
Preface

In 1953, Grothendieck [G] characterized locally convex Hausdorff spaces which
have the Dunford-Pettis property and used this property to characterize weakly
compact operators u : C(K) → F , where K is a compact Hausdorff space and F
is a locally convex Hausdorff space (briefly, lcHs) which is complete. Among other
results, he also showed that there is a bijective correspondence between the family
of all F -valued weakly compact operators u on C(K) and that of all F -valued
σ-additive Baire measures on K. But he did not develop any theory of integration
to represent these operators.

Later, in 1955, Bartle, Dunford, and Schwartz [BDS] developed a theory of
integration for scalar functions with respect to a σ-additive Banach-space-valued
vector measure m defined on a σ-algebra of sets and used it to give an integral
representation for weakly compact operators u : C(S) → X , where S is a compact
Hausdorff space and X is a Banach space. A modified form of this theory is given
in Section 10 of Chapter IV of [DS1]. In honor of these authors, we call the integral
introduced by them as well as its variants given in Section 2.2 of Chapter 2 and
in Section 4.2 of Chapter 4, the Bartle-Dunford-Schwartz integral or briefly, the
BDS-integral.

About fifteen years later, in [L1,L2] Lewis studied a Pettis type weak integral
of scalar functions with respect to a σ-additive vector measure m having range in
an lcHs X . This type of definition has also been considered by Kluvánek in [K2]. In
honor of these mathematicians we call the integral introduced in [L1,L2] as well as
its variants given in Section 2.1 of Chapter 2 and in Section 4.1 of Chapter 4, the
Kluvánek-Lewis integral or briefly, the (KL)-integral. When the domain of the σ-
additive vector measure m is a σ-algebra Σ and X is a Banach space, Theorem 2.4
of [L1] asserts that the (KL)-integral is the same as the (BDS)-integral. Though
this result is true, its proof in [L1] lacks essential details. See Remark 2.2.6 of
Chapter 2.

Let T be a locally compact Hausdorff space and K(T ) (resp. K(T,R)) be the
vector space of all complex- (resp. real-) valued continuous functions on T with
compact support, endowed with the inductive limit locally convex topology as in
§1, Chapter III of [B]. In 1970, using the results of [G], Thomas [T] developed a
theory of vectorial Radon integration with respect to a weakly compact bounded
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(resp. a prolongable) Radon operator u on K(T,R ) with values in a real Banach
space and more generally, with values in a real quasicomplete lcHs. ( Thomas [T]
calls them bounded weakly compact (resp. prolongable) Radon vector measures.)
However, by making some modifications, it can be shown that his theory is equally
valid for such operators u defined on K(T ) with range contained in a complex
Banach space or in a quasicomplete complex lcHs. See Section 7.1 of Chapter 7.
Functions f integrable with respect to u are called u-integrable and the integral
of f with respect to u is denoted by

∫
T
fdu in [T].

If S is a compact Hausdorff space, X a Banach space and u : C(S) → X is
a weakly compact operator, then by the Bartle-Dunford-Schwartz representation
theorem in [BDS] and in [DU] there exists a unique X-valued Borel regular σ-
additive vector measure mu on the σ-algebra B(S) of the Borel sets in S such
that uf =

∫
S
fdmu for f ∈ C(S). If X is a real Banach space and if u : Cr(S) →

X (where Cr(S) = {f ∈ C(S) : f real-valued}) is a weakly compact operator,
Thomas showed in [T] that a real function f on S is u-integrable if and only if
it is mu-integrable in the sense of Section 10 of Chapter IV of [DS1] and in that
case,

∫
S fdu = (BDS)

∫
S fdmu. Moreover, such f is mu-measurable in the sense

of Section 10 of Chapter IV of [DS1] though it is not necessarily B(S)-measurable.

On the other hand, in [P3, P4] we have shown that there is a bijective cor-
respondence Γ between the dual space K(T )∗ and the family of all δ(C)-regular
complex measures on δ(C) such that Γθ = µθ|δ(C) for θ ∈ K(T )∗, where µθ is the
complex Radon measure determined by θ (in the sense of [P4]) and δ(C) is the
δ-ring generated by the family C of all compact sets in T . As observed in [P13], the
scalar-valued prolongable Radon operators on K(T ) are precisely the continuous
linear functionals on K(T ) (i.e., the elements of K(T )∗).

From the above results of Thomas [T] and of Panchapagesan [P3, P4, and
P13] the following questions arise:

(Q1) Similar to Section 10 of Chapter IV of [DS1], can a theory of integration of
scalar functions be developed with respect to a σ-additive quasicomplete
lcHs-valued vector measure m defined on a σ-algebra or on a σ-ring S
of sets, permitting the integration of scalar functions (with respect to m)
which are not necessarily S-measurable?

(Q2) The same as in (Q1), excepting that the domain of m is a δ-ring P of sets
and the S-measurability of functions is replaced by σ(P)-measurability
(where σ(P) denotes the σ-ring generated by P).

(Q3) The Bartle-Dunford-Schwartz representation theorem has been general-
ized in [P9] for weakly compact operators on C0(T ) and hence for weakly
compact bounded Radon operators u on K(T ) with values in a quasicom-
plete lcHs X asserting that u determines a unique B(T )-regular X-valued
σ-additive vector measure mu on B(T ), the σ-algebra of Borel sets in T .
The question is: Is it possible to give a similar representation theorem for
X-valued prolongable Radon operators u on K(T )?



Preface ix

(Q4) If (Q3) has an affirmative answer, does the prolongable operator u deter-
mine a σ-additive δ(C)-regular (suitably defined) vector measure mu on
δ(C)? (This question is suggested by the scalar analogue in [P13].)

(Q5) Suppose (Q1) has an affirmative answer and suppose u : K(T ) → X , X a
quasicomplete lcHs, is a weakly compact bounded Radon operator deter-
mining the σ-additive vector measure mu on B(T ). Can it be shown that
a scalar function f is u-integrable in T if and only if it is mu-integrable in
T (in the sense of integration given for (Q1))? If so, is

∫
T
fdu =

∫
T
fdmu?

(Q6) If (Q2), (Q3) and (Q4) are answered in the affirmative and if u : K(T ) →
X , X a quasicomplete lcHs, is a prolongable Radon operator determining
the σ-additive vector measure mu on δ(C), then can it be shown that a
scalar function f with compact support is u-integrable in T if and only if
it is mu-integrable in T ? If so, what is the relation between

∫
T fdu and∫

T
fdmu?

In the literature, integration of scalar functions with respect to a Banach-space-
valued or a sequentially complete lcHs-valued σ-additive vector measure defined
on a σ-algebra Σ of sets has been studied for Σ-measurable scalar functions in
several papers such as [C4], [Del1, Del2, Del4], [FNR], [FMNP], [FN1,FN2], [JO],
[K1, K2, K4], [KK], [L1], [N], [O], [OR1, OR2, OR3, OR4, OR5, OR6], [Ri1, Ri2,
Ri3, Ri4, Ri5, Ri6] and [Shu1, Shu2]. A similar study has been done in [BD1], [L2],
[Del3], and [MN2] for a σ-additive vector measure defined on a δ-ring P . Recently,
the vector measure integration on σ-algebras has been used to study the repre-
sentation of real Banach lattices in [C1,C2, C3, C4]. Also see [CR1, CR2, CR3],
[FMNSS1,FMNSS2], [MP], [OSV], [SP1,SP2,SP3,SP4] and [St]. Some other papers
which can also be referred for various aspects of vector measures defined on rings,
δ-rings and σ-rings are [Br], [BD1], [BD2] and [Del4]. None of the above papers
considers the possibility of integrating non-Σ-measurable or non-σ(P)-measurable
functions and hence the integration theory developed in the literature is not suit-
able for answering the above questions. Though the paper [BD2] treats the in-
tegration of non-σ(P)-measurable functions, its results do not answer the above
questions.

However, adapting some of the concepts and techniques used by Dobrakov in
[Do1, Do2] and by Dobrakov and Panchapagesan in [DP2] (in the study of integra-
tion of vector functions with respect to an operator-valued measure), the present
monograph answers all the questions raised above in the affirmative. Moreover, a
nice theory of Lp-spaces, 1 ≤ p < ∞, is also developed for a σ-additive Banach
space-valued (resp. quasicomplete or sequentially complete lcHs-valued) vector
measure m defined on a δ-ring P of sets and results similar to those known for the
abstract Lebesgue and Bochner Lp-spaces are obtained. Compare with [FMNSS2]
and [SP1].

The monograph consists of seven chapters. Chapter 1 is on Preliminaries and
has two sections. Section 1.1 is devoted to fixing the notation and terminology and
to give some definitions and results from the literature on Banach space-valued
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measures defined on a δ-ring P of subsets of a non-void set T and includes the
theorem on interchange of limit and integral with proof. (See Proposition 1.1.21.)
Moreover, motivated by [DP2], we introduce the concept of m-measurability for
functions f : T → K or [-∞,∞] where K = R or C and this concept of m-
measurability is suitably generalized in Section 4.1 of Chapter 4 when m assumes
values in an lcHs. This concept plays a crucial role in developing the theory of
integration which permits integration of certain non-σ(P)-measurable functions
too. Moreover, when T is a locally compact Hausdorff space and the vector measure
m satisfies certain regularity conditions, it turns out that a scalar function f is m-
measurable if and only if f is Lusin m-measurable with N(f) = {t ∈ T : f(t) �= 0}
suitably restricted. (See Theorems 6.2.5 and 6.2.6 of Chapter 6.) Section 1.2 is
devoted to giving some definitions and results on lcHs which are needed in the
sequel.

In Section 2.1 of Chapter 2 we introduce the concept of (KL) m-integrability
for m-measurable functions and study the properties of the integral. We give an m-
a.e. convergence version of the Lebesgue dominated (resp. bounded) convergence
theorem for m and we briefly refer to it as LDCT (resp. LBCT). This theorem has
been given in [L2] with an incorrect proof (see Remark 2.1.12 below). In Section 2.2
we define the (BDS) m-integral and show that an m-measurable function is (BDS)
m-integrable in T if and only if it is (KL) m-integrable in T and in that case, both
the integrals coincide. Hence we use the terminology of m-integrability (resp. the
symbol

∫
T
fdm) to denote either integrability (resp. either of the integrals). When

P is a σ-algebra, this result is given in Theorem 2.4 of [L1], but, as mentioned
above, its proof lacks essential details (see Remark 2.2.6 below). Proposition 1.1.21
is generalized to the (BDS) m-integral in Theorem 2.2.8.

Chapter 3 consists of Sections 3.1–3.5 and is devoted to the study of the
spaces Lp(m), 1 ≤ p ≤ ∞, for a Banach space-valued σ-additive measure m defined
on a δ-ring of sets. Similar to [Do2], in Section 2.1 we introduce a seminormed
space LpM(m) of m-measurable scalar functions with its seminorm being denoted
by m•p(·, T ) for 1 ≤ p <∞ and define the subspaces LpI(m), LpIs(m) and Lp(m)
of LpM(m) and show that all these subspaces are linear and coincide with

Ip(m) = {f : T → K, f m-measurable and |f |p is (KL)m-integrable inT }
for 1 ≤ p < ∞. If Lp(σ(P),m) = {f ∈ Lp(m) : f σ(P)-measurable}, then Sec-
tion 3.2 deals with the completeness of the spaces Lp(m) and Lp(σ(P),m) for
1 ≤ p ≤ ∞ where L∞(m) and L∞(σ(P),m) are suitably defined (see Definition
3.2.10). Sections 3.3 and 3.4 study various versions of LDCT, LBCT and the Vi-
tali convergence theorem for Lp(m), 1 ≤ p <∞, and Section 3.5 obtains relations
between the spaces Lp(m), 1 ≤ p ≤ ∞, similar to those in the classical case. The
study of Lp(σ(P),m) for 1 ≤ p < ∞ for a σ-additive vector measure m defined
on a σ-algebra with values in a real Banach space has recently been done in [SP1,
SP2, SP4] and in [FMNSS2], for their study of the representation theory of real
Banach lattices. Our results can also be compared with those in the literature for
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p = 1 as noted in Remarks 2.1.6, 2.1.11, 2.1.12, 2.2.6, 3.1.5, 3.2.9, 3.3.5, 3.3.9 and
3.3.15. We would also like to emphasize the fact that the results of this chapter
are much influenced by the techniques adopted by Dobrakov in [Do1, Do2].

Chapter 4 consists of Sections 4.1–4.6. Let X be an lcHs and let m : P → X
be σ-additive, P being a δ-ring of subsets of a set T . Sections 4.1–4.6 generalize
the results of Chapter 3 to such m when X is quasicomplete (resp. sequentially
complete). For such m, the concepts of (KL) m-integrability and (KL) m-integral
are generalized in Section 4.1; Theorem 4.1.8 generalizes (i)–(iv) and (viii) of The-
orem 2.1.5 while Theorems 4.1.9 and 4.1.11 (resp. Theorems 4.1.9′ and 4.1.11′ in
Remark 4.1.15) generalize (v)–(vii) of Theorem 2.1.5 and Theorem 2.1.7 (LDCT)
when X is quasicomplete (resp. sequentially complete with the functions consid-
ered being σ(P)-measurable). In Section 4.2 we generalize (BDS) m-integrability
and (BDS) m-integral given in Section 2.2 to such X-valued m and by Theorems
4.2.2 and 4.2.3 (resp. by Theorem 4.2.2′ in Remark 4.2.12) an m-measurable (resp.
σ(P)-measurable) function f is (KL) m-integrable in T if and only if it is (BDS)
m-integrable in T (with values in X) when X is quasicomplete (resp. sequentially
complete) and in that case, both the integrals coincide. In the light of this result, we
use the terminology of m-integrability (resp. the symbol

∫
T
fdm) to denote either

integrability (resp. either of the integrals). For 1 ≤ p <∞, we introduce in Section
4.3 a locally convex space LpM(m) (resp. LpM(σ(P),m)) of m-measurable (resp.
σ(P)-measurable) functions and introduce the subspaces LpI(m) and Lp(m) of
LpM(m) (resp. LpI(σ(P),m) and Lp(σ(P),m) of LpM(σ(P),m)) and show that
they are linear and coincide. When X is a Fréchet space, in Section 4.4 we show
that these subspaces are pseudo-metrizable and complete. Section 4.5 is devoted to
generalize the results in Sections 3.3, 3.4 and 3.5 when X is quasicomplete (resp.
sequentially complete). We introduce a subspace LpIs(m) (resp. LpIs(σ(P),m))
of LpM(m) (resp. of LpM(σP),m) and show that it coincides with LpI(m) (resp.
LpI(σ(P),m)). Section 4.6 gives some sufficient conditions for the separability of
Lp(m) and Lp(σ(P),m) for 1 ≤ p < ∞. To compare with some of the results
in the literature for p = 1, see Remarks 4.1.16, 4.4.10, and 4.6.15. The theory of
the m-integral developed in Sections 4.1 and 4.2 for quasicomplete lcHs-valued
σ-additive measures defined on P answers (Q1) and (Q2) in the affirmative.

Chapters 5 and 6 give a vector measure treatment of the results of [T]. Chap-
ter 5 consists of Sections 5.1, 5.2 and 5.3. Let T be a locally compact Hausdorff
space. Section 5.1 gives some generalizations of the Vitali-Carathéodory integra-
bility criterion for m-measurable (resp. σ(R)-measurable) real functions where
R = B(T ) or R = δ(C), m : R → X is σ-additive and R-regular and X is a
quasicomplete (resp. sequentially complete) lcHs. These results play a key role in
the study of the duals of L1(m) and L1(n) in Section 6.5 of Chapter 6, where
m : B(T ) → X is σ-additive and B(T )-regular (resp. n : δ(C) → X is σ-additive
and δ(C)-regular) and X is a Banach space. Let {µn}∞1 be a sequence of Borel-
regular complex measures on T . By proving that, for each open set U in T , there
exists an open Baire set V ⊂ U such that µn(V ) = µn(U) for all n, it is shown
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in Section 5.2 that the boundedness hypothesis in Corollary 1 of [P8] is redun-
dant. Using this result and adapting the proofs of [T] in the set-up of vector
measures, the improved version of Corollary 1 of [P8] is generalized in Theorem
5.2.21 (resp. Theorem 5.2.23) to Banach space-valued (resp. sequentially complete
lcHs-valued) σ-additive regular Borel measures. Section 5.3 deals with the weakly
compact bounded and prolongable Radon operators on K(T ) with values in a qua-
sicomplete lcHs X . In Theorem 5.3.9 of Chapter 5, the Bartle-Dunford-Schwartz
representation theorem is generalized to such an X-valued prolongable Radon op-
erator u on K(T ) and it is shown that u determines a unique X-valued δ(C)-regular
σ-additive measure mu on δ(C). Thus (Q3) and (Q4) are answered in the affir-
mative. Using the results of [P9], 22 characterizations are given for an X-valued
continuous linear map u on K(T ) to be a prolongable Radon operator.

Chapter 6 consists of Sections 6.1–6.5. Let T be a locally compact Hausdorff
space. Let m : B(T ) → X (resp. n : δ(C) → X) be σ-additive and Borel regular
(resp. and δ(C)-regular). Section 6.1 deals with the generalized Lusin’s theorem
and its variants for m and for n with some applications. In Section 6.2 several char-
acterizations of the m-measurability (resp. n-measurability) of a set A in T are
given. The concepts of Lusin m-measurability and Lusin n-measurability for scalar
functions are introduced and they are characterized in terms of m-measurability
and n-measurability, respectively. The proofs of Lemmas 3.10 and 3.14, Proposi-
tions 2.17, 2.20 and 3.7 and Theorems 3.5, 3.13 and 3.20 of [T] are adapted here
in the set-up of vector measures to improve Theorem 2.2.2 (resp. Theorem 4.2.2)
when X is a Banach space (resp. a quasicomplete or complete lcHs) and when
m : δ(C) → X is σ-additive and δ(C)-regular. See Theorems 6.3.4, 6.3.5 and 6.3.8.
Section 6.4 deals with some additional convergence theorems. Section 6.5 is de-
voted to the study of the duals of L1(m) and L1(n) and it is shown that L1(m)
and L1(n) are weakly sequentially complete Banach spaces when X is a Banach
space with c0 �⊂ X .

Chapter 7 consists of Sections 7.1–7.6. In Section 7.1 we briefly indicate how
the results in Section 1 of [T] can be extended to complex functions in K(T ).
Section 7.2 is devoted to integration with respect to a weakly compact bounded
Radon operator, improving the complex versions of Theorems 2.2, 2.7 and 2.7
bis of [T]. In Section 7.3 we improve most of the results such as the complex
versions of Theorems 3.3, 3.4, 3.11, 3.13 and 3.20 of [T]. Section 7.4 studies the
complex Baire versions of Proposition 4.8 and Theorem 4.9 of [T]. In Section
7.5 we introduce the concepts of weakly compact and prolongable Radon vector
measures and generalize the results of [P3,P4] to such Radon vector measures. If
u is a bounded Radon operator with values in a quasicomplete lcHs, we define
Mu = {A ⊂ T : χA ∈ L1(u)} and µu(A) =

∫
A
du for A ∈ Mu. The Radon vector

measure induced by u is denoted by µu and Mu is called the domain of µu. When
u is a weakly compact bounded Radon operator, we show that Mu is a σ-algebra
containing B(T ) and µu is the generalized Lebesgue completion of the representing
measure mu|B(T ) of u (in the sense of 5.2.10). We give several characterizations of
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a weakly compact bounded (resp. a prolongable) Radon operator u and study the
regularity properties of µu in both the cases. Following [Si] we define the outer
measure µ∗u induced by µu and study its relation with µu when u is a weakly
compact bounded Radon operator. Introducing the concepts of Lebesgue-Radon
completion and localized Lebesgue-Radon completion, we generalize Theorems
4.4 and 4.6 of [P4]. (See Theorems 7.5.24 and 7.5.27.) Thus Theorems 9.13, 9.14
and 9.17 of [P13] are proved here. In Section 7.6, we show that when u is a
weakly compact bounded Radon operator on K(T ) with values in a quasicomplete
lcHs, Lp(u) is the same as Lp(mu) for 1 ≤ p < ∞; f is u-integrable if and only
if f is mu-integrable in T and when f is u-integrable,

∫
fdu =

∫
T
fdmu. (See

Theorem 7.6.13.) When u is a prolongable Radon operator on K(T ) with values
in a quasicomplete lcHs and ω is a relatively compact open set in T , we show that
Lp(u|K(ω)) = Lp(mu|B(ω)) for 1 ≤ p <∞ and for f ∈ L1(mu) with supportK ∈ C
and with K ⊂ ω,

∫
T fdmu =

∫
fχωdu. (See Theorem 7.6.19.). Thus questions

(Q5) and (Q6) are also answered in the affirmative.
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