1
2 the previous trajectory is obtained.

Example 2.5 Fig. 2.6 shows the position, velocity and acceleration for this
trajectory with the same conditions as in the Example 2.3. �

2.1.4 Cubic trajectory

In case both position and velocity values are specified at t0 and t1 (q0, q1,
and v0, v1 respectively), there are four conditions to be satisfied. Therefore, a
third degree polynomial must be used

q(t) = a0 + a1(t − t0) + a2(t − t0)2 + a3(t − t0)3, t0 ≤ t ≤ t1 (2.1)

and, from the given conditions, the four parameters a0, a1, a2, a3 are
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Fig. 2.6. Position, velocity and acceleration od a trajectory with asymmetric con-
stant acceleration and t0 = 0, t1 = 8, tf = 2, q0 = 0, q1 = 10.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a0 = q0

a1 = v0

a2 =
3h − (2v0 + v1)T

T 2

a3 =
−2h + (v0 + v1)T

T 3
.

(2.2)

By exploiting this result, it is very simple to compute a trajectory with contin-
uous velocity through a sequence of n points. The overall motion is subdivided
into n−1 segments. Each of these segments connects the points qk and qk+1 at
tk, tk+1 and has initial/final velocity vk, vk+1 respectively. Then, equations
(2.2) are used for each of these segments to define the 4(n − 1) parameters
a0k, a1k, a2k, a3k.

Example 2.6 Fig. 2.7(a) shows position, velocity and acceleration for this
trajectory with q0 = 0, q1 = 10, t0 = 0, t1 = 8 and null initial and final veloc-
ities. If these are not null, motion profiles such as those shown in Fig. 2.7(b)
are obtained, where the conditions v0 = −5, v1 = −10 have been assigned. �
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(a) (b)

Fig. 2.7. Position, velocity and acceleration of a third degree polynomial trajectory
with the conditions q0 = 0, q1 = 10, t0 = 0, t1 = 8. In (a) the initial and final
velocities are null (v0 = v1 = 0), while in (b) the values v0 = −5, v1 = −10 have
been assigned.

Example 2.7 Fig. 2.8 reports the plots of position, velocity and acceleration
for a multipoint trajectory with

t0 = 0, t1 = 2, t2 = 4, t3 = 8, t4 = 10,
q0 = 10, q1 = 20, q2 = 0, q3 = 30, q4 = 40,
v0 = 0, v1 = −10, v2 = 10, v3 = 3, v4 = 0.

�

In defining a trajectory through a set of points q0, . . . , qn, not always the
velocities in the intermediate points are specified. In these cases, suitable
values for the intermediate velocities may be determined with heuristic rules
such as

v0 (assigned)

vk =

⎧⎨
⎩

0 sign(dk) �= sign(dk+1)

1
2 (dk + dk+1) sign(dk) = sign(dk+1)

vn (assigned)

(2.3)

where dk = (qk − qk−1)/(tk − tk−1) is the slope of the line segment between
the instants tk−1 and tk, and sign(·) is the sign function.

Example 2.8 The plots obtained with the same sequence of points as in Ex-
ample 2.7 are reported in Fig. 2.9. In this case, the intermediate velocities are
computed with (2.3). �
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Fig. 2.8. Position, velocity and acceleration for a cubic polynomial through a se-
quence of points.

2.1.5 Polynomial of degree five

A trajectory through the points q0, . . . , qn, based on third degree polyno-
mials, is characterized by continuous position and velocity profiles, while in
general the acceleration is discontinuous, see the examples in Fig. 2.8 and
Fig. 2.9.
Although this trajectory is in general “smooth” enough, acceleration discon-
tinuities can generate in some applications undesired effects on the kinematic
chains and on the inertial loads. This happens in particular when the mini-
mization of time is of concern, and therefore high acceleration (and velocity)
values are assigned, or when relevant mechanical elasticities are present in the
actuation system. These aspects are discussed with more details in Chapter
7.
In order to obtain trajectories with continuous acceleration, besides condi-
tions on position and velocity it is also necessary to assign suitable initial and
final values for the acceleration. Therefore, since there are six boundary con-
ditions (position, velocity, and acceleration), a fifth degree polynomial must
be adopted:

q(t) = q0 +a1(t− t0)+a2(t− t0)2 +a3(t− t0)3 +a4(t− t0)4 +a5(t− t0)5 (2.4)
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Fig. 2.9. Position, velocity and acceleration of a cubic polynomial trajectory
through a sequence of points with the intermediate velocities computed according
to (2.3).

with the conditions

q(t0) = q0, q(t1) = q1

q̇(t0) = v0, q̇(t1) = v1

q̈(t0) = a0, q̈(t1) = a1.

In this case, by defining T = t1 − t0, the coefficients of the polynomial result⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 = q0

a1 = v0

a2 =
1
2
a0

a3 =
1

2T 3
[20h − (8v1 + 12v0)T − (3a0 − a1)T 2]

a4 =
1

2T 4
[−30h + (14v1 + 16v0)T + (3a0 − 2a1)T 2]

a5 =
1

2T 5
[12h − 6(v1 + v0)T + (a1 − a0)T 2].

(2.5)
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(a) (b)

Fig. 2.10. Position, velocity and acceleration of a fifth degree polynomial with q0 =
0, q1 = 10, v0 = v1 = 0, a0 = a1 = 0, t0 = 0, t1 = 8 (a), and v0 = −5, v1 = −10
(b).

Example 2.9 A fifth degree trajectory is shown in Fig. 2.10. The initial and
final conditions are q0 = 0, q1 = 10, v0 = v1 = 0, a0 = a1 = 0, t0 = 0, t1 = 8
in Fig. 2.10(a), and v0 = −5, v1 = −10, in Fig. 2.10(b). Compare these plots
with those in Fig. 2.7. Note that, by adopting a cubic polynomial it is not
possible to assign boundary values on the acceleration. �

For a motion through a sequence of points, the considerations illustrated for
a third degree polynomial can be applied in the same manner, see eq. (2.3).

Example 2.10 Fig. 2.11 reports a fifth degree polynomial, with automatic
computation of the intermediate velocities and null intermediate accelerations
(compare with Fig. 2.9). Notice the improved “smoothness” in this case. �

2.1.6 Polynomial of degree seven

In particular cases, it might be necessary to define higher degree polynomials
in order to obtain smoother profiles. With polynomials of degree seven such
as

q(t) = a0 + a1(t − t0) + a2(t − t0)2 + a3(t − t0)3 + a4(t − t0)4 +
+a5(t − t0)5 + a6(t − t0)6 + a7(t − t0)7 (2.6)

it is possible to specify eight boundary conditions
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Fig. 2.11. Position, velocity and acceleration with a fifth degree polynomial through
a sequence of points (compare with Fig. 2.9).

q(t0) = q0, q̇(t0) = v0, q̈(t0) = a0, q(3)(t0) = j0,
q(t1) = q1, q̇(t1) = v1, q̈(t1) = a1, q(3)(t1) = j1.

By defining T = t1 − t0 and h = q1 − q0, the coefficients ai, i = 0, . . . , 7 are
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 = q0

a1 = v0

a2 =
a0

2

a3 =
j0

6

a4 =
210h − T [(30a0 − 15a1)T + (4j0 + j1)T

2 + 120v0 + 90v1]
6T 4

a5 =
−168h + T [(20a0 − 14a1)T + (2j0 + j1)T

2 + 90v0 + 78v1]
2T 5

a6 =
420h − T [(45a0 − 39a1)T + (4j0 + 3j1)T

2 + 216v0 + 204v1]
6T 6

a7 =
−120h + T [(12a0 − 12a1)T + (j0 + j1)T

2 + 60v0 + 60v1]
6T 7

.
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Fig. 2.12. Position, velocity, acceleration and jerk of a seventh degree polynomial
(compare with Fig. 2.7 and Fig. 2.10).

Example 2.11 A seventh degree polynomial trajectory is shown in Fig. 2.12,
obtained with the boundary conditions q0 = 0, q1 = 10, v0 = v1 = 0, a0 =
a1 = 0, j0 = 0, j1 = 0, t0 = 0, t1 = 8. �

Obviously, in case of a desired motion through a sequence of points, the
considerations illustrated for third and fifth degree polynomials can be ap-
plied.

2.1.7 Polynomials of higher degree

In particular applications it is necessary to adopt polynomials of high degree in
order to impose several constraints, such as boundary conditions on velocity,
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acceleration, jerk, snap and even higher order derivatives or conditions in
the intermediate points. In these cases, it may be convenient to express the
polynomial function of degree n in normalized form, i.e. as

qN(τ) = a0 + a1τ + a2τ
2 + a3τ

3 + . . . + anτn (2.7)

with unitary displacement h = q1 − q0 = 1 and duration T = τ1 − τ0 = 1 (for
the sake of simplicity it is also assumed τ0 = 0).

In order to determine the parameters ai, it is possible to define an equation
of the type

M a = b (2.8)

where a = [a0, a1, a2, . . . , an]T . The vector b, containing the boundary con-
ditions on position, velocity, acceleration and so on, is in the form1

b = [q0, v0, a0, j0, . . . , q1, v1, a1, j1, . . .]T .

Finally, matrix M can be easily defined by imposing the boundary conditions
on (2.7):

1. a0 = 0: polynomial trough the first point (qN(0) = 0).

2. a1 = v0, a2 = a0, a3 = j0, . . .: initial conditions on velocity, acceleration,
...; in general there are nci initial conditions on the derivatives of qN(τ).

3.
∑n

i=0 ai = 1: polynomial trough the last point (qN(1) = 1).

4.
∑n

i=1 iai = v1: final condition on velocity.

5.
∑n

i=2 i(i − 1)ai = a1: final condition on acceleration.

6.
∑n

i=3 i(i − 1)(i − 2)ai = j1: final condition on jerk.

7.
∑n

i=d
i!

(i−d)!ai = cd1: final condition on the d-th derivative of qN(τ) (with
ncf final conditions).

The polynomial qN(τ), of degree n, has n + 1 coefficients ai and therefore
matrix M has dimensions (n + 1)× (n + 1), where n + 1 = nci + ncf + 2. The
parameters a are determined from a = M−1b. Note that also for relatively
1 The values of the initial/final velocity, acceleration, . . . , (vNj , aNj , . . . , j = 1, 0)

are obtained by “normalizing” the corresponding boundary conditions vj , aj , . . .

as q
(k)
Nj

=
q
(k)
j

h/T k , being q
(k)
j the given constraint on the derivative of order k of the

desired trajectory q(t) from q0 to q1 (h = q1− q0) and of duration T . For the sake
of simplicity, also the normalized boundary conditions vN0 , vN1 , . . . are denoted
here as v0, v1, a0, a1, . . ..
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low values of n (e.g. n = 18, 19, . . .), the computation of M−1 may give
numerical problems due to bad conditioning.

For this reason, if necessary, it is possible to compute the coefficients ai

with other approaches, more robust from the computational point of view. As
a matter of fact, it is possible to exploit the so-called Bézier/Bernstein form
of polynomials, i.e.

qN(τ) =
n∑

i=0

(
n

i

)
τ i (1 − τ)n−ipi, 0 ≤ τ ≤ 1 (2.9)

where
(

n

i

)
are binomial coefficients defined as

(
n

i

)
=

n!
i! (n − i)!

,

(
n
i

)
τ i (1− τ)n−i are the Bernstein basis polynomials, and pi are scalar coeffi-

cients called control points, see also Sec. B.3. Obviously, the expressions (2.7)
and (2.9) are equivalent, and it is possible to express a polynomial in both
the forms. Accordingly, the relationship between the coefficients ai and the
parameters pi is:

aj =
n!

(n − j)!

j∑
i=0

(−1)i+j

i! (j − i)!
pi, j = 0, 1, . . . , n, (2.10)

see also (B.22). The parameters pi in (2.9) can be computed by imposing the
boundary conditions on qN(τ), i.e

qN(0) = 0, qN(1) = 1
q̇N(0) = v0, q̇N(1) = v1

q̈N(0) = a0, q̈N(1) = a1

...
...

(2.11)

An interesting property of the expression (2.9) is that it allows to solve
independently the two problems tied to the imposition of boundary conditions
at the initial and at the final points (these problems must be solved together
if eq. (2.8) is used). As a matter of fact, the derivatives of qN(τ) in (2.9) for
τ = 0 and τ = 1 are⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

q̇N(0) = n(−p0 + p1)

q̈N(0) = n(n − 1)(p0 − 2p1 + p2)
...

qN
(k)(0) =

n!
(n − k)!

k∑
i=0

(
k

i

)
(−1)k+ipi

(2.12)
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and ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q̇N(1) = n(pn − pn−1)

q̈N(1) = n(n − 1)(pn − 2pn−1 + pn−2)
...

qN
(k)(1) =

n!
(n − k)!

k∑
i=0

(
k

i

)
(−1)ipn−i.

(2.13)

As already pointed out, in order to meet all the conditions the degree n of
the polynomial must be at least equal to nci +ncf +1. Note that the problem
(2.12) depends only on the value of the first nci +1 control points pi. Likewise,
the problem (2.13) involves only the last ncf + 1 control points.
From (2.12) and the obvious condition qN(0) = q0 (in this case q0 = 0) it is
possible to define an equation of the type

M0 p0 = b0 (2.14)

with

M0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 . . . 0

−1 1 0 0 0 0 . . . 0

1 −2 1 0 0 0 . . . 0

−1 3 −3 1 0 0 . . . 0

1 −4 6 −4 1 0 . . . 0
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
v0
n

a0
n(n−1)

j0
n(n−1)(n−2)

s0
n(n−1)(n−2)(n−3)

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the vector of the nci + 1 unknowns p0 = [ p0, p1, p2, . . . , pnci
]T . Note

that matrix M0 has a triangular structure, and therefore the procedure for
its inversion, necessary to find the solution p0, results numerically robust.
The last ncf + 1 control points p1 = [ pn, pn−1, pn−2, . . . , pn−ncf

]T are
the solution of a system of equations similar to (2.14) (in this case the first
equation is qN(1) = q1 = 1):

M1 p1 = b1 (2.15)

with

M1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 . . . 0

1 −1 0 0 0 0 . . . 0

1 −2 1 0 0 0 . . . 0

1 −3 3 −1 0 0 . . . 0

1 −4 6 −4 1 0 . . . 0
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
v1
n

a1
n(n−1)

j1
n(n−1)(n−2)

s1
n(n−1)(n−2)(n−3)

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Once all the control points p = [p0, p1, . . . , pnci
, pn−ncf

, . . . , pn−1, pn]T in
(2.9) are known, it is possible to determine the parameters ai in (2.7) accord-
ing to (2.10).

After the computation of the parameters which define the normalized poly-
nomial qN(τ) either in the form (2.7) or (2.9), the function describing the
motion between the two generic points (t0, q0) and (t1, q1) is

q(t) = q0 + qN(τ) h, with τ =
t − t0

T
(2.16)

and the velocity, acceleration, ... profiles are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇(t) = q̇N(τ)
h

T

q̈(t) = q̈N(τ)
h

T 2

...
d qd(t)
d td

=
d qd

N(τ)
d τd

h

T d

(2.17)

see also Sec. 5.2.1.

Example 2.12 Let us define a polynomial function with the following con-
ditions

q0 = 10, v0 = 5, a0 = 0, j0 = 0, s0 = 0

q1 = 30, v1 = 0, a1 = 10, j1 = 0, s1 = 0

and t0 = 1, t1 = 5. In this case, the boundary conditions on the derivatives
of the polynomial are 4 at the initial point and 4 at the final point (nci =
ncf = 4). Therefore, the degree n of the polynomial function must be 9. In
order to find the coefficients pi which define the Bézier/Bernstein polynomial,
it is necessary to normalize the constraints. With h = q1 − q0 = 20 and
T = t1 − t0 = 4 the normalized boundary conditions result

q0 = 0, v0 = 1, a0 = 0, j0 = 0, s0 = 0

q1 = 1, v1 = 0, a1 = 8, j1 = 0, s1 = 0.

Therefore, the matrices M j and the vectors bj in (2.14) and (2.15) are re-
spectively

M0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

−1 1 0 0 0

1 −2 1 0 0

−1 3 −3 1 0

1 −4 6 −4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
9
0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and

M1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

1 −1 0 0 0

1 −2 1 0 0

1 −3 3 −1 0

1 −4 6 −4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

1
9
0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The control points are

p =
1
9

[0, 1, 2, 3, 4, 15, 12, 10, 9, 9]T

and the relative normalized trajectory is

qN(τ) = (1 − τ)8τ + 8(1 − τ)7τ2 + 28(1 − τ)6τ3 + 56(1 − τ)5τ4 +
+210(1 − τ)4τ5 + 112(1 − τ)3τ6 + 40(1 − τ)2τ7 + 9(1 − τ)τ8 + τ9.

By exploiting (2.10), this trajectory can be rewritten in the standard polyno-
mial form as

qN(τ) = τ + 140τ5 − 504τ6 + 684τ7 − 415τ8 + 95τ9.

The profiles of position, velocity and acceleration of qN(τ) are shown in
Fig. 2.13(a).

Finally, by adopting (2.16) and (2.17), the expression of the desired tra-
jectory with displacement h = 20 and duration T = 4 is obtained. The
corresponding profiles of position, velocity and acceleration are shown in
Fig. 2.13(b).

�

If the standard form (2.7) is assumed, the coefficients of the polynomial q(t)
and of its derivatives can be easily deduced from (2.16) and (2.17) as functions
of ai, T , and h. As a matter of fact, if we denote with bi,k the coefficients of
q(k)(t), i.e.

q(k)(t) =
n−k∑
i=0

bi,k (t − t0)i (2.18)

the expressions of the position, velocity, acceleration, ... profiles become
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Fig. 2.13. Normalized polynomial trajectory of degree 9 (a) and corresponding
trajectory from (t0, q0) to (t1, q1) (b), Example 2.12.

position: q(t) =
n∑

i=0

bi,0(t − t0)i → bi,0 =

⎧⎨
⎩

q0 + h a0, i = 0
h

T i
ai, i > 0

velocity: q̇(t) =
n−1∑
i=0

bi,1(t − t0)i → bi,1 = (i + 1)
h

T i+1
ai+1

acceleration: q̈(t) =
n−2∑
i=0

bi,2(t − t0)i → bi,2 = (i + 1)(i + 2)
h

T i+2
ai+2

...

d-th derivative: q(d)(t) =
n−d∑
i=0

bi,d(t − t0)i → bi,d =
(i + d)!

i!
h

T i+d
ai+d.

(2.19)
Of particular interest is the case of null boundary conditions:

v0 = 0, v1 = 0
a0 = 0, a1 = 0
j0 = 0, j1 = 0

...
...

Under this hypothesis the control points, which determine (2.9) and are solu-
tion of (2.14) and (2.15), are

p = [0, 0, 0, 0, . . . , 0︸ ︷︷ ︸
nci+1

, 1, 1, 1, 1, . . . , 1︸ ︷︷ ︸
ncf +1

]T .
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The corresponding expression of the coefficients ai in (2.7) can be determined
from p with (2.10). Their values, for polynomials qN(τ) up to degree 21, are
reported in Tab. 2.1.

3 5 7 9 11 13 15 17 19 21

a0 0 0 0 0 0 0 0 0 0 0

a1 0 0 0 0 0 0 0 0 0 0

a2 3 0 0 0 0 0 0 0 0 0

a3 -2 10 0 0 0 0 0 0 0 0

a4 - -15 35 0 0 0 0 0 0 0

a5 - 6 -84 126 0 0 0 0 0 0

a6 - - 70 -420 462 0 0 0 0 0

a7 - - -20 540 -1980 1716 0 0 0 0

a8 - - - -315 3465 -9009 6435 0 0 0

a9 - - - 70 -3080 20020 -40040 24310 0 0

a10 - - - - 1386 -24024 108108 -175032 92378 0

a11 - - - - -252 16380 -163800 556920 -755820 352716

a12 - - - - - -6006 150150 -1021020 2771340 -3233230

a13 - - - - - 924 -83160 1178100 -5969040 13430340

a14 - - - - - - 25740 -875160 8314020 -33256080

a15 - - - - - - -3432 408408 -7759752 54318264

a16 - - - - - - - -109395 4849845 -61108047

a17 - - - - - - - 12870 -1956240 47927880

a18 - - - - - - - - 461890 -25865840

a19 - - - - - - - - -48620 9189180

a20 - - - - - - - - - -1939938

a21 - - - - - - - - - 184756

Table 2.1. Per column: coefficients ai of the normalized polynomials qN(τ) with
degree n = 3, 5, . . . , 21, with null boundary conditions on their derivatives up to
order 10. The degree of the polynomials is n = 2nc + 1, being nc the number of null
initial (and final) conditions.

The polynomial functions obtained in this manner, i.e with null boundary
conditions and h = 1, T = 1, have some peculiar properties:

1. qN(τ) = 1 − qN(1 − τ).

2. a0 = a1 = . . . = anci
= 0.
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3. ai ∈ IN.

4. sign(anci+1) = 1, sign(anci+2) = −1, sign(anci+3) = 1, . . .

5.
∑n

i=0 ai = 1.

From the coefficients of Tab. 2.1 and the above equations (2.19) it is simple
to compute the coefficients of the polynomials of the normalized velocity,
acceleration, . . . , profiles (functions q̇N(τ), q̈N(τ), . . . ) or of the polynomials
q(t), q̇(t), q̈(t), . . . for a generic displacement. The coefficients of q̇N(τ) and
q̈N(τ) are reported in Appendix A.1.
The position, velocity, acceleration and jerk profiles for these polynomials are
shown in Fig. 2.14. Note the increasing smoothness of the profiles, and the
corresponding higher values for the maximum velocity, acceleration and jerk,
whose numerical values are reported in Tab. 2.2, denoted with Cv, Ca, and
Cj respectively.

Example 2.13 Let us define a polynomial function with the following con-
ditions

q0 = 10, v0 = 0, a0 = 0, j0 = 0, s0 = 0
q1 = 30, v1 = 0, a1 = 0, j1 = 0, s1 = 0

and t0 = 1, t1 = 5. There are 10 conditions to be satisfied, and therefore
the polynomial must be at least of degree 9. The expression of the normal-
ized polynomial qN(τ) in the Bézier/Bernstein form (2.9) with null boundary
conditions is:

qN(τ) = 126(1 − τ)4τ5 + 84(1 − τ)3τ6 + 36(1 − τ)2τ7 + 9(1 − τ)τ8 + τ9.

n Cv Δ% Ca Δ% Cj Δ%

3 1.5 0 6 0 12 0

5 1.875 25 5.7735 -3.78 60 400

7 2.1875 45.83 7.5132 25.22 52.5 337.5

9 2.4609 64.06 9.372 56.2 78.75 556.25

11 2.707 80.47 11.2666 87.78 108.2813 802.34

13 2.9326 95.51 13.1767 119.61 140.7656 1073.05

15 3.1421 109.47 15.0949 151.58 175.957 1366.31

17 3.3385 122.56 17.018 183.63 213.6621 1680.52

19 3.5239 134.93 18.9441 215.73 253.7238 2014.36

21 3.7001 146.68 20.8723 247.87 296.011 2366.76

Table 2.2. Maximum values of velocity (Cv), acceleration (Ca) and jerk (Cj)
for normalized polynomials of degree 3 - 21: smoother (higher degree) polynomials
present higher velocity and acceleration values. The variations with respect to the
3-rd degree polynomial are also reported.
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Fig. 2.14. Position, velocity, acceleration and jerk profiles for normalized polyno-
mial functions of degree 3 - 21 with null boundary conditions.

From Tab. 2.1, the coefficients a = [a0, a1, . . . , a9]T of the standard poly-
nomial form are:

a = [0, 0, 0, 0, 0, 126, −420, 540, −315, 70]T .

By using (2.16), the desired trajectory with displacement h = 20 and duration
T = 4 is computed as

q(t) = 10 + 20
(
126τ5 − 420τ6 + 540τ7 − 315τ8 + 70τ9

)
, with τ =

(
t − 1

4

)
.

Alternatively, from (2.19), one can directly write the expression of q(t) and
of its derivatives:
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Fig. 2.15. Polynomial function of degree 9 of Example 2.13.

q(t) = 10 + 20
126

45
(t − 1)5 + 20

−420

46
(t − 1)6 + 20

540

47
(t − 1)7+

+20
−315

48
(t − 1)8 + 20

70

49
(t − 1)9

= 10 + 2.4609(t − 1)5 − 2.0508(t − 1)6 + 0.6592(t − 1)7+

−0.0961(t − 1)8 + 0.0053(t − 1)9
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q̇(t) = 5 · 20
126

45
(t − 1)4 + 6 · 20

−420

46
(t − 1)5 + 7 · 20

540

47
(t − 1)6+

+8 · 20
−315

48
(t − 1)7 + 9 · 20

70

49
(t − 1)8

= 12.3047(t − 1)4 − 12.3047(t − 1)5 + 4.6143(t − 1)6+

−0.7690(t − 1)7 + 0.0481(t − 1)8

q̈(t) = 5 · 4 · 20
126

45
(t − 1)3 + 6 · 5 · 20

−420

46
(t − 1)4 + 7 · 6 · 20

540

47
(t − 1)5+

+8 · 7 · 20
−315

48
(t − 1)6 + 9 · 8 · 20

70

49
(t − 1)7

= 49.2188(t − 1)3 − 61.5234(t − 1)4 + 27.6855(t − 1)5+

−5.3833(t − 1)6 + 0.3845(t − 1)7.

These functions are shown in Fig. 2.15. �

The maximum value of the velocity, acceleration, jerk, . . . , of a (normal-
ized) polynomial qN (τ) increases with the degree n, as illustrated in Fig. 2.14
and reported in Tab. 2.2. It is interesting to note, as illustrated in Fig. 2.16,
that the rates of growth of Cv, Ca and Cj are proportional to

√
n, n, and n2

respectively.
Although the determination of polynomials in the Bézier/Bernstein form

is quite robust from the numerical point of view, for large values of n (eg. 37,
39, . . . ) the computation of polynomials is in any case affected by relevant
numerical errors, and therefore it is advisable to use other functions to define
smooth motion profiles, like trigonometric or exponential functions.
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Fig. 2.16. Maximum values of the velocity, acceleration and jerk profiles of normal-
ized polynomials of degree 3 - 33 with null boundary conditions, plotted as function
of n (x-marks); interpolation with functions depending respectively on

√
n, n, n2

(solid lines).

2.2 Trigonometric Trajectories

In this section, the analytical expressions of trajectories based on trigono-
metric functions are described. These trajectories present non-null continuous
derivatives for any order of derivation in the interval (t0, t1). However, these
derivatives may be discontinuous in t0 and t1.

2.2.1 Harmonic trajectory

An harmonic motion is characterized by an acceleration profile that is propor-
tional to the position profile, with opposite sign. The mathematical formula-
tion of the harmonic motion can be also deduced graphically, see Fig. 2.17.

Let the point q be the projection on the diameter of point p. If point p
moves on the circle with constant velocity, the motion of q, called harmonic,
is described by

s(θ) = R(1 − cos θ) (2.20)
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θ
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h

0

Fig. 2.17. Geometric construction of the harmonic motion.

where R is the radius of the circle. In a more general form, the harmonic
trajectory can be defined as

q(t) =
h

2

(
1 − cos

π(t − t0)
T

)
+ q0 (2.21)

with h = q1 − q0 and T = t1 − t0, from which⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q̇(t) =
πh

2T
sin

(
π(t − t0)

T

)

q̈(t) =
π2h

2T 2
cos

(
π(t − t0)

T

)

q(3)(t) = −π3h

2T 3
sin

(
π(t − t0)

T

)
.

Example 2.14 Fig. 2.18 reports the position, velocity, acceleration and jerk
of an harmonic trajectory with the conditions t0 = 0, t1 = 8, q0 = 0, q1 = 10.

�

2.2.2 Cycloidal trajectory

As shown in Fig. 2.18, the harmonic trajectory presents a discontinuous ac-
celeration and, therefore, infinite instantaneous jerk at t0, t1. As already dis-
cussed, a discontinuous acceleration profile may generate undesired effects
when flexible mechanisms are present. A continuous acceleration profile is ob-
tained with the cycloidal trajectory, described by a circle with circumference
h rolling along a line see Fig. 2.19,

q(t) = (q1 − q0)
(

t − t0
t1 − t0

− 1
2π

sin
2π(t − t0)

t1 − t0

)
+ q0

= h

(
t − t0

T
− 1

2π
sin

2π(t − t0)
T

)
+ q0 (2.22)
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Fig. 2.18. Position, velocity, acceleration and jerk of an harmonic trajectory when
t0 = 0, t1 = 8, q0 = 0, q1 = 10.

from which

q̇(t) =
h

T

(
1 − cos

2π(t − t0)
T

)

q̈(t) =
2πh

T 2
sin

2π(t − t0)
T

q(3)(t) =
4π2h

T 3
cos

2π(t − t0)
T

.

In this case, the acceleration is null in t = t0, t1, and therefore it presents a
continuous profile.

Example 2.15 Fig. 2.20 shows position, velocity, acceleration and jerk for
a cycloidal trajectory with the same conditions as in the previous example. �
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Fig. 2.19. Geometric construction of the cycloidal motion.
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Fig. 2.20. Position, velocity, acceleration and jerk of a cycloidal trajectory with
t0 = 0, t1 = 8, q0 = 0, q1 = 10.

2.2.3 Elliptic trajectory

As shown in Fig. 2.17, the harmonic motion can be obtained graphically by
projecting on the diameter a point moving on a circle. An elliptic motion is
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Fig. 2.21. Geometric construction of the elliptic motion.

obtained by projecting the motion of a point moving on an ellipse on the minor
axis, of length equal to the desired displacement h = q1 − q0, see Fig. 2.21.
The resulting equation is

q(t) =
h

2

⎛
⎝1 −

cos π(t−t0)
T√

1 − α sin2 π(t−t0)
T

⎞
⎠+ q0 (2.23)

where α = n2−1
n2 , and n is the ratio between the major and minor ellipse axes.

The velocity and the acceleration are

q̇(t) =
πh

2T

sin π(t−t0)
T

n2

√(
1 − α sin2 π(t−t0)

T

)3

q̈(t) =
π2h

2T 2
cos

(
π(t − t0)

T

)
1 + 2 α sin2 π(t−t0)

T

n2

√(
1 − α sin2 π(t−t0)

T

)5
.

Obviously, the harmonic trajectory is obtained by setting n = 1.

Example 2.16 Fig. 2.22 shows position, velocity, acceleration and jerk of
this trajectory. Fig. 2.23 reports the profiles of position, velocity and acceler-
ation with different choices of n. Note that the maximum values of velocity
and acceleration increase with n. �
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Fig. 2.22. Position, velocity, acceleration and jerk of an elliptic trajectory with
t0 = 0, t1 = 8, q0 = 0, q1 = 10, n = 2.

2.3 Exponential Trajectories

As discussed in Chapter 7, natural vibrations induced on the machine by the
actuation system should always be minimized.

This involves also the choice of proper motion profiles, since discontinu-
ities in the desired trajectory may generate vibrations in the machine due
to the induced discontinuities in the applied forces and the elastic effects of
the mechanical system itself. Therefore, it may be convenient to introduce
trajectories whose smoothness can be adjusted according to the needs, [14].

For this purpose, it is possible to consider an exponential function for the
velocity, as

q̇(τ) = vc e−σ f(τ,λ)
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Fig. 2.23. Elliptic trajectories when: n = 1.2 (solid), n = 2 (dashed), n = 3
(dotted).

where σ and λ are free parameters. Possible choices for the function f(τ, λ)
are

fa(τ, λ) =
(2τ)2

|1 − (2τ)2|λ or fb(τ, λ) =
sin2 πτ

| cos πτ |λ .

If a normalized motion profile is considered, i.e. with unit displacement and
duration, and in particular with the conditions q0 = −0.5, q1 = 0.5, and
τ0 = −0.5, τ1 = 0.5, then the constant vc can be computed as

vc =
1

2
∫ 1

2

0

−σf(τ, λ)dτ

.
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Fig. 2.24. Maximum values of the residual spectrum νa of the exponential trajec-
tory for different values of σ and λ.

At this point, the normalized motion qN(τ) is defined by the following equa-
tions ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

qN(τ) = vc

∫ τ

0

e−σ f(τ,λ)dτ

q̇N(τ) = vc e−σ f(τ,λ)

q̈N(τ) = −vc σ
f(τ, λ)

dτ
e−σ f(τ,λ).

(2.24)

The choice of the function fa(τ, λ) or fb(τ, λ) has only a little influence on the
actual motion profile and therefore, being fa simpler from a computational
point of view, it is adopted in the following discussion. More important is the
choice of σ and λ, whose values may be assigned in order to minimize the
maximum amplitude of the high frequency components of the acceleration
profile, responsible of vibrations induced in the machine. The maximum values
of the residual spectrum νa

2 of q̈N for frequencies greater than 5 Hz, obtained
for several values of the parameters σ, λ, are shown in Fig. 2.24.

In particular, the numerical values of νa obtained for some values of σ and
with the corresponding λ which minimizes the residual spectrum are reported
in Tab. 2.3. It is possible to show that the minimum value νa,min = 0.018 is
obtained for λ = 0.20, σ = 7.1, [14].

In case of a trajectory from an initial point q0 to a final one q1, with
h = q1 − q0, and time instants t0 and t1, with T = t1 − t0, the actual position
q(t), velocity q̇(t) and acceleration q̈(t) profiles may be obtained from (2.24)
2 The residual spectrum is defined here as the maximum amplitude of the frequency

spectrum of the acceleration profile for frequencies higher than a given threshold.



50 2 Analytic Expressions of Elementary Trajectories

σ 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

λ 0.61 0.49 0.41 0.34 0.29 0.25 0.22 0.19 0.18 0.18 0.19 0.28

νa 4.364 2.736 1.697 1.034 0.625 0.370 0.217 0.125 0.071 0.039 0.019 0.043

Table 2.3. Parameters σ and λ for exponential trajectories and the related maxi-
mum amplitude of the frequency content of the acceleration profiles (> 5 Hz).
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Fig. 2.25. Position, velocity, acceleration profiles of an exponential trajectory with
σ = 7.1 and λ = 0.2.

as

q(t) = q0 + h

(
1
2

+ qN(τ)
)

, q̇(t) =
h

T
q̇N(τ), q̈(t) =

h

T 2
q̈N(τ)

with τ =
(

t − t0
T

− 0.5
)

, see also Chapter 5.

Example 2.17 An exponential trajectory with the conditions

q0 = 0, q1 = 10, t0 = 0, t1 = 8, λ = 0.20, σ = 7.1

is shown in Fig. 2.25. �
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Example 2.18 The exponential trajectories obtained with the conditions

q0 = 0, q1 = 10, t0 = 0, t1 = 8

and the parameters σ, λ as in Tab. 2.3 are shown in Fig. 2.26. �

A final comment concerns the computation of eq. (2.24), where an integral
function explicitly appears. If the computation of qN(τ) by using integrals,
with possibly variable upper bounds, is unsuitable for the online generation
of the motion profile, it is possible to adopt a series expansion of the function
qN(τ), truncated at a proper order r, as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

qN(τ) = a0 τ +
r∑

k=1

a2k sin (2kπτ)

q̇N(τ) = a0 + 2π
r∑

k=1

ka2k cos (2kπτ)

q̈N(τ) = −4π2
r∑

k=1

k2a2k sin (2kπτ)

where

a0 = 1, a2k =
2
πk

∫ 1
2

0

q̇(τ) cos (2kπτ) dτ.

2.4 Trajectories Based on the Fourier Series Expansion

Besides quite obvious conditions about continuity of the position profile and its
derivatives up to a given order, and the given boundary constraints, it might
be of interest to pursue also other goals. Among the different possibilities, it
could be desirable to minimize the amplitude of the acceleration profile, in
order to avoid efforts on the load due to inertial forces or vibrational effects
of the mechanical structure.

The minimization of the amplitude of the acceleration in general is in con-
trast with the continuity of the profile: a discontinuous acceleration profile
minimizes the peak of acceleration but, on the other hand, may generate os-
cillations and/or vibrations because of the related discontinuity of the inertial
forces. For example, the trapezoidal velocity trajectory (discussed in the fol-
lowing Chapter 3) presents, other conditions being equal, smaller values for the
acceleration but, at the same time, an higher harmonic content that usually
implies possible vibrations in the mechanical structure. On the contrary, the
cycloidal trajectory is characterized by a low harmonic content but presents
higher acceleration values. It is possible to define trajectories that represent a
compromise between these two opposite features. As an example, trajectories
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Fig. 2.26. Position, velocity, acceleration profiles of exponential trajectories with
σ and λ as in Tab. 2.3.

derived from a Fourier series expansion of the motion profiles illustrated in
the previous sections are now considered.

It is well known that a fundamental tool for the analysis in the frequency
domain ω of a signal x(t) defined in the time domain is the Fourier Transform
X(ω) = F{x(t)}, see Appendix D. On the other hand, it is worth noticing that
trajectories for high speed automatic machines are often a cyclic repetition of
a basic motion: therefore, the trajectory q(t) can be assumed to be periodic.
Under this hypothesis, q(t) can be analyzed by means of the Fourier series
expansion.

The Fourier series is a mathematical tool often used for analyzing periodic
functions by decomposing them into a weighted sum of sinusoidal compo-
nent functions, sometimes referred to as normal Fourier modes, or simply
modes. Given a piecewise continuous function x(t), periodic with period T ,
and square-integrable over the interval [−T/2, T/2], that is

∫ T/2

−T/2

|x(t)|2 dt < +∞,
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the corresponding Fourier series expansion is

x(t) =
1
2
a0 +

∞∑
k=1

[ak cos(kω0t) + bk sin(kω0t)]

where ω0 = 2π/T is the fundamental frequency (rad/sec) of the function and,
for any non-negative integer k,

ak =
2
T

∫ T/2

−T/2

x(t) cos(kω0t) dt are the even Fourier coefficients of x(t)

bk =
2
T

∫ T/2

−T/2

x(t) sin(kω0t) dt are the odd Fourier coefficients of x(t).

An alternative expression of the Fourier series expansion is

x(t) = v0 +
∞∑

k=1

vk cos(kω0t − ϕk) (2.25)

where

v0 =
a0

2
, vk =

√
a2

k + b2
k, ϕk = arctan

(
bk

ak

)
.

Eq. (2.25) defines the signal as a linear combination of a constant term (v0)
and of an infinite number of sinusoidal functions (the harmonic functions) at
frequencies kω0; vk represents the weight of the k-th harmonic function on
x(t), and ϕk its phase. The maximum frequency of the signal corresponds to
the maximum k for which vk �= 0 from a practical point of view. On the basis
of the Fourier series expansion of a signal, it is then possible to understand
its properties in the frequency domain.

The basic idea of the techniques for planning the motion profiles illustrated
below is to compute a Fourier series expansion of a function q(t) defined by
one of the methods presented in the previous sections and, then, define a new
trajectory qf (t) by considering only the first N terms of the series. In this
manner, it is possible to obtain a function that presents specific properties in
the frequency domain, see also Sec. 7.3.

2.4.1 Gutman 1-3

This trajectory is obtained as Fourier series expansion of the parabolic profile,
Sec. 2.1.2, by taking into consideration only the first two elements, [15]:
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(t) = q0 + h

(
(t − t0)

T
− 15

32π
sin

2π(t − t0)
T

− 1
96π

sin
6π(t − t0)

T

)

q̇(t) =
h

T

(
1 − 15

16
cos

2π(t − t0)
T

− 1
16

cos
6π(t − t0)

T

)

q̈(t) =
hπ

8T 2

(
15 sin

2π(t − t0)
T

+ 3 sin
6π(t − t0)

T

)

q(3)(t) =
hπ2

4T 3

(
15 cos

2π(t − t0)
T

+ 9 cos
6π(t − t0)

T

)

where h is the displacement and T the time duration. The maximum acceler-
ation is 5.15h/T 2, i.e. 28.75% larger than the maximum acceleration of the
parabolic trajectory (4h/T 2) and, for example, 18.04% smaller than the max-
imum acceleration of the cycloidal trajectory (2πh/T 2). On the other hand,
the frequency content is lower with respect to the parabolic profile, and higher
than the cycloidal one, see Chapter 7.

Example 2.19 Fig. 2.27 reports the position, velocity, acceleration and jerk
for the Gutman 1-3 trajectory with h = 20 and T = 10 (q0 = 0, t0 = 0). �

2.4.2 Freudenstein 1-3

As in the previous case, only the first and the third terms of the Fourier series
expansion of the parabolic trajectory are considered, but the trajectory is
defined as [16]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(t) = q0 +
h(t − t0)

T
− h

2π

(
27
28

sin
2π(t − t0)

T
+

1
84

sin
6π(t − t0)

T

)

q̇(t) =
h

T

(
1 − 27

28
cos

2π(t − t0)
T

− 1
28

cos
6π(t − t0)

T

)

q̈(t) =
2πh

T 2

(
27
28

sin
2π(t − t0)

T
+

3
28

sin
6π(t − t0)

T

)

q(3)(t) =
4π2h

T 3

(
27
28

cos
2π(t − t0)

T
+

9
28

cos
6π(t − t0)

T

)
.

This trajectory has a maximum acceleration value equal to 5.39h/T 2, i.e
34.75% larger than the parabolic profile and 14.22% smaller than the cycloidal
trajectory.

Example 2.20 Fig. 2.28 shows the position, velocity, acceleration and jerk
for the Freudenstein 1-3 trajectory, with h = 20 and T = 10 (q0 = 0, t0 = 0).

�
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Fig. 2.27. Position, velocity, acceleration and jerk of the Gutman 1-3 trajectory
with h = 20 and T = 10.

2.4.3 Freudenstein 1-3-5

This trajectory is defined as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(t) = q0+
h(t−t0)

T
− h

2π
α

(
sin

2π(t−t0)

T
+

1

54
sin

6π(t−t0)

T
+

1

1250
sin

10π(t − t0)

T

)

q̇(t) =
h

T

[
1−α

(
cos

2π(t − t0)

T
+

1

18
cos

6π(t − t0)

T
+

1

250
cos

10π(t − t0)

T

)]

q̈(t) =
2πh

T 2
α

(
sin

2π(t − t0)

T
+

1

6
sin

6π(t − t0)

T
+

1

50
sin

10π(t − t0)

T

)

q(3)(t)=
4π2h

T 3
α

(
cos

2π(t − t0)

T
+

1

2
cos

6π(t − t0)

T
+

1

10
cos

10π(t − t0)

T

)
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Fig. 2.28. Position, velocity, acceleration and jerk of the Freudenstein 1-3 trajectory
with h = 20 and T = 10.

where α = 1125
1192 = 0.9438. This trajectory has a maximum acceleration value

equal to 5.06h/T 2, i.e. 26.5% larger than the parabolic motion, and 19.47%
smaller than the cycloidal profile.

Example 2.21 Fig. 2.29 shows the position, velocity, acceleration and jerk
for the Freudenstein 1-3-5 trajectory, with h = 20 and T = 10 (q0 = 0, t0 = 0).

�

If a larger number of terms of the Fourier series expansion is considered, pro-
files with lower acceleration values but higher frequency components are ob-
tained. As discussed in Chapter 7, this could generate undesired vibrations in
the mechanical structure. A compromise has then to be obtained between the
requirements of low acceleration values and frequency bandwidth of the cor-
responding signal. An empiric rule could be to limit the maximum frequency
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Fig. 2.29. Position, velocity, acceleration and jerk of the Freudenstein 1-3-5 trajec-
tory with h = 20 and T = 10.

of the trajectory to ωr/10, being ωr the lower resonance frequency of the
mechanical structure under consideration. This can be obtained by truncat-
ing, for example, the Fourier series expansion to N , where N = floor

(
ωr/10

ω0

)
,

where ω0 = 2π/T , T is the period of the trajectory, and floor(x) is the function
which gives the largest integer less than or equal to x.
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