

Chapter 2

Object Relationship Notation (ORN)

The Object Relationship Notation (ORN) was first described in Ehlmann et al.
(1992). It was proposed for “representing non-inheritance relationships in an object-
oriented, scientific database,” as indicated by the title of this 1992 paper. Like the
relational and ER models, ORN has evolved from what was originally proposed. Its
syntax, graphical representation, and semantics have changed slightly, and it has
been integrated into UML class diagrams, adapted to relational databases, and ap-
plied to the development of all types of databases, not just scientific (Ehlmman and
Riccardi 1994, Ehlmann and Stewart 1997, Neal and Ehlmann 2000, Ehlmann and
Yu 2002, Ehlmann 2006).

Today, ORN can best be described as a declarative scheme that adds referential
actions to UML multiplicities to allow the semantics of associations to be better de-
fined. Its symbols for describing referential actions, called bindings, are included in
ER and class diagrams to better describe associations during conceptual modeling.
Its complete syntax, including multiplicities, is included in DDLs to better define as-
sociations to DBMSs, object or relational. This allows a DBMS to enforce multiplic-
ities and perform the specified referential actions. When ORN is supported by an
ORN-extended DBMS, a variety of association types can be easily modeled, more di-
rectly mapped to a database definition, and automatically implemented.

This chapter defines the syntax of ORN, its graphical representation in an ER and
class diagram, and its semantics. It explains these semantics with a number of ex-
amples and concludes by returning to the company database model given at the end
of the previous chapter to explain the ORN previewed by this example. The chapter
can be read with Chapter 3, which presents a tool that is helpful in learning ORN.

2.1 Syntax

The syntax of ORN is that of an <association> and is given by the syntax diagram
in Fig. 2.1. Valid syntax results only from traversing the diagram in the direction of
the arrows. Some examples of <association>s are given below. As we shall see in
Section 2.3, the last two examples are semantically equivalent.

<1-to-*> ′<5..*-to-*>X- <0..1-to-2..15>~? <0..1-to-2..15>|?X?

Associations are described in ORN at two levels of detail. A <multiplicities>
specification describes a binary association type solely by multiplicities, e.g., 1-to-

B.K. Ehlmann, Object Relationship Notation (ORN) for Database Applications,
Advances in Database Systems 39, DOI 10.1007/978-0-387-09554-7_2,
© Springer Science+Business Media, LLC 2009

 ORN FOR DATABASE APPLICATIONS 40

1..*, and reflects what is given in a UML class diagram. A <multiplicity> is given
for each class or role. An <association> delimits a <multiplicities> specification
by < and > symbols and adds more semantic detail by including a <binding> for
each end of the association, e.g., !<1-to-1..*>?.

<association>: <binding>:
 <binding> < <multiplicities > > <binding>
 <di>
<multiplicities>:
 <multiplicity> -to- <multiplicity> 1 | <di>
 1 X
<multiplicity>:
 <minimum>.. <maximum> <di>:
 * –
 <number> ?
 * ~ !
1 – path can be taken only once for each <binding> '

Fig. 2.1 ORN Syntax (Reprinted, with permission, from [Ehlmann 2007] © 2007 IEEE)

A <binding> uses just a few special characters, or symbols, to indicate the de-
structibility of association links, which prescribe one or more referential actions. A
<binding> is nil, i.e., contains no symbols, which specifies default binding; or it is a
<di>, destructibility indicator; or it is a |, an implicit indicator, or X, an explicit in-
dicator, followed by a destructibility indicator; or it is the latter followed by the op-
posite of the given implicit or explicit indicator followed by another destructibility
indicator. A destructibility indicator is a -, ?, !, or ' symbol, where the latter three
symbols can be preceded by an optional ~, a cascade indicator.

2.2 Graphical Representation

The graphical representation of ORN makes a modest extension to the ER diagram
and class diagram. Essentially a <binding>, which may be nil, is included at each
end of a binary association. This can be done in a number of ways.

Fig. 2.2 (a) shows how <binding>s can be included as stereotype icons in an
ORN-extended class diagram. In UML, a stereotype icon can be used to extend the
standard notation (OMG 2005). The graphical representation of an <association>
as given in Fig. 2.2 (a) is equivalent to the syntactic representation

<binding1> < <multiplicity1> -to- <multiplicity2> > <binding2>

where <binding1> and <multiplicity1> are given for the subject class and <bind-
ing2> and <multiplicity2> are given for the related class. An example of the graphi-
cal representation for a <0..1-to-2..15>|?X? association is given in Fig. 2.2 (b).

Fig. 2.3 (a) shows the |?X? binding properly placed on the association line in an
ORN-extended ER diagram, and Fig. 2.3 (b) shows its equivalent placed next to the

Object Relationship Notation (ORN) 41

entity set mapping. The former placement is appropriate when explicit and implicit
indicators are given. It is also the original graphical representation for ORN in ER
diagrams and is the basis for the ORN logo (see Chapter 3, bottom-left of Fig. 3.1).

Fig. 2.2 ORN in a class diagram, (a) generic description and (b) example

Fig. 2.3 ORN in an ER diagram, symbols placed (a) on the association line and (b) by the mappings

The class diagram representation for an <association> as described in Fig. 2.2 is
used exclusively in the remainder of this book.

2.3 Semantics

ORN describes the semantics—or one could say the “nature” or “behavior”—of a
large variety of binary association types. The semantics of ORN itself are derived
from the semantics of the multiplicities and bindings given in an <association>.
The role of multiplicities in describing association semantics is well known and is
described in Chapter 1. The role of “bindings” needs a lot of explaining.

Bindings can be viewed three ways at three different levels.

• At the highest level, bindings when added to multiplicities determine the extent
and cohesiveness of complex objects. As we saw in Chapter 1, both the relational
and object models disassemble complex objects to some degree. ORN is the

? ?

belongs
to

(a)

2..15 ~?
Carpool Person

(b)

0..1

belongs
to

2..15
Carpool Person

0..1

<multiplicity2><multiplicity1>
subject related <binding1> <binding2>class class

(a)

2..15
Carpool

0..1 ◄ belongs to
Person |?X?

(b)

 ORN FOR DATABASE APPLICATIONS 42

“glue” that identifies and holds these objects together. The glue can provide a
weak bond, a super bond as for composite objects, or somewhere in between.

• Bindings indicate the degree of “binding” between related objects by indicating
the destructibility of association links, both implicit and explicit. Here, implicit
means automatic, or system initiated, and explicit means application initiated, ei-
ther by a program or query. Implicit destructibility describes whether association
links involving an object can be implicitly destroyed when an object is deleted
and whether such destruction requires related objects to be deleted. Explicit de-
structibility describes similar rules that apply when association links are explicitly
destroyed.

• At the lowest level, bindings indicate the referential actions, or multiplicity ac-
tions, that should occur on object deletion and association link destruction. These
system actions enforce multiplicity integrity (not just referential integrity), pro-
vide the desired implicit and explicit destructibility for an association, and imple-
ment the required implicit cascading of link destruction and deletion operations
within a complex object operation.

In an <association>, the <multiplicity> and <binding> before the -to- apply to
the subject class, or role for an intra-class association, and those after the -to- apply
to the related class or role. The subject class (or role) can be viewed as the related
class (or role) and vice versa, in which case the inverse <association> applies. In
general, the inverse of b1<m1-to-m2>b2 is b2<m2-to-m1>b1, and specifically that of
<0..1-to-2..15>~? is ~?<2..15-to-0..1>. The <multiplicity> and <binding> se-
mantics for one end of an association are independent of those for the other end.
Those for the other end, however, can be “in play” on certain operations, e.g., link
destruction, and so can affect the final outcome of an operation.

Table 2.1 gives the semantics of ORN from the perspective of a subject class S in
an association A. We shall refer to this table often as we study examples of ORN
that illustrate the different bindings. One thing to keep in mind with ORN semantics
is that object deletion and a link destruction, implicit or explicit, can actually be im-
plemented as object archival then deletion and link archival then destruction. In
many databases today, it is rare to actually delete or destroy anything.

2.4 Examples

To illustrate how ORN describes association semantics, this section presents varia-
tions on the classic, normally one-to-many association between departments and em-
ployees. Instead of using “department,” however, I use “unit” since it is more ge-
neric (and shorter in length). So, the association we now focus on is: an employee
“works for” a unit. Although the semantics of some of the variations on this associa-
tion that we examine will seem odd, they make sense for other associations, which
we explore later in this chapter and Chapter 4. Here, I focus on just this one associa-
tion so the reader can focus solely on the varied multiplicities and bindings and not
have to think about new associations and their own semantic peculiarities.

Object Relationship Notation (ORN) 43

Table 2.1 ORN Semantics

⎯⎯
Semantics are given in terms of a subject class S with mul-
tiplicity m and binding b in an association A with some re-
lated class R (which could be S in a different role).

m
A … R S b

<multiplicity>: Semantics are the same as those in UML.
Essentially, m indicates a lower bound and upper bound on

b<m-to-…>…

the number of objects of type S that can be related via A to each object of type R.
An R object can be created provided this does not violate m. The check for a lower bound violation is de-
ferred until transaction commit. An A link can be created provided this does not violate m. The check for
an upper bound violation is immediate. The enforcement of m on the deletion of an S object or destruc-
tion of an A link is determined by the binding b.
<binding>: A | in b denotes a “cut” and an Implicit, i.e., system initiated, destruction of an existing A
link that must occur on deletion of an S object. An X in b denotes a “cross out” and an eXplicit, i.e., user
initiated, destruction of an A link.1
An S object deletion and an explicit A link destruction are complex object operations. Deletion of an S
object succeeds only if all existing association links involving that object are implicitly destructible. Also,
deletion of an S object or explicit destruction of an A link succeeds only if all required implicit object de-
letions succeed.
<di>: A destructibility indicator in b specifies the destructibility of an A link. The meaning of each indi-
cator is given below. This meaning can alternatively be described by the actions taken on an attempt to
destroy an A link. These actions are given in brackets. If a <di> is given after a |, it applies to implicit
link destruction; if given after an X, it applies to explicit link destruction; and if given alone, it applies to
both. If a <di> is not given, i.e., is nil, for implicit link destruction, explicit link destruction, or both, de-
fault destructibility applies to whichever.
nil Default destructibility. A link can be destroyed provided this does not violate m. 2 [Destroy the

link. If m is violated 2, raise an exception 3.]
- Negative destructibility. A link cannot be destroyed. [Raise an exception.3]
~? or ? Conditional cascade destructibility. A link can be destroyed, but if this violates m (?), the de-

struction must be cascaded (~) to the related R object, i.e., this object must be implicitly deleted.
[Destroy the link. Delete the related R object? If m is violated, yes; else no.]

~! or ! Emphatic cascade destructibility. A link can be destroyed, but the destruction must be cascaded
(~) to the related R object. [Destroy the link. Delete the related R object!]

~' or ' Tentative (or qualified) cascade destructibility. A link can be destroyed, but an attempt must be
made to cascade (~) the destruction to the related R object; however, this implicit R object dele-
tion must be undone if it fails, but is required if and only if its undoing would violate m. 2 (Think
of the ' as a “pruned back !” or as a “qualifying footnote reference” on the cascade.) [Destroy the
link. Delete the related R object.' (' – If an exception occurs on this nested complex object op-
eration, undo the delete and then, if m is violated 2, raise an exception 3.)]

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
1 - A link change done as a single operation that replaces the S object with another is not treated as an explicit link destruction relative to

class S (but is relative to R) and is allowed if allowed by other multiplicities and bindings.
2 - The check for a lower bound violation is deferred until the end of the current complex object operation.
3 - The current complex object operation is undone.
⎯⎯⎯

The generic class diagram for the “works for” association is shown in Fig. 2.4

with variables given for the multiplicities and bindings. Also, included in the figure
is the syntactical representation of the <association>, given in terms of these vari-
ables. The examples discussed in this section are created by assigning different mul-
tiplicities and bindings to these variables.

In discussing the variations on the “works for” association, we derive the precise
meaning of each binding by paraphrasing from Table 2.1 while making appropriate

 ORN FOR DATABASE APPLICATIONS 44

variable substitutions. A is always “works for.” S = Unit, R = Employee, m = mU,
and b = bU to derive the meaning of a Unit binding. To derive the meaning of an
Employee binding, S = Employee, R = Unit, m = mE, and b = bE.

Fig. 2.4 Class diagram for “works for” association with variable multiplicities and bindings

2.4.1 <*-to-*>

This <association> imposes no constraints on the “works for” association. A unit
can contain none or infinitely many employees, and each employee can belong to
none or infinitely many units. The bindings for both classes are default since no
binding symbols are given The class diagram is shown in Fig. 2.5 (which is the dia-
gram in Fig. 2.4 where mU = mE = * and bU = bE = nil).

Fig. 2.5 Class diagram for a <*-to-*> “works for” association

The default binding for Unit implies both implicit default binding and explicit de-
fault binding. ORN semantics require that an object cannot be deleted unless all as-
sociations that it has with other objects can be implicitly destroyed. This means that
when an object of type Unit is deleted, all links that it has with other objects, includ-
ing any Employee objects, must be implicitly destructible. The implicit binding for
a deleted object’s class, e.g., Unit, in an association, e.g., “works for,” determines
whether such implicit destruction of the links of the association type is allowed.

Thus, the implicit default binding for the Unit class in the “works for” association
applies when a Unit object is deleted and means (paraphrasing from the nil case for a
destructibility indicator in Table 2.1): a “works for” link can be destroyed provided
this does not violate the * multiplicity. A *, i.e., 0..*, multiplicity is never violated.
Thus, a unit can always be deleted, even if it has some employees (unless the dele-
tion is disallowed by other associations in which it is involved). The referential ac-
tions given for the default binding in Table 2.1 make it clear (if it was not already)
that deletion of a unit results only in the implicit destruction of the “works for” links
with related employees; the related employees are retained.

*
Unit Employee

◄ works for*

mE

Unit
mU ◄ works for

Employee bU bE

bU<mU-to-mE>bE

Object Relationship Notation (ORN) 45

The explicit default binding for Unit applies when a “works for” link is explicitly
destroyed and means (again, paraphrasing from Table 2.1): the link can be destroyed
provided this does not violate the * multiplicity. Again, a * is never violated. Thus, a
“works for” link can always be explicitly destroyed, at least based on the Unit multi-
plicity and binding. For explicit destruction, however, the multiplicities and bind-
ings at both ends of an association are applicable.

The implicit default binding for the Employee class in the “works for” associa-
tion applies when an Employee object is deleted and means (paraphrasing from Ta-
ble 2.1, now where S = Employee and R = Unit): a “works for” link can be de-
stroyed provided this does not violate the * multiplicity. A * is never violated. Thus,
an employee can always be deleted.

The explicit default binding for Employee applies when a “works for” link is ex-
plicitly destroyed and means (paraphrasing from Table 2.1): the link can be de-
stroyed provided this does not violate the * multiplicity. A * is never violated. Thus,
a “works for” link can always be explicitly destroyed, based on the multiplicities and
explicit bindings at both ends of the association.

2.4.2 <1-to-*>

This <association> may be the most appropriate description for the “works for” as-
sociation. It is the one shown in the class diagram of Fig. 1.22. A unit can contain
any number of employees but each employee must belong to one and only one unit.
The association exemplifies the use of a default binding with a constrained multiplic-
ity lower bound and upper bound. The class diagram is shown in Fig. 2.6 (which is
the diagram in Fig. 2.4 where mU = 1, mE = *, and bU = bE = nil).

Fig. 2.6 Class diagram for a <1-to-*> “works for” association

The 1, or more precisely the 1..1, multiplicity for Unit in this association imposes
constraints on object and link creation. Paraphrasing the second paragraph under
<multiplicity> in Table 2.1: an Employee object can be created provided this does
not violate the 1 multiplicity. The check for a lower bound violation (of 1) is de-
ferred until transaction commit (i.e., delayed until the commit of the application-
defined transaction). A “works for” link can be created provided this does not vio-
late the 1 multiplicity. The check for an upper bound violation (of 1) is immediate
(i.e., done as part of the current operation). Thus, an employee cannot be created
unless it is linked to a unit, and an employee cannot be linked to more than one unit.

The implicit default binding for the Unit class in the “works for” association ap-
plies when a Unit object is deleted and means (paraphrasing from Table 2.1): a

*
Unit

1
◄ works for

Employee

 ORN FOR DATABASE APPLICATIONS 46

“w

ans (paraphrasing from Table 2.1): the link can be destroyed pro-
vid

places the Unit object with an-
oth

 for” link is
all

 now explain the last of the fine print. I do so in
the

struction or change. Such an operation takes place within its own inter-
nal

orks for” link can be destroyed provided this does not violate the 1 multiplicity.
The 1 is violated if the Unit object being deleted is linked to an Employee object
because an employee must belong to a unit. Thus, a unit cannot be deleted if it has
any employees. It can, however, be deleted if it has no employees (at least based on
this association).

The explicit default binding for Unit applies when a “works for” link is explicitly
destroyed and me

ed this does not violate the 1 multiplicity. Here again, the 1 is violated because
an employee must belong to a unit. Thus an association between a unit and an em-
ployee, once created, cannot be explicitly destroyed.

It can, however, be changed. Paraphrasing the fine print of footnote 1 in Table
2.1: A link change done as a single operation that re

er is not treated as an explicit link destruction relative to the Unit class (but is
relative to the Employee class) and is allowed if allowed by other multiplicities and
bindings. We shall soon see that this link change is allowed by the multiplicity and
binding of the Employee class, for which the link change is treated as an explicit
link destruction (since a unit is losing an employee and another is gaining one).
Thus an employee who works for a unit can be assigned to another unit.

The implicit and explicit default bindings for the Employee class mean the same
as they did in the <*-to-*> association. Explicit destruction of a “works

owed, at least based on * multiplicity and default binding for Employee. While
this allows the link change discussed in the previous paragraph, explicit destruction
of a “works for” link is stymied by the 1 multiplicity and default binding at the Unit
end of the association. By the way, a link change that exchanges one employee for
another is disallowed (see again footnote 1). Allowing such would mean an em-
ployee would be left without a unit.

Since both footnotes 2 and 3 of Table 2.1 are referenced for default destructibility
and are relevant to a 1 multiplicity, I

 context of the <1-to-*> “works for” association and an attempted deletion of the
Unit object.

With ORN an explicit object deletion is a complex object operation, as is any ex-
plicit link de

 transaction and can involve many implicit link destructions and object deletions
based on the ORN semantics of one or more associations. For a Unit object deletion,
footnote 2 means that the check for a lower bound violation of the 1, i.e., 1..1, mul-
tiplicity is not done until the end of the transaction that encompasses this complex
object operation, i.e., it is partially deferred. In most cases, deferred versus immedi-
ate checking is immaterial in understanding ORN semantics, but in some unusual
cases, it can make a difference. For example, in deleting a Unit object it is possi-
ble—though very unlikely with this association—that because of other associations
and bindings, an Employee object that was linked to the Unit object at the beginning
of the complex object deletion has been implicitly deleted by the time of its conclu-
sion. If so, deferred checking at the commit of the operation will not reveal a viola-
tion of the 1 multiplicity for this deleted Employee object. Thus, its original link to
the deleted Unit object will not cause the failure of the explicit Unit object deletion.

Object Relationship Notation (ORN) 47

Footnote 3 states that the complex object operation is undone, which means the
internal transaction that encompasses the operation is rolled back. Thus, when the
del

2.4.3 <0..1-to-*>|-

 a unit can have none or many employees and each em-
ployee may (or may not) work for a single unit. An implicit negative destructibility

m for a <0..1-to-*>|- “works for” association

ation applies when an Em-
ployee object is deleted and means (paraphrasing from Table 2.1): a “works for”
lin

2.4.4 <0..1-to-*>|-X-

the previous one except that an explicit negative destruc-
tibility binding is given for the Employee class. Since both implicit and explicit

ns (from Table 2.1): a “works for”
lin

etion of a Unit fails because, for instance, the 1 multiplicity for Unit in the “works
for” association is violated at the end of this complex operation, all implicit link de-
structions and object deletions resulting from the operation, as well as the original
explicit Unit deletion itself, are rolled back.

As we have seen, the semantics of default bindings simply enforce multiplicities.
Next, we examine the non-default bindings.

With this <association>

binding is given for Employee. The class diagram is shown in Fig. 2.7 (which is the
diagram in Fig. 2.4 where mU = 0..1, mE = *, and bU = nil, bE = |-).

Fig. 2.7 Clas

*
Unit Employee

◄ works for0..1
|-

s diagra

The |- binding for Employee in the “works for” associ

k cannot be destroyed. Thus, since ORN dictates that an object cannot be deleted
unless all existing links involving the object can be implicitly destroyed, an em-
ployee who works for a unit cannot be deleted. Such an employee’s link with a unit
would have to be explicitly destroyed, which is now allowed by the 0..1 multiplicity
and explicit default binding, before the employee could be deleted.

This <association> is like

negative destructibility are specified, the association can also be described as <0..1-
to-*>-. Its class diagram is shown in Fig. 2.8 (which is the diagram in Fig. 2.4 where
mU = 0..1, mE = *, and bU = nil, bE = |-X- or -).

The X- binding for Employee in the “works for” association applies when a
“works for” link is explicitly destroyed and mea

k cannot be destroyed. Thus, an association between a unit and an employee, once
created, cannot be explicitly destroyed.

 ORN FOR DATABASE APPLICATIONS 48

Fig. 2.8 Class diagram for a <0..1-to-*>- “works for” association

variable S is Employee and
R is Unit, and we again paraphrase footnote 1 in Table 2.1: a link change done as a
sin

 joins an employee with a unit until
“d

2.4.5 <0..1-to-1..*>?

s that each unit must have at least one worker. It exem-
plifies the use of conditional cascade destructibility with a lower bound multiplicity

m for a <0..1-to-1..*>? “works for” associatio

 for” association applies
when an Employee object is deleted and means (paraphrasing from Table 2.1): a
“w

It can, however, be changed. For the X- binding, the

gle operation that replaces the Employee object with another is not treated as an
explicit link destruction relative to the Employee class (but is relative to the Unit
class) and is allowed if allowed by other multiplicities and bindings. This link
change is allowed by the multiplicity and binding of the Unit class, for which the
link change is treated as an explicit link destruction. Thus an employee who works
for a unit can be replaced by another employee.

This link change would not be allowed if we add the X- binding to the Unit end of
this association. An X-<0..1-to-*>- association

eath do ye part.” Here, this means until the unit is deleted because the |- binding
for Employee keeps a linked employee from being deleted. (The link change not al-
lowed by the X-<0..1-to-*>- association would also not be allowed by a <1-to-*>-
association, because an employee would be left without a unit.)

This <association> specifie

constraint. Since both |? and X? are implied by the ?, the association can also be de-
scribed as <0..1-to-1..*>|?X?, or <0..1-to-1..*>|~?X~? if the optional cascade
symbol is given. The class diagram for this association is shown in Fig. 2.9.

Fig. 2.9 Class

1..*
Unit Employee

◄ works for0..1
?

*
Unit Employee

◄ works for0..1
-

 diagra n

The |? binding for the Employee class in the “works

orks for” link can be destroyed, but if this violates the multiplicity 1..*, the de-
struction must be cascaded to the related Unit object, i.e., this object must be implic-
itly deleted. The 1 is violated if the Employee object being deleted is the only one
linked to the related Unit object. Thus, deletion of the last employee who works for
a unit causes the deletion of the unit.

Object Relationship Notation (ORN) 49

The X? binding applies when a “works for” link is explicitly destroyed and means
(from Table 2.1): a “works for” link can be destroyed, but if this violates the multi-
pli

loyees working for a unit would cause deletion of the unit. Assuming
thi

Fig. 2.10 For a rams for the
database state (a)

2.4.6 !<0..1-to-*>

plifies the use of emphatic cascade destructibility. Since
both |! and X! are implied by the !, the association can also be described as |!X!<0..1-

Fig. 2.11 Class diagram for a !<0..1-to-*> “works for” association

city 1..*, the destruction must be cascaded to the related Unit object, i.e., this ob-
ject must be implicitly deleted. Again, the 1 is violated when the Employee object
being “de-linked” from the Unit object is the only one linked to this object. Thus
terminating the “works for” relationship between a unit and its last employee termi-
nates the unit!

If the association was <0..1-to-2..*>?, then deletion or explicit delinking of one
of just two emp

s association, Fig. 2.10 shows object diagrams representing the state of a database
before and after the deletion of an employee e4. In an object diagram, circles repre-
sent objects and lines represent the association links between these objects.

<0..1-to-2..*>? association between units and employees, object diag
before and (b) after deletion of e4

This <association> exem

to-*>, or |~!X~!<0..1-to-*> if the optional cascade symbol is given. The class dia-
gram for this association is shown in Fig. 2.11.

u1

units

e1

e3

e2

e4

e5

employees

u2

(a)

units employees

(b)

e1

e2

e3

e5

u2

*
Unit Employee

◄ works for0..1
!

 ORN FOR DATABASE APPLICATIONS 50

The |! binding for th it class in the “ association applies when a
Unit object leted an means (fr .1): a “works n be de-
stroyed, but the destruction must be cascaded to the related Employee object (i.e.,
this related object must be implicitly deleted). Thus, deletion of a unit causes the

f tentative cascade destructibility. It al-
lows an employee to work for many units but each unit must have at least one em-
ployee. Since both |' and X' are implied by the ', the association can also be de-

*>. The class diagram for this association is shown in Fig.

12 Class diagram for a '<*-to-1..*> “works for” association

 class in the “works for” ociation applies when a
Unit object leted an means (fr .1): a “works n be de-
stroyed, but an attempt m st be made to cascade the destruction to the related Em-
ployee object; however, this implicit Employee object deletion must be undon if

late the * multiplicity. A *
is never violated, so the deletion of the related Employee object is never required.
Here, th

mployee who is

e Un works for”
om Table 2is de d for” link ca

implicit deletion of all employees who work for that unit.
The X! binding applies when a “works for” link is explicitly destroyed and means

(from Table 2.1): the “works for” link can be destroyed, but the destruction must be
cascaded to the related Employee object (i.e., this related object must be implicitly
deleted). Thus terminating the “works for” relationship between a unit and an em-
ployee always terminates the employee.

2.4.7 '<*-to-1..*>

This <association> exemplifies the use o

scribed as |'X'<*-to-1..
2.12.

ig. 2.

1..*
Unit Employee

◄ works for
*

'

F

e Unit assThe |' binding for th
is de d

u
om Table 2 for” link ca

e
it fails, but is required if and only if its undoing would vio

e attempted deletion of a related object fails if it is the only Employee object
related to another Unit object. It fails because of the lower bound 1 multiplicity and
default implicit binding for the Employee class, which does not permit the implicit
destruction of an existing link when the multipicity is violated. Thus, deletion of a
unit causes the implicit deletion of all employees who work for that unit except any
such employee who is the only employee working for another unit.

The X' binding applies to the explicit destruction of a “works for” link. Its mean-
ing is similar to that of the |' binding. Essentially, on explicit destruction of a link,
the related Employee object is implicitly deleted unless it is the only Employee ob-
ject linked to another Unit object.

Let us suppose that on deletion of a unit or explicit destruction of an employee’s
working relationship with a unit, we do not want to delete any e

Object Relationship Notation (ORN) 51

wo

s with other units are deleted. Assuming this as-
so

Fig. 2.13 For a ms for the da-
tabase state (a) be

We now revisit the company database example given at the end of Chapter 1. Fig.
2.14 shows the same extended class diagram that was given in Fig. 1.24 (a). The ex-
tensions to the diagram—i.e., the ORN bindings, both explicit and default—can now

s presented in this chapter.

Fig. 2.14 ORN-extended class diagram for part of a company database

rking for another unit. Then, the <association> should be '<*-to-1..*>|-. Now,
the |- binding for the Employee class blocks the implicit destruction of an existing
link on an attempted deletion of an employee, thus making it fail. Employees, how-
ever, who do not have existing link

ciation, Fig. 2.13 shows object diagrams representing the state of a database before
and after the deletion of a unit u3. The “blockage” provided by the |- is independent
of the Employee multiplicity and so would also work for a '<*-to-*>|- association
between units and employees.

 '<*-to-1..*>|- association between units and employees, object diagra

fore and (b) after deletion of u3

2.5 Flashback to the Company Database

be examined and understood based on ORN semantic

*
Employee

1 ◄ works for
Carpool

2..15 0..1belongs to ►

♦
Unit

 0..1
parent

*
child

consists of ►

'

?
riders

u1

u3

units

e1

e3

e2

e4

e5

employees

u2

(a)

u1

units

e1

e3

employees

u2

e4

(b)

 ORN FOR DATABASE APPLICATIONS 52

Repeated be w ar riptions of relevant i n or th
plicatio at could not be modeled in ard lass diagram. The a
bindings and multiplicities that represent each sem in the extended-ORN class

en within parentheses. Also given within these parentheses is a ref-
erence a subsection of Section 2.4 that describes a semantically similar variation
of th or” association between employees and units. Hopefully now, after a

ed in a class diagram by
der.

•

s for” association,

•

•

the
ma se system. The visualization pro-

OR

lo e the desc assoc ation sema tics f is ap-
pplicablen th the stand c

antic
diagram are giv

 to
e “works f

bit of study, how these nontrivial semantics can be represent
simply adding two symbols—' and ?—will be clear to the rea

If an attempt is made to explicitly remove a unit that has employees working for
it, an error should result because all employees must work for a unit (the implicit
default binding and 1 multiplicity for Unit in the “works for” association, see Sec-
tion 2.4.2).

• If a unit is removed, all subordinate, i.e., component or child, units should be
automatically removed unless those units still have employees working for them
(the |' binding for the parent end of the “consists of” association along with the
implicit default binding and 1 multiplicity for Unit in the “work
see Section 2.4.7). Such units may remain independent (the 0..1 multiplicity for
the parent end of the “consists of” association) or later be placed within another
unit.
If a unit is removed from its parent unit, similar semantics should apply. It and all
of its subordinate units should be automatically removed unless they have em-
ployees working for them (the X' binding for the parent end of the “consists of”
association along with the implicit default binding and 1 multiplicity for Unit in
the “works for” association, see Section 2.4.7).
A carpool is defined by having at least two riders, so that if the number of riders
falls below two, either because of employee terminations or because employees
quit the carpool, the carpool really no longer exists and so should be automatically
removed (the ? binding and 2..15 multiplicity for Employee in the “belongs to”
association, see Section 2.4.5).

The next chapter discusses a tool that allows the reader to very easily model all of
 associations presented in this chapter using ORN and to readily observe their se-
ntics being automatically enforced by a databa

vided by this type of tool is intended to help the user become competent at using
N.

http://www.springer.com/978-0-387-09553-0

