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Smoothing Splines

1. Introduction

In this section, we begin the study of nonparametric regression by way of
smoothing splines. We wish to estimate the regression function f, on a
bounded interval, which we take to be [0, 1], from the data y, ,,, -+, Y,
following the model l

Here, the z;,, are design points (in this chapter, the design is deterministic)
and d,, = (d,,,d,,, - ,d,,)" is the random noise. Typical assump-

2,17 » Ynn
tions are that d, ,,.d,,,, --- ,d, ,, are uncorrelated random variables, with
mean 0 and common variance, i.e.,

(1.2) E[d,]=0 , E[d,d’]=o*I,

where o is typically unknown. We refer to this as the Gauss-Markov model,
in view of the Gauss-Markov theorem for linear regression models. At
times, we need the added condition that

d, ,.d ,d

1,mr %2 my 777

Eld,,]=0 , E[ld,,["] <00,

nn  are iid and

(1.3)

for some k > 2. A typical choice is k = 4.

A more restrictive but generally made assumption is that the d,,, are iid
normal random variables with mean 0 and again with the variance o?
usually unknown, described succinctly as

(1.4) d,, ~ Normal(0,0?1) .

This is referred to as the Gaussian model.
Regarding the regression function, the typical nonparametric assumption
is that f, is smooth. In this volume, this usually takes the form

(1.5) f, € W™2(0,1)

for some integer m, m > 1. Recall the definition of the Sobolev spaces
W™P(q,b) in (12.2.18). Assumptions of this kind are helpful when the
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50 13. Smoothing Splines

data points are spaced close together, so that the changes in the function
values f,(z;,) for neighboring design points are small compared with the
noise. The following exercise shows that in this situation one can do better
than merely “connecting the dots”. Of course, it does not say how much
better.

(1.6) EXERCISE. Let x,, =i/n,i=1,2,---,n, and let y,,, satisfy (1.1),
with the errors satisfying (1.2). Assume that f, is twice continuously
differentiable. For i =2,3, --- ,n—1
(a) show that

4{f z 1,n +2f( 2n)+f 1+1n } f (1/n)2f01/(9in)
for some 0, € (Tic1m, Tit1n);
(b) compute the mean and the variance of
Zin = 5 { Yietn T 2Vin + Yid1n } 5
(¢) compare the mean squared errors
E[|Zzn_fo(xzn)|2] and EHyzn _fo(xin) |2]
with each other (the case n — oo is interesting).

)

In this chapter, we study the smoothing spline estimator of differential
order m , the solution to

| @) = i [P+ B2 SO )2

M=

minimize %
(1.7) i
subject to f € W™2(0,1) .

1

(The factor % appears for convenience; this way, the objective function
is well-behaved as n — oo. The funny choice h?™ vs. h? or h is more
convenient later on, although this is a matter of taste.) The solution is
denoted by f™. The parameter h in (1.7) is the smoothing parameter.
In this chapter, we only consider deterministic choices of h. Random
(data-driven) choices are discussed in Chapter 18, and their effects on the
smoothing spline estimator are discussed in Chapter 22.

The solution of (1.7) is a spline of polynomial order 2m . In the literature,
the case m = 2 is predominant, and the corresponding splines are called
cubic splines. The traditional definition of splines is discussed in Chapter 19
together with the traditional computational details. The modern way to
compute splines of arbitrary order is discussed in Chapter 20.

The following questions now pose themselves: Does the solution of (1.7)
exist and is it unique (see §3), and how accurate is the estimator (see
§4 and §14.7)? To settle these questions, the reproducing kernel Hilbert
space setting of the smoothing spline problem (1.7) is relevant, in which
Wm™2(0,1) is equipped with the inner products

(18) (£, 9)mn=(Fg)+hom(fom gy,



1. Introduction 51

where < - > is the usual L?(0,1) inner product. Then, W™2(0,1) with
the < - >m7 5, inner product is a reproducing kernel Hilbert space with the
reproducing kernel indexed by the smoothing parameter h. Denoting the
reproducing kernel by R, (s, t), this then gives the reproducing kernel
property

(1'9) f($):<f7Rmh(x7')>m’h’ J)E[O,l],

for all f € W™2(0,1) and all h,0<h < 1.

The reproducing kernel shows up in various guises. For uniform designs
and pure-noise data, the smoothing spline estimator is approximately the
same as the solution ¥™" of the semi-continuous version of the smoothing
spline problem (1.7), viz.

minimize || f ||2 - % Z Yin f(‘rin) + h2m H f(m) H2
(1.10) i=1
subject to  f € W™2(0,1) .
The authors are tempted to call ¢)™" the C-spline estimator, C being short

for “continuous”, even though ¥™" is not a polynomial spline. The repro-
ducing kernel now pops up in the form

(1'11) Wlh(t) = % ; Yin Rmh(tamin) ’ T e (07 1) )

because R,,,(t,x) is the Green’s function for the Sturm-Liouville bound-
ary value problem

(=p2)mu™ Ly =w | te(0,1),
uP0)=uP1)=0 , m<L<2m—1.
That is, the solution of (1.12) is given by

(1.12)

1
(1.13) u(t):/o Ron(t, z)w(x)de, te€[0,1].

With suitable modifications, this covers the case of point masses (1.11).
In §14.7, we show that the smoothing spline estimator is extremely well-
approximated by

1 n
(1) )= [ Ryp(ta) fl@)dot L 3 dy Ryt
0 i=1
for all ¢t € [0, 1]. In effect, this is the equivalent reproducing kernel
approximation of smoothing splines, to be contrasted with the equivalent
kernels of SILVERMAN (1984). See also §21.8. The reproducing kernel setup
is discussed in § 2.
In §5, we discuss the need for boundary corrections and their construc-
tion by way of the Bias Reduction Principle of EUBANK and SPECKMAN
(1990b). In §§6-7, we discuss the boundary splines of OEHLERT (1992),
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which avoids rather than corrects the problem. Finally, in §9, we briefly
discuss the estimation of derivatives of the regression function.

EXERCISE: (1.6).

2. Reproducing kernel Hilbert spaces

Here we begin the study of the smoothing spline estimator for the problem
(1.1)—(1.2). Recall that the estimator is defined as the solution to

ory T Ln()® d | fauw) i 2O

subject to  f € W™2(0,1) .

Here, h is the smoothing parameter and m is the differential order of the
smoothing spline. The solution of (2.1) is a spline of polynomial order 2m
(or polynomial degree 2m —1). At times, we just speak of the order of the
spline, but the context should make clear which one is meant.

The design points are supposed to be (asymptotically) uniformly dis-
tributed in a sense to be defined precisely in Definition (2.22). For now,
think of the equally spaced design z,, = ¢, with

i—1
(2.2) tn =7 =12 0.

The first question is of course whether the point evaluation functionals
fr— f(z;,), i=1,2,--- ,n, are well-defined. This has obvious implica-
tions for the existence and uniqueness of the solution of (2.1). Of course,
if these point evaluation functionals are well-defined, then we are dealing
with reproducing kernel Hilbert spaces. In Volume I, we avoided them more
or less (more!) successfully, but see the KLONIAS (1982) treatment of the
maximum penalized likelihood density estimator of GOOD and GASKINS
(1971) in Exercise (5.2.64) in Volume I. For spline smoothing, the use of
reproducing kernel Hilbert spaces will have far-reaching consequences.

The setting for the problem (2.1) is the space W™2(0,1), which is a
Hilbert space under the inner product

(2.3) (fr0) (fro )+ {F™, o)

wW™2(0,1)

and associated norm
(2.4) 17 oy = LIS+ SO 2172

Here, (-, -) denotes the usual L?(0, 1) inner product. However, the norms

(2.5) 1S = ISP A B2 )2 312
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and corresponding inner products

(2.6) (Fr@)n=C(Fr@)+ 2 (0, o))

are useful as well. Note that, for each h > 0 the norms (2.4) and (2.5) are
equivalent, but not uniformly in h. (The “equivalence” constants depend
on h.) We remind the reader of the following definition.

(2.7) DEFINITION. Two norms || - ||, and || - ||;; on a vector space V' are
equivalent if there exists a constant ¢ > 0 such that

cloll, <lvll, <clv], forallveV.
(2.8) EXERCISE. Show that the norms (2.4) and (2.5) are equivalent.

We are now in a position to answer the question of whether the f(z,,)
are well-defined for f € W™2(0,1) in the sense that | f(z;,) | < c|| f [lm.n
for a suitable constant. This amounts to showing that W™?2(0,1) is a
reproducing kernel Hilbert space; see Appendix 3, §7, in Volume 1.

In what follows, it is useful to introduce an abbreviation of the L? norm
of a function f € L?(0,1) restricted to an interval (a,b) C (0,1),

(29) 1l 2 { [ 5@ Par )™

but please do not confuse || - || (a.b) (with parentheses) with || - ||
(without them).

m,h

(2.10) LEMMA. There exists a constant ¢, such that, for all f € W12(0,1),
all 0 <h<1,and all z €0, 1],

[ f@) [ <e, 2 f -

PrRoOOF. The inequality
@) - s =| [ rwrar]|<lz -y
Yy

implies that every f € W™2(0,1) is (uniformly) continuous on (0, 1).
Consider an interval [a,a+ h] C [0, 1]. An appeal to the Intermediate
Value Theorem shows the existence of a y € (a,a + h) with

[F@) =272 f Nl aasn -
From the inequalities above, we get, for all = € (a,a + h),
[ f@) I <[f@)[+]f(=z) - f(y)]
R0l aarny + P21 oy
SRV FI+R2E

/

N
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and thus, after some elementary manipulations

| f@) | <ch Y2 FIP+ B2 |12 32
with ¢ = /2. Q.e.d.

(2.11) LEMMA [ CONTINUITY OF POINT EVALUATIONS |. Let m > 1 be an
integer. There exists a constant c,, such that, for all f € W™ 2(0, 1), all
0<h<1,andall z€(0,1),

|f((L‘) | < Cm h_1/2 || f ||m,h .
The proof goes by induction on m, as per the next two lemmas.

(2.12) INTERPOLATION LEMMA. Let m > 1 be an integer. There exists a
constant c,, > 1 such that, for all f € Werl 2(0,1) and all 0 < h <1,

(a) || f(m) || < Cm h=™ H f ||m+1,h )
and, with 0 =1/(m + 1),

(m) 0 1-6
(v) LE T e 10 Do P

Note that the inequality (b) of the lemma implies that
Il Cn LFICIAIE

for another constant ¢,, . So ignoring this constant, after taking logarithms,
the upper bound on log I f . 2(0,1) 18 obtained by linear interpolation
on log || f llyye.20,1) between =0 and x =m + 1, hence the name.

wm 2(0 1) \ Cm Wm+1 2(0 1)

PRrOOF. From (a) one obtains that

(m) m
TRl IS ol P E N I

Now, take h such that ™™ = || f|| /| f lm+1.20,1) and (b) follows, for
a possible larger constant ¢,,. (Note that indeed h < 1.)
The case m =1 of the lemma is covered by the main inequality in the
proof of Lemma (5.4.16) in Volume I. The proof now proceeds by induction.
Let m > 1. Suppose that the lemma holds for all integers up to and
including m. Let f € W™22(0,1). Applying the inequality (a) with
m =1 to the function (™) gives

(2.13) 1P < e A ((LFO 4 B2 )
Now, apply the inequality (b) of the lemma for m, so

m 0 1-6
A< em PN LN iz

<em I I +en I FICIFmD =2,

(2.14)
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since (z +y)* < z® + y* for all positive z and y and 0 < a < 1.
Substituting this into (2.13) gives, for suitable constants ¢,, and ¢,
(215) SV <E RTINS

ah ™ (IFI+R2 2
Since h < 1, then A~' < h™™ !, so that
A Al DI i A S A P
ST llngan -

Substituting this into (2.15) gives
(216) [ FU <G AN T S ez -

This is an inequality of the form zP < ax + b with p > 1, which implies
that 2P < a?+qb, where 1/g=1—(1/p). See Exercise (4.10). This gives

£ < @ )™ I F I (ot D E R D
This implies the inequality (a) for m + 1. Q.e.d.

(2.17) LEMMA. Let m > 1 be an integer. There exists a constant k,, such
that, for all f € W™T12(0,1) and all 0 < h < 1,

H f ||m,h < km || f ||m+1,h .

PROOF. Lemma (2.12) says that A™ || f0™) || < ¢, || f i1 .n - Now, squar-
ing both sides and then adding || f ||? gives the lemma, with k2, = 1+c2, .

Q.e.d.

We now put all of the above together to show that the smoothing spline
problem is “well-behaved” from various points of view.

Reproducing kernel Hilbert spaces. Lemma (2.11) shows that, for
fixed x € [0, 1], the linear functional £(f) = f(z) is bounded on W™2(0, 1).
Thus, the vector space W™?2(0,1) with the inner product (2.6) is a re-
producing kernel Hilbert space and, for each z € (0,1), there exists an
Ron.he € W™2(0,1) such that, for all f € W™2(0,1),

f(x) = <Rm,h,ac7 f>m,h .

It is customary to denote Ry, n.o(y) by R,,,(x,y). Applying the above to
the function f =R, (v, -), where y € [0, 1] is fixed, then gives

Rmh(:%x) = <Rmh(x7 ')7 Rmh(y7 ')>m,h forall =z € [07 1] )
whence R, ,(x,y) = R,,,(y,x). Moreover, Lemma (2.11) implies that

|| Rmh(‘r’ ) ||$n,h - Rmh($,$) g Cm h71/2 || Rmh(gja ) ||m,h )

and the obvious conclusion may be drawn. We summarize this in a lemma.
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(2.18) REPRODUCING KERNEL LEMMA. Let m > 1 be an integer, and
let 0 < h < 1. Then W™2(0,1) with the inner product (-, ), is a
reproducing kernel Hilbert space, with kernel R, , (x,y), such that, for all
fewm™2(0,1) and all z,

f(@) =Rz, ), f>mh for all z€[0,1].
Moreover, there exists a c,, such that, for all 0 < h <1, and all z,

|| Rmh(xv ) Hm,h < Cm h_1/2 .

Random sums. The reproducing kernel Hilbert space framework bears
fruit in the consideration of the random sums

where f € W™2(0,1) is random, i.e., is allowed to depend on the noise

vector d,, = (d, ,,,d,,,, -~ ,d, , ). In contrast, define the “simple” random
sums

n

1=

where the randomness of the functions f is traded for the dependence on
a smoothing parameter.

(2.20) RANDOM SUM LEMMA. Let m > 1. For all f € W™2(0,1) and all

noise vectors d,, = (d, ,,,d d

1,mr%any "7 n,n)v

Moreover, if d,, satisfies (1.2), then there exists a constant ¢ such that
E[]| 6" |l5.] < c(nh)™!
for all h, 0 < h <1, and all designs.

PROOF. Since f € W™2(0,1), the reproducing kernel Hilbert space trick
of Lemma (2.18) gives

f(xzn) = <Rmh('rin7 ')7 f>m‘h )

and consequently

SI=

Il
—

din f(xm) - <6nh7 f>m7h )

K3

which gives the upper bound

S
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Note that all of this holds whether f is random or deterministic.
Now, one verifies that

” Gnh ”2 = n72 Z dln djn <Rmh(xin7 : ) ) Rmh(xjna .)>m,h )

ij=1

and so, under the assumption (1.2),
b2 2 2 (- 2
E[I&™ 7] = 0* 17 3 I Roun (wins ) Wi
1=

The bound from the previous lemma on || R, (2, -) |5, now completes
the proof. Q.e.d.

(2.21) EXERCISE. Show that, under the assumptions of Lemma (2.20),

% z; dzn f(xzn) f c Wm,2(0’ 1)
1 Ml f#0

h
sup = || &" ||m,h .

In other words, the supremum is attained by the solution of the pure-noise
version of (1.10); i.e., with y,, = d,,, for all 7.

Quadrature. The reproducing kernel Hilbert spaces setup of Lemma
(2.18) shows that the linear functionals ¢; ,(f) = f(z;,), ¢ = 1,2, -+ ,n,
are continuous on W™2(0,1) for m > 1. So the problem (2.1) starts to
make sense. Along the same lines, we need to be able to compare

fl@p) [P and | £

S

n
2.
i=1

with each other, at least for f € W"2(0,1). In effect, this is a requirement
on the design, and is a quadrature result for specific designs.

(2.22) DEFINITION. We say that the design z;,, i =1,2, --- ,n, is asymp-
totically uniform if there exists a constant ¢ such that, for all n > 2 and
all fewh0,1),

3=

2

" 1
_ -1 /
> flea) = [ K@t <en 1]

L'0,1)

(2.23) REMARK. The rate n~' could be lowered to (n~!logn)¥/? but
seems to cover most cases of interest. Random designs require their own
treatment; see Chapter 21.
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(2.24) LEMMA. The design (2.2) is asymptotically uniform. In fact, for
every f € Wh1(0,1),

n

1
LY fta) = [ s <000

1=

PRrROOF. The first step is the identity,

n n—1
(2.25) 1 ; Cin = 7 ; {as, cin + by, Ci+1,n} )
for all ¢;,,, ¢ = 1,2, --- ,n, where a;, = (n —i)/n, b;,, =i/n. Of course,

we take ¢;, = f(¢; ) Then, with the intervals w, = (t,,,1t; ),

n> Yi+1ln

n— 1{aznf zn)+bznf ’L+1’ﬂ /
w

/w {f(%)—f(t)}dwbm/w [ F(torn) — F(£) Ydt |

Now, for t € w, ,
wm

FESEOIE \/ fsds|< [ 15 as.

wm

so, after integration over w, , an interval of length 1/(n — 1),

|1t = s 1ar < —/ £)|dt .

wm

The same bound applies to / | f(tip1n)— f( t) |dt. Then, adding these
bounds gives Yin

o St St = [ sa| <2 [ 1roae.

in

and then adding these over i = 1,2, --- 'n — 1, together with the triangle
inequality, gives the required result. Q.e.d.
(2.26) EXERCISE. Show that the design ¢, =i/(n+1), i=1,2,---.n,

is asymptotically uniform and likewise for ¢, = (i — 3)/n.

(2.27) QUADRATURE LEMMA. Let m > 1. Assuming the design is asymp-
totically uniform, there exists a constant c,, such that, for all f € W™?2(0,1),
all n>2, andall h,0<h<3%,

3=

[ f@in) P = I1F 1P | < e () THIANLZ, -

=1
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PROOF. Let m > 1. As a preliminary remark, note that, for f € W™2(0,1),
we have of course that || f2|; = || f]|*> and that

FCE2) =20 f Il < 2B =2h ARl

SRR el A o Sl

where we used Cauchy-Schwarz and the inequality 2ab < a® + b2.
Then, for n > 2, by the asymptotic uniformity of the design,

(2.28) LY )P <en™ U,

which by the above, may be further bounded by
c(nh) | F112, <) T2,

for an appropriate constant ¢, the last inequality by Lemma (2.17). This
is the lemma. Q.e.d.

The following is an interesting and useful exercise on the multiplication
of functions in W™2(0,1).

(2.29) EXERCISE. (a) Show that there exists a constant ¢,, such that, for
all h, 0 < h < 3,

15 9l < o™ 2N i 19 s forall - f, g € W™2(0,1) .
(b) Show that the factor h~'/? is sharp for h — 0.

EXERCISES: (2.8), (2.21), (2.26), (2.29).

3. Existence and uniqueness of the smoothing spline

In this section, we discuss the existence and uniqueness of the solution of
the smoothing spline problem. Of course, the quadratic nature of the prob-
lem makes life very easy, and it is useful to consider that first. Note that
in Lemma (3.1) below there are no constraints on the design. We empha-
size that, throughout this section, the sample size n and the smoothing
parameter h remain fixed.

(3.1) QUADRATIC BEHAVIOR LEMMA. Let m > 1, and let ¢ be a solution
of (2.1). Then, for all f € W™2(0,1),

| @) = @) P+ 02| (f =)™ ) =

Si=

@
Il
-

(f(xzn)_yzn) (f(ff:m)—w(wm)) +h2m<f(m)’ (f—@)(m)> :

3=

1

-
Il
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PRrROOF. Since L, (f) is quadratic, it is convex, and thus, see, e.g., Chap-
ter 10 in Volume I or Chapter 3 in TROUTMAN (1983), it has a Gateaux
variation (directional derivative) at each ¢ € W™2(0,1). One verifies that
it is given by

(32) OLu(e, f—9) =207 ('™, (f—)™) +

n

> (i) = Yin ) (f(@4) — 0(24,) )

=1

S

so that
(3.3)  Lyp(f) = Ln(p) = 0Ly, f =) =

B2 (f — ) |2 + 2 ; | F(0m) — 0(@in) -

In fact, this last result is just an identity for quadratic functionals. Now, by
the necessary and sufficient conditions for a minimum, see, e.g., Theorem
(10.2.2) in Volume I or Proposition (3.3) in TROUTMAN (1983), the function
¢ solves the problem (2.1) if and only if

(3.4) SL,, (¢, f—p)=0 forall feWm™20,1).
Then, the identity (3.3) simplifies to
(35) & 3 (@) = (i) P+ (=)™ 2 = Lo (£) = Lun() -

Now, in (3.3), interchange f and ¢ to obtain

Lop(f) = Lan(e) = =4 Z::l | (@) = (@) [P =B (f =)™ )2 +

Finally, substitute this into (3.5), move the negative quadratics to the left
of the equality, and divide by 2. This gives the lemma. Q.e.d.

(3.6) UNIQUENESS LEMMA. Let m > 1, and suppose that the design con-
tains at least m distinct points. Then the solution of (2.1) is unique.

PROOF. Suppose ¢ and 1 are solutions of (2.1). Since L, ,(¢) = L,,,(¥),
then, by (3.5),

; | p(@an) — (an) P+ B2 (9 — )™ 2 =0 .

3=

It follows that (¢ — )™ = 0 almost everywhere, and so ¢ — ¢ is a
polynomial of degree < m — 1. And of course

P(2) = V(r,) =0, i=1,2,---,n.
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Now, if there are (at least) m distinct design points, then this says that
the polynomial ¢ — 1 has at least m distinct zeros. Since it has degree
< m — 1, the polynomial vanishes everywhere. In other words, ¢ = ¥
everywhere. Q.e.d.

(3.7) EXISTENCE LEMMA. Let m > 1. For any design, the smoothing
spline problem (2.1) has a solution.

PRrROOF. Note that the functional L, is bounded from below (by 0), and so
its infimum over W™2(0, 1) is finite. Let { f, }, be a minimizing sequence.
Then, using Taylor’s theorem with exact remainder, write

(38) Fe(@) = pi(@) + [TH™ (@) |

where p, is a polynomial of order m, and for g € L?(0, 1),
[T (=)™t

(3.9 Tg(x) = /0 1)1 g(t)dt .

Note that the Arzela-Ascoli theorem implies the compactness of the oper-
ator T : L?(0,1) — C[0, 1].

Now, since without loss of generality L,,(f,) < L,,(f, ), it follows
that

112 <R Lo (f,)

and so {f,gm) }, is a bounded sequence in L?(0,1). Thus, it has a weakly

convergent subsequence, which we denote again by { f,gm) ., with weak
limit denoted by ¢, . Then, by the weak lower semi-continuity of the norm,

(3.10) Jim (AP > e, 1

Moreover, since T is compact, it maps weakly convergent sequences into
strongly convergent ones. In other words,

(3.11) lim |7 £ =T, [l =0
k—oo
Now, consider the restrictions of the f, to the design points,

Tnfk = (fk(x1,n)’ fk(xz,n)v T fk(xn,n)) ’ k= L2,---

We may extract a subsequence from { f, }, for which the corresponding
sequence {r,f, }, converges in R" to some vector v,. Then it is easy to
see that, for the corresponding polynomials,

khm pk(wzn) = [Uo]i _Tsoo(xzn) ) 1= 1727 e, N

All that there is left to do is claim that there exists a polynomial p, of
order m such that

pO(xin):[vo]i_TsOo(irin) , =12, 0,
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the reason being that the vector space { r,p:pEP, }, where P,, is the
vector space of all polynomials of order m, is finite-dimensional, and hence
closed; see, e.g., HOLMES (1975).

So now we are in business: Define ¢, = p, + T'¢,, and it is easy to see
that, for the (subsub) sequence in question,

kli)ﬂolo th(f]g) = th(,(/)o) )

so that ¢, minimizes L, (f) over f € W™2(0,1). Q.e.d.

(3.12) EXERCISE. The large-sample asymptotic problem corresponding to
the finite-sample problem (2.1) is defined by

minimize  L.p(f) = || f — f, | + ¥ || £
subject to  f € W™2(0,1) .

(a) Compute the Gateaux variation of L., and show that

Lo (f) = Laon (@) = 0Locn(e, f =) =1 f —@llin -
(b) Show that L., is strongly convex and weakly lower semi-continuous
on W™2(0,1).

(¢) Conclude that the solution of the minimization problem above exists
and is unique.

(3.13) EXERCISE. Consider the C-spline estimation problem (1.10), re-
peated here for convenience:

minimize | £2 =2 32 g Flai) + 2 | £
i=1
subject to f € W™2(0,1) .

Show the existence and uniqueness of the solution of this problem. You
should not need the asymptotic uniformity of the design.

As mentioned before, the convexity approach to showing existence and
uniqueness is a heavy tool, but it makes for an easy treatment of conver-
gence rates of the spline estimators, see §4. It has the additional advantage
that we can handle constrained problems without difficulty. Let C be a
closed, convex subset of W™2(0, 1), and consider the problems

minimize 2 3 | f(2,) — i |2+ B2 LV )2
(3.14) )

subject to  f e,
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and

minimize || f[|* — % ST (@) Vi + B2 fom I
(3.15) i=1

subject to feC .

(3.16) THEOREM. The solution of the constrained smoothing spline prob-
lem (3.13) exists, and if there are at least m distinct design points, then
it is unique. For the constrained problem (3.14), the solution always exists
and is unique.

(3.17) EXERCISE. Prove it!

Finally, we consider the Euler equations for the problem (2.1). One
verifies that they are given by

(7h2)m u(2m) + % ; (’Z,L(SC”L) —Yin ) 5( T xzn) =0 in (Oa 1) 5

uP0)=u®1)=0, k=m,m+1,---,2m—1.

(3.18)

Here 6(- — z;,,) is the unit point mass at = = z;,,. (For the two endpoints,
this requires the proper interpretation: Assume that they are moved into
the interior of [0, 1] and take limits.) The boundary conditions in (3.18)
go by the name of “natural” boundary conditions in that they are automag-
ically associated with the problem (2.1). As an alternative, one could pre-
scribe boundary values; e.g., if one knew f ( ), k=0,1,---,m—1, at
the endpoints 2z = 0, x = 1. In this case, the minimization in (2.1) could
be further restricted to those functions f with the same boundary values,
and the boundary conditions in (3.18) would be replaced by

319)  uw®(©0)=fP0), uM (1) =fP1), 0<k<m-1.

(3.20) EXERCISE. (a) Verify that (3.18) are indeed the Euler equations for
the smoothing spline problem (2.1) and that

(b) the unique solution of the Euler equations solves (2.1) and vice versa.
[Hint: See §10.5 in Volume I. ]

(3.21) EXERCISE. (a) Show that the Euler equations for the C-spline prob-
lem discussed in (3.15) are given by

( h2)m (2m) JFU**Z?/m ( - zn) in((),l),

uP0)=u®1)=0, k=mm+1,---,2m—1.
(b) Verify that the solution is given by

V(1) = E S v Rl 1) . € [0.1].
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(¢) Show that the unique solution of the Euler equations solves (2.1) and
vice versa. [Hint: §10.5.]

EXERCISES: (3.12), (3.13), (3.17), (3.20), (3.21).

4. Mean integrated squared error

We are now ready to investigate the asymptotic error bounds for the
smoothing spline estimator. We recall the model

(4'1) Yin = fo(xin) +din ;o 1=12--,n,

in which the noise vector d,, = (di n,dsn, - ,dnn)” satisfies the Gauss-
Markov conditions

(4.2) E[d,] =0, E[d,d’]=01,

and f, is the function to be estimated. The design is supposed to be asymp-
totically uniform; see Definition 2.22. Regarding the unknown function f,,
we had the assumption

(4.3) f, € W™2(0,1) .
The smoothing spline estimator, denoted by f™", is the solution to

minimize  Lp(F) S 55 | f(@3) = i 2407 700
(4.4) i=1

subject to  f € W™2(0,1) .
It is useful to introduce the abbreviation €™ for the error function,

(4.5) et =frh— f

o

(4.6) THEOREM. Let m > 1. Suppose the Markov conditions (4.1) and
(4.2) hold and that f, € W™2(0,1). If x;,,i=1,2, -+ ,n, is asymptoti-

wm’

cally uniform, then for all n > 2 and all h, 0 < h < %, with nh — oo,

nh nh _ 2 nh m m) 2
I = o < { NS, R

where ("" — 1. Here, G™" is given by (2.19).

(4.7) COROLLARY. Under the same conditions as in the previous theorem,
for h =< n~Y@m+) (deterministically),

E[| /" = follmn] = O(n=2m/GmsD)
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PROOF OF THEOREM (4.6). The approach to obtaining error bounds is via
the Quadratic Behavior Lemma (3.1) for L, , (f). This gives the equality

(48) & 3 [ (@) [P+ B2 || (") |2 =

-

=1

Z dzn snh(zin) - h2m < fém) 3 (Enh)(m) > .

i=1

S|=

Of course, first we immediately use Cauchy-Schwarz,

A CEOREDIN T TGO R

Second, by the Random Sum Lemma (2.20), the random sum in (4.8) may
be bounded by ||| ||&"" ||, ,

Third, by the Quadrature Lemma (2.27), the sum on the left of (4.8)
may be bounded from below by

¢t e 12 < % 2| M) [P+ B2 ()2

m, h S

with ¢"" =1 —¢,,(nh)~". So, under the stated conditions, then (™ — 1.
It follows from (2.10) that then

(49) e 2, <ty e, R

where we used that k%™ || (7)) || < B™ || €™ lln.1, - The theorem follows
by an appeal to the following exercise. Q.e.d.

(4.10) EXERCISE. Let a and b be positive real numbers, and let p > 1. If
the nonnegative real number x satisfies 2? < axz + b, then

P <al+qb,

in which ¢ is the dual exponent of p; i.e., (1/p) + (1/q) = 1.

(4.11) EXERCISE. Show that the bounds of Theorem (4.6) and Corollary
(4 7) apply alSO to = Zz 1 |f’nh( zn) - fo(xin) |2 .

The above is a concise treatment of the smoothing spline problem. The
reader should become very comfortable with it since variations of it will be
used throughout the text.

Can the treatment above be improved ? The only chance we have is to
avoid Cauchy-Schwarz in

= (L5 M) <SS E™ ™)

following (4.8). Under the special smoothness condition and natural bound-
ary conditions,

(4.12)  f, e w?™20,1), fO0)=f91)=0, m<L<2m -1,
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this works. Results like this go by the name of superconvergence, since the
accuracy is much better than guaranteed by the estimation method.

(4.13) SUPER CONVERGENCE THEOREM. Assume the conditions of Theo-
rem (4.6). If the regression function f, € W?™2(0,1) satisfies the natural
boundary conditions (4.12), then

£ = f 1 < {
and for h = n='/*4m+Y)  (deterministically),

E[|| /™ = £yl n] = O(n=tm/msD )

ProoOF. The natural boundary conditions (4.11) allow us to integrate by
parts m times, without being burdened with boundary terms. This gives

nh || 2 2m 2
e el P A

= (ST @M ) = (=1 (LB e ) < LFEM e

and, of course, [|e""[| < [l ||, - Thus, in the inequality (4.9), we may
replace ™ || £™) || by B*™ || f*>™) ||, and the rest follows. Q.e.d.

A brief comment on the condition (4.12) in the theorem above is in or-
der. The smoothness assumption f, € W?2™2(0, 1) is quite reasonable, but
the boundary conditions on f, are inconvenient, to put it mildly. In the
next two sections, we discuss ways around the boundary conditions. In
the meantime, the following exercise is useful in showing that the bound-
ary conditions of Theorem (4.13) may be circumvented at a price (viz. of
periodic boundary conditions).

(4.14) EXERCISE. Let m > 1 and f, € W?™2(0,1). Prove the bounds of
Theorem (4.13) for the solution of

subject to  f € W™2(0,
and for k

1,
FM(0) = ) f(’“)(l) ARICN

The following exercise discusses what happens when the boundary condi-
tions in Theorem (4.13) are only partially fulfilled. This finds a surprising
application to boundary corrections; i.e., for obtaining estimators for which
the conclusions of Theorem (4.13) remain valid. See §5.

-1

)

minimize L, (f) < 1 Z | Fz,,) — g, |2+ B2 || £ |2
1,
0,
M0

(4.15) EXERCISE. Let 1 < k < m. Suppose that f, € W™+#(0, 1) satisfies
OO =701 =0, t=m - m+k-1.
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Show that | f* — f, [2 < {|&"" ||, + k"] 5" 32

We finish with some exercises regarding constrained estimation and the
C-spline problem (1.10).

(4.16) EXERCISE. (a) Derive the error bounds of Theorem (4.7) and Corol-
lary (4.8) for the constrained smoothing spline problem

i=1

subject to feC,

where C is a closed and convex subset of W™2(0,1). Assume that f, € C.
(b) Do likewise for the constrained version of (1.10).

(4.17) EXERCISE. Show that the error bounds of Theorems (4.6) and (4.13)
also apply to the solution of the C-spline estimation problem (1.10).

An alternative approach. We now consider an alternative development
based on the observation that there are three sources of “error” in the
smoothing spline problem (4.4). The obvious one is the noise in the data.
Less obvious is that the roughness penalization is the source of bias, and
finally there is the finiteness of the data. Even if the data were noiseless,
we still could not estimate f, perfectly due to the finiteness of the design.
We need to introduce the finite noiseless data problem,

| @) = folwim) |2+ B2 || £ |2

NE

minimize %
(4.18) i
subject to  f € W™2(0,1) ,
as well as the large-sample asymptotic noiseless problem,
minimize || f = f, |[* +B¥" || £ |2
subject to  f € W™2(0,1) .

1

(4.19)

In the exercise below, we (i.e., you) will analyze these problems.
The following simple exercise is quite useful.
(4.20) EXERCISE. Show that, for all real numbers A, B, a,b
|A=b>~|A—al*+|B-al?—|B-b|>=2(a—b)(A—-DB) .

(4.21) EXERCISE. Let f, € W™2(0,1). Let f™ be the solution of (4.4)
and f,, the solution of (4.18). Show that, for nh — co and h bounded,

” fnh - fhn Hm,h < H Gnh Hm,h ’

with &™" as in (2.19).
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The bias due to the finiteness of the data is considered next.

(4.22) EXERCISE. Let f, € W™2(0,1). Let f, be the solution of (4.19)
and f,, the solution of (4.18). Show that, for a suitable constant c, as
h — 0 and nh large enough,

H fhn - fh ||m,h < C(Tlh)71 H fh 7fo ||m,h .

(4.23) EXERCISE. Show that the solution f, of (4.19) satisfies
1= ol < P2 LS

We may now put these exercises together.
(4.24) EXERCISE. Prove Theorem (4.6) using Exercises (4.21)—(4.23).

(4.25) EXERCISE. Prove the analogue of Theorem (4.6) for the C-spline
estimator of (1.10) straightaway (or via the detour).

EXERCISES: (4.10), (4.11), (4.14), (4.15), (4.16), (4.17), (4.20), (4.21),
(4.22), (4.23), (4.24), (4.25).

5. Boundary corrections

In this section and the next, we take a closer look at the smoothness and
boundary conditions (4.12), repeated here for convenience:

(5.1) fo € WP™2(0,1)
(5.2) 00y =£91), m<e<m—1.

In Theorem (4.13), we showed that, under these circumstances, the smooth-
ing spline estimator f™" of order 2m (degree 2m — 1) has expected error

(5.3) E[|| f™ - £, 7] = O(n74m/(4m+1)) ’

at least for h = n'/(4m+1) (deterministic), and that the improvement over
the bounds of Corollary (4.7) is due to bias reduction. The variance part
remains unchanged. It follows from STONE (1982) (see the discussion in
§12.3) that (5.3) is also the asymptotic lower bound. See also RICE and
ROSENBLATT (1983). However, away from the boundary, (5.3) holds re-
gardless of whether (5.2) holds. Thus, the question is whether one can
compute boundary corrections to achieve the global error bound (5.3).
Returning to the conditions (5.1)—(5.2), in view of STONE (1982), one
cannot really complain about the smoothness condition, but the bound-
ary condition (5.2) makes (5.3) quite problematic. By way of example,
if f(™)(0) # 0, then one does not get any decrease in the global error,
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and so the bound (5.3) is achievable only for smoothing splines of poly-
nomial order 4m. It would be nice if the smoothing spline estimator of
order 2m could be suitably modified such that (5.3) would apply under
the sole condition (5.1). This would provide a measure of adaptation: One
may underestimate (guess) the smoothness of f, by a factor 2 if we may
characterize the distinction f, € W™2(0,1) vs. f, € W*™2(0,1) in this
way.

There is essentially only one boundary correction method, viz. the appli-
cation of the Bias Correction Principle of EUBANK and SPECKMAN (1990b)
by HUANG (2001) as discussed in this section. The relaxed boundary splines
of OEHLERT (1992) avoid the problem rather than correcting it; see §6.

(5.4) THE B1as REDUCTION PRINCIPLE (EUBANK and SPECKMAN, 1990b).
Suppose one wishes to estimate a parameter 6, € R™ and has available two
estimators, each one flawed in its own way. One estimator, 6, is unbiased,

(5.5) E[0] =0, ,

and each component has finite variance but otherwise has no known good
properties. The other estimator, 0, is biased but nice,

(5.6) E[0] =0, +Ga+b,

for some G € R™*™ and a € R™, b € R™. It is assumed that G is known
but that a and b are not. Let II; be the orthogonal projector onto the
range of G. (If G has full column rank, then II, = G(G"G)"'G".)

Then, the estimator

(5.7) 0 =0+10,(0-0)

satisfies

(5.8) E[6%] =0, +~

with [y <min{|Ga+b], o]}

and E[[| 0% —E[6# ][] <E[||0 —E[0] ]+ Am .

Here, A = \__(Var[f]) is the largest eigenvalue of Var[f].

max

PROOF OF THE BI1AS REDUCTION PRINCIPLE. One verifies that
H* L E[0F —0,] = (1 -T1_,)(Ga+Db).

Now, since Il is an orthogonal projector, so is I — I, and therefore
| ¢# || < || Ga+b||. On the other hand, (I-1,)G = O,so ¢ = (I-1l,)b,
and || # || <[|b].

For the variance part, it is useful to rewrite 6% as

P N .
07 =(1-11,)0 +11 .6 ,
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so that by Pythagoras’ theorem
16# —E[0# ][ = || (1 —T1_)(6 —E[8]) |+ [|TI,(0 — E[6])||* .

The first term on the right is bounded by [|6 — ]E[é\] ||?. For the second
term, we have

il a2 17T
E[||T,(6 - E[8])| ] ftrace<HGVar[0]HG) .
Let A= AI.Then, A— Var[g} is semi-positive-definite, so that

trace(A — Var[6]) >0 .
It follows that
E[|[11,(6 —E[6])]°]

:trace(HGAHg) ftrace(HG (AfVar[H})Hg)

< trace(HG Aﬂg) = /\trace(HG Hé )=Am.
The bound on the variance of 8% follows. Q.e.d.

The Bias Reduction Principle is useful when Ga is much larger than b
and m is small. Under these circumstances, the bias is reduced dramati-
cally, whereas the variance is increased by only a little. Note that I1,(6—0)
is a “correction” to the estimator 6.

We now wish to apply the Bias Reduction Principle to compute boundary
corrections to the spline estimator of § 3. Actually, corrections to the values
f(x,,), i =1,2, -~ n, will be computed. For corrections to the spline
function, see Exercise (5.21).

For the implementation of this scheme, the boundary behavior of the
smoothing spline estimator must be described in the form (5.6). Thus, the
boundary behavior must be “low-dimensional”.

(5.9) THE ASYMPTOTIC BEHAVIOR OF THE BIAS OF THE SMOOTHING
SPLINE ESTIMATOR NEAR THE BOUNDARY. Let f, € W?"™2(0,1). Then,
fé"') is continuous for k = 0,1, --- ,2m — 1. Now, for k =m, --- ,2m — 1,
let L, and R, be polynomials (yet to be specified), and consider

2m—1
(5.10) po(x) = ZZ F80) Ly(a) + £59(1) Ry (=) -

We now wish to choose the L, and R, such that g, £ f,—1po € W2m2(0,1)
satisfies

(5.11) gD 0)=g®1)y=0, k=m,---,2m—1.
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One verifies that it is sufficient that, for all &,

L =10 =0 re=m - 2m1,
(5.12) except that L (0) =1,

and Ry(z) = (-1)FL,(1-2).

The construction of the L, is an exercise in Hermite-Birkhoff interpolation;
see KINCAID and CHENEY (1991). For the case m = 2, see Exercise (5.20).
Now, let g, be the solution to

minimize || f — g, |[* + " || fOV)?

subject to f € W™%(0,1) ,
and construct the functions L, , similarly, based on the L, , = L,. Let
(5.13) Men = W " { L, — Ly}, k=m, - ,2m—1.

Then, g, satisfies || g, —g, 12, , = O(h*™), and by Exercise (4.15) applied
to noiseless data,

(514) ”nk,h ||$n,h:(9(1) , k=m,--2m—1.
By linearity, it follows that

2m—1
(5.15) In=Tot X WL O men+ 1D W) G} e

with || &, [I,,,., = O(h*™), and ¢}, ,, = (—=1)*n,, ,, for all k. Of course, by the
Quadrature Lemma (2.27), the corresponding bounds hold for the sums:

S

s
Il
-

(5.16) len(@m) |2 = O(R'™),

3

(5.17)

|77k,h(17m) |2 = O( 1) :

N
Il
—

(5.18) COMPUTING BOUNDARY CORRECTIONS (HUANG, 2001). The Bias
Reduction Principle may now be applied to compute boundary corrections.
In the notation of the Bias Reduction Principle (5.4), take

0, = (fo(xl,n)a fo(xz,n)a T 7fo<xn7n) ) ‘
and consider the estimators
é\: (fnh(x1,n)7 fnh(xz,n), T afnh(xn,n) ) ’
and 5: (yl,nay2,n7 ,yn,n)T .

Then, 0 is an unbiased estimator of 6,. The asymptotic behavior of 0 is
described by

]E[@}:Go—kFaO—&—Gal—i-sh,
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with €, as in (5.15) and F, G € R"*™, given by

Fz’,k = Wk,h(xm) ) Gi,k = Ck,h(xm)
for i=1,2,---,n and k=m, ---,2m—1. The vectors a, and a, contain

the (unknown) derivatives of f, at the endpoints. The estimator 6% may
now be computed as per (5.7) and satisfies

E[2 2 16F - fo(wn) P <E[ 2 X [ ()i ] +2mn"o?
(5.19) i= i=

= O(h*™ + (nh)™") .

The boundary behavior (5.15) is due to RICE and ROSENBLATT (1983).
We consider an analogous result for trigonometric sieves.

(5.20) EXERCISE. (a) Let m = 2. Verify that
Ly@)=3(1-2)? = 5(1—-2)°, Ly(e) = =35 (1 =)' + 55 (1 —x)°

satisfy (5.12), and verify (5.11).

(b) Verify (5.16).

(c) Prove that the bounds (5.17) are sharp.
(d) Prove (5.19).

(5.21) EXERCISE. Suppose we are not interested in f**(z,,),i =1, --- ,n,
but in the actual spline f""(x), € [0, 1]. Formulate an algorithm to
compute the boundary correction to the spline function. [Hint: One may
think of the spline estimator as being given by its coefficients; in other
words, it is still a finite-dimensional object. Unbiased estimators of f, do
not exist, but we do have an unbiased estimator of the spline interpolant
of f, using the data f,(z;,), ¢ = 1,2, ---,n, which is a very accurate
approximation to f,. See Chapter 19 for the details on spline interpolation. ]

EXERCISES: (5.20), (5.21).

6. Relaxed boundary splines

In this section, we discuss the solution of OEHLERT (1992) to the bound-
ary correction problem for smoothing splines. His approach is to avoid the
problem altogether by modifying the roughness penalization in the smooth-
ing spline problem (4.4). The choice of penalization by OEHLERT (1992)
is actually quite fortuitous: It is easy to analyze the resulting estimator,
much in the style of §§2 and 3, but the choice itself is magic.

We operate again under the Gauss-Markov model (1.1)—(1.2) with asymp-
totically uniform designs; see Definition (2.22). For now, suppose that

(6.1) fo e W22(0,1) .
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In general, under these circumstances, the smoothing spline estimator of
polynomial order 2m, defined as the solution to (2.1), has mean integrated
squared error (’)( p~2m/(2m+1) ), whereas the smoothness assumption (6.1)
should allow for an error O(n~4m/(m+1)),

It is worthwhile to repeat the motivation of OEHLERT (1992) for his
suggested modification of (4.4). He observes that the global variance of the
estimator is O( (nh)™!) and that the squared bias is O(h*™ ) away from
the boundary points but, in general, is only (9( h2m) near the boundary.
Thus, it would be a good idea to reduce the bias near the boundary if
this could be done without dramatically increasing the variance. His way
of doing this is to downweight the standard roughness penalization near
the endpoints. There would appear to be many ways of doing this, until
one has to do it. Indeed, the analysis of OEHLERT (1992) and the analysis
below show that quite a few “things” need to happen.

The particular suggestion of OEHLERT (1992) is as follows. Let m > 1
be an integer, and consider the vector space of functions defined on (0, 1)

Vé:0<d<l = fewm™?(s1-4)
62)  Wn={f :
[ fl,, <o

m

where the semi-norm | - |W is defined by way of

m

(63) TN /{ (=)} | £ (@) 2 da

The relaxed boundary spline estimator of the regression function is then
defined as the solution f = ™" of the problem

n
minimize  RLS(f) = } Z | F(@in) = Yin |2+ R2 L
(6.4) i=1 "
subject to | f |Wm <00 .
Of course, the existence and uniqueness of the solution must be established,
and the objective function RLS( f) must be well-defined on W,,. There
are some difficulties in the case m = 1 that require some extra conditions
on the design (asymptotic uniformity does not suffice, it appears). So, at

the crucial moment, we assume that m > 2. Also, the assumption (6.1)
may be replaced by the condition

(6.5) fo €Wy,

The difficulties for m =1 are illustrated in the following exercise.

(6.6) EXERCISE. Show that the function

x) = |log{z(1—=x)} |a
belongs to W, for o < % but not for a =

ze(0,1),

M=
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The two “final” results are as follows. Note that there are almost no
conditions in the existence and uniqueness theorem.

(6.7) THEOREM. Let m > 1. The solution of (6.4) exists. If the design
contains at least m distinct points, then the solution is unique.

(6.8) THEOREM. Let m > 2. Assume the Gauss-Markov model (1.1)—(1.2),
and that the design is asymptotically uniform. Assuming f, € W,,, , the
solution ™" of (6.4) satisfies

E[|| 4" — [, [*] = O(n~tm/Gmtt)

provided h =< n~ Y+ (deterministically).

We now set out to prove Theorems (6.7) and (6.8). The proof essentially
follows the development in §§2, 3, and 4: The relevant lemmas all have
useful analogues, but some of the proofs are simple computations in terms
of an orthogonal basis for the Hilbert spaces in question. This orthogo-
nal basis (the Legendre polynomials, suitably scaled) was already featured
prominently in OEHLERT (1992), and we are not above using it. In fact,
this constitutes the magic of the particular choice of penalization. This
section is devoted to preliminaries, analogous to §2. In the next section,
the existence, uniqueness, and convergence rates are established. We note
that, for m = 1, Theorem (6.7) holds for a modified design, not including
the endpoints of the interval; see Exercise (6.41).

Reproducing kernel Hilbert spaces. For h > 0, define the inner prod-
ucts on Wy,

(6.9) (F 0N, = (Fra) 40 (f ),
where
©10)  (fo), = [ (e =2)]" @) ) d

and the associated norms || - ||5,w,, by way of

(6.11) 105, =KF D,

It is obvious that, with all these norms, W,, is a Hilbert space. Moreover,
these norms are equivalent, but not uniformly in h; see Definition (2.7) and
Exercise (2.8).

At this point, we introduce the shifted Legendre polynomials, which
behave very nicely in all of the W,,. As mentioned before, OEHLERT (1992)
already made extensive use of this.
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First, we summarize the relevant properties of the Legendre polynomi-
als. One way to define the standard Legendre polynomials is through the
recurrence relations

Py(z)=0, Pz)=1,
(k+1) Py (x) =2k + 1)z Py(x) —kP,_y(x), k=0.
The shifted, normalized Legendre polynomials are here defined as

(6.13) Qu(z)=2k+1)2P,(22-1), k>0.

(6.12)

They satisfy the following orthogonality relations:

1, if k=4
6.14 Q. Q = , |
(6.14) < k> e >L2(0’1) { 0, otherwise,
O 5 lf k 7é K bl
6.15 7 i :
(6.15) (Qu: Qu),, AmkEmt oy g
(k —m)!

Note that the last inner product vanishes (also) for k = ¢ < m. We also
have the pointwise bounds

|Qy(z)] < (2k +1)1/2 foral0 <z <1land k>
|Q(x)] < c{z(l—2x) }*1/4 foral0 <z <1land k>

0 5
6.16

for a suitable constant ¢ independent of k£ and x. A handy reference for
all of this is SANSONE (1959). Note that (6.14)—(6.15) prove the following

lemma.

(6.17) LEMMA. For all h > 0 and all m > 1,

(e, ,, -

h W,

L+ (20)*" Ny 5 if k=1,
0 , otherwise ,
where A, ., = (k +m)!/(k —m)!. Moreover, there exist constants c,, > 1

such that, for all k, k > m, we have (c,,)"! < k=2™ Mem < Cpy -

It follows that Qg, k > 0, is an orthonormal basis for L?(0,1) and an
orthogonal basis for W,,. Also, it gives us a handy expression for the norms
on W,,, but we shall make them handier yet. For f € L?(0,1), define

The following lemma is immediate.
(6.19) LEMMA. Let m > 1. For all h >0 and f € W,,,
= Z Je @k

k>0
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with convergence in the W,,-topology, and for all f, g € W,,,
<<f> 9>>hw =2 (1+(2h)2m)‘k7m) fk Ek .

k>0

Finally, for all f € W,,,

LA, = kgo (14 2h)*" N ) | fr|? < o0

The representation above for the norms is nice, but the behavior of the
Ak.m 18 @ bit of a bummer. So, let us define the equivalent norms

o312
(6.20) 50, = { X (1+@RR>™) [ F 2}
s VVm k>0
(6.21) LEMMA. Let m > 1. The norms ||| - |||h’Wm and | - ||h’Wm are

equivalent, uniformly in h, 0 < h < 1; i.e., there exists a constant ,,, such
that, for all h, 0 < h <1, and all f € W,,,

o)™ 1 Wy <M F My <1 £l -

PROOF. By Lemma (6.17), we obviously have
L+ (20)* N < € (14 (20K)°™)

with the same c,, as in Lemma (6.17). Thus, ¢! || f th < f |th .

Also, for k > m, the lower bound of Lemma (6.17) on Mg, is useful.
For 0 < h <1and0<k<m, we have

1+ (2hk)?™ )

S =14 (2h)2™ N,

1+ (2m)2m + ( ) k,m

so that with v,, = max{c,,, 1 + (2m)*™ },

The lemma follows. Q.e.d.
We are now ready to show that the point evaluations x +— f(x) are

bounded linear functionals on W,,; in other words, that the W,, are repro-
ducing kernel Hilbert spaces. First, define the functions

(6.22) @, (x) =min(h~ 2, {2l —xz) } V1) .

(6.23) LEMMA ( THE CASE m = 2). There exists a constant ¢ such that,
forallh,0 < h<1,andall feW,,

| f(z)| <c,, ®,(x)h~1/? Hf||hW for all = € (0,1) .
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ProOF. Using the representation of Lemma (6.19) for f €W, , we get

1F@)] < el 1Qu(@)]
k>0

Now, with the second inequality of (6.16),
[f@) | <c{a—2)}7" 2 | fl,
k>0

and with Cauchy-Schwarz, the last series is bounded by

172
17Uy, 5 (14 R T

k>

Now, the infinite series is dominated by

/ (1+ (2ha)*) " de = b / (1+ @) 'dt =ch™,
0 0
for a suitable constant. Thus,
(6.24) [ f@) | <eh™ 2 {a( =)} IFNL -
’ 2

For all z, we use the first bound of (6.16). With Cauchy-Schwarz, this
gives the bound

2k 1 1/2
\ﬂ@KMﬂM%{gﬁiéﬁF}

Now, we may drop the +1 in the numerator, and then the infinite series
behaves like

o 2x o° 2t
————gde=h"" | ———dt =ch?
/O 11 ha)t /O 1+ (2¢) ¢

for (another) constant c. Thus,

6.25 <ch™! .

(6.25) [f@) [ <eh™ LA,

By the equivalence of the norms, uniformly in h, 0 < A < 1, the lemma
follows from (6.24) and (6.25). Q.ed.

(6.26) LEMMA. For all m > 1, there exists a constant c,, such that, for
all feW,,,yand all h,0<h <1,

17, < o1l

PrOOF. With the representation of Lemma (6.19) and (6.20),
2 < 2
702, <ellfIlZ,,

where

{ 1+ (2hk)*™
c = sup

1+ (2hk) 22 =00

14 "
k>0,0<h<1lp<sup ————=
} T T w2



78 13. Smoothing Splines

Together with the equivalence of the norms, that is all that there is to it.

Q.e.d.

The final result involving the Legendre polynomials or, more to the point,
the equivalent norms, is an integration-by-parts formula.

(6.27) LEMMA. Let m > 1. For all f € Wy, and all g € W,,,,,

(Fra),, <IFgl,, -

PRrROOF. Using the representation of Lemma (6.19), and Lemma (6.17), the
inner product may be written as, and then bounded by,

S (1422 N ) o g <ew X (14 @02) 1 il 194 -

k>m k>m
Now, with Cauchy-Schwarz, the right-hand side may be bounded by
amy2 [~ 2 |2
LIS (1 @) 5P )
k=0

and, in turn, the infinite series may be bounded by

2 2 (1+@0") 5 =2llgll7,, - Qed

(6.28) REMARK. The reason we called Lemma (6.27) an integration-by-
parts formula is because it is. Recall that

1
(Foa)y, = [ a=2))" £ g @) do

so that integrating by parts m times gives

1
| om@ o { (a1 -0} @) | do
0

where D denotes differentiation with respect to z, provided the boundary
terms vanish. Showing that they do is harder than it looks (e.g., are the
boundary values actually defined ?), but the expansion in Legendre poly-
nomials avoids the issue.

Quadrature. The last technical result deals with quadrature. The only
hard part is an embedding result where apparently, the Legendre polyno-
mials are of no use. We must slug it out; cf. the proof of Lemma (2.10).

(6.29) EMBEDDING LEMMA. There exists a constant ¢ such that

< .
17y SN, forall feWs
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Proor. For z, y € (0,1), with y < z,
F@-rwl< [ 1wl < e,
Y

with 02(x,y):/w[t(1ft)]*2dt .

It follows that, for any closed subinterval [a, b] C (0,1), we have
c(z,y) < Cla,b) |z —y['/? forz,y € la,b],

for a suitable constant C'(a,b). Thus, f’ is continuous in (0, 1).
Now, let M = ) and choose y € M such that

P =201

in the notation of (2.10). This is possible by the Mean Value Theorem.
Then,

(47 1

/yu<>Pdt %f()F+2/yU%ﬂ—f%deﬁ
0 0

Now, by Hardy’s inequality (see Lemma (6.31) and Exercise (6.32) below),
y y
s -rwrae<a [ e par
0 0
y
<ot [ (- 0P| (0Pt
0

Also, [ f'(y)|> =2 f'll - By the Interpolation Lemma (2.12) with h = 1,
we have the bound

(6.30) 2 <elfI2+ellf ]2

for constants ¢ and ¢, independent of y (since y is bounded away from 0).
Since, on the interval M, the weight function {z(1 —z)}? is bounded
from below by %, then

/;4| D Rdt < /{ (1= ) 2| £7(t)]? dt

1
with ¢ = 256/9, so that || f”||?2 <c|f|2 and we obtain
M W,

1 2 < 2 .
1 gy S N FI,,

The same bound applies to || f’ ||( 1 . The lemma follows. Q.e.d.

To prove the version of Hardy’s inequality alluded to above, we quote
the following result from HARDY, LITTLEWOOD, and PoLyA (1951).
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(6.31) LEMMA. Let K : Rt x Rt — R™ be homogeneous of degree —1;

ie., K(tw,ty)=t"1K(x,y) for all nonnegative t, x, and y. Then, for
all fe L*(RY),

J.

where k:/ y V2K, y) dy.
R+

K(x,y)f(y)dy <E[fI?,

R+ L*(RT)

)

PROOF. For nonnegative f, g € L?(R*),

[ @ [ Keoat)dyds
R+ R+
:/ f(m)/ x K(z,zy) g(xy) dydz  (change of variable)
R+ R+
:/ f(ac) K(l y) g(zy) dy dx (homogeneity)

/ K(1,y) / f(x)glay)dedy  (Fatou) .

Now, with Cauchy-Schwarz,
dzdy < 2d v
f@ atan) dody <171, { [ Lato) e

<y V2l

the last equality by a change of variable. Thus, for all nonnegative f,
g € L*(RY),

/ f@) [ K e dyds <k|f]
R+ R+

with the constant k as advertised. Obviously, then this holds also for all
f, g € L*(R*). Finally, take

R+

oy 19 e

L2(R+) H g ||L2(R+) Y

flx) = - K(z,y)g(y)dy , xeR",

and we are in business. Q.e.d.
(6.32) EXERCISE. (a) Show that the function
Ky =y ' L(z<y), z,y>0,

is homogeneous of degree —1.

(b) Show the following consequence of Lemma (6.31): For all integrable
functions f on RT,

/R+ /:O y‘lf(:y)dyrdasgzx/]R+ 22| f(2) 2 de .
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(¢) Use (b) to show that, for all functions f with a measurable derivative,

/oolf(t)Ith <4/°° () 2dt .
0 0

(d) Use (¢) to show that, for all functions f with a measurable derivative,

T T
/If(t)—f(T)lzdt <4/ 2f(E) )P dt .
0

0

(6.33) LEMMA. Let m > 2. For asymptotically uniform designs, there
exists a constant c,, such that, for all f €W, and all h, 0 < h <1,

@) 2= 112 < e (02 IS,

3=
[

i=1

PROOF. By Definition (2.22), the left-hand side is bounded by
en IO -
Now,
HL < "I < <
HCFE Ty < 2WFIITAT < 20PNy ey < N PITIAL b,
the last inequality by Lemma (6.29). Finally for 0 < h < 1,

17, P2 0F My,

and of course || f|| < || f th . Thus,
’ 2

(6.34) 1)1, <en 0 s 02,

The lemma then follows from Lemma (6.26). Q.e.d.

(6.35) REMARK. The inequality (6.34) does not appear to be sharp as
far as the rate h™? is concerned. The example f(z) = (z — X)2 (for
appropriate \) shows that the rate h=3/2 may apply. Verify this. What
is the best possible rate ? (The authors do not know.)

Reproducing kernels. We finally come to the existence of the reproduc-
ing kernels, implied by Lemmas (6.23) and (6.26), and its consequences for
random sums.

(6.36) THEOREM [ REPRODUCING KERNEL HILBERT SPACES|. Letm > 2.
Then, W, is a reproducing kernel Hilbert space with reproducing kernels
R, w(z,y), z,y € [0, 1], so that, for all f € Wy, ,

flz) = <<Rm’h(w, ), f>>h,wm , forallze[0,1],

and, for a suitable constant c,, not depending on h,

|| Rm,h(‘xa ) ||h7W7” < Cm (Dh(x) h71/2 .
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The reproducing kernel Hilbert space setting has consequences for ran-

dom sums. For the noise vector d,, and design z,,, ¢ = 1,2, --- ,n, let
(6.37) S™(t) =213 dy Rpn(@in  t), te[0,1].
i=1

(6.38) LEMMA. Let m > 2. Then, for all f € W,, and h, 0 < h <1, and
for all designs,

If, moreover, the noise vector d,, satisfies (1.2) and the design is asymp-
totically uniform, then there exists a constant ¢ such that, for all n and
all h, 0 < h <1, with nh?> — oo,

E[ ™12, ]<c(@mh)™.

S

nh
< Flly oy 15™ 1,0, -

i=1

PROOF. For the first inequality, use the representation

to see that the sum equals (( f, S™)), |,, . Then Cauchy-Schwarz implies
the inequality.
For the second inequality, note that the expectation equals

Tl72 i E[din djn] << Rmh(xina ')a Rmh(xjna )>>

ij=1

h W,

AW,

By the assumption (1.2) and Theorem (6.36), this equals and may be
bounded as

(6.39) on7? ; I Rop @i I, < e(mh)™h - & ; | @ () |

for a suitable constant ¢. By the asymptotic uniformity of the design, see
Definition (2.22), we have

4 1S 19, (2 2@, |12 /2192 )
(6.40) - ;\ w(@in) |7 <@y |17 +en™ /7| hllwl,l(m)
Now, [[®7]], = [|®, [|* and

1
—1/2
1ol < [ {alt-2)} P do=r.

Also,

1oy, = [ | -0y as
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where a is the smallest solution of
W2 ={z(1-2) }_1/4 .

So, a = h?. Now, {z(l—=z) }71/4 is decreasing on (a, 3 ), and so

1
2| d -1/2 - —1/2 - -1
/a ’% z(l—x) ‘dm a(l—a)} —2xh

and the same bound applies to the integral over (
all of this shows that, for a suitable constant c,

l@ P <m o (@7 ), <eh™ andso |7, <ch

% , 1—a). To summarize,

and then (6.40) shows that

S|=

> | @) [P <t e (nh®) 2
=1
This implies the advertised bound on E[[| S™" |2, ]. Q.e.d.

(6.41) EXERCISE. Some of the results in this section also hold for m = 1.
(a) Show that, (6.24) holds for m = 1 and that instead of the uniform
bound we have

_ 1/2
[ f@) | <eh™ log{a(t =) } |77 f1ll,
(b) Show that, for a =1/n,

l1—a
[ os(att=0)} 72| £'(@) | do < cClogn)? | £1,,
a
(c) Prove the case m =1 of Lemma (6.38) for the designs
2, =i/(n—1) and z, =(i—1)/(n—1), i=1,2 - .,n

Indeed, for m = 1, the requirement on the designs is the asymptotic uni-
formity of Definition (2.22) together with the assumption that

(d) sup Z{xm(l—x )}_1/2<oo.

n=1 i=1

[Hint: For (a), proceed analogously to the proof of Lemma (2.10). For
(b), Cauchy-Schwarz does it. For (c), use (6.39), but with ®, replaced by

Uy (@) ={z(1—a)}~ 1]

EXERCISES: (6.6), (6.32), (6.40).

7. Existence, uniqueness, and rates
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In this section, we actually prove Theorems (6.7) and (6.8). This pretty
much goes along the lines of §§3 and 4. We start out with the quadratic
behavior.

(7.1) LEMMA. Let m > 1, and let f™ be a solution of (6.4). Then, for all
f €W, and all h > 0,

L | ) = S () 24 B2 2 =
=1 m

1 ; (F@an) = von ) (F@in) = F (i) ) + B2 (f L f = F77)

Wi

(7.2) UNIQUENESS LEMMA. Let m > 1, and suppose that the design con-
tains at least m distinct points. Then the solution of (6.4) is unique.

(7.3) EXERCISE. Prove it. [Hint: Copy the proofs of Lemmas (3.1) and
(3.6) with some cosmetic changes. |

We go on to prove the convergence rates of Theorem (6.8).

PRrROOF OF THEOREM (6.8). The starting point is the quadratic behavior
of Lemma (7.1). After the usual manipulations with

(7.4) et =" —f,,
this gives the equality

h h
‘5’”« (l‘in) ‘2 + h‘2m ‘En |Vim =

Zn: dzn Enh(xin) - th < fo ) Enh >
1=1

-

(75) +

i=1

S

W

Now, we just need to apply the appropriate results.
For the bias part, note that by Lemma (6.27)

(7.6) A S el | PA

m

For the random sum on the right of (7.5), we use Lemma (6.38), so

d

e

(7.7) DI O R e N i

For the sum on the left-hand side of (7.5), Lemma (6.33) provides the
lower bound

K2

nh |12 2\—1 nh
Jem™ |2 = cmh?) e ), s
so that

(T8) M, < E S e ) PR 2

n
=1
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with (™" — 1, provided nh? — oco.
Substituting (7.6), (7.7), and (7.6) into (7.5) results in

S e R e A e | P
and the right-hand side may be bounded by
nh nh 2m
1 s, L™ s, 4P N Sl s
so that, for a different ¢,
le™ 12, <ellS™ 12, + ch™ (1,12,
Finally, Lemma (6.38) gives that

E[e™ 117, ]=0((nh)™ +h*"),

provided, again, that nh? — co. For the optimal choice h = n~t/(#m+1)
this is indeed the case, and then

E[”Enh ”:W ] _ O(n—4m/(4m+1)) )

This completes the proof. Q.e.d.

Finally, we prove the existence of the solution of (6.4). The following
(compactness) result is useful. Define the mapping T : W,,, — C[0, 1] by

(7.9) Tf(a:):/lx(x—t)m_lf(m)(t)dt, rel0,1].

(7.10) LEMMA. Let m > 2. There exists a constant ¢ such that, for all
f €Wy and all z, y € [0, 1],

| Tf(z) = Tfw) | <cly—=["2]f],
PROOF. First we show that 7" is bounded. Let 0 < = < % Note that

| Tf(x) ‘/‘{tl—t ﬂmK)Pdﬂ

with

Now, for 0 <z < t %7wehave
t — 2m—2
0 (tZT)™ <2 (t —z)™ 2 <4
{t(1-¢t)}
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since m > 2. It follows that ¢(z) < 2 on the interval 0 < x < % The
same argument applies to the case z > %, so that

(7.11) Tf@)| <2/,

Thus, T is a bounded linear mapping from W,, into L>°(0, 1) in the | - |},
topology on W,,.

Let f € W,,, and set g = Tf. Then, from (7.11), the function g is
bounded, so surely [g| < 2|fly, . Of course, g™ = f™) (almost
everywhere), so that |g |W =|fly,, - It follows that

v, S3LFL,

Now, by the Embedding Lemma (6.29), for a suitable constant c,

lo'l <ellgllyyy, <enllglyy, <EIIL,

It follows that, for all z, y € [0, 1],

(9@ ~at) | = | [ o'(yae| <o =yl 219" <T |2 =y 21 11,,,
y

as was to be shown. Q.e.d.

(7.12) COROLLARY. Let m > 2. Then the mapping T : W,, — C[0, 1] is
compact in the | - | . topology on Wy,

PROOF. This follows from the Arzela-Ascoli theorem. Q.e.d.

(7.13) LEMMA. Let m > 2. Then the relaxed boundary smoothing prob-
lem (6.4) has a solution.

PRrOOF. Obviously, the objective function RLS(f) of (6.4) is bounded from
below (by 0), so there exists a minimizing sequence, denoted by { f }, -
Then, obviously,

h2m|f,€|2 < RLS(fy) < RLS(f,) ,

the last inequality without loss of generality. Thus there exists a subse-
quence, again denoted by { f, },, for which { fk S}k converges, in the
weak topology on W, induced by the | - |W semi-norm, to some ele-
ment ¢,. Then, "
| 2

@0y, <Timinf [fi |},

and by the compactness of T' in this setting, then
khm H Tfk - T‘ioo ||oo =0.
— 00

Finally, use Taylor’s theorem with exact remainder to write

fe(@) = pp(z) + T fr(z)
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for suitable polynomials p,. Now, proceed as in the proof of the Existence
Lemma, (3.7) for smoothing splines. Consider the restrictions of the f;, to
the design points,

def
n fk = (fk(an)? fk(mz,n)7 T fk(xn,n)) ) k= 1,2, .- .
We may extract a subsequence from { f, }, for which {r, f, }, converges
in R™ to some vector v,. Then, for the corresponding polynomials,
kli—>Holo pk(l'm) = [’UO]Z-—TQDO(.”L'M) ;o =12, n,
and there exists a polynomial p, of order m such that

(714) po(xin) = [vo]i - T<)Oo(xzn) ’ L= 1727 e, n

Finally, define ¢, = p, + T¢, , and then, for the (subsub) sequence in
question,

kli»nc}o Rl*g(fk) = RLS(Q/%) ’
so that ¢, minimizes RLS(f) over f € Wy,. Q.e.d.

(7.15) EXERCISE. Prove Theorem (6.8) for the case m = 1 when the design
is asymptotically uniform in the sense of Definition (2.22) and satisfies
condition (d) of Exercise (6.41).

EXERCISES: (7.3), (7.15).

8. Partially linear models

The gravy train of the statistical profession is undoubtedly data analysis
by means of the linear model

(8'1) yin:x;ﬁo'i_dinv t=12--,n,

in which the vectors z;, € R? embody the design of the experiment (d is
some fixed integer > 1), B, € R? are the unknown parameters to be es-
timated, Yn = (Y, s ¥Ya> *** »Yn.n) " are the observed response variables,
and the collective noise is d,, = (d, ,,,d, ,, --+ ,d, ,,) ", with independent
components, assumed to be normally distributed,

(8.2) d,, ~ Normal(0,02I) ,
with 02 unknown. The model (8.1) may be succinctly described as
(8.3) y, =X, B, +4d, ,

with the design matrix X,, = (z,,,|2,,,| -+ |z,,)" € R"*?.
If X,, has full column rank, then the maximum likelihood estimator of 3,
is given by

(8.4) B, = (X7 X)Xy,
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and is normally distributed,
(8.5) Vit (B = B,) ~ N(0,0% (X, X,)7")

and the train is rolling.
In this section, we consider the partially linear model

(86) Yin = Zlq;z ﬁo + fo(min) +dzn ) i = 1727 LN,

where z,, € RY z, € [0, 1] (as always), the function f, belongs to
Wm™2(0,1) for some integer m > 1, and
the d,,, are iid, zero-mean random

(8.7)

variables with a finite fourth moment .

In analogy with (8.3), this model may be described as

(8'8) yn:Z’ﬂﬁoJ’_TﬂfO_‘_dn’

with 7, f, = (fo(@, ) fol@y)s ,fo(xmn))T. Thus, r, is the restric-
tion operator from [0, 1] to the z;,.

Such models arise in the standard regression context, where interest is re-
ally in the model vy,, = Z,, B,+d,, but the additional covariates x,, cannot
be ignored. However, one does not wish to assume that these covariates
contribute linearly or even parametrically to the response variable. See,
e.g., ENGLE, GRANGER, RICE, and WEISs (1986), GREEN, JENNISON,
and SEHEULT (1985), or the introductory example in HECKMAN (1988).
Amazingly, under reasonable (7) conditions, one still gets best asymptoti-
cally normal estimators of [, ; that is, asymptotically, the contribution of
the nuisance parameter f, vanishes.

In this section, we exhibit asymptotically normal estimators of 3, and
also pay attention to the challenge of estimating f, at the optimal rate of
convergence.

The assumptions needed are as follows. We assume that the xz,, are
deterministic and form a uniformly asymptotic design; e.g., equally spaced
as in

i—1 )
(8.9) Tin =1 i=1,2, - .,n.
The z;, are assumed to be random, according to the model
(810) Zln:go(xln)+€7n ) i = 1325 IR

in which
the ¢;,, are mutually independent, zero-mean
random variables, with finite fourth moment, and
(8.11) Ele;e] =V e R,
with V positive-definite. Moreover, the ¢;,

are independent of d,, in the model (8.6).
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In (8.10), g,(z) = E[z]|«] is the conditional expectation of z and is as-
sumed to be a smooth function of z; in particular,

(8.12) g, € WH2(0,1) .

(Precisely, each component of g, belongs to W2(0,1).) Regarding f,, we
assume that, for some integer m > 1,

(8.13) f, e Wm™2(0,1) .

Below, we study two estimators of 3,, both related to smoothing spline
estimation. However, since the model (8.3) and the normality result (8.5)
constitute the guiding light, the methods and notations used appear some-
what different from those in the previous sections.

The simplest case. To get our feet wet, we begin with the case in which
g,(x) =0 for all x, so that

the z;, are mutually independent, zero-mean
random variables, with finite fourth moment,
(8.14) independent of the d, , and satisfy

E[z, 20 ]=V,

wm Tin

with V' positive-definite .
Under these circumstances, by the strong law of large numbers,
(8.15) LZX 7, —as V.

The estimator under consideration goes by the name of the partial spline
estimator, the solution to

minimize % H Zn 0+ Tnf -9y, ||2 + h2m || f(m) ”2

(8.16)
subject to B eRY, fe W™2(0,1) .

One verifies that the solution (3™", f*"*) exists and is unique almost surely,
and that f™" is an ordinary (“natural”) spline function of polynomial order
2m with the z;,, as knots. With (8.4) in mind, we wish to express the
objective function in (8.16) in linear algebra terms. For fixed g, the Euler
equations (3.18) applied to (8.15) imply that the natural spline function f is
completely determined in terms of its function values at the knots, encoded
in the vector 7, f. Then, there exists a symmetric, semi-positive-definite
matrix M € R™*", depending on the knots z,, only, such that

(8.17) | ™2 = (r,f)" Mr,f for all natural splines f .
So, the problem (8.16) may be written as
minimize % || Znﬁ_‘_rnf_yn H2+h2m (Tnf)TMrnf

(8.18)
subject to 3 € R? r,f € R™.
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Here, the notation r,f is suggestive but otherwise denotes an arbitrary
vector in R™.
The solution (3, f) to (8.18) is uniquely determined by the normal equa-
tions
Z;(ZnB_FTnf_yn) =0 )

Eliminating r, f, we get the explicit form of the partial spline estimator

(8.19)

(8.20) B = (Z3 (1= 8,) Z, ) 2,0 (1= 8,) yn s
in which
(8.21) S, =(I+nh* M)!

is the natural smoothing spline operator. Note that S} is symmetric and
positive-definite. The following exercise is useful.

(8.22) EXERCISE. Let 6,, = (6,,,,0

the solution to

1, Y2ms 707 75n,n)T € R" and let f = be

| F (@) = O |2+ B2 || £ )12

-

minimize %

=1

subject to f € W™2(0,1) .
Show that 7,0 = S, 6

In view of the model (8.8), we then get that
(8.23) p™ — B, = variation + bias ,
with
variation = (Z,) (I —S,)Z, )" 27 (I —S),)d, .
bias = (2, (I —8,)Z,) " 27 (I —=S,)r.f, -

In the above, we tacitly assumed that Z,7 (I — S,)Z,
Asymptotically, this holds by (8.15) and the fact that

(8.24)

is nonsingular.

(8.25) LZr 8, Z,=0p((nh)™"),

as we show below. The same type of argument shows that
(8.26) LZ78,d,=0p((nh)7"),

(8.27) LzZr(1-8,)r,f,=Op((nh)~/20™) .
This gives

B By = (27 Z,)" 2, dyy + Op((nh) ™+ 0= V2RMT2)

and the asymptotic normality of g™ — 3, follows for the appropriate h
(but (8.25)—(8.27) need proof).
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(8.28) THEOREM. Under the assumptions (8.2), (8.7), and (8.9)—(8.14),
Vi (™ —B,) —aq T ~ Normal(0, 6% V),

provided h — 0 and nh?> — co.

Note that Theorem (8.28) says that 3"" is asymptotically a minimum
variance unbiased estimator.
(8.29) EXERCISE. Complete the proof of the theorem by showing that

(z7 7)) ' ZTd, —aq U~ Normal(0, 0>V~ .

PROOF OF (8.26). Note that d > 1 and Z, € R4*". We actually pretend
that d =1.

In accordance with Exercise (8.22), let 3" be the natural spline of order
2m with the z;,, as knots satisfying r,,3"" = S, Z,,. Then,

(8.30) 15" lp = Op ((nh)~1/2) 5

see the Random Sum Lemma (2.20). Now,
i=1
so that in the style of the Random Sum Lemma (2.20),

%ZnTShdn:<%£:l dmRmh('?iEm)aénh> )

m,h

whence
(831) ’ %Z;Sh dn | < ” % Z:l din Rmh( ! 7xin) Hm,h ” 3nh ”m,h .

Finally, observe that

632 E[I3 2 di R omi) [124] = O((n0) 1)

1=

by assumption (8.14). Thus, (8.26) follows for d = 1. Q.e.d.

(8.33) EXERCISE. Clean up the proof for the case d > 2. Note that
Zr S, d, € R?, so we need not worry about the choice of norms.

(8.34) EXERCISE. Prove (8.25) for d =1 by showing that

%ZRTSth = <% Z Zianh('7xin)75nh>
1=1

)
m,h

with 3" as in the proof of (8.26) and properly bounding the expression
on the right. Then, do the general case d > 2.
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PROOF OF (8.27). Note that S, r,, f, = 7, f),,, with f,,. the solution to the

noise-free problem (4.18). Then, the results of Exercises (4.22) and (4.23)
imply that || f, — f,,,, ||mh = O(h™). Thus,

LZ7 (1= 8,)rf, =1 ; 2o (Fo@in) = Fron(in))

/\

% Z Zianh(’7zin)a foifhn >mh )

i=1

so that

S

’%Z'r?(l_sh)rnfo‘ < H Zianh('a‘rin) Hm,h Hfo _fhn ||m,h ’

i=1

and the rest is old hat. Q.e.d.

(8.35) EXERCISE. Show that, under the conditions of Theorem (8.28),
1™ = follmn = Op((h) =" + 1™ ) .

Thus, for h =< n= /1) we get the optimal convergence rate for ™" as
well as the asymptotic normality of §™".

Arbitrary designs. We now wish to see what happens when the z,,
do not satisfy (8.14) but only (8.11). It will transpire that one can get
asymptotic normality of 8™" but not the optimal rate of convergence for
f . at least not at the same time. Thus, the lucky circumstances of
Exercise (8.35) fail to hold any longer. However, a fix is presented later.

Again, as estimators we take the solution (8", f**) of (8.18), and we
need to see in what form (8.25)—(8.27) hold. When all is said and done, it
turns out that (8.27) is causing trouble, as we now illustrate.

It is useful to introduce the matrix G,,,

(836) Gn =Tpngo = [go(xl,n) |go(x2,n) | e |go(xn,n):|T € RnXd ;
and define
(8.37) Z,=2,-G, .

Thus, Zn shares the properties of Z,, for the simplest case.

TRYING TO PROVE (8.27) FOR ARBITRARY DESIGNS. Write
T2 I8 fo= 5 2 (1= S,)rufy+ 5 G (1= 87,
For the first term on the right, we do indeed have
LZ7(I=8,)r,f, = Op((nh)™/2hm)

see the proof of (8.27) for the simplest case.
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For the second term, recall that (I —S, ), f, =7,(f,— f,,) , and this
is (’)( hm) . Thus, we only get

(8.38) LGr(I—=8,)r,f,=0(n™) .
Moreover, it is easy to see that in general this is also an asymptotic lower
bound. Thus (8.27) must be suitably rephrased. Q.e.d.

So, if all other bounds stay the same, asymptotic normality is achieved
only if h < n=/(™) but then we do not get the optimal rate of conver-
gence for the estimator of f, since the required h =< n~=/(m+1) i5 excluded.

(8.39) EXERCISE. Prove (suitable modifications of) (8.25) and (8.26) for
the arbitrary designs under consideration. Also, verify the asymptotic nor-
mality of ™" for nh? — oo and nh?™ — 0.

So, what is one to do? From a formal mathematical standpoint, it is
clear that a slight modification of (8.38), and hence a slight modification
of (8.27), would hold, viz.

(8.40) LGI(I =8, f, = O(h"™1)

but then everything else must be modified as well. All of this leads to two-
stage estimators, in which the conditional expectation g, (x) = E[z|z] is
first estimated nonparametrically and then the estimation of 3, and f, is
considered.

(8.41) EXERCISE. Prove (8.40) taking

%GE(I -5 )2 Tofo = % ;Z:l { 9o(Tin) = Gnn (T,) } {f()(‘rin) = fn (i) }
as the starting point. (g, is defined analogously to f;,..)

Two-stage estimators for arbitrary designs. Suppose we estimate

the conditional expectation g,(r) by a smoothing spline estimator g™"
(componentwise). In our present finite-dimensional context, then

(8.42) r,g""=8,7, .

With this smoothing spline estimator of g,, let

(8.43) G™ = rg™ = [ 4" () |6 (@0) | - g™ ()] €RPX,
and define

(8.44) Zh =z —Gnh,

Now, following CHEN and SHIAU (1991), consider the estimation problem
minimize . || 2" B+ 7, ¢ =y, I+ B2 o) 2

(8.45)
subject to B €R? | o € W™2(0,1) .
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The solution is denoted by (37!, f*"1). Note that, with ¢ = f + (g"") 73,
the objective function may also be written as

S Zy B f =y I+ R I+ (™) 7B P 5

in other words, the (estimated) conditional expectation is part of the rough-
ness penalization, with the same smoothing parameter h.

It is a straightforward exercise to show that this two-stage estimator of
B, is given by

(846) Gl = (Z7(I—8,)02,) 25 (T -8, )y,

so that

(8.47) "l — B = variation + bias ,

with

(8.48) variation = (2,7 (I =S, )* Z,) ' 27 (1 - S,)*d, ,
bias = (Z7 (I —S,)* 2,) " Z1(1 - S, r.f, -

The crucial results to be shown are

(8.49) w20 2y sV,

(8.50) Lzr(-38,+38,2-5,°)2,=0p((nh)"),

(8.51) L Z7 (=28, 4+ 5,%)d, = Op((nh)~") ,

(852)  LzT(1-8,)%r,f,=O0p(n Y22 4 ity

with V asin (8.11). They are easy to prove by the previously used methods.

All of this then leads to the following theorem.

(8.53) THEOREM. Under the assumptions (8.2), (8.7), and (8.9)—(8.13),
Vi (Bt —B) —4 T ~Normal(0, 6? V),

provided nh? — oo and nh?*m+2 — 0.

(8.54) EXERCISE. (a) Prove (8.49) through (8.52).

(b) Assume that g, € W™2(0,1). Prove that, for h =< n=1/Cm+D ye

get the asymptotic normality of 8""! as advertised in Theorem (8.53)

as well as the optimal rate of convergence for the estimator of f,, viz.

1ot =, | = Op (nm/Gmst) ).

We finish this section by mentioning the estimator
(8.55) B = (201 5,)"2,) ' 27 (1=8,) %y,

of SPECKMAN (1988), who gives a piecewise regression interpretation. (To
be precise, SPECKMAN (1988) considers kernel estimators, not just smooth-
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ing splines.) The estimator for f, is then given by
(8.56) ol = 8y (Y — 2, 8™2) .

The asymptotic normality of ™2 may be shown similarly to that of g1,

(8.57) EXERCISE. State and prove the analogue of Theorem (8.53) for the
estimator 52,

This completes our discussion of spline estimation in partially linear mod-
els. It is clear that it could be expanded considerably. By way of example,
the smoothing spline 7, g"" = S, Z, , see (8.42), applies to each component
of Z,, separately, so it makes sense to have different smoothing parameters
for each component so

(858) Tn (gnh)j = S(h]) (Zn jo ] - 1a27 e ,d ;

with the notation S(h) = S),. Here (Z,); denotes the j-th column of Z,,.

EXERCISES: (8.22), (8.29), (8.33), (8.34), (8.35), (8.39), (8.41), (8.54),
(8.57).

9. Estimating derivatives

Estimating derivatives is an interesting problem with many applications.
See, e.g., D’AMICO and FERRIGNO (1992) and WALKER (1998), where
cubic and quintic splines are considered. In this section, we briefly discuss
how smoothing splines may be used for this purpose and how error bounds
may be obtained.

The problem is to estimate f,(z), x € [0, 1], in the model

(91) yi?’L:fO(x’i’ll)_'_di’rb ;o i=12,-n,
under the usual conditions (4.1)—(4.4). We emphasize the last condition,
(9.2) f, e Wm™2(0,1) .

As the estimator of f/, we take (f™")’, the derivative of the spline esti-
mator. We recall that, under the stated conditions,

(93) E[I ™ = folmn] = O(n72m/ D)
provided h = n~'/2m+1) (deterministically); see Corollary (4.7). Now,
recall Lemma (2.17),

[ ||Ich < lly ||m,h )

valid for all ¢ € W™2(0,1) and for all k = 0,1, ---,m, with a constant
¢,, depending on m only. Applying this to the problem at hand with

m
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k=1 yields

E[R? || (f*" = f,)"|P] = O(n=2m/Gma1)) |
so that
(94) E[| (f"" — £,)" |71 = O(n=2m=D/EmiD)

provided h = n~=Y/@m+1)  This argument applies to all derivatives of order
< m. We state it as a theorem.

(9.5) THEOREM. Assume the conditions (4.1) through (4.4) and that the
design is asymptotically uniform. Then, ford=1,2, --- ;m — 1,

E[[| (f*")@D — (@) |2] = O(n=2m=d)/@m+1)y

provided h = n~1/@m+1),
(9.6) EXERCISE. Prove the remaining cases of the theorem.

Some final comments are in order. It is not surprising that we lose
accuracy in differentiation compared with plain function estimation. How-
ever, it is surprising that the asymptotically optimal value of h does not
change (other than through the constant multiplying n~1/®7m+1 ) We
also mention that RICE and ROSENBLATT (1983) determine the optimal
convergence rates as well as the constants. Inasmuch as we get the optimal
rates, the proof above is impeccable. Of course, our proof does not give
any indication why these are the correct rates. The connection with kernel
estimators through the “equivalent” kernels might provide some insight;
see Chapter 14.

EXERCISE: (9.6).

10. Additional notes and comments

Ad §1: Nonparametric regression is a huge field of study, more or less
(less!) evenly divided into smoothing splines, kernel estimators, and local
polynomials; although wavelet estimators are currently in fashion. It is
hard to do justice to the extant literature. We mention WAHBA (1990),
EUBANK (1999), HARDLE (1990), GREEN and SILVERMAN (1990), FAN and
GUBELS (1996), ANTONIADIS (2007), and GYORFI, KOHLER, KRZYZAK,
and WALK (2002) as general references.

Ad §2: For everything you might ever need to know about the Sobolev
spaces W™2(0,1), see ADAMS (1975), MAz’JA (1985), and ZIEMER (1989).
The statement and proof of the Interpolation Lemma (2.12) comes essen-
tially from ADAMS (1975).
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The reference on reproducing kernel Hilbert spaces is ARONSZAJIN (1950).
MESCHKOWSKI (1962) and HILLE (1972) are also very informative. For a
survey of the use of reproducing kernels in statistics and probability, see
BERLINET and THOMAS-AGNAN (2004). For more on Green’s functions,
see, e.g., STAKGOLD (1967).

The definition (2.22) of asymptotically uniform designs is only the tip
of a sizable iceberg; see AMSTLER and ZINTERHOF (2001) and references
therein.

Ad §3: RICE and ROSENBLATT (1983) refer to the natural boundary con-
ditions (3.18) as unnatural (boundary) conditions, which is wrong in the
technical sense but accurate nevertheless.

Ad §6: The Embedding Lemma (6.13) is the one-dimensional version of a
result in KUFNER (1980). Of course, the one-dimensional version is much
easier than the multidimensional case.

Ad §8: The “simplest” case of the partially linear model was analyzed
by HECKMAN (1988). RICE (1986a) treated arbitrary designs and showed
that asymptotic normality of ™" requires undersmoothing of the spline
estimator of f,. The two-stage estimator 3™*! and the corresponding
asymptotic normality and convergence rates are due to CHEN and SHIAU
(1991). The estimator 3""2 was introduced and studied by SPECKMAN
(1988) for “arbitrary” kernels S, . CHEN (1988) considered piecewise poly-
nomial estimators for f,. Both of these authors showed the asymptotic
normality of their estimators and the optimal rate of convergence of the es-
timator for f,. Bayesian interpretations may be found in EUBANK (1988)
and HECKMAN (1988). EUBANK, HART, and SPECKMAN (1990) discuss
the use of the trigonometric sieve combined with boundary correction using
the Bias Reduction Principle; see §15.4. Finally, BUNEA and WEGKAMP
(2004) study model selection in the partially linear model.
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