
Preface

This is the second volume of a text on the theory and practice of maximum
penalized likelihood estimation. It is intended for graduate students in sta-
tistics, operations research, and applied mathematics, as well as researchers
and practitioners in the field. The present volume was supposed to have a
short chapter on nonparametric regression but was intended to deal mainly
with inverse problems. However, the chapter on nonparametric regression
kept growing to the point where it is now the only topic covered. Perhaps
there will be a Volume III. It might even deal with inverse problems. But
for now we are happy to have finished Volume II.

The emphasis in this volume is on smoothing splines of arbitrary order,
but other estimators (kernels, local and global polynomials) pass review
as well. We study smoothing splines and local polynomials in the context
of reproducing kernel Hilbert spaces. The connection between smoothing
splines and reproducing kernels is of course well-known. The new twist is
that letting the inner product depend on the smoothing parameter opens up
new possibilities: It leads to asymptotically equivalent reproducing kernel
estimators (without qualifications) and thence, via uniform error bounds
for kernel estimators, to uniform error bounds for smoothing splines and,
via strong approximations, to confidence bands for the unknown regression
function. It came as somewhat of a surprise that reproducing kernel Hilbert
space ideas also proved useful in the study of local polynomial estimators.
Throughout the text, the reproducing kernel Hilbert space approach is used
as an “elementary” alternative to methods of metric entropy. It reaches its
limits with least-absolute-deviations splines, where it still works, and total-
variation penalization of nonparametric least-squares problems, where we
miss the optimal convergence rate by a power of log n (for sample size n).

The reason for studying smoothing splines of arbitrary order is that one
wants to use them for data analysis. The first question then is whether
one can actually compute them. In practice, the usual scheme based on
spline interpolation is useful for cubic smoothing splines only. For splines
of arbitrary order, the Kalman filter is the bee’s knees. This, in fact,
is the traditional meeting ground between smoothing splines and repro-
ducing kernel Hilbert spaces, by way of the identification of the standard
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smoothing problem for Gaussian processes having continuous sample paths
with “generalized” smoothing spline estimation in nonparametric regres-
sion problems. We give a detailed account, culminating in the Kalman
filter algorithm for spline smoothing.

The second question is how well smoothing splines of arbitrary order
work. We discuss simulation results for smoothing splines and local and
global polynomials for a variety of test problems. (We avoided the usual
pathological examples but did include some nonsmooth examples based on
the Cantor function.) We also show some results on confidence bands for
the unknown regression function based on undersmoothed quintic smooth-
ing splines with remarkably good coverage probabilities.
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