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Abstract The linear algebra problems are an important part of many algorithms,
such as numerical solution of PDE systems. In fact, up to 80% or even more of com-
puting time in this kind of algorithms is spent for linear algebra tasks. The paral-
lelization of such solvers is the key for parallelization of many advanced algorithms.
The mathematical objects library ParSol not only implements some important lin-
ear algebra objects in C++, but also allows for semiautomatic parallelization of data
parallel and linear algebra algorithms, similar to High Performance Fortran (HPF).
ParSol library is applied to implement the finite difference scheme used to solve
numerically a system of PDEs describing a nonlinear interaction of two counter-
propagating laser waves. Results of computational experiments are presented.

1 Introduction

The numerical solution of PDEs and systems of PDEs is the basis of mathematical
modeling and simulation of various important industrial, technological, and engi-
neering problems. The requirements for the size of the discrete problem and speed
of its solution are growing every day, and parallelization of PDE solvers is one of
the ways to meet those requirements. All the most popular PDE solvers today have
parallel versions available. However, new methods and tools to solve PDEs and sys-
tems of PDEs appear constantly, and parallelization of these solvers becomes a very
important task. Such a goal becomes even more urgent as multicore computers and
clusters of such computers are used practically in all companies and universities.
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Let us consider parallelization details of such well-known PDE solvers as Claw-
pack [13], Diffpack [12], DUNE [4], OpenFOAM [16], PETSc [1], and UG [3]. All
of them share common features:

1. Parallelization is implemented on discretization and linear algebra layers, where
parallel versions of linear algebra data structures and algorithms are provided.
Data parallel parallelization model is used in all cases.

2. Using the PDE solvers, the user can produce parallel version of the code semi-
automatically, however, it is required to specify how data is divided among pro-
cessors and to define a stencil used in the discretization step.

3. The parallelization code is usually tightly connected with the rest of the solver,
making it practically impossible to reuse the code for the parallelization of an-
other PDE solver. However, widespread low-level parallelization libraries, espe-
cially MPI [17], are used for actual interprocess communications.

All these features, except for the tight connection to the rest of the code, are
important and are used in our tool. However, the tight integration with the solvers
prevents the reuse of parallelization code. For quick and efficient parallelization of
various PDE solvers, a specific library should be used.

Many parallelization libraries and standards exist; they may be grouped by par-
allelization model they are using. The following models are the most popular ones:

Multithreading. This model is best suited for the Symmetric Multiprocessing
(SMP) type of computers. OpenMP standard is a good representative of this
model. However, this model is not suited for computer clusters and distributed
parallel memory computers.

Message passing.  This model is best suited for systems with distributed memory,
such as computer clusters. MPI [17] and PVM [8] standards are good represen-
tatives of this model. However, this is a low-level model and it is difficult to use
it efficiently.

Data parallel. This model is ideal if we want to achieve semi-automatic paral-
lelization quickly. HPF [10] and FreePOOMA are good representatives of this
model. However, in its pure form this model is pretty restricted in functionality.

Global memory. This parallel programming model may be used for paralleliza-
tion of almost any kind of algorithms. PETSc [2] and Global Arrays [14] li-
braries are good representatives of this model. However, the tools implementing
this model are difficult to optimize, which may produce inefficient code.

The conclusions above allow us to say that modern parallelization tools are still not
perfect for parallelization of PDE solvers. In this chapter, the new parallelization
library is described. Its main goal is parallelization of PDE solvers.

Our chapter is organized as follows. In Sect. 2, we describe main principles and
details of the implementation of the library. The finite difference scheme for solu-
tion of one problem of nonlinear optics is described in Sect. 3. This algorithm is
implemented by using ParSol tool. The obtained parallel algorithm is tested on the
cluster of PCs in Vilnius Gediminas Technical University (VGTU). Results of com-
putational experiments are presented. Some final conclusions are made in Sect. 4.
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2 The Principles and Implementation Details of ParSol Library

The ParSol library was designed to overcome some problems of the models men-
tioned above. It employs the elements of both data parallel and global memory
parallel programming models. From the data parallel model, the library takes par-
allelizable objects and operations with them. For linear algebra, these objects are
arrays, vectors, matrices. It is important to note that BLAS level 2 compatible op-
erations are implemented in sequential and parallel modes. The same functionality
was previously implemented in HPF and PETSc tools.

In order to overcome the lack of features of the data parallel model, ParSol
library utilizes some elements of global memory model. Like in global memory
model, arrays and vectors in the library have global address space. However, there
are strict limits for the interprocess communications. Any given process can com-
municate with only a specified set of the other processes, and to exchange with
them elements defined by some a priori stencil. Such a situation is typical for many
solvers of PDEs. It is well-known that for various difference schemes, only certain
neighbour elements have to be accessed. The position of those neighbor elements is
described by stencil of the grid.

Rather than trying to guess the shape of stencil from the program code, as HPF
does, the library asks the programmer to specify the stencil, providing convenient
means for that. While requiring some extra work from the programmer, it allows
one to specify the exact necessary stencil to reduce the amount of transferred data
to the minimum.

2.1 Main Classes of ParSol

Next we list the main classes of the ParSol library:

Arrays  are the basic data structure, which may be automatically parallelized.

Vectors are arrays with additional mathematical functionality of linear algebra.
Vectors are more convenient for numerical algorithms, whereas arrays are good
for parallelization of algorithms where the data type of arrays does not support
linear algebra operations.

Stencils are used to provide information about which neighbor elements are
needed during computations.

Matrices are used in matrix vector multiplications and other operations that arise
during solution of linear systems.

Array elements  are internally stored in 1D array; however, the user is provided
with multidimensional element indexes. The index transformations are optimized
thus the given interface is very efficient. Also, arrays implement dynamically
calculated boundaries, which are adjusted automatically in parallel versions.

Cyclic arrays  are implemented in a specific way, using additional shadow ele-
ments where the data is copied from the opposite side of the array. This increases
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array footprint slightly and requires user to specify data exchange directives even
in a sequential version; however, the element access does not suffer, as no addi-
tional calculations are necessary.

ParSol arrays  are implemented as template classes, so it is possible to have arrays
of various data types, such as integers, floats or complex numbers.

Vectors  provide additional functionality on top of the arrays, such as global oper-
ations, multiplication by a constant, and calculation of various norms. All these
operations make a basis of many popular numerical algorithms used to solve
PDEs and systems of such equations.

The library provides the user with both dense and sparse matrices. The dense
matrices are stored in 2D array, whereas sparse matrices are stored in the CSR
(Compressed Sparse Row) format. We note that the same format is used in PETSc
library [2, p. 57]. For sparse matrices, it is possible to estimate a priori the number
of preallocated elements if the stencil of the vector is known. The matrix dimen-
sions are defined at the creation stage, using a vector given in the constructor of
the matrix (thus matrix inherits a lot of its properties that the matrix will be used in
conjunction with).

The parallelization scheme is shown in Fig. 1. The arrays (and thus vectors) are
divided among processors depending on the given topology of processors. Simi-
lar to the case of stencils, the library provides an interface for setting the topology
through special Topology classes and the stencil. When data exchange starts, neigh-
bour elements are copied to the shadow area, where they must be read-only. Several
methods of data exchange are implemented in ParSol: all-at-once, pair-by-pair, and
pair-by-pair-ordered.
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Fig. 1 Transition from sequential to parallel array: (a) the sequential array and its stencil, (b) part
of the parallel array for one processor.
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Fig. 2 Class diagram of ParSol arrays and vectors.

2.2 Implementation of ParSol

The library has been implemented in C++ [18], using such C++ features as OOP,
operator overloading, and template metaprogramming [9]. This implementation is
similar to such numerical libraries as Boost++ and FreePOOMA. Only standard
C++ features are used, resulting in high portability of the library. As the library
uses some advanced C++ features, modern C++ compilers are required.

MPI-1.1 standard is used for the parallel version of the library. The parallel ver-
sions of the classes are implemented as children of sequential analogical classes,
ensuring that the code should not be changed much during parallelization. The size
of the library code is ~ 20000 lines, with ~ 10000 more lines for regression tests.
ParSol consists of more than 70 various classes, a subset of which is shown in Fig. 2.
The library is available on the Internet at http://techmat.vgtu.lt/"alexj/ParSol/.

3 Parallel Algorithm for Simulation of Counter-propagating
Laser Beams

In the domain (see Fig. 3)

D={0<z<L, 0<x <L, k=1,2}
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Fig. 3 Scheme of the interaction of counter-propagating laser pulses.

dimensionless equations and boundary conditions describing the interaction of two
counter-propagating laser beams are given by [15]:

AT A+ 2
% o ZDk +zv(05\A+\2+lA|) =0,

AT 0AT z
% o4 ZDk +zy(05\A >+ |ATH)AT =0,

2 _ mk
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Here A* are complex amplitudes of counter-propagating pulses, y characterizes the

nonlinear interaction of laser pulses, x are coordinates of the beam center, r,; are

radius of input beam on the transverse coordinates, and Ay(¢) is a temporal depen-

dence of input laser pulses. In the boundary conditions, Ry is the reflection coeffi-

cient of the mirror, R, are the radius of the hole along the transverse coordinates,

Xk are coordinates of the hole center, and R,,;; characterize curvature of the mirror.
At the initial time moment, the amplitudes of laser pulses are equal to zero

Ai(z,xl,xz,O) =0, (zx1,x)€E€D.

Boundary conditions along transverse coordinates are equal to zero.

We note that in previous papers, the mathematical model was restricted to 1D
transverse coordinate case.

3.1 Invariants of the Solution

It is well-known that the solution of the given system satisfies some important invari-
ants [19]. Here we will consider only one of such invariants. Multiplying differential
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equations by (A*)* and integrating over
O(z.t,h) = [z— h,2)  [0,L] % [0,L] x [t — h,1],

we prove that the full energy of each laser pulse is conserved during propagation
along the characteristic directions z +1¢:

AT @)l =A@ —ht=h)ll, [A~—hn)l=[A"@t=n), @)

where the L, norm is defined as

Ly Ly
HA(z,t)sz/O /0 |A|? dxydxs.

This invariant describes a very important feature of the solution and therefore
it is important to guarantee that the discrete analogs are satisfied for the numerical
solution. In many cases, this helps to prove the existence and convergence of the
discrete solution.

3.2 Finite Difference Scheme

In the domain [0, 7] x D, we introduce a uniform grid Q = €, x Q, X €,, where

Q ={t"=nh, n=0,...,N}, Q ={z;=jh, j=0,....J},

Q. = {(x11,%m), X =mhy, k=1,2, m=0,...,.M}.

In order to approximate the transport part of the differential equations by using the
finite differences along the characteristics z +-¢, we take 4, = h;.
Let us denote discrete functions, defined on the grid €2 by
+,
ES" = E* (2,11, X0m,1").

judm

We also will use the following operators: B(E,W) = y(0.5|E[> + |W|?),

+,n +,n—1 —.n —,n—1
s EHEDT L ECIHE

2 ’ 2 ’
Eirvim—2Ejm+Ej;1m

Ejim1—2E; jm+Ej|m1
h2 ’
X

h

DE;jn =D +Dy

Then the system of differential equations is approximated by the following finite
difference scheme
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with corresponding boundary and initial conditions.
We will prove that this scheme is conservative, i.e., the discrete invariants are

satisfied for its solution. Let us define the scalar product and L, norm of the discrete
functions as

M—-1M-1

wv)=Y3 3 UnVihi, |UI*=(U,0U).
=1 m=1

Taking a scalar product of equations (2) by £ and E~ respectively and considering

the real parts of the equations, we get that the discrete analogs of the invariants (1)
are satisfied

. n—1 - —n—1 ;
IES" I =NEZ N, NE N =1E;" N, j=1..d.

Finite difference scheme is nonlinear, thus at each time level " and for each
j=1,...,J the simple linearization algorithm is applied:

E;_’n’ﬁ—l _ E-."_’n_l

. Jj—1 —‘y—i.@E_‘;"SJrl + iﬁ(E;r,sjE;.s)E;ns -0, 3)
t
Ef,n,erl o f,nfl

j—1 B J +i.@E_‘;"Y+1 +lﬁ(E—.;v,E—~j+,s)E—~;r :07

where the following notation is used

+,n,5 +,n—1 —.,n,s —,n—1
o BT TES o BT TE
2 ’ 2

The iterations are continued until the convergence criterion

Ei,s—H B

+,5 +.5
rr}2x| P E,"| <& Hllr%X‘Elm |+ &, €,6>0

is valid. It is important to note that iterative scheme also satisfies the discrete
invariant
i, n—1 =, —n—1
IES™ I =1EZT L IEZY I =1, s>1.

For each iteration defined by (3) two systems of linear equations must be solved
to find vectors E;“"’SH and E;'}*SH. This is done by using the 2D FFT algorithm.
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3.3 Parallel Algorithm

The finite difference scheme, which is constructed in the previous section, uses the
structured grid, and the complexity of computations at each node of the grid is ap-
proximately the same (it depends on the number of iterations used to solve a nonlin-
ear discrete problem for each z;). The parallelization of such algorithms can be done
by using domain decomposition (DD) paradigm [11], and ParSol is exactly targeted
for such algorithms.

In this chapter, we apply the 1D block domain decomposition algorithm, decom-
posing the grid only in z direction. Such a strategy enables us to use a sequential
version of the FFT algorithm for solution of the 2D linear systems with respect to
(x,y) coordinates.

This parallel algorithm is generated semiautomatically by ParSol. The parallel
vectors, which are used to store discrete PDE solutions, are created by specifying
three main attributes:

o the dimension of the parallel vector is 3D;
o the topology of processors is 1D and only z coordinate is distributed;
e the 1D grid stencil is defined by the points (zj—1,2j,2j+1)-

Thus in order to implement the computational algorithm, the kth processor (k =
0,1,...,p) defines its subgrid as well as its ghost points Q(k), where

Q(k) = {(zj,x1,%2m), zj € Q:(k), (x17,X2m) € Ly},
Q.(k) ={zj: julk) <j < jrlk)},
jL(k> = max(jL(k) - 1’0)’ jR = mln(JR(k) + 1"])'

At each time step ¢ and for each j = 1,2,...,J, the processors must exchange
some information for ghost points values. As the computations move along the
characteristics z &-¢, only a half of the full data on ghost points is required to be
exchanged. Thus the kth processor

e sends to (k+1)th processor vector E; " and receives from it vector EJZ’",
s R>

e sends to (k—1)th processor vector E;L" and receives from it vector Ejf T
’ Ly

Obviously, if k =0 or k = (p — 1), then a part of communications is not done. In
ParSol, such an optimized communication algorithm is obtained by defining tem-
poral reduced stencils for vectors ET and E~; they contain ghost points only in the
required directions but not in both.

Next we present a simple scalability analysis of the developed parallel algo-
rithm. The complexity of the serial algorithm for one time step is given by W =
KJ(M + 1)*(71 + plogM), where y; (M + 1)? estimates the CPU time required to
compute all coefficients of the finite-difference scheme, 1% (M + 1)>logM defines
the costs of FFT algorithm, and K is the averaged number of iterations done at one
time step.
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Let us assume that p processors are used. Then the computational complexity
of parallel algorithm depends on the size of the largest local grid part given to one
processor. It is equal to

Ty comp = Oglfgp[((k)([(]+ 1)/p]+1)(M+1)* (11 + plogM),

where [x] denotes a smallest integer number larger than or equal to x. This formula
includes costs of extra computations involving ghost points.

Data communication time is given by T comm = 2(0 + (M +1)?); here « is
the message startup time and f3 is the time required to send one element of data. We
assume that communication between neighbour processors is done in parallel. Thus
the total complexity of the parallel algorithm is given by

T, = O?I?EPK(I()([(J—# 1)/p]1+1)(M+1)*(1i + plogM) +2 (o + B(M +1)%).

3.4 Results of Computational Experiments

The parallel code was tested on the cluster of PCs at Vilnius Gediminas Techni-
cal University. It consists of Pentium 4 processors (3.2GHz, level 1 cache 16kB,
level 2 cache 1MB) interconnected via Gigabit Smart Switch (http://vilkas.vgtu.lt).
Obtained performance results are presented in Table 1. Here for each number of
processors p, the coefficients of the algorithmic speed up S, = T1 /T, and efficiency
E, =S, /p are presented. The size of the discrete problem is M = 31 and J = 125.

More applications of the developed parallelization tool ParSol are described
in [5, 6, 7].

4 Conclusions

The new tool of parallel linear algebra objects ParSol employs elements of both data
parallel and global memory parallel programming models. In the current version
the main objects, i.e., arrays, vectors and matrices, are targeted for structured grids.
The interface for 1D, 2D, and 3D linear algebra objects is done. The algorithm

Table 1 Results of computational experiments on Vilkas cluster.

M J p=1 p=2 p=4 p= p=12

Sp 31 125 1.0 1.87 3.46 5.86 7.83
E, 31 125 1.0 0.94 0.87 0.73 0.65
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implemented by ParSol objects is parallelized semi-automatically, by specifying the
stencil of the grid, topology of processors, and data communication points in the
algorithm.

ParSol is applied to parallelize one numerical algorithm, which is developed
to simulate the nonlinear interaction of two counter-propagating nonlinear optical
beams. It is shown how the specific features of the algorithm can be taken into
account to minimize the amount of data communicated between processors. The
results of numerical experiments show a good efficiency of the obtained parallel
numerical algorithm.
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