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Smoothing Splines

1. Introduction

In this section, we begin the study of nonparametric regression by way of
smoothing splines. We wish to estimate the regression function fo on a
bounded interval, which we take to be [ 0 , 1 ], from the data y1,n, · · · , yn,n,
following the model

(1.1) yin = fo(xin) + din , i = 1, 2, · · · , n .

Here, the xin are design points (in this chapter, the design is deterministic)
and dn = (d1,n, d2,n, · · · , dn,n)T is the random noise. Typical assump-
tions are that d1,n, d2,n, · · · , dn,n are uncorrelated random variables, with
mean 0 and common variance, i.e.,

(1.2) E[ dn ] = 0 , E[ dndT

n ] = σ2 I ,

where σ is typically unknown. We refer to this as the Gauss-Markov model,
in view of the Gauss-Markov theorem for linear regression models. At
times, we need the added condition that

(1.3)
d1,n, d2,n, · · · , dn,n are iid and

E[ d1,n ] = 0 , E[ | d1,n |κ ] <∞ ,

for some κ > 2. A typical choice is κ = 4.
A more restrictive but generally made assumption is that the din are iid

normal random variables with mean 0 and again with the variance σ2

usually unknown, described succinctly as

(1.4) dn ∼ Normal( 0 , σ2 I ) .

This is referred to as the Gaussian model.
Regarding the regression function, the typical nonparametric assumption

is that fo is smooth. In this volume, this usually takes the form

(1.5) fo ∈ Wm,2(0, 1)

for some integer m , m � 1. Recall the definition of the Sobolev spaces
Wm,p(a, b) in (12.2.18). Assumptions of this kind are helpful when the
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data points are spaced close together, so that the changes in the function
values fo(xin) for neighboring design points are small compared with the
noise. The following exercise shows that in this situation one can do better
than merely “connecting the dots”. Of course, it does not say how much
better.

(1.6) Exercise. Let xin = i/n, i = 1, 2, · · · , n, and let yin satisfy (1.1),
with the errors satisfying (1.2). Assume that fo is twice continuously
differentiable. For i = 2, 3, · · · , n− 1,
(a) show that

1
4

{
fo(xi−1,n) + 2 fo(xin) + fo(xi+1,n)

}
= fo(xin) + (1/n)2 fo

′′(θin)

for some θin ∈ (xi−1,n , xi+1,n ) ;
(b) compute the mean and the variance of

zin = 1
4

{
yi−1,n + 2 yin + yi+1,n

}
;

(c) compare the mean squared errors

E[ | zin − fo(xin) |2 ] and E[ | yin − fo(xin) |2 ]

with each other (the case n →∞ is interesting).

In this chapter, we study the smoothing spline estimator of differential
order m , the solution to

(1.7)
minimize 1

n

n∑

i=1

| f(xin)− yin |2 + h2m ‖ f (m) ‖2

subject to f ∈Wm,2(0, 1) .

(The factor 1
n appears for convenience; this way, the objective function

is well-behaved as n → ∞. The funny choice h2m vs. h2 or h is more
convenient later on, although this is a matter of taste.) The solution is
denoted by fnh. The parameter h in (1.7) is the smoothing parameter.
In this chapter, we only consider deterministic choices of h . Random
(data-driven) choices are discussed in Chapter 18, and their effects on the
smoothing spline estimator are discussed in Chapter 22.

The solution of (1.7) is a spline of polynomial order 2m . In the literature,
the case m = 2 is predominant, and the corresponding splines are called
cubic splines. The traditional definition of splines is discussed in Chapter 19
together with the traditional computational details. The modern way to
compute splines of arbitrary order is discussed in Chapter 20.

The following questions now pose themselves: Does the solution of (1.7)
exist and is it unique (see § 3), and how accurate is the estimator (see
§ 4 and § 14.7)? To settle these questions, the reproducing kernel Hilbert
space setting of the smoothing spline problem (1.7) is relevant, in which
Wm,2(0, 1) is equipped with the inner products

(1.8)
〈
f , g

〉
m,h

=
〈
f , g

〉
+ h2m

〈
f (m) , g(m)

〉
,
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where
〈
· , ·
〉

is the usual L2(0, 1) inner product. Then, Wm,2(0, 1) with
the

〈
· , ·
〉

m,h inner product is a reproducing kernel Hilbert space with the
reproducing kernel indexed by the smoothing parameter h . Denoting the
reproducing kernel by Rmh( s , t ), this then gives the reproducing kernel
property

(1.9) f(x) =
〈
f , Rmh(x , · )

〉
m,h

, x ∈ [ 0 , 1 ] ,

for all f ∈ Wm,2(0, 1) and all h , 0 < h � 1.
The reproducing kernel shows up in various guises. For uniform designs

and pure-noise data, the smoothing spline estimator is approximately the
same as the solution ψnh of the semi-continuous version of the smoothing
spline problem (1.7), viz.

(1.10)
minimize ‖ f ‖2 − 2

n

n∑

i=1

yin f(xin) + h2m ‖ f (m) ‖2

subject to f ∈ Wm,2(0, 1) .

The authors are tempted to call ψnh the C-spline estimator, C being short
for “continuous”, even though ψnh is not a polynomial spline. The repro-
ducing kernel now pops up in the form

(1.11) ψnh( t ) = 1
n

n∑

i=1

yinRmh( t , xin) , x ∈ (0, 1) ,

because Rmh( t, x) is the Green’s function for the Sturm-Liouville bound-
ary value problem

(1.12)
(−h2)m u(2m) + u = w , t ∈ (0, 1) ,

u(�)(0) = u(�)(1) = 0 , m � � � 2m− 1 .

That is, the solution of (1.12) is given by

(1.13) u( t ) =
∫ 1

0

Rmh( t , x )w(x) dx , t ∈ [ 0 , 1 ] .

With suitable modifications, this covers the case of point masses (1.11).
In § 14.7, we show that the smoothing spline estimator is extremely well-
approximated by

(1.14) ϕnh( t ) =
∫ 1

0

Rmh( t, x) fo(x) dx + 1
n

n∑

i=1

dinRmh( t , xin)

for all t ∈ [ 0 , 1 ]. In effect, this is the equivalent reproducing kernel
approximation of smoothing splines, to be contrasted with the equivalent
kernels of Silverman (1984). See also § 21.8. The reproducing kernel setup
is discussed in § 2.

In § 5, we discuss the need for boundary corrections and their construc-
tion by way of the Bias Reduction Principle of Eubank and Speckman

(1990b). In §§ 6–7, we discuss the boundary splines of Oehlert (1992),
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which avoids rather than corrects the problem. Finally, in § 9, we briefly
discuss the estimation of derivatives of the regression function.

Exercise: (1.6).

2. Reproducing kernel Hilbert spaces

Here we begin the study of the smoothing spline estimator for the problem
(1.1)–(1.2). Recall that the estimator is defined as the solution to

(2.1)
minimize Lnh(f) def= 1

n

n∑

i=1

| f(xin)− yin |2 + h2m ‖ f (m) ‖2

subject to f ∈Wm,2(0, 1) .

Here, h is the smoothing parameter and m is the differential order of the
smoothing spline. The solution of (2.1) is a spline of polynomial order 2m
(or polynomial degree 2m− 1). At times, we just speak of the order of the
spline, but the context should make clear which one is meant.

The design points are supposed to be (asymptotically) uniformly dis-
tributed in a sense to be defined precisely in Definition (2.22). For now,
think of the equally spaced design xin = tin with

(2.2) tin =
i− 1
n− 1

, i = 1, 2, · · · , n .

The first question is of course whether the point evaluation functionals
f �−→ f(xin) , i = 1, 2, · · · , n , are well-defined. This has obvious implica-
tions for the existence and uniqueness of the solution of (2.1). Of course,
if these point evaluation functionals are well-defined, then we are dealing
with reproducing kernel Hilbert spaces. In Volume I, we avoided them more
or less (more !) successfully, but see the Klonias (1982) treatment of the
maximum penalized likelihood density estimator of Good and Gaskins

(1971) in Exercise (5.2.64) in Volume I. For spline smoothing, the use of
reproducing kernel Hilbert spaces will have far-reaching consequences.

The setting for the problem (2.1) is the space Wm,2(0, 1), which is a
Hilbert space under the inner product

(2.3)
〈
f , ϕ

〉

W m,2(0,1)
=
〈
f , ϕ

〉
+
〈
f (m) , ϕ(m)

〉

and associated norm

(2.4) ‖ f ‖
W m,2(0,1)

=
{
‖ f ‖2 + ‖ f (m) ‖2

}
1/2 .

Here, 〈 · , · 〉 denotes the usual L2(0, 1) inner product. However, the norms

(2.5) ‖ f ‖m,h =
{
‖ f ‖2 + h2m ‖ f (m) ‖2

}
1/2
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and corresponding inner products

(2.6)
〈
f , ϕ

〉
m,h

=
〈
f , ϕ

〉
+ h2m

〈
f (m) , ϕ(m)

〉

are useful as well. Note that, for each h > 0 the norms (2.4) and (2.5) are
equivalent, but not uniformly in h. (The “equivalence” constants depend
on h .) We remind the reader of the following definition.

(2.7) Definition. Two norms ‖ · ‖U and ‖ · ‖W on a vector space V are
equivalent if there exists a constant c > 0 such that

c ‖ v ‖
U

� ‖ v ‖
W

� c−1 ‖ v ‖
U

for all v ∈ V .

(2.8) Exercise. Show that the norms (2.4) and (2.5) are equivalent.

We are now in a position to answer the question of whether the f(xin)
are well-defined for f ∈ Wm,2(0, 1) in the sense that | f(xin) | � c ‖ f ‖m,h

for a suitable constant. This amounts to showing that Wm,2(0, 1) is a
reproducing kernel Hilbert space; see Appendix 3, § 7, in Volume I.

In what follows, it is useful to introduce an abbreviation of the L2 norm
of a function f ∈ L2(0, 1) restricted to an interval (a, b) ⊂ (0, 1),

(2.9) ‖ f ‖(a,b)
def=
{∫ b

a

| f(x) |2 dx
}1/2

,

but please do not confuse ‖ · ‖(a,b) (with parentheses) with ‖ · ‖m,h

(without them).

(2.10) Lemma. There exists a constant c1 such that, for all f ∈W 1,2(0, 1),
all 0 < h � 1, and all x ∈ [ 0 , 1 ],

| f(x) | � c1 h−1/2 ‖ f ‖1,h .

Proof. The inequality

| f(x)− f(y) | =
∣
∣
∣
∫ x

y

f ′( t ) d t
∣
∣
∣ � |x− y |1/2 ‖ f ′ ‖

implies that every f ∈Wm,2(0, 1) is (uniformly) continuous on (0, 1).
Consider an interval [ a, a + h ] ⊂ [ 0 , 1 ]. An appeal to the Intermediate

Value Theorem shows the existence of a y ∈ (a, a + h) with

| f(y) | = h−1/2 ‖ f ‖(a,a+h) .

From the inequalities above, we get, for all x ∈ (a, a + h),

| f(x) | � | f(y) |+ | f(x)− f(y) |
� h−1/2 ‖ f ‖(a,a+h) + h1/2 ‖ f ′ ‖(a,a+h)

� h−1/2 ‖ f ‖+ h1/2 ‖ f ′ ‖ ,
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and thus, after some elementary manipulations

| f(x) | � c h−1/2
{
‖ f ‖2 + h2 ‖ f ′ ‖2

}
1/2

with c =
√

2. Q.e.d.

(2.11) Lemma [Continuity of point evaluations ]. Let m � 1 be an
integer. There exists a constant cm such that, for all f ∈ Wm,2(0, 1), all
0 < h � 1, and all x ∈ (0, 1),

| f(x) | � cm h−1/2 ‖ f ‖m,h .

The proof goes by induction on m , as per the next two lemmas.

(2.12) Interpolation Lemma. Let m � 1 be an integer. There exists a
constant cm � 1 such that, for all f ∈ Wm+1,2(0, 1) and all 0 < h � 1,

(a) ‖ f (m) ‖ � cm h−m ‖ f ‖m+1,h ,

and, with θ = 1/(m + 1),

(b) ‖ f (m) ‖ � cm ‖ f ‖θ
{
‖ f ‖

W m+1,2(0,1)

}
1−θ .

Note that the inequality (b) of the lemma implies that

‖ f ‖
W m,2(0,1)

� c̃m ‖ f ‖θ ‖ f ‖1−θ

W m+1,2(0,1)

for another constant c̃m . So ignoring this constant, after taking logarithms,
the upper bound on log ‖ f ‖W m,2(0,1) is obtained by linear interpolation
on log ‖ f ‖W x,2(0,1) between x = 0 and x = m + 1, hence the name.

Proof. From (a) one obtains that

‖ f (m) ‖ � cm h−m ‖ f ‖+ cm h ‖ f ‖
W m+1(0,1)

.

Now, take h such that hm+1 = ‖ f ‖
/
‖ f ‖W m+1,2(0,1) and (b) follows, for

a possible larger constant cm . (Note that indeed h � 1.)
The case m = 1 of the lemma is covered by the main inequality in the

proof of Lemma (5.4.16) in Volume I. The proof now proceeds by induction.
Let m � 1. Suppose that the lemma holds for all integers up to and

including m . Let f ∈ Wm+2,2(0, 1). Applying the inequality (a) with
m = 1 to the function f (m) gives

(2.13) ‖ f (m+1) ‖ � c1 h−1
(
‖ f (m) ‖+ h2 ‖ f (m+2) ‖

)
.

Now, apply the inequality (b) of the lemma for m , so

(2.14)
‖ f (m) ‖ � cm ‖ f ‖ θ

{
‖ f ‖

W m+1,2(0,1)

}
1−θ

� cm ‖ f ‖+ cm ‖ f ‖ θ ‖ f (m+1) ‖1−θ ,
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since ( x + y )α � xα + yα for all positive x and y and 0 < α � 1.
Substituting this into (2.13) gives, for suitable constants c̃m and c̃1 ,

(2.15) ‖ f (m+1) ‖ � c̃m h−1 ‖ f ‖ θ ‖ f (m+1) ‖ 1−θ +

c̃1 h−1
(
‖ f ‖+ h2 ‖ f (m+2) ‖

)
.

Since h � 1, then h−1 � h−m−1 , so that

h−1
(
‖ f ‖+ h2 ‖ f (m+2) ‖

)
� h−m−1 ‖ f ‖+ h ‖ f (m+2) ‖

� h−m−1 ‖ f ‖m+2,h .

Substituting this into (2.15) gives

(2.16) ‖ f (m+1) ‖ � c̃m h−1 ‖ f ‖ θ ‖ f (m+1) ‖ 1−θ + c̃1 h−m−1 ‖ f ‖m+2,h .

This is an inequality of the form xp � a x + b with p > 1, which implies
that xp � aq + q b , where 1/q = 1− (1/p) . See Exercise (4.10). This gives

‖ f (m+1) ‖ � ( c̃m h−1 )m+1 ‖ f ‖+ (m + 1) c̃1 h−m−1 ‖ f ‖m+1,h .

This implies the inequality (a) for m + 1. Q.e.d.

(2.17) Lemma. Let m � 1 be an integer. There exists a constant km such
that, for all f ∈ Wm+1,2(0, 1) and all 0 < h < 1,

‖ f ‖m,h � km ‖ f ‖m+1,h .

Proof. Lemma (2.12) says that hm ‖ f (m) ‖ � cm ‖ f ‖m+1,h . Now, squar-
ing both sides and then adding ‖ f ‖2 gives the lemma, with k2

m = 1+ c2
m .

Q.e.d.

We now put all of the above together to show that the smoothing spline
problem is “well-behaved” from various points of view.

Reproducing kernel Hilbert spaces. Lemma (2.11) shows that, for
fixed x ∈ [ 0 , 1 ], the linear functional �(f) = f(x) is bounded on Wm,2(0, 1).
Thus, the vector space Wm,2(0, 1) with the inner product (2.6) is a re-
producing kernel Hilbert space and, for each x ∈ (0, 1), there exists an
Rm,h,x ∈Wm,2(0, 1) such that, for all f ∈ Wm,2(0, 1),

f(x) =
〈
Rm,h,x , f

〉
m,h

.

It is customary to denote Rm,h,x(y) by Rmh(x, y). Applying the above to
the function f = Rmh(y, · ), where y ∈ [ 0 , 1 ] is fixed, then gives

Rmh(y, x) =
〈
Rmh(x, · ) , Rmh(y, · )

〉
m,h

for all x ∈ [ 0 , 1 ] ,

whence Rmh(x, y) = Rmh(y, x). Moreover, Lemma (2.11) implies that

‖Rmh(x, · ) ‖2m,h = Rmh(x, x) � cm h−1/2 ‖Rmh(x, · ) ‖m,h ,

and the obvious conclusion may be drawn. We summarize this in a lemma.



56 13. Smoothing Splines

(2.18) Reproducing Kernel Lemma. Let m � 1 be an integer, and
let 0 < h � 1. Then Wm,2(0, 1) with the inner product 〈 · , · 〉m,h is a
reproducing kernel Hilbert space, with kernel Rmh(x, y), such that, for all
f ∈Wm,2(0, 1) and all x,

f(x) =
〈
Rmh(x, · ) , f

〉
m,h

for all x ∈ [ 0 , 1 ] .

Moreover, there exists a cm such that, for all 0 < h � 1, and all x ,

‖Rmh(x, · ) ‖m,h � cm h−1/2 .

Random sums. The reproducing kernel Hilbert space framework bears
fruit in the consideration of the random sums

1
n

n∑

i=1

din f(xin) ,

where f ∈ Wm,2(0, 1) is random, i.e., is allowed to depend on the noise
vector dn = ( d1,n, d2,n, · · · , dn,n ) . In contrast, define the “simple” random
sums

(2.19) Snh(x) = 1
n

n∑

i=1

dinRmh(xin, · ) ,

where the randomness of the functions f is traded for the dependence on
a smoothing parameter.

(2.20) Random Sum Lemma. Let m � 1. For all f ∈ Wm,2(0, 1) and all
noise vectors dn = ( d1,n, d2,n, · · · , dn,n ),

∣
∣
∣ 1

n

n∑

i=1

din f(xin)
∣
∣
∣ � ‖ f ‖m,h ‖Snh ‖m,h .

Moreover, if dn satisfies (1.2), then there exists a constant c such that

E[ ‖Snh ‖ 2
m,h ] � c (nh)−1

for all h , 0 < h � 1, and all designs.

Proof. Since f ∈ Wm,2(0, 1), the reproducing kernel Hilbert space trick
of Lemma (2.18) gives

f(xin) =
〈
Rmh(xin, · ) , f

〉
m.h

,

and consequently

1
n

n∑

i=1

din f(xin) =
〈
Snh , f

〉
m,h

,

which gives the upper bound

1
n

n∑

i=1

din f(xin) � ‖ f ‖m,h ‖Snh ‖m,h .



2. Reproducing kernel Hilbert spaces 57

Note that all of this holds whether f is random or deterministic.
Now, one verifies that

‖Snh ‖2 = n−2
n∑

i,j=1

din djn

〈
Rmh(xin, · ) , Rmh(xjn, · )

〉
m,h

,

and so, under the assumption (1.2),

E

[
‖Snh ‖2

]
= σ2 n−2

n∑

i=1

‖Rmh(xin, · ) ‖ 2
m,h .

The bound from the previous lemma on ‖Rmh(xin, · ) ‖ 2
m,h now completes

the proof. Q.e.d.

(2.21) Exercise. Show that, under the assumptions of Lemma (2.20),

sup

⎧
⎪⎪⎨

⎪⎪⎩

∣
∣
∣ 1

n

n∑

i=1

din f(xin)
∣
∣
∣

‖ f ‖m,h

∣
∣
∣
∣
∣
∣
∣
∣

f ∈Wm,2(0, 1)

f �≡ 0

⎫
⎪⎪⎬

⎪⎪⎭
= ‖Snh ‖m,h .

In other words, the supremum is attained by the solution of the pure-noise
version of (1.10); i.e., with yin = din for all i .

Quadrature. The reproducing kernel Hilbert spaces setup of Lemma
(2.18) shows that the linear functionals �i,n(f) = f(xin), i = 1, 2, · · · , n,
are continuous on Wm,2(0, 1) for m � 1. So the problem (2.1) starts to
make sense. Along the same lines, we need to be able to compare

1
n

n∑

i=1

| f(xin) |2 and ‖ f ‖2

with each other, at least for f ∈Wm,2(0, 1). In effect, this is a requirement
on the design, and is a quadrature result for specific designs.

(2.22) Definition. We say that the design xin, i = 1, 2, · · · , n, is asymp-
totically uniform if there exists a constant c such that, for all n � 2 and
all f ∈W 1,1(0, 1),

∣
∣
∣ 1

n

n∑

i=1

f(xin)−
∫ 1

0

f( t ) dt
∣
∣
∣ � c n−1 ‖ f ′ ‖

L1(0,1)
.

(2.23) Remark. The rate n−1 could be lowered to
(
n−1 log n

)
1/2 but

seems to cover most cases of interest. Random designs require their own
treatment; see Chapter 21.
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(2.24) Lemma. The design (2.2) is asymptotically uniform. In fact, for
every f ∈ W 1,1(0, 1),

∣
∣
∣ 1

n

n∑

i=1

f( tin)−
∫ 1

0

f( t ) d t
∣
∣
∣ � 1

n−1 ‖ f ′ ‖1 .

Proof. The first step is the identity,

(2.25) 1
n

n∑

i=1

cin = 1
n−1

n−1∑

i=1

{
ain cin + bin ci+1,n

}
,

for all cin, i = 1, 2, · · · , n, where ain = (n − i)/n , bin = i/n . Of course,
we take cin = f( tin). Then, with the intervals ω

in
= ( tin , ti+1,n ),

1
n−1

{
ain f( tin) + bin f( ti+1,n)

}
−
∫

ω
in

f( t ) d t =

ain

∫

ω
in

{
f( tin)− f( t )

}
d t + bin

∫

ω
in

{
f( ti+1,n)− f( t )

}
d t .

Now, for t ∈ ω
in

,

∣
∣ f( tin)− f( t )

∣
∣ =
∣
∣
∣
∫ tin

t

f ′(s) ds
∣
∣
∣ �
∫

ω
in

| f ′(s) | ds ,

so, after integration over ω
in

, an interval of length 1/(n− 1),
∫

ω
in

| f( tin)− f( t ) | d t � 1
n−1

∫

ω
in

| f ′( t ) | d t .

The same bound applies to
∫

ω
in

| f( ti+1,n)−f( t ) | d t . Then, adding these
bounds gives
∣
∣
∣ 1

n−1

{
ain f( tin)+bin f( ti+1,n)

}
−
∫

ω
in

f( t ) d t
∣
∣
∣ � 1

n−1

∫

ω
in

| f ′( t ) | d t ,

and then adding these over i = 1, 2, · · · , n − 1, together with the triangle
inequality, gives the required result. Q.e.d.

(2.26) Exercise. Show that the design tin = i/(n + 1) , i = 1, 2, · · · , n ,
is asymptotically uniform and likewise for tin = (i− 1

2 )/n .

(2.27) Quadrature Lemma. Let m � 1. Assuming the design is asymp-
totically uniform, there exists a constant cm such that, for all f ∈ Wm,2(0, 1),
all n � 2, and all h , 0 < h � 1

2 ,

∣
∣
∣ 1

n

n∑

i=1

| f(xin) |2 − ‖ f ‖2
∣
∣
∣ � cm (nh)−1 ‖ f ‖ 2

m,h
.
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Proof. Let m � 1. As a preliminary remark, note that, for f ∈ Wm,2(0, 1),
we have of course that ‖ f 2 ‖1 = ‖ f ‖2 and that

‖ ( f 2 ) ′ ‖1 = 2 ‖ f f ′ ‖1 � 2 ‖ f ‖ ‖ f ′ ‖ = 2h−1 ‖ f ‖
{

h ‖ f ′ ‖
}

� h−1
{
‖ f ‖2 + h−1 ‖ f ′ ‖2

}
= h−1 ‖ f ‖ 2

1,h
,

where we used Cauchy-Schwarz and the inequality 2ab � a2 + b2 .
Then, for n � 2, by the asymptotic uniformity of the design,

(2.28)
∣
∣
∣ 1

n

n∑

i=1

| f(xin) |2 − ‖ f ‖2
∣
∣
∣ � c n−1 ‖ (f 2) ′ ‖

1
,

which by the above, may be further bounded by

c (nh)−1 ‖ f ‖ 2

1,h
� c̃ (nh)−1 ‖ f ‖ 2

m,h

for an appropriate constant c̃ , the last inequality by Lemma (2.17). This
is the lemma. Q.e.d.

The following is an interesting and useful exercise on the multiplication
of functions in Wm,2(0, 1).

(2.29) Exercise. (a) Show that there exists a constant cm such that, for
all h, 0 < h � 1

2 ,

‖ f g ‖m,h � cm h−1/2 ‖ f ‖m,h ‖ g ‖m,h for all f, g ∈ Wm,2(0, 1) .

(b) Show that the factor h−1/2 is sharp for h → 0.

Exercises: (2.8), (2.21), (2.26), (2.29).

3. Existence and uniqueness of the smoothing spline

In this section, we discuss the existence and uniqueness of the solution of
the smoothing spline problem. Of course, the quadratic nature of the prob-
lem makes life very easy, and it is useful to consider that first. Note that
in Lemma (3.1) below there are no constraints on the design. We empha-
size that, throughout this section, the sample size n and the smoothing
parameter h remain fixed.

(3.1) Quadratic Behavior Lemma. Let m � 1, and let ϕ be a solution
of (2.1). Then, for all f ∈Wm,2(0, 1),

1
n

n∑

i=1

| f(xin)− ϕ(xin) |2 + h2m ‖
(
f − ϕ

)
(m) ‖2 =

1
n

n∑

i=1

(
f(xin)− yin

) (
f(xin)− ϕ(xin)

)
+ h2m

〈
f (m) ,

(
f − ϕ

)
(m)
〉

.
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Proof. Since Lnh(f) is quadratic, it is convex, and thus, see, e.g., Chap-
ter 10 in Volume I or Chapter 3 in Troutman (1983), it has a Gateaux
variation (directional derivative) at each ϕ ∈Wm,2(0, 1). One verifies that
it is given by

(3.2) δLnh(ϕ , f − ϕ) = 2h2m
〈
ϕ(m) , (f − ϕ)(m)

〉
+

2
n

n∑

i=1

(ϕ(xin)− yin ) ( f(xin)− ϕ(xin) ) ,

so that

(3.3) Lnh(f)− Lnh(ϕ)− δLnh(ϕ , f − ϕ) =

h2m ‖ (f − ϕ)(m) ‖2 + 1
n

n∑

i=1

| f(xin)− ϕ(xin) |2 .

In fact, this last result is just an identity for quadratic functionals. Now, by
the necessary and sufficient conditions for a minimum, see, e.g., Theorem
(10.2.2) in Volume I or Proposition (3.3) in Troutman (1983), the function
ϕ solves the problem (2.1) if and only if

(3.4) δLnh(ϕ , f − ϕ) = 0 for all f ∈ Wm,2(0, 1) .

Then, the identity (3.3) simplifies to

(3.5) 1
n

n∑

i=1

| f(xin)−ϕ(xin) |2 + h2m ‖ (f −ϕ)(m) ‖2 = Lnh(f)−Lnh(ϕ) .

Now, in (3.3), interchange f and ϕ to obtain

Lnh(f)− Lnh(ϕ) = − 1
n

n∑

i=1

| f(xin)− ϕ(xin) |2 − h2m ‖
(
f − ϕ

)
(m) ‖2 +

2
n

n∑

i=1

(
f(xin)− yin

) (
f(xin)− ϕ(xin)

)
+

2h2m
〈
f (m) ,

(
f − ϕ

)
(m)
〉

.

Finally, substitute this into (3.5), move the negative quadratics to the left
of the equality, and divide by 2. This gives the lemma. Q.e.d.

(3.6) Uniqueness Lemma. Let m � 1, and suppose that the design con-
tains at least m distinct points. Then the solution of (2.1) is unique.

Proof. Suppose ϕ and ψ are solutions of (2.1). Since Lnh(ϕ) = Lnh(ψ),
then, by (3.5),

1
n

n∑

i=1

|ϕ(xin)− ψ(xin) |2 + h2m‖
(
ϕ− ψ

)
(m) ‖2 = 0 .

It follows that
(
ϕ − ψ

)
(m) = 0 almost everywhere, and so ϕ − ψ is a

polynomial of degree � m− 1. And of course

ϕ(xin)− ψ(xin) = 0 , i = 1, 2, · · · , n.
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Now, if there are (at least) m distinct design points, then this says that
the polynomial ϕ − ψ has at least m distinct zeros. Since it has degree
� m − 1, the polynomial vanishes everywhere. In other words, ϕ = ψ
everywhere. Q.e.d.

(3.7) Existence Lemma. Let m � 1. For any design, the smoothing
spline problem (2.1) has a solution.

Proof. Note that the functional Lnh is bounded from below (by 0), and so
its infimum over Wm,2(0, 1) is finite. Let { fk }k be a minimizing sequence.
Then, using Taylor’s theorem with exact remainder, write

(3.8) fk(x) = pk(x) + [Tf
(m)
k ](x) ,

where pk is a polynomial of order m , and for g ∈ L2(0, 1),

(3.9) Tg(x) =
∫ x

0

(x− t )m−1

(m− 1) !
g( t ) dt .

Note that the Arzelà-Ascoli theorem implies the compactness of the oper-
ator T : L2(0, 1) −→ C[ 0 , 1 ] .

Now, since without loss of generality Lnh( fk ) � Lnh( f1 ) , it follows
that

‖ f
(m)
k ‖2 � h−2m Lnh( f1 )

and so { f
(m)
k }k is a bounded sequence in L2(0, 1). Thus, it has a weakly

convergent subsequence, which we denote again by { f
(m)
k }k , with weak

limit denoted by ϕo . Then, by the weak lower semi-continuity of the norm,

(3.10) lim
k→∞

‖ f
(m)
k ‖2 � ‖ϕo ‖2 .

Moreover, since T is compact, it maps weakly convergent sequences into
strongly convergent ones. In other words,

(3.11) lim
k→∞

‖T f
(m)
k − Tϕo ‖∞ = 0 .

Now, consider the restrictions of the fk to the design points,

rnfk
def=
(
fk(x1,n), fk(x2,n), · · · , fk(xn,n)

)
, k = 1, 2, · · · .

We may extract a subsequence from { fk }k for which the corresponding
sequence { rnfk }k converges in R

n to some vector vo. Then it is easy to
see that, for the corresponding polynomials,

lim
k→∞

pk(xin) = [ vo ]i − Tϕo(xin) , i = 1, 2, · · · , n .

All that there is left to do is claim that there exists a polynomial po of
order m such that

po(xin) = [ vo ]i − Tϕo(xin) , i = 1, 2, · · · , n ,
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the reason being that the vector space
{

rn p : p ∈ Pm

}
, where Pm is the

vector space of all polynomials of order m, is finite-dimensional, and hence
closed; see, e.g., Holmes (1975).

So now we are in business: Define ψo = po + Tϕo , and it is easy to see
that, for the (subsub) sequence in question,

lim
k→∞

Lnh(fk) � Lnh(ψo) ,

so that ψo minimizes Lnh(f) over f ∈ Wm,2(0, 1) . Q.e.d.

(3.12) Exercise. The large-sample asymptotic problem corresponding to
the finite-sample problem (2.1) is defined by

minimize L∞h(f) def= ‖ f − fo ‖2 + h2m ‖ f (m) ‖2

subject to f ∈Wm,2(0, 1) .

(a) Compute the Gateaux variation of L∞h , and show that

L∞h(f)− L∞h(ϕ)− δL∞h(ϕ , f − ϕ) = ‖ f − ϕ ‖2m,h .

(b) Show that L∞h is strongly convex and weakly lower semi-continuous
on Wm,2(0, 1).

(c) Conclude that the solution of the minimization problem above exists
and is unique.

(3.13) Exercise. Consider the C-spline estimation problem (1.10), re-
peated here for convenience:

minimize ‖ f ‖2 − 2
n

n∑

i=1

yin f(xin) + h2m ‖ f (m) ‖2

subject to f ∈Wm,2(0, 1) .

Show the existence and uniqueness of the solution of this problem. You
should not need the asymptotic uniformity of the design.

As mentioned before, the convexity approach to showing existence and
uniqueness is a heavy tool, but it makes for an easy treatment of conver-
gence rates of the spline estimators, see § 4. It has the additional advantage
that we can handle constrained problems without difficulty. Let C be a
closed, convex subset of Wm,2(0, 1), and consider the problems

(3.14)
minimize 1

n

n∑

i=1

| f(xin)− yin |2 + h2m ‖ f (m) ‖2

subject to f ∈ C ,
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and

(3.15)
minimize ‖ f ‖2 − 2

n

n∑

i=1

f(xin) yin + h2m ‖ f (m) ‖2

subject to f ∈ C .

(3.16) Theorem. The solution of the constrained smoothing spline prob-
lem (3.13) exists, and if there are at least m distinct design points, then
it is unique. For the constrained problem (3.14), the solution always exists
and is unique.

(3.17) Exercise. Prove it !

Finally, we consider the Euler equations for the problem (2.1). One
verifies that they are given by

(3.18)
(−h2)m u(2m) + 1

n

n∑

i=1

(
u(xin)− yin

)
δ( · − xin) = 0 in (0, 1) ,

u(k)(0) = u(k)(1) = 0 , k = m,m + 1, · · · , 2m− 1 .

Here δ( · − xin) is the unit point mass at x = xin. (For the two endpoints,
this requires the proper interpretation: Assume that they are moved into
the interior of [ 0 , 1 ] and take limits.) The boundary conditions in (3.18)
go by the name of “natural” boundary conditions in that they are automag-
ically associated with the problem (2.1). As an alternative, one could pre-
scribe boundary values; e.g., if one knew f

(k)
o (x), k = 0, 1, · · · ,m − 1, at

the endpoints x = 0, x = 1. In this case, the minimization in (2.1) could
be further restricted to those functions f with the same boundary values,
and the boundary conditions in (3.18) would be replaced by

(3.19) u(k)(0) = f (k)
o (0) , u(k)(1) = f (k)

o (1) , 0 � k � m− 1 .

(3.20) Exercise. (a) Verify that (3.18) are indeed the Euler equations for
the smoothing spline problem (2.1) and that
(b) the unique solution of the Euler equations solves (2.1) and vice versa.
[ Hint: See § 10.5 in Volume I. ]

(3.21) Exercise. (a) Show that the Euler equations for the C-spline prob-
lem discussed in (3.15) are given by

(−h2)m u(2m) + u = 1
n

n∑

i=1

yin δ( · − xin) in (0, 1) ,

u(k)(0) = u(k)(1) = 0 , k = m,m + 1, · · · , 2m− 1 .

(b) Verify that the solution is given by

ψnh( t ) = 1
n

n∑

i=1

yinRmh(xin, t ) , t ∈ [ 0 , 1 ] .
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(c) Show that the unique solution of the Euler equations solves (2.1) and
vice versa. [ Hint: § 10.5. ]

Exercises: (3.12), (3.13), (3.17), (3.20), (3.21).

4. Mean integrated squared error

We are now ready to investigate the asymptotic error bounds for the
smoothing spline estimator. We recall the model

(4.1) yin = fo(xin) + din , i = 1, 2, · · · , n ,

in which the noise vector dn = (d1,n, d2,n, · · · , dn,n)T satisfies the Gauss-
Markov conditions

(4.2) E[ dn ] = 0 , E[ dn dT

n ] = σ2 I ,

and fo is the function to be estimated. The design is supposed to be asymp-
totically uniform; see Definition 2.22. Regarding the unknown function fo ,
we had the assumption

(4.3) fo ∈Wm,2(0, 1) .

The smoothing spline estimator, denoted by fnh, is the solution to

(4.4)
minimize Lnh(f) def= 1

n

n∑

i=1

| f(xin)− yin |2 + h2m ‖ f (m) ‖2

subject to f ∈Wm,2(0, 1) .

It is useful to introduce the abbreviation εnh for the error function,

(4.5) εnh ≡ fnh − fo .

(4.6) Theorem. Let m � 1. Suppose the Markov conditions (4.1) and
(4.2) hold and that fo ∈Wm,2(0, 1). If xin, i = 1, 2, · · · , n , is asymptoti-
cally uniform, then for all n � 2 and all h , 0 < h � 1

2 , with nh →∞ ,

ζnh ‖ fnh − fo ‖2m,h �
{
‖Snh ‖

m,h
+ hm ‖ f (m)

o ‖
}

2
,

where ζnh → 1. Here, Snh is given by (2.19).

(4.7) Corollary. Under the same conditions as in the previous theorem,
for h � n−1/(2m+1) (deterministically),

E[ ‖ fnh − fo ‖ 2
m,h ] = O

(
n−2m/(2m+1)

)
.
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Proof of Theorem (4.6). The approach to obtaining error bounds is via
the Quadratic Behavior Lemma (3.1) for Lnh(f). This gives the equality

(4.8) 1
n

n∑

i=1

| εnh(xin) |2 + h2m ‖ (εnh)(m) ‖2 =

1
n

n∑

i=1

din εnh(xin)− h2m
〈
f (m)

o , (εnh)(m)
〉

.

Of course, first we immediately use Cauchy-Schwarz,

−
〈
f (m)

o , (εnh)(m)
〉

� ‖ f (m)
o ‖ ‖ (εnh)(m) ‖ .

Second, by the Random Sum Lemma (2.20), the random sum in (4.8) may
be bounded by ‖ εnh ‖ ‖Snh ‖m,h .

Third, by the Quadrature Lemma (2.27), the sum on the left of (4.8)
may be bounded from below by

ζnh ‖ εnh ‖ 2

m,h
� 1

n

n∑

i=1

| εnh(xin) |2 + h2m‖ (εnh)(m) ‖2 ,

with ζnh = 1− cm(nh)−1 . So, under the stated conditions, then ζnh → 1.
It follows from (2.10) that then

(4.9) ζnh ‖ εnh ‖ 2

m,h
� ‖ εnh ‖

m,h

{
‖Snh ‖

m,h
+ hm ‖ f (m)

o ‖
}

,

where we used that h2m ‖ (εnh)(m) ‖ � hm ‖ εnh ‖m,h . The theorem follows
by an appeal to the following exercise. Q.e.d.

(4.10) Exercise. Let a and b be positive real numbers, and let p > 1. If
the nonnegative real number x satisfies xp � a x + b , then

xp � aq + q b ,

in which q is the dual exponent of p; i.e., (1/p) + (1/q) = 1.

(4.11) Exercise. Show that the bounds of Theorem (4.6) and Corollary
(4.7) apply also to 1

n

∑n
i=1 | fnh(xin)− fo(xin) |2 .

The above is a concise treatment of the smoothing spline problem. The
reader should become very comfortable with it since variations of it will be
used throughout the text.

Can the treatment above be improved ? The only chance we have is to
avoid Cauchy-Schwarz in

−
〈
f (m)

o , (εnh)(m)
〉

� ‖ f (m)
o ‖ ‖ (εnh)(m) ‖ ,

following (4.8). Under the special smoothness condition and natural bound-
ary conditions,

(4.12) fo ∈ W 2m,2(0, 1) , f (�)(0) = f (�)(1) = 0 , m � � � 2m− 1 ,
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this works. Results like this go by the name of superconvergence, since the
accuracy is much better than guaranteed by the estimation method.

(4.13) Super Convergence Theorem. Assume the conditions of Theo-
rem (4.6). If the regression function fo ∈ W 2m,2(0, 1) satisfies the natural
boundary conditions (4.12), then

‖ fnh − fo ‖2m,h �
{
‖Snh ‖ 2

m,h
+ h2m ‖ fo ‖

W 2m,2(0,1)

}
2

,

and for h � n−1/(4m+1) (deterministically),

E[ ‖ fnh − fo ‖2m,h ] = O
(
n−4m/(4m+1)

)
.

Proof. The natural boundary conditions (4.11) allow us to integrate by
parts m times, without being burdened with boundary terms. This gives

−
〈
f (m)

o , (εnh)(m)
〉

= (−1)m+1
〈
fo

(2m) , εnh
〉

� ‖ fo
(2m) ‖ ‖ εnh ‖ ,

and, of course, ‖ εnh ‖ � ‖ εnh ‖m,h . Thus, in the inequality (4.9), we may
replace hm ‖ f (m)

o ‖ by h2m ‖ f (2m)
o ‖ , and the rest follows. Q.e.d.

A brief comment on the condition (4.12) in the theorem above is in or-
der. The smoothness assumption fo ∈ W 2m,2(0, 1) is quite reasonable, but
the boundary conditions on fo are inconvenient, to put it mildly. In the
next two sections, we discuss ways around the boundary conditions. In
the meantime, the following exercise is useful in showing that the bound-
ary conditions of Theorem (4.13) may be circumvented at a price (viz. of
periodic boundary conditions).

(4.14) Exercise. Let m � 1 and fo ∈ W 2m,2(0, 1). Prove the bounds of
Theorem (4.13) for the solution of

minimize Lnh(f) def= 1
n

n∑

i=1

| f(xin)− yin |2 + h2m ‖ f (m) ‖2

subject to f ∈ Wm,2(0, 1) ,

and for k = 0, 1, · · · ,m− 1 ,

f (k)(0) = f (k)
o (0) , f (k)(1) = f (k)

o (1) .

The following exercise discusses what happens when the boundary condi-
tions in Theorem (4.13) are only partially fulfilled. This finds a surprising
application to boundary corrections; i.e., for obtaining estimators for which
the conclusions of Theorem (4.13) remain valid. See § 5.

(4.15) Exercise. Let 1 � k � m. Suppose that fo ∈ Wm+k(0, 1) satisfies

f (�)
o (0) = f (�)

o (1) = 0 , � = m, · · · ,m + k − 1 .



4. Mean integrated squared error 67

Show that ‖ fnh − fo ‖2 �
{
‖Snh ‖

m,h
+ hm+k ‖ f

(m+k)
o ‖

}
2 .

We finish with some exercises regarding constrained estimation and the
C-spline problem (1.10).

(4.16) Exercise. (a) Derive the error bounds of Theorem (4.7) and Corol-
lary (4.8) for the constrained smoothing spline problem

minimize 1
n

n∑

i=1

| f(xin)− yin |2 + h2m ‖ f (m) ‖2

subject to f ∈ C ,

where C is a closed and convex subset of Wm,2(0, 1). Assume that fo ∈ C.
(b) Do likewise for the constrained version of (1.10).

(4.17) Exercise. Show that the error bounds of Theorems (4.6) and (4.13)
also apply to the solution of the C-spline estimation problem (1.10).

An alternative approach. We now consider an alternative development
based on the observation that there are three sources of “error” in the
smoothing spline problem (4.4). The obvious one is the noise in the data.
Less obvious is that the roughness penalization is the source of bias, and
finally there is the finiteness of the data. Even if the data were noiseless,
we still could not estimate fo perfectly due to the finiteness of the design.
We need to introduce the finite noiseless data problem,

(4.18)
minimize 1

n

n∑

i=1

| f(xin)− fo(xin) |2 + h2m ‖ f (m) ‖2

subject to f ∈Wm,2(0, 1) ,

as well as the large-sample asymptotic noiseless problem,

(4.19)
minimize ‖ f − fo ‖2 + h2m ‖ f (m) ‖2

subject to f ∈Wm,2(0, 1) .

In the exercise below, we (i.e., you) will analyze these problems.
The following simple exercise is quite useful.

(4.20) Exercise. Show that, for all real numbers A,B, a, b

|A− b |2 − |A− a |2 + |B − a |2 − |B − b |2 = 2 (a− b)(A−B) .

(4.21) Exercise. Let fo ∈ Wm,2(0, 1). Let fnh be the solution of (4.4)
and fhn the solution of (4.18). Show that, for nh →∞ and h bounded,

‖ fnh − fhn ‖m,h � ‖Snh ‖m,h ,

with Snh as in (2.19).
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The bias due to the finiteness of the data is considered next.

(4.22) Exercise. Let fo ∈ Wm,2(0, 1). Let fh be the solution of (4.19)
and fhn the solution of (4.18). Show that, for a suitable constant c , as
h → 0 and nh large enough,

‖ fhn − fh ‖m,h � c (nh)−1 ‖ fh − fo ‖m,h .

(4.23) Exercise. Show that the solution fh of (4.19) satisfies
‖ fh − fo ‖ 2

m,h � h2m ‖ f (m)
o ‖2 .

We may now put these exercises together.

(4.24) Exercise. Prove Theorem (4.6) using Exercises (4.21)–(4.23).

(4.25) Exercise. Prove the analogue of Theorem (4.6) for the C-spline
estimator of (1.10) straightaway (or via the detour).

Exercises: (4.10), (4.11), (4.14), (4.15), (4.16), (4.17), (4.20), (4.21),
(4.22), (4.23), (4.24), (4.25).

5. Boundary corrections

In this section and the next, we take a closer look at the smoothness and
boundary conditions (4.12), repeated here for convenience:

fo ∈ W 2m,2(0, 1) ,(5.1)

f (�)
o (0) = f (�)

o (1) , m � � � 2m− 1 .(5.2)

In Theorem (4.13), we showed that, under these circumstances, the smooth-
ing spline estimator fnh of order 2m (degree 2m− 1) has expected error

(5.3) E[ ‖ fnh − fo ‖2 ] = O
(
n−4m/(4m+1)

)
,

at least for h � n1/(4m+1) (deterministic), and that the improvement over
the bounds of Corollary (4.7) is due to bias reduction. The variance part
remains unchanged. It follows from Stone (1982) (see the discussion in
§ 12.3) that (5.3) is also the asymptotic lower bound. See also Rice and
Rosenblatt (1983). However, away from the boundary, (5.3) holds re-
gardless of whether (5.2) holds. Thus, the question is whether one can
compute boundary corrections to achieve the global error bound (5.3).

Returning to the conditions (5.1)–(5.2), in view of Stone (1982), one
cannot really complain about the smoothness condition, but the bound-
ary condition (5.2) makes (5.3) quite problematic. By way of example,
if f (m)(0) �= 0, then one does not get any decrease in the global error,
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and so the bound (5.3) is achievable only for smoothing splines of poly-
nomial order 4m . It would be nice if the smoothing spline estimator of
order 2m could be suitably modified such that (5.3) would apply under
the sole condition (5.1). This would provide a measure of adaptation: One
may underestimate (guess) the smoothness of fo by a factor 2 if we may
characterize the distinction fo ∈ Wm,2(0, 1) vs. fo ∈ W 2m,2(0, 1) in this
way.

There is essentially only one boundary correction method, viz. the appli-
cation of the Bias Correction Principle of Eubank and Speckman (1990b)
by Huang (2001) as discussed in this section. The relaxed boundary splines
of Oehlert (1992) avoid the problem rather than correcting it; see § 6.

(5.4) The Bias Reduction Principle (Eubank and Speckman, 1990b).
Suppose one wishes to estimate a parameter θo ∈ R

n and has available two
estimators, each one flawed in its own way. One estimator, θ̃, is unbiased,

(5.5) E[ θ̃ ] = θo ,

and each component has finite variance but otherwise has no known good
properties. The other estimator, θ̂, is biased but nice,

(5.6) E[ θ̂ ] = θo + Ga + b ,

for some G ∈ R
n×m, and a ∈ R

m, b ∈ R
n. It is assumed that G is known

but that a and b are not. Let ΠG be the orthogonal projector onto the
range of G. (If G has full column rank, then ΠG = G(GT G)−1GT .)

Then, the estimator

(5.7) θ# = θ̂ + Π
G

(
θ̃ − θ̂

)

satisfies

E[ θ# ] = θo + γ(5.8)

‖ γ ‖ � min
{
‖Ga + b ‖ , ‖ b ‖

}
with

E[ ‖ θ# − E[ θ# ] ‖2 ] � E[ ‖ θ̂ − E[ θ̂ ] ‖2 ] + λm .and

Here, λ = λmax(Var[ θ̃ ] ) is the largest eigenvalue of Var[ θ̃ ] .

Proof of the Bias Reduction Principle. One verifies that

c# def= E[ θ# − θo ] = ( I −Π
G

) (Ga + b ) .

Now, since ΠG is an orthogonal projector, so is I − ΠG, and therefore
‖ c# ‖ � ‖Ga+b ‖. On the other hand, ( I−ΠG)G = O, so c# = ( I−ΠG ) b,
and ‖ c# ‖ � ‖ b ‖.

For the variance part, it is useful to rewrite θ# as

θ# = ( I −Π
G

) θ̂ + Π
G

θ̃ ,
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so that by Pythagoras’ theorem

‖ θ# − E[ θ# ] ‖2 = ‖ ( I −Π
G

)( θ̂ − E[ θ̂ ] ) ‖2 + ‖Π
G

( θ̃ − E[ θ̃ ] ) ‖2 .

The first term on the right is bounded by ‖ θ̃ − E[ θ̂ ] ‖2. For the second
term, we have

E

[
‖Π

G
( θ̃ − E[ θ̃ ] ) ‖2

]
= trace

(
Π

G
Var[ θ̃ ] ΠT

G

)
.

Let Λ = λ I . Then, Λ− Var[ θ̃ ] is semi-positive-definite, so that

trace(Λ− Var[ θ̃ ] ) � 0 .

It follows that

E[ ‖Π
G

( θ̃ − E[ θ̃ ] ) ‖2 ]

= trace
(
Π

G
Λ ΠT

G

)
− trace

(
Π

G
( Λ− Var[ θ̃ ] ) ΠT

G

)

� trace
(
Π

G
Λ ΠT

G

)
= λ trace

(
Π

G
ΠT

G

)
= λm .

The bound on the variance of θ# follows. Q.e.d.

The Bias Reduction Principle is useful when Ga is much larger than b
and m is small. Under these circumstances, the bias is reduced dramati-
cally, whereas the variance is increased by only a little. Note that ΠG( θ̃−θ̂ )
is a “correction” to the estimator θ̂.

We now wish to apply the Bias Reduction Principle to compute boundary
corrections to the spline estimator of § 3. Actually, corrections to the values
fnh(xin), i = 1, 2, · · · , n, will be computed. For corrections to the spline
function, see Exercise (5.21).

For the implementation of this scheme, the boundary behavior of the
smoothing spline estimator must be described in the form (5.6). Thus, the
boundary behavior must be “low-dimensional”.

(5.9) The asymptotic behavior of the bias of the smoothing

spline estimator near the boundary. Let fo ∈ W 2m,2(0, 1). Then,
f

(k)
o is continuous for k = 0, 1, · · · , 2m − 1. Now, for k = m, · · · , 2m − 1,

let Lk and Rk be polynomials (yet to be specified), and consider

(5.10) po(x) =
2m−1∑

�=m

f (�)
o (0)Lk(x) + f (�)

o (1)Rk(x) .

We now wish to choose the Lk and Rk such that go
def= fo−po ∈W 2m,2(0, 1)

satisfies

(5.11) g(k)
o (0) = g(k)

o (1) = 0 , k = m, · · · , 2m− 1 .
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One verifies that it is sufficient that, for all k ,

(5.12)

L
(�)
k (0) = L

(�)
k (1) = 0 for � = m, · · · , 2m− 1 ,

except that L
(k)
k (0) = 1 ,

and Rk(x) = (−1)k Lk(1− x) .

The construction of the Lk is an exercise in Hermite-Birkhoff interpolation;
see Kincaid and Cheney (1991). For the case m = 2 , see Exercise (5.20).

Now, let gh be the solution to

minimize ‖ f − go ‖2 + h2m ‖ f (m)‖2

subject to f ∈ Wm,2(0, 1) ,

and construct the functions Lk,h similarly, based on the Lk,o = Lk. Let

(5.13) ηk,h
def= h−k

{
Lk,h − Lk

}
, k = m, · · · , 2m− 1 .

Then, gh satisfies ‖ gh−go ‖2m,h = O
(
h4m

)
, and by Exercise (4.15) applied

to noiseless data,

(5.14) ‖ ηk,h ‖2m,h = O
(
1
)

, k = m, · · · , 2m− 1 .

By linearity, it follows that

(5.15) fh = fo +
2m−1∑

k=m

hk
{

f (k)
o (0) ηk,h + f (k)

o (1) ζk,h

}
+ εh ,

with ‖ εh ‖m,h = O
(
h2m

)
, and ζk,h = (−1)k ηk,h for all k. Of course, by the

Quadrature Lemma (2.27), the corresponding bounds hold for the sums:

1
n

n∑

i=1

| εh(xin) |2 = O
(
h4m

)
,(5.16)

1
n

n∑

i=1

| ηk,h(xin) |2 = O
(
1
)

.(5.17)

(5.18) Computing boundary corrections (Huang, 2001). The Bias
Reduction Principle may now be applied to compute boundary corrections.
In the notation of the Bias Reduction Principle (5.4), take

θo =
(
fo(x1,n), fo(x2,n), · · · , fo(xn,n)

)T

and consider the estimators

θ̂ =
(
fnh(x1,n), fnh(x2,n), · · · , fnh(xn,n)

)T

θ̃ =
(
y1,n, y2,n, · · · , yn,n

)T
.and

Then, θ̃ is an unbiased estimator of θo. The asymptotic behavior of θ̂ is
described by

E[ θ̂ ] = θo + F a0 + Ga1 + εh ,
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with εh as in (5.15) and F , G ∈ R
n×m, given by

Fi,k = ηk,h(xin) , Gi,k = ζk,h(xin)

for i = 1, 2, · · · , n and k = m, · · · , 2m−1 . The vectors a0 and a1 contain
the (unknown) derivatives of fo at the endpoints. The estimator θ# may
now be computed as per (5.7) and satisfies

(5.19)
E

[
1
n

n∑

i=

| θ#
i − fo(xin) |2

]
� E

[
1
n

n∑

i=

| (εk,h)i |2
]

+ 2mn−1 σ2

= O
(
h4m + (nh)−1

)
.

The boundary behavior (5.15) is due to Rice and Rosenblatt (1983).
We consider an analogous result for trigonometric sieves.

(5.20) Exercise. (a) Let m = 2. Verify that

L2(x) = 1
4 ( 1− x )2 − 1

10 ( 1− x )5 , L3(x) = − 1
12 ( 1− x)4 + 1

20 ( 1− x )5

satisfy (5.12), and verify (5.11).
(b) Verify (5.16).
(c) Prove that the bounds (5.17) are sharp.
(d) Prove (5.19).

(5.21) Exercise. Suppose we are not interested in fnh(xin), i = 1, · · · , n,
but in the actual spline fnh(x), x ∈ [ 0 , 1 ]. Formulate an algorithm to
compute the boundary correction to the spline function. [ Hint: One may
think of the spline estimator as being given by its coefficients; in other
words, it is still a finite-dimensional object. Unbiased estimators of fo do
not exist, but we do have an unbiased estimator of the spline interpolant
of fo using the data fo(xin), i = 1, 2, · · · , n, which is a very accurate
approximation to fo. See Chapter 19 for the details on spline interpolation. ]

Exercises: (5.20), (5.21).

6. Relaxed boundary splines

In this section, we discuss the solution of Oehlert (1992) to the bound-
ary correction problem for smoothing splines. His approach is to avoid the
problem altogether by modifying the roughness penalization in the smooth-
ing spline problem (4.4). The choice of penalization by Oehlert (1992)
is actually quite fortuitous: It is easy to analyze the resulting estimator,
much in the style of §§ 2 and 3, but the choice itself is magic.

We operate again under the Gauss-Markov model (1.1)–(1.2) with asymp-
totically uniform designs; see Definition (2.22). For now, suppose that

(6.1) fo ∈ W 2m,2(0, 1) .
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In general, under these circumstances, the smoothing spline estimator of
polynomial order 2m, defined as the solution to (2.1), has mean integrated
squared error O

(
n−2m/(2m+1)

)
, whereas the smoothness assumption (6.1)

should allow for an error O
(
n−4m/(4m+1)

)
.

It is worthwhile to repeat the motivation of Oehlert (1992) for his
suggested modification of (4.4). He observes that the global variance of the
estimator is O

(
(nh)−1

)
and that the squared bias is O

(
h4m

)
away from

the boundary points but, in general, is only O
(
h2m

)
near the boundary.

Thus, it would be a good idea to reduce the bias near the boundary if
this could be done without dramatically increasing the variance. His way
of doing this is to downweight the standard roughness penalization near
the endpoints. There would appear to be many ways of doing this, until
one has to do it. Indeed, the analysis of Oehlert (1992) and the analysis
below show that quite a few “things” need to happen.

The particular suggestion of Oehlert (1992) is as follows. Let m � 1
be an integer, and consider the vector space of functions defined on (0, 1)

(6.2) Wm =

⎧
⎨

⎩
f

∣
∣
∣
∣
∣
∣

∀ δ : 0 < δ < 1
2 =⇒ f ∈Wm,2( δ, 1− δ )

| f |Wm
< ∞

⎫
⎬

⎭
,

where the semi-norm | · |Wm
is defined by way of

(6.3) | f | 2

Wm

def=
∫ 1

0

{
x(1− x)

}
m | f (m)(x) |2 dx .

The relaxed boundary spline estimator of the regression function is then
defined as the solution f = ψnh of the problem

(6.4)
minimize RLS( f ) def= 1

n

n∑

i=1

| f(xin)− yin |2 + h2m | f | 2

Wm

subject to | f |Wm
<∞ .

Of course, the existence and uniqueness of the solution must be established,
and the objective function RLS( f ) must be well-defined on Wm. There
are some difficulties in the case m = 1 that require some extra conditions
on the design (asymptotic uniformity does not suffice, it appears). So, at
the crucial moment, we assume that m � 2. Also, the assumption (6.1)
may be replaced by the condition

(6.5) fo ∈ W2m .

The difficulties for m = 1 are illustrated in the following exercise.

(6.6) Exercise. Show that the function

f(x) =
∣
∣ log

{
x(1− x)

} ∣∣α , x ∈ (0, 1) ,

belongs to W1 for α < 1
2 but not for α = 1

2 .
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The two “final” results are as follows. Note that there are almost no
conditions in the existence and uniqueness theorem.

(6.7) Theorem. Let m � 1. The solution of (6.4) exists. If the design
contains at least m distinct points, then the solution is unique.

(6.8) Theorem. Let m � 2. Assume the Gauss-Markov model (1.1)–(1.2),
and that the design is asymptotically uniform. Assuming fo ∈ W2m , the
solution ψnh of (6.4) satisfies

E[ ‖ψnh − fo ‖2 ] = O
(
n−4m/(4m+1)

)
,

provided h � n−1/(4m+1) (deterministically).

We now set out to prove Theorems (6.7) and (6.8). The proof essentially
follows the development in §§ 2, 3, and 4: The relevant lemmas all have
useful analogues, but some of the proofs are simple computations in terms
of an orthogonal basis for the Hilbert spaces in question. This orthogo-
nal basis (the Legendre polynomials, suitably scaled) was already featured
prominently in Oehlert (1992), and we are not above using it. In fact,
this constitutes the magic of the particular choice of penalization. This
section is devoted to preliminaries, analogous to § 2. In the next section,
the existence, uniqueness, and convergence rates are established. We note
that, for m = 1, Theorem (6.7) holds for a modified design, not including
the endpoints of the interval; see Exercise (6.41).

Reproducing kernel Hilbert spaces. For h > 0, define the inner prod-
ucts on Wm,

(6.9)
〈〈

f , g
〉〉

h,Wm

=
〈
f , g

〉
+ h2m

〈
f , g

〉
Wm

,

where

(6.10)
〈
f , g

〉
Wm

=
∫ 1

0

[x(1− x) ]m f (m)(x) g(m)(x) dx ,

and the associated norms ‖ · ‖h,Wm
by way of

(6.11) ‖ f ‖ 2

h,Wm
=
〈〈

f , f
〉〉

h,Wm

.

It is obvious that, with all these norms, Wm is a Hilbert space. Moreover,
these norms are equivalent, but not uniformly in h; see Definition (2.7) and
Exercise (2.8).

At this point, we introduce the shifted Legendre polynomials, which
behave very nicely in all of theWm. As mentioned before, Oehlert (1992)
already made extensive use of this.
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First, we summarize the relevant properties of the Legendre polynomi-
als. One way to define the standard Legendre polynomials is through the
recurrence relations

(6.12)
P−1(x) = 0 , P0(x) = 1 ,

(k + 1)Pk+1(x) = (2k + 1)xPk(x)− k Pk−1(x) , k � 0 .

The shifted, normalized Legendre polynomials are here defined as

(6.13) Qk(x) = (2k + 1)1/2 Pk(2x− 1) , k � 0 .

They satisfy the following orthogonality relations:

〈
Qk , Q�

〉

L2(0,1)
=

{
1 , if k = � ,

0 , otherwise ,
(6.14)

〈
Qk , Q�

〉
Wm

=

⎧
⎪⎨

⎪⎩

0 , if k �= � ,

4m (k + m)!
(k −m)!

, if k = � .
(6.15)

Note that the last inner product vanishes (also) for k = � < m. We also
have the pointwise bounds

(6.16)
|Qk(x) | � (2k + 1)1/2 for all 0 � x � 1 and k � 0 ,

|Qk(x) | � c
{

x(1− x)
}−1/4 for all 0 < x < 1 and k � 1

for a suitable constant c independent of k and x. A handy reference for
all of this is Sansone (1959). Note that (6.14)–(6.15) prove the following
lemma.

(6.17) Lemma. For all h > 0 and all m � 1,

〈〈
Qk , Q�

〉〉
h,Wm

=

{
1 + (2h)2m λk,m , if k = � ,

0 , otherwise ,

where λk,m = (k + m)!/(k −m)! . Moreover, there exist constants cm > 1
such that, for all k , k � m , we have (cm)−1 � k−2m λk,m � cm .

It follows that Qk, k � 0, is an orthonormal basis for L2(0, 1) and an
orthogonal basis forWm. Also, it gives us a handy expression for the norms
on Wm, but we shall make them handier yet. For f ∈ L2(0, 1), define

(6.18) f̂k =
〈
f , Qk

〉
, k � 0 .

The following lemma is immediate.

(6.19) Lemma. Let m � 1. For all h > 0 and f ∈ Wm ,

f =
∑

k�0

f̂k Qk ,
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with convergence in the Wm-topology, and for all f , g ∈ Wm ,
〈〈

f , g
〉〉

h,Wm

=
∑

k�0

(
1 + (2h)2m λk,m

)
f̂k ĝk .

Finally, for all f ∈ Wm ,

‖ f ‖ 2

h,Wm
=
∑

k�0

(
1 + (2h)2m λk,m

)
| f̂k |2 <∞ .

The representation above for the norms is nice, but the behavior of the
λk,m is a bit of a bummer. So, let us define the equivalent norms

(6.20) ||| f |||
h,Wm

=
{ ∑

k�0

(
1 + (2hk)2m

)
| f̂k |2

}1/2

.

(6.21) Lemma. Let m � 1. The norms ||| · |||
h,Wm

and ‖ · ‖
h,Wm

are

equivalent, uniformly in h , 0 < h � 1; i.e., there exists a constant γm such
that, for all h , 0 < h � 1, and all f ∈ Wm,

(γm)−1 ‖ f ‖
h,Wm

� ||| f |||
h,Wm

� γm ‖ f ‖
h,Wm

.

Proof. By Lemma (6.17), we obviously have

1 + (2h)2m λk,m � cm

(
1 + (2hk)2m

)
,

with the same cm as in Lemma (6.17). Thus, c−1
m ‖ f ‖

h,Wm
� ||| f |||

h,Wm
.

Also, for k � m , the lower bound of Lemma (6.17) on λk,m is useful.
For 0 < h � 1 and 0 � k < m , we have

1 + (2hk)2m

1 + (2m)2m
� 1 = 1 + (2h)2m λk,m ,

so that with γm = max
{

cm , 1 + (2m)2m
}

,

||| f |||
h,Wm

� γm ‖ f ‖
h,Wm

.

The lemma follows. Q.e.d.

We are now ready to show that the point evaluations x �→ f(x) are
bounded linear functionals on Wm; in other words, that the Wm are repro-
ducing kernel Hilbert spaces. First, define the functions

(6.22) Φh(x) = min
(
h−1/2 ,

{
x(1− x)

}−1/4
)

.

(6.23) Lemma (The case m = 2 ). There exists a constant c such that,
for all h, 0 < h � 1, and all f ∈ W2 ,

| f(x) | � cm Φh(x)h−1/2 ‖ f ‖
h,W2

for all x ∈ (0, 1) .
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Proof. Using the representation of Lemma (6.19) for f ∈ Wm, we get

| f(x) | �
∑

k�0

| f̂k | |Qk(x) | .

Now, with the second inequality of (6.16),

| f(x) | � c
{

x(1− x)
}−1/4 ∑

k�0

| f̂k | ,

and with Cauchy-Schwarz, the last series is bounded by

||| f |||
h,W2

{ ∑

k�0

(
1 + (2hk)4

)−1
}1/2

.

Now, the infinite series is dominated by
∫ ∞

0

(
1 + (2hx)4

)−1
dx = h−1

∫ ∞

0

(
1 + (2 t )4

)−1
d t = c h−1 ,

for a suitable constant. Thus,

(6.24) | f(x) | � c h−1/2
{

x(1− x)
}−1/4 ||| f |||

h,W2
.

For all x, we use the first bound of (6.16). With Cauchy-Schwarz, this
gives the bound

| f(x) | � ||| f |||
h,W2

{ ∑

k�0

2k + 1
1 + (2hk)4

}1/2

.

Now, we may drop the +1 in the numerator, and then the infinite series
behaves like

∫ ∞

0

2x

1 + (2hx)4
dx = h−2

∫ ∞

0

2 t

1 + (2 t )4
d t = c h−2

for (another) constant c. Thus,

(6.25) | f(x) | � c h−1 ||| f |||
h,W2

.

By the equivalence of the norms, uniformly in h , 0 < h � 1, the lemma
follows from (6.24) and (6.25). Q.e.d.

(6.26) Lemma. For all m � 1, there exists a constant cm such that, for
all f ∈ Wm+1 and all h , 0 < h � 1,

‖ f ‖
h,Wm

� cm ‖ f ‖
h,Wm+1

.

Proof. With the representation of Lemma (6.19) and (6.20),

||| f ||| 2
h,Wm

� c ||| f ||| 2
h,Wm+1

,

where

c = sup
{

1 + (2hk)2m

1 + (2hk)2m+2

∣
∣
∣
∣ k � 0 , 0 < h � 1

}
� sup

t >0

1 + t2m

1 + t2m+2
< ∞ .
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Together with the equivalence of the norms, that is all that there is to it.
Q.e.d.

The final result involving the Legendre polynomials or, more to the point,
the equivalent norms, is an integration-by-parts formula.

(6.27) Lemma. Let m � 1. For all f ∈ Wm and all g ∈ W2m,
〈
f , g

〉
Wm

� ‖ f ‖ ‖ g ‖
1,W2m

.

Proof. Using the representation of Lemma (6.19), and Lemma (6.17), the
inner product may be written as, and then bounded by,

∑

k�m

(
1 + 22m λk,m

)
f̂k ĝk � cm

∑

k�m

(
1 + (2k)2m

)
| f̂k | | ĝk | .

Now, with Cauchy-Schwarz, the right-hand side may be bounded by

‖ f ‖
{ ∑

k�0

(
1 + (2k)2m

)
2 | ĝk |2

}1/2

,

and, in turn, the infinite series may be bounded by

2
∑

k�0

(
1 + (2k)4m

)
| ĝk |2 = 2 ||| g ||| 2

1,W2m

. Q.e.d.

(6.28) Remark. The reason we called Lemma (6.27) an integration-by-
parts formula is because it is. Recall that

〈
f , g

〉
Wm

=
∫ 1

0

{
x(1− x)

}
m f (m)(x) g(m)(x) dx ,

so that integrating by parts m times gives
∫ 1

0

g(2m)(x) (−D)m
{{

x(1− x)
}

m f (m)(x)
}

dx ,

where D denotes differentiation with respect to x, provided the boundary
terms vanish. Showing that they do is harder than it looks (e.g., are the
boundary values actually defined ?), but the expansion in Legendre poly-
nomials avoids the issue.

Quadrature. The last technical result deals with quadrature. The only
hard part is an embedding result where apparently, the Legendre polyno-
mials are of no use. We must slug it out; cf. the proof of Lemma (2.10).

(6.29) Embedding Lemma. There exists a constant c such that

‖ f ‖
W 1,2(0,1)

� c ‖ f ‖
1,W2

for all f ∈ W2 .
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Proof. For x, y ∈ (0, 1), with y < x,

| f ′(x)− f ′(y) | �
∫ x

y

| f ′′( t ) | d t � c(x, y) | f |W2

c2(x, y) =
∫ x

y

[ t (1− t ) ]−2 d t .with

It follows that, for any closed subinterval [ a , b ] ⊂ (0, 1), we have

c(x, y) � C(a, b) |x− y |1/2 for x, y ∈ [ a , b ] ,

for a suitable constant C(a, b). Thus, f ′ is continuous in (0, 1).
Now, let M =

(
1
4 , 3

4

)
, and choose y ∈ M such that

| f ′(y) |2 = 2 ‖ f ′ ‖ 2

M

in the notation of (2.10). This is possible by the Mean Value Theorem.
Then,

∫ y

0

| f ′( t ) |2 d t � 2 | f ′(y) |2 + 2
∫ y

0

| f ′( t )− f ′(y) |2 d t .

Now, by Hardy’s inequality (see Lemma (6.31) and Exercise (6.32) below),
∫ y

0

| f ′( t )− f ′(y) |2 d t � 4
∫ y

0

t 2 | f ′′( t ) |2 d t

� 64
∫ y

0

[ t (1− t ) ]2 | f ′′( t ) |2 d t .

Also, | f ′(y) |2 = 2 ‖ f ′ ‖ 2
M

. By the Interpolation Lemma (2.12) with h = 1,
we have the bound

(6.30) ‖ f ′ ‖ 2

M
� c ‖ f ‖ 2

M
+ c1 ‖ f ′′ ‖ 2

M

for constants c and c1 independent of y (since y is bounded away from 0).
Since, on the interval M , the weight function

{
x(1 − x)

}
2 is bounded

from below by 9
256 , then

∫ 3
4

1
4

| f ′′( t ) |2 d t � c

∫ 3
4

1
4

{
x(1− x)

}
2 | f ′′( t ) |2 d t

with c = 256/9, so that ‖ f ′′ ‖ 2
M

� c | f | 2W2
and we obtain

‖ f ′ ‖ 2

(0,y)
� c ‖ f ‖ 2

1,W2
.

The same bound applies to ‖ f ′ ‖ 2

(y,1)
. The lemma follows. Q.e.d.

To prove the version of Hardy’s inequality alluded to above, we quote
the following result from Hardy, Littlewood, and Polya (1951).
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(6.31) Lemma. Let K : R
+ × R

+ → R
+ be homogeneous of degree −1;

i.e., K( t x , t y ) = t−1 K(x, y) for all nonnegative t , x , and y . Then, for
all f ∈ L2(R+),

∫

R+

∣
∣
∣
∫

R+
K(x, y) f(y) dy

∣
∣
∣
2

dx � k ‖ f ‖ 2

L2(R+)
,

where k =
∫

R+
y−1/2 K(1, y) dy .

Proof. For nonnegative f , g ∈ L2(R∗),
∫

R+
f(x)

∫

R+
K(x, y) g(y) dy dx

=
∫

R+
f(x)

∫

R+
xK(x, xy) g(xy) dy dx (change of variable)

=
∫

R+
f(x)

∫

R+
K(1, y) g(xy) dy dx (homogeneity)

=
∫

R+
K(1, y)

∫

R+
f(x) g(xy) dx dy (Fatou) .

Now, with Cauchy-Schwarz,
∫

R+
f(x) g(xy) dx dy � ‖ f ‖

L2(R+)

{∫

R+
| g(xy) |2 dx

}1/2

� y−1/2 ‖ f ‖
L2(R+)

‖ g ‖
L2(R+)

,

the last equality by a change of variable. Thus, for all nonnegative f ,
g ∈ L2(R+),

∫

R+
f(x)

∫

R+
K(x, y) g(y) dy dx � k ‖ f ‖

L2(R+)
‖ g ‖

L2(R+)
,

with the constant k as advertised. Obviously, then this holds also for all
f , g ∈ L2(R+). Finally, take

f(x) =
∫

R+
K(x, y) g(y) dy , x ∈ R

+ ,

and we are in business. Q.e.d.

(6.32) Exercise. (a) Show that the function

K(x, y) = y−1 11(x < y ) , x, y > 0 ,

is homogeneous of degree −1.
(b) Show the following consequence of Lemma (6.31): For all integrable
functions f on R

+,
∫

R+

∣
∣
∣
∫ ∞

x

y−1 f(y) dy
∣
∣
∣
2

dx � 4
∫

R+
x2 | f(x) |2 dx .
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(c) Use (b) to show that, for all functions f with a measurable derivative,
∫ ∞

0

| f( t ) |2 d t � 4
∫ ∞

0

t2 | f ′( t ) |2 d t .

(d) Use (c) to show that, for all functions f with a measurable derivative,
∫ T

0

| f( t )− f(T ) |2 d t � 4
∫ T

0

t2 | f ′( t ) |2 d t .

(6.33) Lemma. Let m � 2. For asymptotically uniform designs, there
exists a constant cm such that, for all f ∈ Wm and all h , 0 < h � 1,

∣
∣
∣ 1

n

n∑

i=1

| f(xin) |2 − ‖ f ‖2
∣
∣
∣ � cm (nh2 )−1 ‖ f ‖

h,Wm
.

Proof. By Definition (2.22), the left-hand side is bounded by
c n−1 ‖ ( f 2 ) ′ ‖

1
.

Now,

‖ ( f 2 ) ′ ‖
1

� 2 ‖ f ‖ ‖ f ′ ‖ � 2 ‖ f ‖ ‖ f ‖
W 1,2(0,1)

� c ‖ f ‖ ‖ f ‖
1,W2

,

the last inequality by Lemma (6.29). Finally for 0 < h � 1,

‖ f ‖
1,W2

� h−2 ‖ f ‖
h,W2

,

and of course ‖ f ‖ � ‖ f ‖
h,W2

. Thus,

(6.34) ‖ ( f 2 ) ′ ‖
1

� c h−2 ‖ f ‖ 2

h,W2
.

The lemma then follows from Lemma (6.26). Q.e.d.

(6.35) Remark. The inequality (6.34) does not appear to be sharp as
far as the rate h−2 is concerned. The example f(x) = (x − λ )2+ (for
appropriate λ ) shows that the rate h−3/2 may apply. Verify this. What
is the best possible rate ? (The authors do not know.)

Reproducing kernels. We finally come to the existence of the reproduc-
ing kernels, implied by Lemmas (6.23) and (6.26), and its consequences for
random sums.

(6.36) Theorem [Reproducing kernel Hilbert spaces ]. Let m � 2.
Then, Wm is a reproducing kernel Hilbert space with reproducing kernels
Rm,h(x, y), x, y ∈ [ 0 , 1 ], so that, for all f ∈ Wm ,

f(x) =
〈〈

Rm,h(x, · ) , f
〉〉

h,Wm

, for all x ∈ [ 0 , 1 ] ,

and, for a suitable constant cm not depending on h ,

‖Rm,h(x, · ) ‖
h,Wm

� cm Φh(x)h−1/2 .
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The reproducing kernel Hilbert space setting has consequences for ran-
dom sums. For the noise vector dn and design xin, i = 1, 2, · · · , n , let

(6.37) Snh( t ) = 1
n

n∑

i=1

din Rmh(xin , t ) , t ∈ [ 0 , 1 ] .

(6.38) Lemma. Let m � 2. Then, for all f ∈ Wm and h , 0 < h � 1, and
for all designs,

∣
∣
∣ 1

n

n∑

i=1

din f(xin)
∣
∣
∣ � ‖ f ‖

h,Wm
‖Snh ‖

h,Wm
.

If, moreover, the noise vector dn satisfies (1.2) and the design is asymp-
totically uniform, then there exists a constant c such that, for all n and
all h , 0 < h � 1, with nh2 →∞ ,

E
[
‖Snh ‖ 2

h,Wm

]
� c (nh)−1 .

Proof. For the first inequality, use the representation

f(xin) =
〈〈

f , Rmh(xin, · )
〉〉

h.Wm

to see that the sum equals
〈〈

f , Snh
〉〉

h.Wm
. Then Cauchy-Schwarz implies

the inequality.
For the second inequality, note that the expectation equals

n−2
n∑

i,j=1

E[ din djn ]
〈〈

Rmh(xin, · ) , Rmh(xjn, · )
〉〉

h.Wm

.

By the assumption (1.2) and Theorem (6.36), this equals and may be
bounded as

(6.39) σ2 n−2
n∑

i=1

‖Rmh(xin, · ) ‖ 2

h,Wm
� c (nh)−1 · 1

n

n∑

i=1

|Φh(xin) |2

for a suitable constant c . By the asymptotic uniformity of the design, see
Definition (2.22), we have

(6.40) 1
n

n∑

i=1

|Φh(xin) |2 � ‖Φh ‖2 + c n−1/2 ‖Φ 2
h ‖

W 1,1(0,1)
.

Now, ‖Φ 2
h ‖1 = ‖Φh ‖2 and

‖Φh ‖2 �
∫ 1

0

{
x(1− x)

}−1/2
dx = π .

Also,

‖ {Φ 2
h } ′ ‖

1
=
∫ 1−a

a

∣
∣
∣

d

dx

{
x(1− x)

}−1/2
∣
∣
∣ dx ,
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where a is the smallest solution of

h−1/2 =
{

x(1− x)
}−1/4

.

So, a � h2. Now,
{

x(1− x)
}−1/4 is decreasing on ( a , 1

2 ), and so

∫ 1
2

a

∣
∣
∣

d

dx

{
x(1− x)

}−1/2
∣
∣
∣ dx =

{
a(1− a)

}−1/2 − 2 � h−1 ,

and the same bound applies to the integral over ( 1
2 , 1−a ). To summarize,

all of this shows that, for a suitable constant c ,

‖Φh ‖2 � π , ‖ {Φ 2
h } ′ ‖

1
� c h−1 , and so ‖Φ 2

h ‖
W 1,1(0,1)

� c h−1 ,

and then (6.40) shows that

1
n

n∑

i=1

|Φh(xin) |2 � π + c (nh2)−1/2 .

This implies the advertised bound on E[ ‖Snh ‖ 2
h,Wm

] . Q.e.d.

(6.41) Exercise. Some of the results in this section also hold for m = 1.
(a) Show that, (6.24) holds for m = 1 and that instead of the uniform
bound we have

| f(x) | � c h−1
∣
∣ log

{
x(1− x)

} ∣∣1/2 ||| f |||
h,W1

.

(b) Show that, for a = 1/n ,
∫ 1−a

a

| log{x(1− x) } |1/2 | f ′(x) | dx � c ( log n )2 | f |W1
.

(c) Prove the case m = 1 of Lemma (6.38) for the designs

xin = i/(n− 1) and xin = (i− 1
2 )/(n− 1) , i = 1, 2, · · · , n .

Indeed, for m = 1, the requirement on the designs is the asymptotic uni-
formity of Definition (2.22) together with the assumption that

(d) sup
n�1

1
n

n∑

i=1

{xin ( 1− xin ) }−1/2 < ∞ .

[ Hint: For (a), proceed analogously to the proof of Lemma (2.10). For
(b), Cauchy-Schwarz does it. For (c), use (6.39), but with Φh replaced by
Ψh(x) = {x ( 1− x ) }−1/4 . ]

Exercises: (6.6), (6.32), (6.40).

7. Existence, uniqueness, and rates
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In this section, we actually prove Theorems (6.7) and (6.8). This pretty
much goes along the lines of §§ 3 and 4. We start out with the quadratic
behavior.

(7.1) Lemma. Let m � 1, and let fnh be a solution of (6.4). Then, for all
f ∈ Wm and all h > 0,

1
n

n∑

i=1

| f(xin)− fnh(xin) |2 + h2m | f − fnh | 2

Wm
=

1
n

n∑

i=1

(
f(xin)− yin

) (
f(xin)− fnh(xin)

)
+ h2m

〈
f , f − fnh

〉
Wm

.

(7.2) Uniqueness Lemma. Let m � 1, and suppose that the design con-
tains at least m distinct points. Then the solution of (6.4) is unique.

(7.3) Exercise. Prove it. [ Hint : Copy the proofs of Lemmas (3.1) and
(3.6) with some cosmetic changes. ]

We go on to prove the convergence rates of Theorem (6.8).

Proof of Theorem (6.8). The starting point is the quadratic behavior
of Lemma (7.1). After the usual manipulations with

(7.4) εnh = fnh − fo ,

this gives the equality

(7.5) 1
n

n∑

i=1

| εnh(xin) |2 + h2m | εnh | 2

Wm
=

1
n

n∑

i=1

din εnh(xin)− h2m
〈
fo , εnh

〉
Wm

.

Now, we just need to apply the appropriate results.
For the bias part, note that by Lemma (6.27)

(7.6) − h2m
〈
fo , εnh

〉
Wm

� h2m ‖ εnh ‖ ‖ fo ‖1,W2m

.

For the random sum on the right of (7.5), we use Lemma (6.38), so

(7.7) 1
n

n∑

i=1

din εnh(xin) � ‖ εnh ‖
h,Wm

‖Snh ‖
h,Wm

.

For the sum on the left-hand side of (7.5), Lemma (6.33) provides the
lower bound

‖ εnh ‖2 − c (nh2)−1 ‖ εnh ‖
h,Wm

,

so that

(7.8) ζnh ‖ εnh ‖ 2

h,Wm
� 1

n

n∑

i=1

| εnh(xin) |2 + h2m | εnh | 2

Wm
,
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with ζnh → 1, provided nh2 →∞ .
Substituting (7.6), (7.7), and (7.6) into (7.5) results in

ζnh ‖ εnh ‖ 2

h,Wm
� ‖Snh ‖

h,Wm
‖ εnh ‖

h,Wm
+ c h2m ‖ εnh ‖ ‖ fo ‖1,W2m

,

and the right-hand side may be bounded by

‖ εnh ‖
h,Wm

{
‖Snh ‖

h,Wm
+ c h2m ‖ fo ‖1,W2m

}
,

so that, for a different c,

‖ εnh ‖ 2

h,Wm
� c ‖Snh ‖ 2

h,Wm
+ c h4m ‖ fo ‖ 2

1,W2m

.

Finally, Lemma (6.38) gives that

E
[
‖ εnh ‖ 2

h,Wm

]
= O

(
(nh)−1 + h4m

)
,

provided, again, that nh2 → ∞ . For the optimal choice h � n−1/(4m+1) ,
this is indeed the case, and then

E
[
‖ εnh ‖ 2

h,Wm

]
= O

(
n−4m/(4m+1)

)
.

This completes the proof. Q.e.d.

Finally, we prove the existence of the solution of (6.4). The following
(compactness) result is useful. Define the mapping T : Wm → C[ 0 , 1 ] by

(7.9) Tf(x) =
∫ x

1
2

(x− t )m−1 f (m)( t ) dt , x ∈ [ 0 , 1 ] .

(7.10) Lemma. Let m � 2. There exists a constant c such that, for all
f ∈ Wm and all x, y ∈ [ 0 , 1 ],

∣
∣Tf(x)− Tf(y)

∣
∣ � c | y − x |1/2 | f |Wm

.

Proof. First we show that T is bounded. Let 0 < x � 1
2 . Note that

∣
∣Tf(x)

∣
∣2 � c(x)

∣
∣
∣
∫ x

1
2

{
t (1− t )

}m | f (m)( t ) |2 dt
∣
∣
∣

with

c(x) =
∣
∣
∣
∫ x

1
2

(x− t )2m−2

{
t (1− t )

}m dt
∣
∣
∣ .

Now, for 0 < x < t � 1
2 , we have

0 � ( t − x )2m−2

{
t (1− t )

}m � 2m ( t − x )m−2 � 4
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since m � 2. It follows that c(x) � 2 on the interval 0 � x � 1
2 . The

same argument applies to the case x � 1
2 , so that

(7.11) |Tf(x) | � 2 | f |Wm
.

Thus, T is a bounded linear mapping from Wm into L∞(0, 1) in the | · |Wm

topology on Wm.
Let f ∈ Wm, and set g = Tf . Then, from (7.11), the function g is

bounded, so surely ‖ g ‖ � 2 | f |Wm
. Of course, g(m) = f (m) (almost

everywhere), so that | g |Wm
= | f |Wm

. It follows that

‖ g ‖
1,Wm

� 3 | f |Wm
.

Now, by the Embedding Lemma (6.29), for a suitable constant c,

‖ g ′‖ � c ‖ g ‖
1,W2

� cm ‖ g ‖
1,Wm

� c̃ | f |Wm
.

It follows that, for all x, y ∈ [ 0 , 1 ],
∣
∣ g(x)− g(y)

∣
∣ =
∣
∣
∣
∫ x

y

g ′( t ) dt
∣
∣
∣ � |x− y |1/2 ‖ g ′ ‖ � c̃ |x− y |1/2 | f |Wm

,

as was to be shown. Q.e.d.

(7.12) Corollary. Let m � 2. Then the mapping T : Wm → C[ 0 , 1 ] is
compact in the | · |Wm

topology on Wm.

Proof. This follows from the Arzelà-Ascoli theorem. Q.e.d.

(7.13) Lemma. Let m � 2. Then the relaxed boundary smoothing prob-
lem (6.4) has a solution.

Proof. Obviously, the objective function RLS(f) of (6.4) is bounded from
below (by 0), so there exists a minimizing sequence, denoted by { fk }k .
Then, obviously,

h2m | fk | 2Wm
� RLS(fk) � RLS(f1) ,

the last inequality without loss of generality. Thus, there exists a subse-
quence, again denoted by { fk }k , for which { f

(m)
k }k converges, in the

weak topology on Wm induced by the | · |Wm
semi-norm, to some ele-

ment ϕo. Then,

|ϕo | 2Wm
� lim inf

k→∞
| fk | 2Wm

,

and by the compactness of T in this setting, then

lim
k→∞

‖Tfk − Tϕo ‖∞ = 0 .

Finally, use Taylor’s theorem with exact remainder to write

fk(x) = pk(x) + Tfk(x)
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for suitable polynomials pk. Now, proceed as in the proof of the Existence
Lemma (3.7) for smoothing splines. Consider the restrictions of the fk to
the design points,

rn fk
def=
(
fk(x1,n), fk(x2,n), · · · , fk(xn,n)

)
, k = 1, 2, · · · .

We may extract a subsequence from { fk }k for which { rn fk }k converges
in R

n to some vector vo. Then, for the corresponding polynomials,

lim
k→∞

pk(xin) = [ vo ]i − Tϕo(xin) , i = 1, 2, · · · , n ,

and there exists a polynomial po of order m such that

(7.14) po(xin) = [ vo ]i − Tϕo(xin) , i = 1, 2, · · · , n .

Finally, define ψo = po + Tϕo , and then, for the (subsub) sequence in
question,

lim
k→∞

RLS(fk) � RLS(ψo) ,

so that ψo minimizes RLS(f) over f ∈ Wm. Q.e.d.

(7.15) Exercise. Prove Theorem (6.8) for the case m = 1 when the design
is asymptotically uniform in the sense of Definition (2.22) and satisfies
condition (d) of Exercise (6.41).

Exercises: (7.3), (7.15).

8. Partially linear models

The gravy train of the statistical profession is undoubtedly data analysis
by means of the linear model

(8.1) yin = xT

in βo + din , i = 1, 2, · · · , n ,

in which the vectors xin ∈ R
d embody the design of the experiment ( d is

some fixed integer � 1), βo ∈ R
d are the unknown parameters to be es-

timated, yn = (y1,n, y2,n, · · · , yn,n)T are the observed response variables,
and the collective noise is dn = (d1,n, d2,n, · · · , dn,n)T , with independent
components, assumed to be normally distributed,

(8.2) dn ∼ Normal(0, σ2 I) ,

with σ2 unknown. The model (8.1) may be succinctly described as

(8.3) yn = Xn βo + dn ,

with the design matrix Xn = (x1,n |x2,n | · · · |xn,n)T ∈ R
n×d .

If Xn has full column rank, then the maximum likelihood estimator of βo

is given by

(8.4) β̂n = (X T

n Xn)−1 X T

n yn
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and is normally distributed,

(8.5)
√

n ( β̂n − βo ) ∼ N
(
0, σ2 (X T

n Xn )−1
)

,

and the train is rolling.
In this section, we consider the partially linear model

(8.6) yin = z T

in βo + fo(xin) + din , i = 1, 2, · · · , n ,

where zin ∈ R
d , xin ∈ [ 0 , 1 ] (as always), the function fo belongs to

Wm,2(0, 1) for some integer m � 1, and

(8.7)
the din are iid, zero-mean random

variables with a finite fourth moment .

In analogy with (8.3), this model may be described as

(8.8) yn = Zn βo + rnfo + dn ,

with rnfo =
(
fo(x1,n), fo(x2,n), · · · , fo(xn,n)

)T
. Thus, rn is the restric-

tion operator from [ 0 , 1 ] to the xin.
Such models arise in the standard regression context, where interest is re-

ally in the model yn = Zn βo +dn but the additional covariates xin cannot
be ignored. However, one does not wish to assume that these covariates
contribute linearly or even parametrically to the response variable. See,
e.g., Engle, Granger, Rice, and Weiss (1986), Green, Jennison,

and Seheult (1985), or the introductory example in Heckman (1988).
Amazingly, under reasonable (?) conditions, one still gets best asymptoti-
cally normal estimators of βo ; that is, asymptotically, the contribution of
the nuisance parameter fo vanishes.

In this section, we exhibit asymptotically normal estimators of βo and
also pay attention to the challenge of estimating fo at the optimal rate of
convergence.

The assumptions needed are as follows. We assume that the xin are
deterministic and form a uniformly asymptotic design; e.g., equally spaced
as in

(8.9) xin =
i− 1
n− 1

, i = 1, 2, · · · , n .

The zin are assumed to be random, according to the model

(8.10) zin = go(xin) + εin , i = 1, 2, · · · , n ,

in which

(8.11)

the εin are mutually independent, zero-mean

random variables, with finite fourth moment, and

E[ εin εT

in ] = V ∈ R
d×d ,

with V positive-definite. Moreover, the εin

are independent of dn in the model (8.6).
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In (8.10), go(x) = E[ z |x ] is the conditional expectation of z and is as-
sumed to be a smooth function of x ; in particular,

(8.12) go ∈W 1,2(0, 1) .

(Precisely, each component of go belongs to W 1,2(0, 1).) Regarding fo, we
assume that, for some integer m � 1,

(8.13) fo ∈Wm,2(0, 1) .

Below, we study two estimators of βo, both related to smoothing spline
estimation. However, since the model (8.3) and the normality result (8.5)
constitute the guiding light, the methods and notations used appear some-
what different from those in the previous sections.

The simplest case. To get our feet wet, we begin with the case in which
go(x) = 0 for all x , so that

(8.14)

the zin are mutually independent, zero-mean

random variables, with finite fourth moment,

independent of the din , and satisfy

E[ zin z T

in ] = V ,

with V positive-definite .

Under these circumstances, by the strong law of large numbers,

(8.15) 1
n Z T

n Zn −→as V .

The estimator under consideration goes by the name of the partial spline
estimator, the solution to

(8.16)
minimize 1

n ‖Zn β + rnf − yn ‖2 + h2m ‖ f (m) ‖2

subject to β ∈ R
d , f ∈ Wm,2(0, 1) .

One verifies that the solution (βnh, fnh) exists and is unique almost surely,
and that fnh is an ordinary (“natural”) spline function of polynomial order
2m with the xin as knots. With (8.4) in mind, we wish to express the
objective function in (8.16) in linear algebra terms. For fixed β , the Euler
equations (3.18) applied to (8.15) imply that the natural spline function f is
completely determined in terms of its function values at the knots, encoded
in the vector rnf . Then, there exists a symmetric, semi-positive-definite
matrix M ∈ R

n×n, depending on the knots xin only, such that

(8.17) ‖ f (m) ‖2 = (rnf)T M rnf for all natural splines f .

So, the problem (8.16) may be written as

(8.18)
minimize 1

n ‖Zn β + rnf − yn ‖2 + h2m (rnf)T M rnf

subject to β ∈ R
d , rnf ∈ R

n .
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Here, the notation rnf is suggestive but otherwise denotes an arbitrary
vector in R

n.
The solution (β, f) to (8.18) is uniquely determined by the normal equa-

tions

(8.19)
Z T

n (Zn β + rnf − yn ) = 0 ,

( I + nh2m M) rnf + Zn β − yn = 0 .

Eliminating rnf , we get the explicit form of the partial spline estimator

(8.20) βnh =
(
Z T

n ( I − Sh )Zn

)−1 Z T

n ( I − Sh ) yn ,

in which

(8.21) Sh = ( I + nh2m M )−1

is the natural smoothing spline operator. Note that Sh is symmetric and
positive-definite. The following exercise is useful.

(8.22) Exercise. Let δn = ( δ1,n, δ2,n, · · · , δn,n)T ∈ R
n and let f = ϕ be

the solution to

minimize 1
n

n∑

i=1

| f(xin)− δin |2 + h2m ‖ f (m) ‖2

subject to f ∈ Wm,2(0, 1) .

Show that rnϕ = Sh δn.

In view of the model (8.8), we then get that

(8.23) βnh − βo = variation + bias ,

with

(8.24)
variation =

(
Z T

n ( I − Sh )Zn

)−1 Z T

n ( I − Sh ) dn ,

bias =
(
Z T

n ( I − Sh )Zn

)−1 Z T

n ( I − Sh ) rnfo .

In the above, we tacitly assumed that Z T
n ( I − Sh )Zn is nonsingular.

Asymptotically, this holds by (8.15) and the fact that

(8.25) 1
n Z T

n Sh Zn = OP

(
(nh)−1

)
,

as we show below. The same type of argument shows that

1
n Z T

n Sh dn = OP

(
(nh)−1

)
,(8.26)

1
n Z T

n ( I − Sh ) rnfo = OP

(
(nh)−1/2 hm

)
.(8.27)

This gives

βnh − βo = (Z T

n Zn)−1 Z T

n dn +OP

(
(nh)−1 + n−1/2 hm−1/2

)
,

and the asymptotic normality of βnh − βo follows for the appropriate h
(but (8.25)–(8.27) need proof).
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(8.28) Theorem. Under the assumptions (8.2), (8.7), and (8.9)–(8.14),
√

n (βnh − βo) −→d Υ ∼ Normal( 0 , σ2 V ) ,

provided h → 0 and nh2 →∞ .

Note that Theorem (8.28) says that βnh is asymptotically a minimum
variance unbiased estimator.

(8.29) Exercise. Complete the proof of the theorem by showing that

(Z T

n Zn)−1 Z T

n dn −→d U ∼ Normal( 0 , σ2 V −1 ) .

Proof of (8.26). Note that d � 1 and Z T
n ∈ R

d×n. We actually pretend
that d = 1.

In accordance with Exercise (8.22), let znh be the natural spline of order
2m with the xin as knots satisfying rnznh = ShZn. Then,

(8.30) ‖ znh ‖m,h = OP

(
(nh)−1/2

)
;

see the Random Sum Lemma (2.20). Now,

1
n Z T

n Sh dn = 1
n dT

n Sh Zn = 1
n

n∑

i=1

din znh(xin) ,

so that in the style of the Random Sum Lemma (2.20),

1
n Z T

n Sh dn =
〈

1
n

n∑

i=1

dinRmh( · , xin) , znh
〉

m,h
,

whence

(8.31)
∣
∣ 1

n Z T

n Sh dn

∣
∣ � ‖ 1

n

n∑

i=1

dinRmh( · , xin) ‖m,h ‖ znh ‖m,h .

Finally, observe that

(8.32) E

[
‖ 1

n

n∑

i=1

dinRmh( · , xin) ‖ 2
m,h

]
= O

(
(nh)−1

)

by assumption (8.14). Thus, (8.26) follows for d = 1. Q.e.d.

(8.33) Exercise. Clean up the proof for the case d � 2. Note that
Z T

n Sh dn ∈ R
d , so we need not worry about the choice of norms.

(8.34) Exercise. Prove (8.25) for d = 1 by showing that

1
n Z T

n Sh Zn =
〈

1
n

n∑

i=1

zinRmh( · , xin) , znh
〉

m,h
,

with znh as in the proof of (8.26) and properly bounding the expression
on the right. Then, do the general case d � 2.
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Proof of (8.27). Note that Sh rnfo = rnfhn, with fhn the solution to the
noise-free problem (4.18). Then, the results of Exercises (4.22) and (4.23)
imply that ‖ fo − fhn ‖m,h = O(hm ) . Thus,

1
n Z T

n ( I − Sh ) rnfo = 1
n

n∑

i=1

zin ( fo(xin)− fhn(xin) )

=
〈

1
n

n∑

i=1

zinRmh( · , xin) , fo − fhn

〉

m,h
,

so that
∣
∣ 1

n Z T

n ( I − Sh ) rnfo

∣
∣ �
∥
∥ 1

n

n∑

i=1

zinRmh( · , xin)
∥
∥

m,h

∥
∥ fo − fhn

∥
∥

m,h
,

and the rest is old hat. Q.e.d.

(8.35) Exercise. Show that, under the conditions of Theorem (8.28),

‖ fnh − fo ‖ 2
m,h = OP

(
(nh)−1 + h2m

)
.

Thus, for h � n−1/(2m+1), we get the optimal convergence rate for fnh as
well as the asymptotic normality of βnh.

Arbitrary designs. We now wish to see what happens when the zin

do not satisfy (8.14) but only (8.11). It will transpire that one can get
asymptotic normality of βnh but not the optimal rate of convergence for
fnh, at least not at the same time. Thus, the lucky circumstances of
Exercise (8.35) fail to hold any longer. However, a fix is presented later.

Again, as estimators we take the solution (βnh, fnh) of (8.18), and we
need to see in what form (8.25)–(8.27) hold. When all is said and done, it
turns out that (8.27) is causing trouble, as we now illustrate.

It is useful to introduce the matrix Gn,

(8.36) Gn = rngo =
[
go(x1,n) | go(x2,n) | · · · | go(xn,n)

]T ∈ R
n×d ,

and define

(8.37) Z̃n = Zn −Gn .

Thus, Z̃n shares the properties of Zn for the simplest case.

Trying to prove (8.27) for arbitrary designs. Write

1
n Z T

n ( I − Sh ) rnfo = 1
n Z̃ T

n ( I − Sh ) rnfo + 1
n GT

n ( I − Sh ) rnfo .

For the first term on the right, we do indeed have

1
n Z̃ T

n ( I − Sh ) rnfo = OP

(
(nh)−1/2 hm

)
,

see the proof of (8.27) for the simplest case.
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For the second term, recall that ( I −Sh ) rnfo = rn( fo− fhn ) , and this
is O

(
hm
)
. Thus, we only get

(8.38) 1
n GT

n ( I − Sh ) rnfo = O
(
hm
)

.

Moreover, it is easy to see that in general this is also an asymptotic lower
bound. Thus (8.27) must be suitably rephrased. Q.e.d.

So, if all other bounds stay the same, asymptotic normality is achieved
only if h � n−1/(2m), but then we do not get the optimal rate of conver-
gence for the estimator of fo since the required h � n−1/(2m+1) is excluded.

(8.39) Exercise. Prove (suitable modifications of) (8.25) and (8.26) for
the arbitrary designs under consideration. Also, verify the asymptotic nor-
mality of βnh for nh2 →∞ and nh2m → 0.

So, what is one to do ? From a formal mathematical standpoint, it is
clear that a slight modification of (8.38), and hence a slight modification
of (8.27), would hold, viz.

(8.40) 1
n GT

n ( I − Sh )2 rnfo = O
(
hm+1

)
,

but then everything else must be modified as well. All of this leads to two-
stage estimators, in which the conditional expectation go(x) = E[ z |x ] is
first estimated nonparametrically and then the estimation of βo and fo is
considered.

(8.41) Exercise. Prove (8.40) taking

1
n GT

n ( I − Sh )2 rnfo = 1
n

n∑

i=1

{
go(xin)− ghn(xin)

}{
fo(xin)− fhn(xin)

}

as the starting point. ( ghn is defined analogously to fhn.)

Two-stage estimators for arbitrary designs. Suppose we estimate
the conditional expectation go(x) by a smoothing spline estimator gnh

(componentwise). In our present finite-dimensional context, then

(8.42) rn gnh = Sh Zn .

With this smoothing spline estimator of go, let

(8.43) Gnh = rngnh =
[

gnh(x1,n) | gnh(x2,n) | · · · , gnh(xn,n)
]T ∈ R

n×d ,

and define

(8.44) Znh = Zn −Gnh .

Now, following Chen and Shiau (1991), consider the estimation problem

(8.45)
minimize 1

n ‖Z
nh β + rn ϕ− yn ‖2 + h2m ‖ϕ(m) ‖2

subject to β ∈ R
d , ϕ ∈Wm,2(0, 1) .
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The solution is denoted by (βnh,1, fnh,1). Note that, with ϕ = f + (gnh)T β,
the objective function may also be written as

1
n‖Zn β + rnf − yn ‖+ h2m ‖

{
f + (gnh)T β

}
(m) ‖2 ;

in other words, the (estimated) conditional expectation is part of the rough-
ness penalization, with the same smoothing parameter h .

It is a straightforward exercise to show that this two-stage estimator of
βo is given by

(8.46) βnh,1 =
(
Z T

n ( I − Sh )3 Zn

)−1Z T

n ( I − Sh )2 yn ,

so that

(8.47) βnh,1 − βo = variation + bias ,

with

(8.48)
variation =

(
Z T

n ( I − Sh )3Zn

)−1Z T

n ( I − Sh )2 dn ,

bias =
(
Z T

n ( I − Sh )3Zn

)−1Z T

n ( I − Sh )2 rnfo .

The crucial results to be shown are

1
n Z

T

n Zn −→as V ,(8.49)
1
n Z

T

n (−3Sh + 3Sh
2 − Sh

3 )Zn = OP

(
(nh)−1

)
,(8.50)

1
n Z T

n (−2Sh + Sh
2 ) dn = OP

(
(nh)−1

)
,(8.51)

1
n Z T

n ( I − Sh )2 rnfo = OP

(
n−1/2 hm−1/2 + hm+1

)
,(8.52)

with V as in (8.11). They are easy to prove by the previously used methods.
All of this then leads to the following theorem.

(8.53) Theorem. Under the assumptions (8.2), (8.7), and (8.9)–(8.13),
√

n (βnh,1 − βo) −→d Υ ∼ Normal( 0 , σ2 V ) ,

provided nh2 →∞ and nh2m+2 → 0.

(8.54) Exercise. (a) Prove (8.49) through (8.52).
(b) Assume that go ∈ Wm,2(0, 1). Prove that, for h � n−1/(2m+1), we
get the asymptotic normality of βnh,1 as advertised in Theorem (8.53)
as well as the optimal rate of convergence for the estimator of fo, viz.
‖ fnh,1 − fo ‖ = OP

(
n−m/(2m+1)

)
.

We finish this section by mentioning the estimator

(8.55) βnh,2 =
(
Z T

n ( I − Sh )2Zn

)−1Z T

n ( I − Sh )2 yn

of Speckman (1988), who gives a piecewise regression interpretation. (To
be precise, Speckman (1988) considers kernel estimators, not just smooth-
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ing splines.) The estimator for fo is then given by

(8.56) rnfnh,2 = Sh ( yn − Zn βnh,2 ) .

The asymptotic normality of βnh,2 may be shown similarly to that of βnh,1.

(8.57) Exercise. State and prove the analogue of Theorem (8.53) for the
estimator βnh,2.

This completes our discussion of spline estimation in partially linear mod-
els. It is clear that it could be expanded considerably. By way of example,
the smoothing spline rngnh = ShZn, see (8.42), applies to each component
of Zn separately, so it makes sense to have different smoothing parameters
for each component so

(8.58) rn (gnh)j = S(hj) (Zn)j , j = 1, 2, · · · , d ,

with the notation S(h) ≡ Sh. Here (Zn)j denotes the j-th column of Zn.

Exercises: (8.22), (8.29), (8.33), (8.34), (8.35), (8.39), (8.41), (8.54),
(8.57).

9. Estimating derivatives

Estimating derivatives is an interesting problem with many applications.
See, e.g., D’Amico and Ferrigno (1992) and Walker (1998), where
cubic and quintic splines are considered. In this section, we briefly discuss
how smoothing splines may be used for this purpose and how error bounds
may be obtained.

The problem is to estimate f ′
o (x), x ∈ [ 0 , 1 ], in the model

(9.1) yin = fo(xin) + din , i = 1, 2, · · · , n ,

under the usual conditions (4.1)–(4.4). We emphasize the last condition,

(9.2) fo ∈Wm,2(0, 1) .

As the estimator of f ′
o , we take (fnh) ′ , the derivative of the spline esti-

mator. We recall that, under the stated conditions,

(9.3) E
[
‖ fnh − fo ‖ 2

m,h

]
= O

(
n−2m/(2m+1)

)
,

provided h � n−1/(2m+1) (deterministically); see Corollary (4.7). Now,
recall Lemma (2.17),

‖ϕ ‖k,h � cm ‖ϕ ‖m,h ,

valid for all ϕ ∈ Wm,2(0, 1) and for all k = 0, 1, · · · ,m , with a constant
cm depending on m only. Applying this to the problem at hand with
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k = 1 yields

E[h2 ‖ (fnh − fo)
′ ‖2 ] = O

(
n−2m/(2m+1)

)
,

so that

(9.4) E[ ‖ (fnh − fo)
′ ‖2 ] = O

(
n−2(m−1)/(2m+1)

)
,

provided h � n−1/(2m+1). This argument applies to all derivatives of order
< m. We state it as a theorem.

(9.5) Theorem. Assume the conditions (4.1) through (4.4) and that the
design is asymptotically uniform. Then, for d = 1, 2, · · · ,m− 1,

E[ ‖ (fnh)(d) − f (d)
o ‖2 ] = O

(
n−2(m−d)/(2m+1)

)
,

provided h � n−1/(2m+1).

(9.6) Exercise. Prove the remaining cases of the theorem.

Some final comments are in order. It is not surprising that we lose
accuracy in differentiation compared with plain function estimation. How-
ever, it is surprising that the asymptotically optimal value of h does not
change (other than through the constant multiplying n−1/(2m+1) ). We
also mention that Rice and Rosenblatt (1983) determine the optimal
convergence rates as well as the constants. Inasmuch as we get the optimal
rates, the proof above is impeccable. Of course, our proof does not give
any indication why these are the correct rates. The connection with kernel
estimators through the “equivalent” kernels might provide some insight;
see Chapter 14.

Exercise: (9.6).

10. Additional notes and comments

Ad §§§ 1: Nonparametric regression is a huge field of study, more or less
(less !) evenly divided into smoothing splines, kernel estimators, and local
polynomials, although wavelet estimators are currently in fashion. It is
hard to do justice to the extant literature. We mention Wahba (1990),
Eubank (1999), Härdle (1990), Green and Silverman (1990), Fan and
Gijbels (1996), Antoniadis (2007), and Györfi, Kohler, Krzyżak,

and Walk (2002) as general references.

Ad §§§ 2: For everything you might ever need to know about the Sobolev
spaces Wm,2(0, 1), see Adams (1975), Maz’ja (1985), and Ziemer (1989).
The statement and proof of the Interpolation Lemma (2.12) comes essen-
tially from Adams (1975).
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The reference on reproducing kernel Hilbert spaces is Aronszajn (1950).
Meschkowski (1962) and Hille (1972) are also very informative. For a
survey of the use of reproducing kernels in statistics and probability, see
Berlinet and Thomas-Agnan (2004). For more on Green’s functions,
see, e.g., Stakgold (1967).

The definition (2.22) of asymptotically uniform designs is only the tip
of a sizable iceberg; see Amstler and Zinterhof (2001) and references
therein.

Ad §§§ 3: Rice and Rosenblatt (1983) refer to the natural boundary con-
ditions (3.18) as unnatural (boundary) conditions, which is wrong in the
technical sense but accurate nevertheless.

Ad §§§ 6: The Embedding Lemma (6.13) is the one-dimensional version of a
result in Kufner (1980). Of course, the one-dimensional version is much
easier than the multidimensional case.

Ad §§§ 8: The “simplest” case of the partially linear model was analyzed
by Heckman (1988). Rice (1986a) treated arbitrary designs and showed
that asymptotic normality of βnh requires undersmoothing of the spline
estimator of fo . The two-stage estimator βnh,1 and the corresponding
asymptotic normality and convergence rates are due to Chen and Shiau

(1991). The estimator βnh,2 was introduced and studied by Speckman

(1988) for “arbitrary” kernels Sh . Chen (1988) considered piecewise poly-
nomial estimators for fo . Both of these authors showed the asymptotic
normality of their estimators and the optimal rate of convergence of the es-
timator for fo . Bayesian interpretations may be found in Eubank (1988)
and Heckman (1988). Eubank, Hart, and Speckman (1990) discuss
the use of the trigonometric sieve combined with boundary correction using
the Bias Reduction Principle; see § 15.4. Finally, Bunea and Wegkamp

(2004) study model selection in the partially linear model.
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