Chapter 2
Transportation Supply Models

2.1 Introduction

This chapter deals with the mathematical models simulating transportation supply
systems. In broad terms a transportation supply model can be defined as a model,
or rather a system of models, simulating the performances and flows resulting from
user demand and the technical and organizational aspects of the physical transporta-
tion supply.

Transportation supply models combine traffic flow theory and network flow the-
ory models. The former are used to analyze and simulate the performances of the
main supply elements, the latter to represent the topological and functional struc-
ture of the system. Therefore, in Sect. 2.2 we present some of the basic results of
traffic flow theory. Section 2.3 covers the constituent elements of a transportation
network supply model: such elements form an abstract model of transportation sup-
ply (transportation network) which combines network flow theory with the functions
that express dependence between transportation flows and costs on the network. This
is followed by some general indications on the applications of network models in
Sect. 2.4. Specific models for transportation systems with continuous services (such
as road systems) are described in Sect. 2.4.1; models for discrete or scheduled ser-
vices (such as bus, train, or airplane) are described in Sect. 2.4.2. Throughout this
chapter, as stated in Chap. 1, it is assumed that the transportation system is intrape-
riod (within-day) stationary (unless otherwise stated); extensions of supply models
to intraperiod dynamic systems are dealt with in Chap. 7.

2.2 Fundamentals of Traffic Flow Theory!

Models derived from traffic flow theory simulate the effects of interactions between
vehicles using the same transportation facility (or the same service) at the same time.
For simplicity’s sake, the models presented refer to vehicle flow, although most of
them can be applied to other types of users, such as trains, planes, and pedestrians. In
the sections below we describe stationary uninterrupted flow models (nonstationary
models are introduced in Chap. 7), followed by models of interrupted flow, derived
from queuing theory.
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30 2 Transportation Supply Models

2.2.1 Uninterrupted Flows

Multiple vehicles using the same facility may interact with each other and the effect
of their interaction will increase with the number of vehicles. This phenomenon,
called congestion, occurs in most transportation systems, generally worsening the
overall performances of the facility, such as the mean speed or travel time. Indeed,
it may happen that a vehicle is forced to move at less than its desired speed if it
encounters a slower vehicle. The higher the number of vehicles on the infrastructure,
the more likely this condition is to happen. This circumstance may also occur in
transportation systems with scheduled services: the higher the number of vehicles
on the infrastructure, the more likely out-of-schedule vehicles are to cause a delay
to other vehicles.

In general, stochastic models may be used to characterize in a probabilistic sense
an interaction event that causes a delay. For congested systems with continuous ser-
vices it is very often sufficient to adopt the aggregate deterministic models described
below; they may be applied in areas far away from interruptions such as intersec-
tions and toll booths.

2.2.1.1 Fundamental Variables

Several variables can be observed in a traffic stream, that is, a sequence of cars
moving along a road segment referred to as a link, a. In principle, although all
variables should be related to link a, to simplify the notation the subscript a may be
implied. The fundamental variables are as follows (see Fig. 2.1).

T The time at which the traffic is observed

Lg The length of road segment corresponding to link a

s A point along a link, or rather, its abscissa increasing (from a given origin,
usually located at the beginning of the link) along the traffic direction (s €
[0, LaD)

i An index denoting an observed vehicle

v; (s, ) The speed of vehicle i at time t while traversing point (abscissa) s

For traffic observed at point s during time interval [z, T + At], several variables
can be defined (see Fig. 2.1) as follows.

hi(s)  The headway between vehicles i and i — 1 crossing point s

m(s | 7,7 4+ Atr) The number of vehicles traversing point s during time interval
[z,T 4+ AT]

h(s) = Zi:l,...,m hi(s)/m(s | 7,7 + At) The mean headway, among all vehicles
crossing point s during time interval [z, T + At]

v (s) = Zi:l,..i,m vi(s)/m(s | t,t + At) The time mean speed, among all vehi-
cles crossing point s during time interval [z, T + At]

Similarly, for traffic observed at timet between points s and s + As, the following
variables can be defined.
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Fig. 2.1 Vehicle trajectories and traffic variables

sp;(t) The spacing between vehicles i and [ — 1 at time ©

n(t |s,s + As) The number of vehicles at time T between points s and s + As

sp(t) =2 ;1. n5Pi(x)/n(z | s,s + As) The mean spacing, among all vehicles
between points s and s + As at time ©

(1) = Zi:l,,..,n vi/n(t |s,s + As) The space mean speed, among all vehicles
between points s and s + As at time T

During time interval [7, T + At] between points s and s 4+ As, a general flow
conservation equation can be written:

An(s,s + As, T, T+ At) + Am(s,s + As, T, T + A1)
= Az(s,s + As, T, T + A1) 2.2.1)

where

An(s,s + As, 1,1+ At) =n(t + At |s,s + As) —n(t | s, s + As) is the varia-
tion in the number of vehicles between points s and s + As during At

Am(s,s + As, T, T+ At)=m(s+ As | 1,71+ At) —m(s | T, T + At) isthe vari-
ation in the number of vehicles during time interval [z, T + At] over
space As

Az(s,s + As, T, T + At) is the number of entering minus exiting vehicles (if any)
during time interval [7,7T 4+ At], due to entry/exit points (e.g., on/off
ramps), between points s and s + As

In the example of Fig. 2.1 there are no vehicles entering/exiting in the segment As;
then Az =0 (An is equal to 1 and Am is equal to —1).

With the observed quantities two relevant variables, flow and density, can be
introduced:

fG|t,t+At)=m(s| 1,7+ Atr)/A7 is the flow of vehicles crossing point s
during time interval [7, T + At], measured in vehicles per unit of time

k(t|s,s+ As)=n(t |s,s + As)/As is the density between points s and s + As
at time 7, measured in vehicles per unit of length
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Flow and density are related to mean headway and mean spacing through the
following relations.

fGlt,t+AT)=1/h(s)
k(t|s,s+ As)=1/sp(t)

Note that if observations are perfectly synchronized with vehicles, the near-equality
in the previous two equations becomes a proper equality.

Moreover, if the general flow conservation equation (2.2.1) is divided by Az, the
following equation is obtained.

AnJAt + Af = Ae (2.2.2)

where

Af(s,s + As, T, T+ At) = Am(s,s + As, 1, T + At)/At is the variation of the
flow over space

Ae(s,s + As, 1,7+ At) = Az(s,s + As, 1, T + At)/At is the (net) entering/
exiting flow

Finally, dividing by As, we obtain a further formulation of (2.2.1) (useful for com-
parisons with nonstationary models based on the fluid-dynamic analogy described
in Chap. 7) that expresses the role of variation in density:

AkJAT + Af/As = Ae] As (2.2.3)

where

Ak(s,s + As, T, T+ At) = An(s,s + As, 1,7 + At)/As is the variation of the
density over time

2.2.1.2 Model Formulation

In this subsection we describe several deterministic models developed under the as-
sumption of stationarity, formally introduced below. Extensions to nonstationarity
conditions are reported in Chap. 7 (some information on stochastic models is re-
ported in the bibliographical note). In formulating such models it is assumed that a
traffic stream (a discrete sequence of vehicles) is represented as a continuous (one-
dimensional) fluid.

Traffic flow is called stationary during a time interval [, T + At] between points
s and s + As if flow is (on average) independent of point s, and density is indepen-
dent of time t (other definitions are possible):

fGlt,t+An)=f
k(t|s,s+ As)=k

Note that this condition is chiefly theoretical and in practice can be observed only
approximately for mean values in space or time. It is nevertheless useful in that it
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Fig. 2.2 Vehicle trajectories and traffic variables for stationary (deterministic) flows

allows effective analysis of the phenomenon. In this case, the time mean speed is
independent of location and the space mean speed is independent of time:

Ve (s) =v¢
Ug(T) = 0

In the case of stationarity, both terms in the left side of the conservation equa-
tion (2.2.3) are identically null, anyhow other flow conservation conditions may be
formulated. Hence, let n = k - As be the number, time-independent due to the as-
sumption of stationarity, of vehicles on the stretch of road between cross-sections s
and s 4+ As, and let v, be the space mean speed of these vehicles. The vehicle that
at time 7 is at the start of the stretch of road, cross-section s, will reach the end,
cross-section s + As, on average at time T + At’, with At = As/v,. Due to the
assumption of stationarity, the number of vehicles crossing each cross-section dur-
ing time At is equal to f - Atr. Thus the number of vehicles contained at time t on
section [s, s + As] is equal to the number of vehicles traversing cross-section s + As
during the time interval [t, T + At’] (see Fig. 2.2); that is, kAs = f At = f As/v;.
Hence, under stationary conditions, flow, density, and space mean speed must satisfy
the stationary flow conservation equation:

f=kv (2.2.4)

where

v =1 isthe space mean speed, simply called speed for further analysis of station-
ary conditions.?

21t is worth noting that the time mean speed is not less than the space mean speed, as can be shown

because the two speeds are related by the equation ¥, = s + 2/, where o2 is the variance of
speed among vehicles. In Fig. 2.2 62 =0, hence 9, = v;.
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Fig. 2.3 Relationship between speed and flow

In stationary conditions, empirical relationships can be observed between each
pair of variables: flow, density, and speed. In general, observations are rather scat-
tered (see Fig. 2.3 for an example of a speed—flow empirical relationship) and vari-
ous models may be adopted to describe such empirical relationships. These models
are generally given the name fundamental diagram (of traffic flow) (see Fig. 2.4)
and are specified by the following relations.

v=V(k) (2.2.5)
f=rf& (2.2.6)
f=rw 2.2.7)

Although only a model representation of empirical observations, this diagram
permits some useful considerations to be made. It shows that flow may be zero
under two conditions: when density is zero (no vehicles on the road) or when speed
is zero (vehicles are not moving). The latter corresponds in reality to a stop-and-go
condition.

In the first case the speed assumes the theoretical maximum value, free-flow
speed vg, whereas in the second the density assumes the theoretical maximum value
Jam density, kijam. Therefore, a traffic stream may be modeled through a partially
compressible fluid, that is, a fluid that can be compressed up to a maximum value.

The peak of the speed—flow (and density—flow) curve occurs at the theoretical
maximum flow, capacity Q of the facility; the corresponding speed v, and density
k. are referred to as the critical speed and the critical density. Thus any value of flow
(except the capacity) may occur under two different conditions: low speed and high
density and high speed and low density. The first condition represents an unstable
state for the traffic stream, where any increase in density will cause a decrease in
speed and thus in flow. This action produces another increase in density and so
on until traffic becomes jammed. Conversely, the second condition is a stable state
because any increase in density will cause a decrease in speed and an increase in
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Fig. 2.4 Fundamental diagram of traffic flow

flow. At capacity (or at critical speed or density) the stream is nonstable, this being
a boundary condition between the other two.

These results show that flow cannot be used as the unique parameter describing
the state of a traffic stream; speed and density, instead, can univocally identify the
prevailing traffic condition. For this reason the relation v = V (k) is preferred to
study traffic stream characteristics.

Mathematical formulations have been widely proposed for the fundamental di-
agram, based on single regime or multiregime functions. An example of a single
regime function is Greenshields’ linear model:

V (k) =vo(1 — k/kjam)
or Underwood’s exponential model (useful for low densities):
V (k) = voe /<.
An example of a multiregime function is Greenberg’s model:

V(k)=ajln(ay/k) for k > kmin
V (k) =aiIn(az/kmin) for k < kmin
where a1, a; and kpyin < kjam are constants to be calibrated.

Starting from the speed—density relationship, the flow—density relationship, f =
f(k), may be easily derived by using the flow conservation equation under station-



36 2 Transportation Supply Models

ary conditions, or fundamental conservation equation (2.2.4):
f k) =Vkk
Greenshields’ linear model yields:
k) = vok = k?/ kjam)
In this case the capacity is given by
0 = vokjam/4

Moreover the flow—speed relationship can be obtained by introducing the inverse
speed—density relationship: k = V! (v), thus

fO=Vk=v'w) v'wv=v v ')
For example, Greenshields’ linear model yields: vl = kjam (1 — v/vp) thus

F ) = Kjam (v — v*/v9)

In general, the flow—speed relationship may be inverted by only considering two dif-
ferent relationships, one in a stable regime, v € [v., v, ], and the other in an unstable
regime, v € [0, v.]. Greenshield’s linear model leads to:

vaate (/) = 3 (14 /1= 4/ (wokian)) = 5 (1 + VT = 7/Q)

vo
Vynstable (f) = 7(1 —V1- f/Q)

In the particular case that one can assume the flow regime is always stable, with
reference to relation v = vggple(f) the corresponding relationship between travel
time ¢ and flow may be defined (some examples of this type of empirical relationship
may be found in Sect. 2.4):

t=1(f) = L/vstavie(f) (2.2.8)

2.2.2 Queuing Models

The average delay experienced by vehicles that queue to cross a flow interruption
point (intersections, toll barriers, merging sections, etc.) is affected by the num-
ber of vehicles waiting. This phenomenon may be analyzed with models derived
from queuing theory, developed to simulate any waiting or user queue formation at
a server (administrative counter, bank counter, etc.). The subject is treated below
with reference to generic users, at the same time highlighting the similarities with
uninterrupted flow.
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Fig. 2.5 Fundamental variables for queuing systems

2.2.2.1 Fundamental Variables

The main variables that describe queuing phenomena are:

T The time at which the system is observed

T; The arrival time of user i

h; =1, — 1,1 The headway between successive users i and i — 1 joining the queue
at times 7; and 7;_{

miN(T, T + At) Number of users joining the queue during [z, T 4+ AT]

mout(t, T + At) Number of users leaving the queue during [, T + A7]

h(t,t+At) =3, hi/mn(t, T + At) Meanheadway between all vehicles
joining the queue in the time interval [t, T + A7]

n(t) Number of users waiting to exit (queue length) at time ©

With reference to observable quantities, flow variables may be introduced.

u(r, v+ At) =mn(tr, T + At)/At arrival (entering) flow during [7, T + A7]
w(t, T+ At) =mourt(t, T + At)/At exiting flow during [z, T + At]

Note that the main difference with the basic variables of running links is that
space (s, As) is no longer explicitly referred to because it is irrelevant. Some of the
above variables are shown in Fig. 2.5.

With reference to the service activity, let:

Ls.i Be service time of user i

t;(t, T + At) Average service time among all users joining the queue in time inter-
val [T, T + ATt]

tw; Total waiting time (pure waiting plus service time) of user i

tw(t, T + At) Average total waiting time among all users joining the queue in time
interval [1, T + At]
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Fig. 2.6 Fluid approximation of deterministic queuing systems

O(t,t+ At)=1/t;(tr, T + A7) the (transversal’) capacity or maximum exit flow,
that is, the maximum number of users that may be served in the time unit,
assumed constant during [7, T + At] for simplicity’s sake (otherwise At
can be redefined)

The capacity constraint on exiting flow is expressed by

w<Q.

A general conservation equation, similar to (2.2.1) and (2.2.2) introduced for
uninterrupted flow, holds in this case:

n(t) + mNn(z, T + At) = mout (7, T + AT) + (T + AT). (2.2.9)
Moreover, dividing by At we obtain:
An/AT + [w(t, T+ A1) —u(r, 7+ A1)| =0. (2.2.10)

In the following subsection we describe several deterministic models developed
under the assumption that the headway between two consecutive vehicles and the
service time are represented by deterministic variables. This is followed by a sub-
section on stochastic models developed using random variables. In formulating such
models, as in the case of uninterrupted flow models, we assume arrival at the queue
is represented as a continuous (one-dimensional) fluid.

3In some cases it is also necessary to introduce longitudinal capacity, that is, the maximum number
of users that may form the queue.
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2.2.2.2 Deterministic Models

Deterministic models are based on the assumptions that arrival and departure times
are deterministic variables. According to the fluid approximation introduced above,
the conservation equation (2.2.10) for At — 0 becomes (see Fig. 2.6):

dn(t)
dr

=u(t) —w(r)

Deterministic queuing systems can also be analyzed through the cumulative num-
ber of users that have arrived at the server by time t, and the cumulative number of
users that have departed from the server (leaving the queue) at time 7, as expressed
by two functions termed arrival curve A(t), and departure curve D(t) < A(7),
respectively; see Fig. 2.7. Queue length n(7) at any time t is given by:

n(t) = A(t) — D(7) (2.2.11)

provided that the queue at time 0 is given by n(0) = A(0) > 0 with D(0) = 0.
The arrival and departure functions are linked to entering and exiting users by the
following relationships.
miN(T, T+ At) = A(t + A1) — A(7) (2.2.12)
mout(t, T+ At) = D(t + A1) — D(7) (2.2.13)
The flow conservation equation (2.2.9) can also be obtained by subtracting member
by member the relationships (2.2.12) and (2.2.13) and taking into account (2.2.11).
The limit for At — 0 of (2.2.12) and (2.2.13) leads to (see Fig. 2.7):
_dA(7)
Todr

u(t)
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Fig. 2.8 Undersaturated queuing system

dD(1)
dr

w(t) =

If during time interval [tg, o + At] the entering flow is constant over time,
u(t) = u, then the queuing system is named (flow-)stationary and the arrival func-
tion A(t) is linear with slope given by u:

A(t)=A(tg)+u-(t —19) T€[r0, 70+ AT]

The exit flow may be equal to the entering flow u, or to the capacity Q as de-
scribed below.*

(a) Undersaturation When the arrival flow is less than capacity (u < Q) the sys-
tem is undersaturated. In this case, if there is a queue at time 19, its length decreases
with time and vanishes after a time At defined as (see Fig. 2.8)

Atp =n(70)/(Q —u) (2.2.14)

Before time 1y + Atp, the queue length is linearly decreasing with t and the
exiting flow w is equal to capacity Q:

n(t) =n(t) — (Q — u)(t — 70)
=0 (2.2.15)
D(t) = D(7) + O(t — 10)

After time 79 + At the queue length is zero and the exiting flow w is equal to the
arrival flow u:

n(tg+ Atg) =0

“In stationary queuing models used on transportation networks, the inflow i can be substituted
with the flow f, of the link representing the queuing system.



2.2 Fundamentals of Traffic Flow Theory 41

A=A+ u(t-1)

Nr. of users

n(D) = n(n) + ( u-0) (r- n)

"W D-Diay 0 (v a)

T Tempo 7
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W=i (2.2.16)
D(t) = A(t) = A(7o) + u(t — 70)

(b) Oversaturation When the arrival flow rate is larger than capacity, u > Q, the
system is oversaturated. In this case queue length linearly increases with time t and
the exiting flow is equal to the capacity Q (see Fig. 2.9):

n(tg) =n(ro) + (4 — Q) (tr — 10)
w=Q (2.2.17)
D(t) = D(19) + Q(r — 10)

(c) General Condition By comparing (2.2.15) through (2.2.17) it is possible to
formulate this general equation for calculating the queue length at generic time in-
stant T:

n(r) = max{0, (n(10) + ( — 0)(r — 1))} (2.2.18)

With the above results, any general case can be analyzed by modeling a sequence
of periods during which arrival flow and capacity are constant. An important case is
that of the queuing system at traffic lights which may be considered a sequence of
undersaturated (green) and oversaturated (red) periods with zero capacity (see p. 73:
Application of Queuing Models).

The delay can be defined as the time needed for a user to leave the system (pass-
ing the server), accounting for the time spent queuing (pure waiting). Thus the delay
is the sum of two terms:

w=1t;+tw,

where
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Fig. 2.10 Deterministic delay function at a server
tw is the total delay
t;, = 1/0 is the average service time (time spent at the server)
twy is the queuing delay (time spent in the queue)

In undersaturated conditions (u < Q) if the queue length at the beginning of pe-
riod is zero (it remains equal to zero), the queuing delay is equal to zero, tw, (1) =0,
and the total delay is equal to the average service time:

tw(u) =t

In oversaturated conditions (z > Q), the queue length, and respective delay,
would tend to infinity in the theoretical case of a stationary phenomenon lasting
for an infinite time. In practice, however, oversaturated conditions last only for a
finite period 7. If the queue length is equal to zero at the beginning of the period, it
will reach a value (z — Q) - T at the end of the period. Thus, the average queue over
the whole period T is:

u—-o)rT
2

n=

In this case the average queuing delay is x/Q, and average total delay is (see
Fig. 2.10):

. @-OT
W) =15 + —— o 0 (2.2.19)
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2.2.2.3 Stochastic Models

Stochastic models arise when the variables of the problem (e.g., user arrivals, ser-
vice times of the server, etc.) cannot be assumed deterministic, due to the observed
fluctuations, as is often the case, especially in transportation systems. If the system
is undersaturated, it can be analyzed through (stochastic) queuing theory which in-
cludes the particular case of the deterministic models illustrated above. Some of the
results of this theory are briefly reported below, without any claim to being exhaus-
tive.

It is particularly necessary to specify the stochastic process describing the se-
quence of user arrivals (arrival pattern), the stochastic process describing the se-
quence of service times (service pattern) and the queue discipline. Arrival and ser-
vice processes are usually assumed to be stationary renewal processes, in other
words with stable characteristics in time that are independent of the past: that is,
headways between successive arrivals and successive service times are indepen-
dently distributed random variables with time-constant parameters. Let N be a ran-
dom variable describing the queue length, and n the realization of N. The character-
istics of a queuing phenomenon can be redefined in the following concise notation,

a/b/c(d,e)

where

a denotes the type of arrival pattern, that is, the variable which describes time
intervals between two successive arrivals:

D = Deterministic variable

M = Negative exponential random variable
E = Erlang random variable

G = General distribution random variable

denotes the type of service pattern, such as a

is the number of service channels: {1, 2, ...}

is the queue storage limit: {00, npax} or longitudinal capacity
denotes the queuing discipline:

" Qo>

FIFO = First In-First Out (i.e., service in order of arrival)

LIFO = Last In—First Out (i.e., the last user is the first served)

SIRO = Service In Random Order

HIFO = High In—First Out (i.e., the user with the maximum value of an
indicator is the first served)

Fields d and e, if defined respectively by oo (no constraint on maximum queue
length) and by FIFO, are generally omitted. In the following we report the main re-
sults for the M/M/I (oo, FIFO) and the M/G/1 (oo, FIFO) queuing systems, which
are commonly used for simulating transportation facilities, such as signalized inter-
sections.
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Some definitions or notation differ from those traditionally adopted in dealing
with queuing theory (the relative symbols are in brackets) so as to be consistent with
those adopted above. The parameters defining the phenomenon are as follows.

u, (A) The arrival rate or the expected value of the arrival flow

0 =1/t, (u) The service rate (or capacity) of the system, the inverse of the ex-
pected service time

u/Q, (p) The traffic intensity ratio or utilization factor

n A value of the random variable N, number of users present in the system,
consisting of the number of users queuing plus the user present at the server,
if any (the significance of the symbol # is thus slightly different)

tw A value of the random variable 7W, the time spent in the system or overall
delay, consisting of queuing time plus service time

(a) M/M/I (oo, FIFO) Systems In undersaturated conditions (u/Q < 1):

E[N]= —2 “

(2.2.20)

u
VAR[N]= —2

According to Little’s formula, the expected number of users in the system E[N]
is the product of the average time in the system (expected value of delay) E[T W]
multiplied by arrival rate u:

E[N]=uE[TW] (2.2.21)

from which:

E[TW]=

o (2.2.22)

The expected time spent in the queue E[tw,] (or queuing delay) is given by
the difference between the expected delay E[tw] and the average service time #; =
1/0:

1 1 u
O—u Q0 QQ-u
According to Little’s second formula, the expected value of the number of users

in the queue E[N,] is the product of the expected queuing delay E[T W, ] multiplied
by the arrival rate u:

E[TW,] = (2.2.23)

E[N,]=uE[TW,] (2.2.24)
and then:
2

v (2.2.25)
0(Q —u)

E[N,]=
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(b) M/G/1 (o0, FIFO) Systems In this case the main results are the following.

u

|20
Q 2(0 —u)

E[TW]= i[l T L}
0 2(0Q —u)

E[N]

FTWI= 350w

2.3 Congested Network Models

This section provides a general mathematical formulation of transportation supply
models, based on congested network flow models. The bases for these models are
graph models. Next, network models, including link performances and costs, and
network flow models, including link flows, are introduced. Finally, congested net-
work (flow) models, modeling relationships among performances, costs, and flows,
are developed.

2.3.1 Network Structure

The network structure is represented by a graph. The latter is defined by a set N of
elements called nodes and by a set of pairs of nodes belonging to N, L C N x N,
called links. The graphs used to represent transportation services are generally ori-
ented; that is, the links have a direction and the node pairs defining them are ordered
pairs. A link connecting the node pair (i, j) can also be denoted by a single index,
say a.

The links in a graph modeling a transportation system represent phases and/or
activities of possible trips between different traffic zones. Thus, a link can represent
an activity connected to a physical movement (e.g., covering a road) or an activity
not connected to a physical movement (such as waiting for a train at a station). Links
are chosen in such a way that physical and functional characteristics can be assumed
to be homogeneous for the whole link (e.g., the same average speed). In this sense,
links can be seen as the partition of trips into segments, each of which has certain
characteristics; the level of detail of such a partition can clearly be very different for
the same physical system according to the objectives of the analysis.

Nodes correspond to significant events delimiting the trip phases (links), that is,
to the space and/or time coordinates in which events occur that they represent. In
synchronic networks, nodes are not identified by a specific time coordinate, and the
same node represents events occurring at different moments (instants) of time. For
example, the different entry or exit times in a road segment, an intersection, or a
station, may be associated with a single node, representing all the entry/exit events.
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Centroid nodes, introduced in Sect. 1.3.1, represent the beginning or end of individ-
ual trips. In diachronic networks, on the other hand, nodes may have an explicit time
coordinate and therefore represent an event occurring at a given instant. The graphs
considered in this chapter are synchronic, because diachronic networks assume a
within-period system representation; diachronic graphs for scheduled services are
introduced in Chap. 7.

A trip is a sequence of several phases and, in a graph that represents transporta-
tion supply, it consists of a path k, defined as a succession of consecutive links
connecting an initial node (path origin) to a final node (path destination). Usually,
only paths connecting centroid nodes are considered in transportation graphs. On
this basis, each path is unambiguously associated with one, and only one, O-D pair,
whereas several paths can connect the same O-D pair. An example of a graph with
different paths connecting the centroid nodes is depicted in Fig. 2.11.

A binary matrix called the link—path incidence matrix A, can represent the re-
lationship between links and paths. This matrix has a number of rows equal to the
number of links n;, and a number of columns equal to the number of paths n p. The
generic element 8, of the binary matrix A is equal to one if link a belongs to path
k,a € k, and zero, otherwise, a ¢ k (see Fig. 2.11). The row of the link—path inci-
dence matrix corresponding to the generic link a identifies all the paths including
that link (columns & for which §,;x = 1). Moreover, the elements of a column cor-
responding to the generic path k identify all the links that make it up (rows a for
which 84, = 1).

2.3.2 Flows

A link flow f, can be associated with each link a. Link flow is the average number
of homogeneous units using link a (i.e., carrying out the trip phase represented
by the link) in a time unit. In other words, the link flow is a random variable of
mean f,. Several link flows can be associated with a given link depending on the
homogeneous unit considered. User flows relate to users, such as travelers or goods,
possibly of different classes. Vehicle flows relate to the number of vehicles, perhaps
of different types such as automobiles, buses, trains, and so on.

For individual modes, such as automobiles or trucks, user flows can be trans-
formed quite straightforwardly into vehicle flows through average occupancy coef-
ficients. For scheduled modes, such as trains, vehicle flows derive from the service
schedule and are often treated as an input to the supply model.

The link flow of the generic user class or vehicle type i is denoted by f:. In ac-
cordance with the results of traffic flow theory (see Sect. 2.2), link performance and
cost variables are affected by user or vehicle flow. To allow for this dependence it is
often worth homogenizing the various classes of users or various types of vehicles
by defining equivalent flows associated with links. In this case the flows of different
user classes or vehicle types are homogenized to a reference class or type:

Ja :Zwif;
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Fig. 2.11 Example of a graph and link—path incidence matrix

where w; is the homogenization coefficient of the users of class i with respect to
their influence on link performances. For example, for road flows, automobiles are
usually the reference vehicle type (w; = 1) and the other vehicle flows are trans-



48 2 Transportation Supply Models

formed into equivalent auto flows with coefficients w;. The latter are greater than
one if the contribution to congestion of these vehicles is greater than that of cars
(buses, heavy vehicles, etc.), less than one in the opposite case (motorcycles, bicy-
cles, etc.).

The vector of link flows f has, as a generic component, the flow on link a, f,,
for each a € L (see Fig. 2.12).

Flow variables can also be associated with paths. Under the within-day station-
arity hypothesis, the average number of users, who in each subinterval travel along
each path, is constant. The average number of users, who in a time unit follow path k,
is called the path flow hy. If the users have different characteristics (i.e., they belong
to different classes), path flows per class i, hi can be introduced. Path flows of dif-
ferent user classes or vehicle types can be homogenized by means of coefficients w;
similar to those introduced for link flows; the equivalent path flow is obtained as:

hie="y " w; - hi
i

There is clearly a relationship between link and path flows. Indeed, the flow on
each link a can be obtained as the sum of the flows on the various paths containing
that link. This relationship can be expressed by using the elements §,; of the link—
path incidence matrix as

fa=)_Sak - hi 2.3.1)
k

or in matrix terms:
f=Ah 2.3.2)

where h is the path flow vector.

Equation (2.3.1) or (2.3.2) expresses the way in which path flows induce flows
on individual links. For this reason it is referred to as the (static) Network Flow
Propagation (NFP) model (see Fig. 2.11). Note that the linear algebraic structure
of (2.3.1) depends crucially on the assumption of intraperiod stationarity (within-
day static model); if this assumption is removed, the model loses its algebraic-linear
nature as shown in Chap. 7.

2.3.3 Performance Variables and Transportation Costs

Some variables perceived by users can be associated with individual trip phases. Ex-
amples of such variables are travel times (transversal and/or waiting), monetary cost,
and discomfort. These variables are referred to as level-of-service or performance
attributes. In general, performance variables correspond to disutilities or costs for
the users (i.e., users would be better off if the values of performance variables were
reduced). The average value of the nth performance variable, related to link a, is
denoted by r,,. The average generalized transportation link cost, or simply the
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Fig. 2.12 Transportation network with link and path flows

transportation link cost, is a variable synthesizing (the average value of) the differ-
ent performance variables borne and perceived by the users in travel-related choice
and, more particularly, in path choices (see Sect. 4.3.3). Thus, the transportation link
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cost reflects the average users’ disutility for carrying out the activity represented by
the link. Other performance variables and costs, which cannot be associated with
individual links but rather to the whole trip (path), are introduced shortly.

Performance variables making up the transportation cost are usually nonhomoge-
neous quantities. In order to reduce the cost to a single scalar quantity, the different
components can be homogenized into a generalized cost applying reciprocal substi-
tution coefficients 8, whose value can be estimated by calibrating the path choice
model (see Sect. 4.3.3). For example, the generalized transportation cost ¢, relative
to the link a can be formulated as

ca=P1-1q+ Br-mcy

where ¢, is the travel time and mc, is the monetary cost (e.g., the toll) connected
with the crossing of the link. More generally, the link transportation cost can be
expressed as a function of several link performance variables as

cazz,‘gn'rna
n

Different users may experience and/or perceive transportation costs, which differ
for the same link. For example, the travel time of a certain road section generally
differs for each vehicle that covers it, even under similar external conditions. Fur-
thermore, two users experiencing the same travel time may have different percep-
tions of its disutility. If we then add the fact that the analyst cannot have perfect
knowledge of such costs, we realize that the perceived link cost is well represented
by a random variable distributed among users, whose average value is link trans-
portation cost ¢,. There may be other “costs” both for users (e.g., accident risks
or tire consumption) and for society (e.g., noise and air pollution) associated with a
link. It is usually assumed that these costs are not taken into account by users in their
travel-related choices and are not included in the perceived transportation cost. The
transportation cost is, therefore, an internal cost, used to simulate the transportation
system and, in particular, travelers’ choices. The other cost items are external costs,
used for project design and assessment. External costs are sometimes referred to as
impacts; they are dealt with in Sect. 2.3.5.

Different groups (or classes) of users may have different average transportation
costs. This may be due to different performance variables (e.g., their speeds and
travel times are different or they pay different fares) or to differences in the homoge-
nization coefficients B, (e.g., different time/money substitution rates corresponding
to different incomes). In this case a link cost cf can be associated with each user
class i. In what follows, for simplicity of notation, the class index i is taken as un-
derstood unless otherwise stated. Other considerations relative to users belonging to
different classes are made in Chap. 6.

Link performance variables and transportation costs can be arranged in vectors.
The performance vector r, is made up by the nth performance variable for each
link, its components being r;,,. Analogously, the vector ¢, whose generic component
cq 1s the generalized transport cost on link a, is known as the link cost vector.
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The concepts of performance variables and generalized transportation cost can
be extended from links to paths. The average performance variable of a path k, z,,,
is the average value of that variable associated to a whole origin—destination trip,
represented by a path in the graph. Some path performance variables are linkwise
additive; that is, their path value can be obtained as the sum of link values for all
links making up the path.

Examples of additive path variables are travel times (the total travel time of a
path is the sum of travel times over individual links) or some monetary costs, which
can be associated with some or all individual links. An additive path performance
variable can be expressed as the sum of link performance variables as

ADD
Zrna = Zaukrna

ack

or in vector notation
znADD = ATy,

Other path performance variables are nonadditive; that is, they cannot be ob-
tained as the sum of link specific values. These variables are denoted by Z}f,f Ex-
amples of nonadditive performance variables are monetary cost in the case of tolls
that are nonlinearly proportional to the distance covered or the waiting time at stops
for high-frequency transit systems, as shown below.

The average generalized transportation cost of a path k, gi, is defined as a scalar
quantity homogenizing in disutility units the different performance variables per-
ceived by the users (of a given category) in making trip-related choices and, in
particular, path choices.

The path cost in the most general case is made up of two parts: linkwise additive
cost gADD and nonadditive cos, g,IjA, assuming that they are homogeneous:

gk = gpPP 4+ A (2.3.3)

The additive path cost is defined as the sum of the linkwise additive path perfor-

mance variables:
ADD
= Z ﬁn *Znk
n

Under the assumption that the generalized cost depends linearly on performance
variables, the additive path cost can be expressed as the sum of generalized link
costs. The relationship between additive path cost and link costs can be expressed
by combining all the equations previously presented:

Z ﬂnZADD Z Bn Z SakTna = ZSZk Z BnTna = Zaakca
n a a n a

or

= Suca (2.3.4)
a
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Fig. 2.13 Transportation network with link and path costs

The expression (2.3.4) can also be formulated in vector format by introducing
the vector of additive path costs gAPP (see Fig. 2.13):

g"PP = AT¢ (2.3.5)
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The nonadditive path cost g,IjA includes nonadditive path performance variables:
NA NA
& = Z Bnzni
n
Finally, the path cost vector g, of dimensions (np x 1), can be expressed as

g=ATc+ g\ (2.3.6)

where gN4 is the nonadditive path cost vector.

In many applications, the nonadditive path cost vector is, or is assumed to be,
null. This affects the efficiency of the calculation algorithm for assignment models,
as shown in Chaps. 5 and 6.

2.3.4 Link Performance and Cost Functions

Link performance attributes generally depend on the physical and functional char-
acteristics of the facility and/or the service involved in the trip phase represented
by the link itself. Typical examples are the travel time on a road section depending
on its length, alignment, allowed speed, or the waiting time at a bus stop depending
on the headway between successive bus arrivals. When several travelers or vehi-
cles use the same facility, they may interact with each other, thereby influencing
link performance. This phenomenon is known as congestion and was introduced in
Sect. 2.2.1. Typically, the effects of congestion on link performance increase as the
flow increases. For instance, the larger the flow of vehicles traveling along a road
section, the more likely faster vehicles will be slowed by slower ones, thus increas-
ing the average travel time. Moreover, the larger the flow arriving at an intersection,
the longer is the average waiting time; the larger the number of users on the same
train, the lower is the riding comfort.

In general, congestion effects are such that the performance attributes of a given
link may be influenced by the flow on the link itself and by flows on other links.

Link performance functions relate the generic link performance attribute r,, to
physical and functional characteristics of the link, arranged in a vector b,,, and to
the equivalent flow on the same link and, possibly, on other links, arranged in the
vector f:

Tna =rna(f§ b, }’na)

where y,,, is a vector of parameters used in the function.
Because the generalized transportation cost of a link ¢, is a linear combination
of link performance attributes, link cost functions® can be expressed as functions of

S A distinction should be made between cost functions in microeconomics and in transportation
systems theory. In the first case, the cost function is a relationship connecting the production cost
of a good or service to the quantity produced and the costs of individual production factors. Cost
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the same parameters:

ca=ca(f;ba,7,) 2.3.7)

where vectors b, and y, have the same meaning as above.

Link performance and cost functions may have some mathematical properties,
which are used in Chaps. 5 and 6 to study the properties of supply—demand interac-
tion models and to analyze the convergence of their solution algorithms.

Performance and cost functions can be classified as separable and nonsepara-
ble across a link. In the former case, the performances and cost variables of a link
depend exclusively on the (equivalent) flow on the link itself:

ca(f) =cq(fa)

In the latter case, they also depend on the flow on other links. Examples of both
types of function are given in the following sections.

The cost function vector ¢(f) is obtained by ordering the ny functions of the
individual network links:

c=c(f) (2.3.8)

Under the assumption that the first partial derivative of ¢( f) exists and is finite, the
Jacobian matrix, Jac[c(f)], may be defined:

9y dey
afl T afrlL
ac;
Jac[e(f)] = ar
Ban Ban
N Wy,

The cost functions generally have an asymmetric Jacobian. In some cases, they may
have a symmetric Jacobian: dc;/df; = dc;/df;, Vi, j; that is, the cost variation on
link a, due to a flow variation on link j, is equal to the cost variation on link j, due
to a flow variation on link i. Separable cost functions are clearly a special case, the
Jacobian being a diagonal matrix: dc;/df; =0, Vi # j.

In the case of uncongested networks the cost functions are independent of the
flows, so the partial derivatives are all equal to zero and the Jacobian is null.

2.3.5 Impacts and Impact Functions
Design and evaluation of transportation systems, in addition to performance vari-

ables perceived by the users, require the modeling of impacts borne by the users,
but not perceived in their mobility choices, and of impacts on nonusers. Examples

functions in transportation systems provide the cost perceived by users in their trips. Transportation
cost is therefore a cost of use rather than of production. The cost of producing transportation
services is usually indicated as the service production cost, and similarly the functions correlating
it to the relevant quantities are called production cost functions.
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of the first type include indirect vehicle costs (e.g., tire or lubricant, vehicle de-
preciation, etc.) and accident risks with their consequences (death, injury, material
damage). The impacts for nonusers include those for other subjects directly involved
in the transportation system, such as costs and revenues for the producers of trans-
portation services, and impacts “external” to the transportation system (or market).
Examples of externalities are the impacts on the real estate market, urban structure,
or on the environment such as noise and air pollution. The mathematical functions
relating these impacts to physical and functional parameters of the specific trans-
portation systems and, in some cases, to link flows are called impact functions. Of-
ten these functions are named with respect to the specific impact they simulate (e.g.,
fuel consumption functions or pollutant emission functions). Some impacts can be
associated with individual network links and depend on the flows, ¢;( f). Link-based
impact functions are usually included in transportation supply models; see Fig. 2.1.
Some impact functions may be quite elementary whereas others may require com-
plex systems of mathematical models. Examples of link-based impact functions are
those related to air and noise pollution due to vehicular traffic. Some impact func-
tions are discussed in Chap. 10 in the context of evaluation of transportation system
projects.

2.3.6 General Formulation

To summarize the above points, a transportation network consists of the set of nodes
N, the set of links L, the vector of link costs ¢, which depend on the vector r of link
performances, the vector gN* of nonadditive path costs and the vector e of relevant
impact variables: (N, L, c, gNA, e). For congested networks, the link cost vector
is substituted by the flow-dependent cost functions ¢(f); the same holds for flow-
dependent internal and external impacts e( f), whereas the nonadditive costs vector
g is usually assumed to be independent of the flows. In this case the abstract
transportation network model can be expressed as (N, L, c¢(f), gNA, e(f)). Perfor-
mance variables and functions are not explicitly mentioned, as they are included in
the generalized transportation cost functions.

The set of relationships connecting path costs to path flows is known as the supply
model. The supply model can therefore be formally expressed combining (2.3.2),
(2.3.6), and (2.3.8) into a relationship connecting path flows to path costs:

g(h)=ATc(AR) + g™ (2.3.9)

where it is assumed that nonadditive path costs, if any, are not affected by con-
gestion. Link characteristics can be obtained through performance, cost and impact
functions for the link flows corresponding to the path flow vector. Clearly the model
(2.3.9) expresses the abstract congested network model described in the previous
sections. The same type of models can be used to describe other systems such as
electrical or hydraulic networks.

The general structure of a supply model is depicted in Fig. 2.14. The graph de-
fines the topology of the connections allowed by the transportation system under
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Fig. 2.14 Schematic representation of supply models

4— Congested Systems

study, and the flow propagation model defines the relationship among path and
link flows. The link performance model expresses for each element (link) the re-
lationships among performances, physical and functional characteristics, and flow
of users. The impact model simulates the main external impacts of the supply sys-
tem. Finally, the path performance model defines the relationship between the per-
formances of single elements (links) and those of a whole trip (path) between any

origin—destination pair.

2.4 Applications of Transportation Supply Models

Network models and related algorithms are powerful tools for modeling transporta-
tion systems. A network model is a simplified mathematical description of the phys-
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ical phenomena relevant to the analysis, design, and evaluation of a given system.
Thus transportation network models depend on the purpose for which they are used.

Building a network model usually requires a sequence of operations whose gen-
eral criteria are described in the following. A schematic representation of the main
activities in the case of a bimodal supply system (road and transit urban systems) is

depicted in Fig. 2.15.

In the most general case, a supply network model is built through the following

phases.

(a) Delimitation of the study area

(b) Zoning

(c) Selection of relevant supply elements (basic network)

(d) Graph construction

(e) Identification of performance and cost functions
(f) Identification of impact functions

Phases (a), (b), and (c) relate to the relevant supply system definition. They are
described, respectively, in Sect. 1.3.1 of Chap. 1 and are not repeated here. The rest
of this section introduces some general considerations related to phases (d), (e), and
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(f) for a generic system. Specific models are described separately for two different
types of transportation systems: continuous services (such as road), in Sect. 2.4.1,
and scheduled services (such as train or buses), in Sect. 2.4.2.

The construction of a transportation graph requires the definition of the rele-
vant trip phases and events (links and nodes) that depend on the physical system
to be represented. Important nodes in transportation graphs are the so-called cen-
troid nodes. They correspond to the events of beginning and ending a trip in a given
zone. As was seen in Sect. 1.3.1, the centroids can approximate the internal points
within a traffic zone. In general, the zone centroid is a fictitious node, that is, a node
which does not correspond to any specific location but which represents the set of
points of the zone where a trip can start or end. Therefore, a zone centroid is placed
“barycentrically” with respect to such points or to some proxy variables (e.g., the
number of households or workplaces). In principle, different centroid nodes may
be associated to different trip types (e.g., origin and destination centroids). In other
cases, centroids represent the places of entry into or exit from the study area for the
trips, which are partly undertaken within the system (cordon centroids). In this case
they are usually associated with physical locations (road sections, airports, railway
stations, etc.).

A graph usually includes links of different types: real links and connectors. Real
links represent trip phases corresponding to “physical” components (infrastructures
or services), such as traversing a road section or riding a train between two succes-
sive stations. When centroid nodes do not correspond to a physical element, connec-
tor links are introduced into the graph. These links represent the trip phase between
the terminal point (zone centroid) and a physical element of the network. In the re-
mainder of this section, links are referred to according to the trip phase (activity) or
the infrastructure or service which allows that activity. For example, there are road
links, transit line links, and waiting links at stops.

A transportation graph will have different levels of complexity, depending on the
system being represented and the details required to do so. In general, short-term
or operational projects, such as a road circulation plan or the design of transit lines,
require a very detailed representation of the real system. By contrast, strategic or
long-term projects usually require less detailed, larger-scale graphs both because of
the geographical size of the area and the number of elements included in the system.

As shown shortly, different graphs can be associated with the same basic net-
work, depending on the aim of the model. Graphs can also represent transportation
infrastructures; in general, infrastructure graphs are not used directly for system
models, but rather they are referred to during the construction of service graphs.
User flows and supply performances depend on the transportation services using the
infrastructures rather than on the infrastructures themselves.

Specification of link performance and cost functions for a transportation network
requires the study of the functioning of the individual elements that comprise it.
In practice, performance functions used at times derive from explicit assumptions
on system behavior, following a “deductive” approach, as for queuing models for
barrier systems such as motorway toll booths, road intersections, air and sea termi-
nals, and the like (see Sect. 2.2.2). When this approach, albeit based on simplifying
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assumptions, proves particularly complex, we use “descriptive” models developed
according to an “inductive” approach, as in most stationary traffic flow models (see
Sect. 2.2.1). Such models are made up of statistical relationships between perfor-
mance attributes and the explicative variables of the phenomenon. Examples of both
types of performance functions are given in the next two sections.

Both approaches use unknown parameters, vectors y,, and y, respectively, in ex-
pressions (2.4.11) and (2.4.12), which should be calibrated for each specific supply
model. To estimate behavioral model parameters or to specify the functional form
and estimate nonbehavioral model parameters, the usual methods of inferential sta-
tistics may be used. However, in many applications the cost functions calibrated in
similar contexts are transferred to the system in question to save application time
and costs.

2.4.1 Supply Models for Continuous Service Transportation
Systems

Continuous and simultaneous services are available at every instant and can be ac-
cessed from a very large number of points. Typical examples are individual modes
such as cars and pedestrians using road systems.

2.4.1.1 Graph Models

In graphs representing road systems, nodes are usually located at the intersections
between road segments included in the supply model. Nodes can also be located
where significant variations occur in the geometric and/or functional characteristics
of a single segment (such as changes in a road cross-section and lateral friction).
Intersections with secondary roads not included in the “base network,” however, are
not represented by nodes. Links usually correspond to connections between nodes
allowed by the circulation scheme. Therefore, a two-way road is represented by two
links going in opposite directions, whereas a one-way road has a single link going
in the allowed direction. Figure 2.16 shows the graph representing part of the urban
road network shown in Fig. 1.3.

In applications two distinct types of links are considered: running links, which
represent the vehicle’s real movement as the trip along a motorway or urban road
section; and waiting or queuing links, representing queuing at intersections, toll bar-
riers, and so on (see Fig. 2.17).

The level of detail of the road system depends on the purpose of the model. This
is especially true for road intersections. In a coarse representation, a road intersec-
tion is usually represented by a single node where the access links converge. Al-
ternatively, we can adopt a more detailed representation that distinguishes different
turning movements and excludes nonpermitted turns (if any). Such a representation
can be obtained by using a larger number of nodes and links. Figure 2.18 shows
the two possible representations of a four-arm road intersection. Note that in the
single-node representation, paths requiring a left turn (4-5-2) cannot be excluded if
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Fig. 2.16 Example of a graph representing part of an urban road system
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Fig. 2.17 Representation of
a road intersection with
running and waiting links |

oO———HF0— >0

running link waiting link

this turning movement is not allowed; furthermore, different waiting times cannot
be assigned to maneuvers with different green phase durations, such as right turns
(4-5-3). Both of these possibilities are allowed by the detailed representation.

Parking is another element of a road system that can be represented with different
levels of detail. In detailed road graphs, trip phases corresponding to parking can be
represented with different links for different parking facilities available in a given
zone (see Fig. 2.19). Parking links can be connected through pedestrian links to the
centroid of the zone where they are located, and to the centroids of traffic zones
within walking distance. In less detailed graphs, parking is included in connector
links; in this case, however, congestion and different parking policies cannot be
simulated.

2.4.1.2 Link Performance and Cost Functions

The generalized transportation cost of a road link is usually made up by several
performance attributes. For example, three attributes can be selected: travel time
along the section, waiting time (e.g., at the final intersection, at the tollbooth, etc.),
and monetary cost. In this case, the cost function can be obtained as the sum of three
performance functions:

ca(f) = Prtra(f) + Batwa (f) + B3mea (f) 2.4.1)

where

tra(f) 1is the function relating the running time on link a to the flow vector
twy (f) is the function relating the waiting time on link a to the flow vector
mc,(f) is the function relating the monetary cost on link a to the flow vector

The dependence on physical and functional variables b,, and parameters y, has
been omitted for simplicity’s sake. Note that in (2.4.1) it has been assumed that
homogenization coefficients may differ for the different time components. Further-
more, not all of the components in (2.4.1) are present for each link; for example,
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Fig. 2.18 Graphs for a road intersection

if the link represents only the waiting time for a maneuver, fr, and mc, are zero,
and the same consideration is true for monetary costs and waiting times on most
pedestrian links. If an individual link represents both the trip along a road section
and queuing at the intersection, its cost function will include both travel time tr,
and queuing time tw,,.
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Fig. 2.19 Explicit representation of parking supply

In the most general case, the monetary cost term mc, includes the cost items that
are perceived by the user. Because users do not usually perceive other consumption
(motor oil, tires, etc.), in applications monetary costs are usually identified as the
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toll (if any) and fuel consumption:
mcq = meioll + mcruet (f).

The latter depends on the specific consumption (liters/km), which can vary in
relation to the average speed and hence to the congestion level. In practice, these
variations are sometimes ignored and the monetary cost is calculated as a function
of the toll and the average unit consumption.

Performance functions for travel time and queuing time attributes are derived by
following both a behavioral (deductive) and experimental (inductive) approach. For
the waiting links, for example, the results of queuing theory are generally used (see
Sect. 2.2.2). However, their mere implementation has not always permitted proper
coverage of all situations in practice, which is why such relations often include
approximated adjustment terms obtained from empirical observations.

Listing all the performance functions that can be adopted for the elements of
different continuous service systems is beyond the scope of this book. In the follow-
ing, we therefore present some examples of performance functions both for travel
links and waiting links, following the two approaches mentioned. It should also be
stressed that, consistently with the assumption of intraperiod stationarity, stationary
traffic flow variables and results are used.

Running Links Starting from the (stable regime) speed—flow relationship, the
(stable regime) travel time of a running link a can be calculated as a function of
the flow:

tra = La/va(fa) (2.4.2)
where
try is the running time on link a
fa is the flow on link a
L, is the length of the running link a
Vg is the mean speed on link a assuming a stable regime

Below we introduce the relationships between travel time tr, and flow f, for unin-
terrupted flow conditions, for various types of road infrastructures: motorways and
urban and extraurban roads.

(a) Motorway Links On motorway links flow conditions are typically uninter-
rupted and it is assumed that the waiting time component is negligible because it
occurs on those sections (ramps, tollbooths, etc.) that are usually represented by
different links.

Link travel time is usually obtained through empirical statistical relationships.
One of the most popular expressions, referred to as the BPR cost function, has the
following specification.

La La Lll fa 4
tra(fa) ==+ (— - —) (—) 243

Voa Uca Voa o
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Fig. 2.20 Motorway travel time function (2.4.3) for different values of some parameters

where

L, is the length of link a

V0a is the free-flow average speed
Vea is the average speed with flow equal to capacity
o is link capacity, that is, the average maximum number of equivalent vehi-

cles that can travel along the road section in a time unit. Capacity is usually
obtained as the product of the number of lanes on the link a, N,, and lane

capacity, Quq

From (2.4.3) it can be noted that, in the case of motorways, cost functions are
separable. The influence of flows on the performances of other links (e.g., the oppo-
site direction or entrance/exit ramps) is significantly reduced by the characteristics
of the infrastructure (divided carriageways, grade-separated intersections, etc.).

The values of vy, veq, and Q, depend on the geometric and functional charac-
teristics of the section (width of lanes, shoulders, and median strips; bend radiuses;
longitudinal slopes; etc.). Typical values can be found in different sources; the High-
way Capacity Manual (HCM) is the most complete and systematic (see Reference
Notes). Parameters y; and y, are typically estimated on empirical data.

Figure 2.20 shows a diagram of (2.4.3) for different parameter values. Note that
this function associates a travel time with the link also when flows are above link ca-
pacity (oversaturation), even though such flows are not possible in reality. However,
in applications oversaturation is often allowed for reasons connected with mathe-
matical properties and solution algorithms of static equilibrium assignment models
(see Chap. 5). From a computational point of view, the oversaturation assumption
should not influence the results significantly if the value of parameter y», that is, the
delay penalty due to capacity overloading, is large enough.
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Values of y, are typically much larger than one; that is, the function is more-
than-linear in flow/capacity ratios. This phenomenon is rather frequent in congested
systems. It should also be noted that, if the flow is close to capacity, resulting in-
stability challenges the within-day stationarity assumptions and the cost functions
adopted. In this sense, delay functions should be considered as “penalty” functions
preventing major oversaturation, rather than estimates of actual travel times.

(b) Extraurban Road Links Users traveling on an extraurban road behave differ-
ently according to the number of lanes available for each direction: single lane (two-
lane arterial) or two or more lanes (four-lane arterial, six-lane arterial, etc.).

In the former case, the capacity and travel conditions in each direction are not
influenced by the flow in the opposite direction. For this type of road, the same
formula (2.4.3) described for motorway links can be used, although with different
parameters. These can again be deduced from capacity manuals, such as the HCM,
or from other specific empirical studies.

In the case of roads with one lane in each direction, link performances depend
on the flow in both directions: because overtaking is not always possible, vehicles
may reduce the average speed. In practice, it is often assumed that link capacity
has a value common to both directions, and the travel time function is modified as

follows.
La La La a a* 2
tra(fa, far) = v0_+7/a<_ - _> (i) 24.4)

Vca V0a OQaar

where, apart from the symbols introduced previously, the link in the opposite direc-
tion is denoted by a* and overall capacity in both directions by Q4+

(c) Urban Road Links In an urban context, given the relatively short lengths of
road sections, travel speed is more dependent upon road physical and functional
characteristics than upon the flow traveling on them. The higher the dependence is
on factors such as section bendiness or roadside parking, the lower the impact of
flow.

As an example, we report the empirical relation for estimating travel speed cal-
ibrated on survey sample data from the Napoli (Italy) urban area, integrated with
microscopic simulation data (see the bibliographical note):

vg =29.943.6Lu, —0.6P, — 1397, — 10.8D, — 6.4S, +4.7Pv,

2
_1.0E—04—Ja/Lua) (2.4.5)

1+ T,+ Dy + S,

where

Lu, is the useful width in meters of link a

P, is the nonnegative slope in % of link a
T, is the tortuosity of link a, in values in the interval [0, 1]
D, is an index of disturbance to traffic from external factors (entry from

sideroads, irregular parking, pedestrian crossings, etc.) in values in the in-
terval [0, 1]
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Fig. 2.21 Hyperbolic travel time cost function

Sa is the percentage of length of a occupied by parking
Py, is a dummy variable of 1 if the pavement of link a is asphalt, O otherwise
fa is the equivalent flow on link a in equiv. vehicles/hour

The travel time on link @ may thus be calculated by multiplying the time obtainable
from (2.4.5) by a corrective factor c(L,), which makes allowance for the effect of
transient motions at the ends of the link (in the case of stopping at intersections):

L L 1
trg = — ~c(Ly) = -

: (2.4.6)
Vg v, 1 —exp(—0.47—-048E-02-L,)

where L, is the road section length in km.

A further example of link travel time function is the hyperbolic expression given
by Davidson, which also holds for interrupted flow (delays at intersections are thus
included):

{t”a = (La/voa)(X +yfa/(Qa — fa)) for fu <80, (2.4.7)

tr, = tangent approximation for f, >80,

with 6 < 1 and Q, = link capacity. Also see Fig. 2.21.

In this last case the tangent approximation is necessary because tr, tends to co
for f, going to Q,. This condition is unrealistic because the oversaturated period
has a finite duration.

Waiting Links

(a) Toll-Barrier Links In the case of links representing queuing systems, it is as-
sumed that average waiting time is the only significant time performance variable. In
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simple cases (e.g., a link corresponds to all toll lanes), the average undersaturation
waiting time can be obtained by using a stochastic queuing model:

Ja 1
wh =T, T? ) 24.8
Wa(fa) S+(3+05) 2 1—fa/Qa ( )
where
T, is the average service time for each toll lane
osz is the variance of the service time at the pay-point

Q4= N,/T; is the link (toll-barrier) capacity equal to the product of the number
of lanes (N,) by the capacity of each lane (1/Tj)

Expression (2.4.8) is derived from the assumption of a queuing system M/G/1
(00, FIFO) with Poisson arrivals and general service time (see Sect. 2.2.2.3).

The values of T and osz depend on various factors such as the tolling structure
(fixed, variable) and the payment method (manual, automatic, etc.). Note that the av-
erage waiting time obtained through (2.4.8) is larger than the average service time T
even though the arriving flow is lower than the system’s capacity. This effect derives
from the presence of random fluctuations in the headways between user arrivals and
service times. Hence the delay expressed by (2.4.8) is known as “stochastic delay.”

Moreover, the average delay computed with (2.4.8) tends to infinity as the flow f,
tends to capacity (i.e., if f;/Q, tends to one). This would be the case if the arrivals
flow f, remained equal to capacity for an infinite time, which does not occur in
reality. In order to avoid unrealistic waiting times and for reasons of theoretical and
computational convenience, two different methods can be adopted. The first, and
less precise, method assumes that (2.4.8) holds for flow values up to a fraction «
of the capacity, for example, f, < 0.950,. For higher values, the curve is extended
following its linear approximation, that is, in a straight line passing through the
point of coordinates « Q, tw(x Q) with angular coefficient equal to the derivative
of (2.4.8) computed at this point:

o (fa) =twa(@Qq) + K(fa —aQy) (2.4.9)
with
K:ﬁ+ﬁ_ 1
2 (1 —a)?
Figure 2.22 shows the relationships (2.4.8) and (2.4.9) for some values of the
parameters.

A more rigorous method is based on calculating oversaturation delay using a
deterministic queuing model with an arrival rate equal to f,, deterministic service
times equal to Ty and an oversaturation period equal to the reference period duration
T (see Sect. 2.2.2.2). The deterministic average (oversaturation) delay twg is then
equal to:

fa

nﬂ=n+(—~4)z (2.4.10)
¢ o 2

which, for a given capacity, is a linear function of the arrivals flow f,,.
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Fig. 2.22 Waiting time functions (2.4.8) and (2.4.9) at toll-barrier links

Note that in this case the assumption of intraperiod stationarity is challenged
because even if the arrivals flow rate f, and capacity 1/7; are constant over the
whole reference period T, the waiting time is different for users arriving in different
instants of the reference period. In static models it is assumed that users perceive the
average waiting time. Intraperiod dynamic models, discussed in Chap. 7, remove
this assumption.

The average delay tw, can be calculated by combining the stochastic undersatu-
ration average delay tw! expressed by (2.4.8) with the deterministic average over-
saturation delay twg, expressed by (2.4.10). The combined delay function is such
that the deterministic delay function is its oblique asymptote (see Fig. 2.23). The
following equation results.

Jfa [ T Ja
tWa(fa) - Ts + (7;24‘02)7 + Z{E —1
fa )2 4(fa/Qa)T/2}
— -1 —_ 2.4.11
- [(Q - Q.T ( .

(b) Signal-Controlled Intersection Links Queuing and delay phenomena at sig-
nalized intersections can be obtained from the queuing theory results reported in
Sect. 2.2.2. In fact, signalized intersections are a particular case of servers for which
capacity is periodically equal to zero (when the signal is red). During such times the
system is necessarily oversaturated.

The simplest case is that of a signal-controlled intersection not interacting with
adjacent ones (isolated intersection), without lanes reserved for right or left turns.
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Fig. 2.24 Discharge flow from signal-controlled intersection in relation to cycle phases

Below we first introduce the assumptions and variables for each access as well as
the most widely used calculation method. We then present the various models for

calculating delays at intersections.
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It is common to divide the cycle length into two time intervals (Fig. 2.24 illus-
trates the quantities associated with a traffic-light cycle). The effective green time
equals the green plus yellow time minus the lost time, during which departures oc-
cur at a constant service rate, given by the inverse of saturation flow. The effective
red time is the difference between cycle length and the effective green time, during
which no departures occur.

Below, to simplify the notation, we omit the index of link a. Moreover, to facil-
itate application of the results in Sect. 2.2.2, the symbol u instead of f is used for
the arrivals flow. Let:

T. be the cycle length for the whole intersection

G be the effective green time for an approach

R =T, — G be the effective red time for the approach

u= G/ T, be the effective green/cycle ratio for the approach

The number of vehicles arriving at the approach during time interval 7. is given
by the following equation.

mN(t, T+ Te)=u-T,

The maximum number of users that may leave the approach, during time interval
T, is given by:

S-G=p-S-T,

where S is the saturation flow of the intersection approach, that is, the maximum
number of equivalent vehicles which in the time unit could cross the intersection if
the traffic lights were always green (i« = 1). Alternatively, the saturation flow may
be defined as the maximum discharge rate that may be sustained by a queue during
the green—amber time.

Hence the actual capacity of the approach is given by:

5S-G
T,

Q= m-S

Thus, the approach can be defined undersaturated if:
u-To<pu-S-T,
that is:
u<p-S (2.4.12)
On the other hand the approach is defined oversaturated if:
u>p-S (2.4.13)

The saturation flow rate of an intersection can in principle be obtained through
specific traffic surveys; in practice, however, empirical models based on average re-
sults are often used. The Highway Capacity Manual (HCM) describes one of the
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Fig. 2.25 Typical lane groups for the HCM method for calculating saturation flow

most popular methods. To apply this method, it is necessary to determine appro-
priate lane groups. A lane group is defined as one or more lanes of an intersection
approach serving one or more traffic movements with which a single value of sat-
uration flow, capacity, and delay can be associated. Both the geometry of the inter-
section and the distribution of traffic movements are taken into account to segment
the intersection into lane groups. In general, the smallest number of lane groups that
adequately describes the operation of the intersection is used. Figure 2.25 shows
some common lane group schemes suggested by the HCM. The saturation flow rate
of an intersection is computed from an “ideal” saturation flow rate, usually 1900
equivalent passenger cars per hour of green time per lane (pcphgpl), adjusted for a
variety of prevailing conditions that are not ideal. The method can be summarized
by the following expression,

S=8y-N-Fy-Fav-Fg-Fy-Fpp-Fy- Frr- FL1
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where

S is the saturation flow rate for the specific lane group, expressed as a total
for all lanes in the lane group under prevailing conditions, in vphg

So is the ideal saturation flow rate per lane, usually 1900 pcphgpl

N is the number of lanes in the lane group

F, is the adjustment factor for lane width (12 ft or 3.66 m lanes are standard)

Fpv  is the adjustment factor for heavy vehicles in the traffic flow

F is the adjustment factor for approach grade

Fy is the adjustment factor for the existence of a parking lane adjacent to the

lane group and the parking activity in that lane

Fop is the adjustment factor for the blocking effect of local buses that stop
within the intersection area

F, is the adjustment factor for the area type

FrT is the adjustment factor for right turns in the lane group

Fir is the adjustment factor for left turns in the lane group

The first six adjustment factors not connected with the type of turning maneuvers
are reported in Fig. 2.26.

Once the approach capacity Q; = pS is known, we may calculate the queue
length and mean waiting time tw,, using models derived from different approaches.

Application of Queuing Models From (2.4.12) and (2.4.13) it is clear that the
results discussed in Sect. 2.2.2 hold for a queuing system representing a signalized
intersection approach. In this context, the server’s capacity Q coincides with the
actual capacity of access: Q = u - S. The latter is the weighted mean between the
zero value of the “red” period and that equal to S for the “green” period, with . =
G/T..

In the case in which access occurs in undersaturation conditions, the queue length
may be calculated using (2.2.18) in which capacity assumes alternatively a value
of zero, in intervals of length R (intervals of effective red), and a value of S, in
intervals of length G (intervals of effective green) (see Fig. 2.27). As the system
is undersaturated, at the end of each interval of effective green the queue is zero:
n,(I - T,) = 0 Vi, where i stands for the progressive number of cycles. Thus, for
each interval of effective red we have n(tp) =0 with o = I - T, and, setting Q =0
in (2.2.18), the queue length is equal to:

nRy=a(—-1-T.) 1-T.<t<I-T.+R (2.4.14)
The queue length reaches a maximum value at the end of the red-time, equal to:
R T.+ Ry=aR=a(l — T,

Thus, at the beginning of the interval of effective green we have n(tg) = u(1 — u) T,
with T =1 - T, 4+ R, and the queue length in a certain instant t of the interval is
given by (2.2.18) with 0 = S:

ng (v) =max|0,i(l — )T, — (S —i)(z — I - T. — R)}
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ADJUSTMENT FACTOR FOR AVERAGE LANE WIDTH F,,

Average lane width, W (FT) 8 9 10 11 12 13 14 15 16
Fy 0.867 0.900 0.933 0.967 1.000 1.033 0.067 1.100 1.133

ADJUSTMENT FACTOR FOR HEAVY VEHICLES Fnvy

Percentage of heavy vehicles (%) 0 2 4 6 8 10 15 20
Faw 1.000 0.980 0.962 0.943 0.926 0.909 0.870 0.833
Percentage of heavy vehicles (%) 25 30 35 40 45 50 75 100
Faw 0.800 0.769 0.741 0.714 0.690 0.667 0.571 0.500
ADJUSTMENT FACTOR FOR APPROACH GRADE F,

Grade (%) —6 —4 -2 0 +2 +4 +6 +8 > 10
Fy 1.030  1.020 1.010 1.000 0.990 0980 0970 0960 0.950
ADJUSTMENT FACTOR FOR PARKING F),

Fy No. of parking maneuvers per hour

No. of lanes in lane group No parking 0 10 20 30 > 40
1 1.000 0.900 0.850 0.800 0.750 0.700
2 1.000 0.950 0.925 0.900 0.875 0.850
3 or more 1.000 0.967 0.950 0.933 0.917 0.900

ADJUSTMENT FACTOR FOR BUS BLOCKAGE Fyy,

Fop No. of buses stopping per hour

No. of lanes in lane group 0 10 20 30 > 40
1 1.000 0.960 0.920 0.880 0.840
2 1.000 0.980 0.960 0.940 0.920
3 or more 1.000 0.987 0.973 0.960 0.947

ADJUSTMENT FACTOR FOR AREA TYPE F,

Type of area Fy
CBD (Center Business District) 0.900
All other areas 1.000

Fig. 2.26 Adjustment factors in the HCM method for saturation flow

I T.+R<t<I-T-+R+G (2.4.15)
The time period (within the green) in which the queue is exhausted is (see (2.4.15)):

Agp = =T
(S —u)

The queue in undersaturation conditions therefore shows a periodic time trend,
with zero values at the end of effective green time (i.e., at the beginning of the red
interval) and maximum values at the end of the effective red interval (see Fig. 2.27).

However, if the system is in oversaturation conditions (# > w - S), the total queue
length is obtained by summing the queue length in undersaturation to the queue
length in oversaturation (see Fig. 2.28). The queue length in undersaturation, n, (t),
is obtained once again by (2.4.14) and (2.4.15), for an arrivals rate equal to capacity
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Fig. 2.27 Deterministic queuing model for signalized intersections, undersaturated conditions
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Fig. 2.28 Deterministic queuing model for signalized intersections, oversaturated conditions

u=pn-9):
nRoy=u-Sc—-1-T) 1-T,<t<I-T.+R (2.4.16)
nS(@=p-SU-wWl—SU-p(T—1-T.—R)
|- T.+R<t<I-T.+R+G (2.4.17)

The oversaturated queue length can be computed with the queue obtained from
(2.2.18) with Q = - S, 7o = 0 and n(79) = 0 (see Fig. 2.28):

no(t) = (ii — - S)t (2.4.18)

The expressions of queue length allow us to determine the deterministic delay at
intersections, as described below.

For undersaturated conditions u < w.S, the average individual delay rwys can
easily be obtained from the evolution over time of the queue length, as described



76 2 Transportation Supply Models

300.0 N

“ =05 T = 1800 sec
T. =90 sec
250.011S =2200 veh/h

200.0

0 sec
2150.01

100.0

50.01 .

0.0 . . . . . . . .
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

u

Fig. 2.29 Deterministic delay function at a signalized intersection

by (2.4.14) and (2.4.15):

_ Tl —pP?

= m (2.4.19)

wus
In oversaturated conditions, u > u.S, for the deterministic case, the queue length,
and respective delay, would tend theoretically to infinity. In practice, however, over-
saturation lasts only for a finite period of time 7', and the average delay twog can
be calculated from the evolution over time of queue length as described by (2.4.16)
through (2.4.18):
twos = M + g[(ﬁ/,,bS) —1] (2.4.20)
Note that the first term is the value of (2.4.19) for u = u - S. The delay for the
arrival flows can be computed through (2.4.19) for u < w - S, and through (2.4.20)
for u > - S, as depicted in Fig. 2.29. Note that the diagram depicted in Fig. 2.29
shows an increase in average delay also for flows below the capacity. This is due to
the increase in the undersaturated delay expressed by (2.4.19).
Stochastic delay models are based on the results of queuing theory. More pre-
cisely, a signalized intersection is considered to be a M/G/I (oo, FIFO) system.
Therefore, the average delay is (see Sect. 2.2.2.3):

o () = (/uS)*

0= (2.4.21)
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Fig. 2.30 The Webster delay model

Overall Delay Models The total (mean individual) delay equals the sum of the de-
terministic and the stochastic terms (introduced in the previous section), and some-
times, of terms calibrated through experimental observations.

One of the best known expressions is Webster’s three-term formula, proposed
for an isolated intersection under the assumption of random (Poisson) arrivals and
undersaturation conditions ( f,/Q, < 1) (see Fig. 2.30):

) 2
Te(1— ) + (fa/Qa)

M) = S0 Turs0 T 2 a0~ fuf 0
=0.65(Qa/ )" (ful Q)" (24.222)
where
T, is the cycle length
7 is the effective green to cycle length ratio for the lane group represented by

link a
Q4 is the capacity of the lane group represented by link a

The first term expresses the deterministic delay (see (2.4.19)), the second is the
stochastic delay due to the randomness of the arrivals (see (2.4.21)), and the third
term is an adjustment term obtained by simulation results. This term amounts to
about 10% of the sum of the other two, hence its established use in practical appli-
cations of Webster’s two-term formula:

T.(1 — w)? N (fa/ Qa)? }
2(1 - fa/Sa) 2fa(1 - fa/Qa)

wa(fa) = 0.9[ (2.4.22b)
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Fig. 2.31 Waiting time functions at a signalized intersection

The delay given by (2.4.22) tends to infinity for an arrivals flow f;, which tends
to capacity Q = u- S (see Fig. 2.30). Thus Webster’s formula cannot be used to
simulate delays at oversaturated signalized intersections. To overcome this limit, it
is possible to apply the two heuristic methods described for (2.4.8).

The first method applies (2.4.22) for values of f, up to a percentage « of the
capacity whereas for higher values a linear approximation of the function is used,
thereby ensuring the continuity of the function and its first derivative:

d
twa(fa) =twa (@ Q) + —twa(f) (fa—aQu) fa=aQq (2.4.23)
df fa=aQq

The second method computes the oversaturation delay combined with the stochastic
delay, deforming the stochastic delay function so that it has an oblique asymptote
defined by the deterministic delay. Based on these considerations, Akcelik’s formula
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was proposed:

0.5T:(1 — uga)?

w, =< ¥ X,<050
a(fa) l—uaXa a =

0.5T.(1 — pa)?

tWa(fa):M-‘rm)O'T- {Xa—l
1 —paXa
8(X, —0.5)7"?
+[(Xa -2+ Q} } 0.50<X,<1 (2.4.24)
maSaT

twa(f) = 0.5T.(1 — j1a) +900- T - {x 1

8(X, —0.5)7"/?
X, — 2y 22fe X, > 1
+|:( a— D+ ST :| >

where X, = f,/Q, is the flow/capacity ratio, the times fw, and T, are expressed
in seconds, S, in pcph, and T is the duration of the oversaturation period in hours.
Equation (2.4.24) is compared with the Webster formula in Fig. 2.31 for a value of
T=05h.

Note that application of the previous formulae for calculating saturation flows,
capacities, and average waiting times (delays) in the case of multiple lane groups
requires an “exploded” representation of the intersection with several links corre-
sponding to the relevant lane groups and their maneuvers (see Fig. 2.18). For ex-
ample, in the case of an exclusive right-turn lane a single link can represent such
a movement and the associated delay. Sometimes, to simplify the representation,
fewer links than lane groups are used; in this case the total capacity of all lane
groups is associated with the single link and the resulting delay is associated with
the whole flow.

From a mathematical point of view the delay functions discussed so far are sep-
arable only if the traffic-signal regulation (assumed known) is such as to exclude
interference between maneuvers represented by different links. For example, this is
the case for the three-phase regulation scheme of a T-shaped intersection shown in
Fig. 2.32. However, if the phases allow conflict points, for example, left turns from
the opposite direction with through flows during the same phase, nonseparable cost
functions may be necessary, which take account of the reciprocal reduction in sat-
uration flow for maneuvers in conflict, such as for the two-phase scheme for the X
intersection in Fig. 2.33.

In general, if a single node represents the entire intersection, the effects of in-
dividual maneuvers and lane groups are impossible to distinguish and separable
functions are adopted, with a single value of saturation flow, reduced to account for
the interfering turns.

In the case of control systems at signalized intersections, the control parameters
(cycle length T, ratio u of green time to cycle length) depend on flows arriving at
the access roads which converge at the intersection. In this case the delay functions
are different and definitely nonseparable.
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Fig. 2.32 Examples of traffic light phases for 3- and 4-arm intersections

Finally, in the case of networks of interacting intersections (i.e., so close as to
affect one another), further regulation parameters must be introduced; hence, calcu-
lation of the delay cannot be performed with the formulae presented, but requires
more detailed flow simulation models along the road sections joining a pair of adja-
cent intersections.

(c) Priority Intersections To complete the survey of the delay functions, priority
intersections (i.e., intersections regulated by give-way rules rather than traffic lights)
need to be considered. Empirical functions are often used to express average delays;
these functions are nonseparable in that right-of-way rules cause delays due to con-
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Fig. 2.33 Flow conflicts for computing delays at a priority intersection

flicts between flows. As an example, the delay corresponding to the maneuvers at a
4-arm intersection can be calculated by means of the following HCM function.

twa(f) = exp(—0.2664 4 0.3967 In( feont) + 3.959A(In( feont) — 6.92)) (2.4.25)

where

tw, (f) is the waiting time expressed in seconds

Sfeont  is the total conflicting flow, which varies according to the maneuver as
shown in Fig. 2.33
A =1 if feonr > 1062 vehicles/h, O otherwise

(d) Parking Links Monetary cost (fares) and search time are the most important
performance attributes connected to links representing parking in a given area. In
general, these attributes differ for links representing different parking types (facili-
ties). The more sophisticated models of search time take into account the congestion
effect through the ratio between the average occupancy of the parking facilities of
type p, represented by link a, and the parking capacity Q;.

The average search time can be calculated through a model assuming that avail-
able parking spaces of type p are uniformly distributed along a circuit, possibly
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mixed with parking spaces of different types (e.g., free and priced parking). If oc-
cupancy of a given parking type at the beginning and end of the reference period is
inferior to capacity, the following expression can be obtained.

t5a(fa) = =2 ! Qo (@pF D) ~1n< R )
vy occa(fa) — occy 0y 1+ Q) —occr(fa)
Qo — Qp) (2.4.26)
Qp
where

tsq(fq) 1is the search time in minutes

fa is the flow on parking link a
L, is the average length of a parking space
Vg is the average search speed for a free parking space

occy  is the parking occupancy at the beginning of the reference period

occy  is the parking occupancy at the end of the reference period, depending on
flow assigned to the parking link and the turnover rate

Op is the parking capacity of type p corresponding to link a

Otot is the total capacity of all parking types mixed with type p in the zone

If one or both occ are above capacity, similar but formally more complicated
formulas can be obtained. These expressions are not reported here.

2.4.2 Supply Models for Scheduled Service Transportation Systems

Discontinuous and nonsimultaneous transportation services can be accessed only at
given points and are available only at given instants. Typical examples are scheduled
services (buses, trains, airplanes, etc.), which can be used only between terminals
(bus stops, stations, airports, etc.) and are available only at certain instants (departure
times). Scheduled services can be represented by different supply models according
to their characteristics and to the consequent assumptions on users’ behavior (see
Sect. 4.3.3.2). The approach followed in this chapter is based upon the modeling
of service lines, that is, a set of scheduled runs with equal characteristics. This ap-
proach is consistent with the assumption of intraperiod stationarity and with path
choice behavior, typical of high frequency and irregular urban transit systems.

If service frequency is low and/or it is assumed that the users choose specific
runs, it is necessary to represent the service with a different graph known as a run
graph or diachronic graph. This is usually the case with extraurban transportation
services (airplanes, trains, etc.), which have low service frequencies and are largely
punctual. In this case, however, the assumption of within-day stationarity does not
hold. Indeed, the supply characteristics are often nonuniform within the reference
period (arrival and departure times of single runs may be nonuniformly spaced).
Furthermore, in order to simulate the traveler’s behavior desired departure or ar-
rival times should be introduced. For these reasons run-based supply models are
described in Chap. 7 dealing with intraperiod dynamic systems.
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2.4.2.1 Line-based Graph Models

If the scheduled services have high frequencies (e.g., one run every 5—15 min) and
low regularity, it is usually assumed that the users do not choose an individual run,
but rather a service line or a group of lines. A service line is a set of runs sharing the
same terminals, the same intermediate stops, and the same performance character-
istics, as in the case of an urban bus or underground lines. In this case a line graph
is typically used. In this graph, nodes correspond to stops, more precisely to the
relevant events occurring at the stops. Access nodes represent the arrival of the user
at the stop, the stop node, or diversion node, represents the boarding of a vehicle,
and the line nodes represent the arrival and departure of vehicles of a given line at
a given stop. The links represent activities or phases of a trip: access trips between
access nodes (access links), waiting at the stop (waiting links), boarding and alight-
ing from the vehicles of a line (boarding and alighting links), the trip from one stop
to another of the same line (line links), and vehicle dwelling at the stop (dwelling
links).

Essentially, each stop is represented by a subgraph such as that shown in
Fig. 2.34. The graph representing an entire public transportation system can be built
by combining the line graph and the access graph through the stop subgraphs. Ac-
cess links may represent different access modes depending on the system modeled.
In urban areas, they may represent pedestrian connections or, sometimes, undiffer-
entiated “access modes” including local transit lines to the main network of bus
and rail services. The line graph is completed by adding nodes and links allowing
entry/exit from the centroids to the stops; in the urban context this usually occurs
through pedestrian nodes and links or through road links connected to park-and-ride
facilities (nodes).

2.4.2.2 Link Performance and Cost Functions

The typical performance attributes used in line-based supply models are travel time
components related to different trip phases and monetary costs. Travel times can be
decomposed into on-board travel times 7},, dwelling times at stops 7, waiting times
Ty, boarding times Ty, alighting times 731, and access/egress times 7, which may
correspond to walking or driving time for urban transit networks. In general, a single
time component is associated to each link and the coefficients B8, homogenizing
travel times into costs (disutilities) are different. In fact, several empirical studies
have shown that waiting and walking times have coefficients two to three times
larger than that of on-board time for urban transit systems.

Performance functions used in many applications do not take congestion into
account, at least with respect to flows of transit users, as it is assumed that services
are designed with some extra capacity with respect to maximum user flows.

On-board travel time of a transit link can be obtained through a very simple
expression:

La

= 2.4.27
Vg (by, ya) ( )

a
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Fig. 2.34 Line-based graph for urban transit systems

where vector b, includes the relevant characteristics of the transit system repre-
sented by link a, and vector y, comprises a set of parameters. The average speed is
strongly dependent on the type of right-of-way. For exclusive right-of-way systems,
such as trains, the average speed v, can be expressed as a function of the charac-
teristics of the vehicles (weight, power, etc.), of the infrastructure (slope, radius of
bends, etc.), of the circulation regulations on the physical section and the type of
service represented. Relationships of this type can be deduced from mechanics for
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which specialized texts should be referred to. For partial right-of-way systems, such
as surface buses, the average speed depends on the level of protection (e.g., reserved
bus lane) and the vehicle flows on the links corresponding to interfering movements.
Performance functions of this type typically derive from descriptive models.

The waiting time is the average time that users spend between their arrival at the
stop/station and the arrival of the line (or lines) they board. Waiting time is usually
expressed as a function of the line frequency ¢y,, that is, the average number of runs
of line /n in the reference period. When only one line is available the average waiting
time Ty, will depend on the regularity of vehicle arrivals and the pattern of users’
arrivals at the stop. It can be shown that, under the assumption that users arrive at
the stop according to a Poisson process with a constant arrival rate® (consistent with
the within-day stationarity assumption), the average waiting time is:

0
T = — (2.4.28)

Pin

where 6 is equal to 0.5 if the line is perfectly regular (i.e., the headways between
successive vehicle arrivals are constant), and it is equal to 1 if the line is “completely
irregular” (i.e., the headways between successive arrivals are distributed according
to a negative exponential random variable); see Fig. 2.35.

In the case of several “artractive lines,’ that is, when the user waits at a diver-
sion node m for the first vehicle among those belonging to a set of lines Ln,,, the
average waiting time can again be calculated with expression (2.4.28) by using the
cumulated frequency @, of the set of attractive lines:

0 .
Twp == with & = Z Din (2.4.29)

n IneLn,,

Expression (2.4.29) holds in principle when vehicle arrivals of all lines are com-
pletely irregular. In this case cumulated headways can still be modeled as a negative
exponential random variable, with a parameter equal to the inverse of the sum of
line frequencies. In practice, however, expression (2.4.29) is often used also for in-
termediate values of 6.

These expressions of average waiting times are revisited in Sect. 4.3.3.2 on path
choice models for transit systems.

Access/egress times are also usually modeled through very simple performance
functions analogous to expression (2.4.27):

Ly,

Tay, = ———
" Vai(bin, Vin)

where v, represents the average speed of the access/egress mode. Also in the case of
pedestrian systems, it is possible to introduce congestion phenomena and correlate

5To be precise, it is assumed that users’ arrival is a Poisson process; that is, the intervals between
two successive arrivals are distributed according to a negative exponential variable.
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Fig. 2.35 Arrivals and waiting times at a bus stop

the generalized transportation cost with the pedestrian density on each section by
using empirical expressions described in the literature.

More detailed performance models introduce congestion effects with respect to
user flows both on travel times and on comfort performance attributes. An example
of the first type of function is that relating the dwelling time at a stop Td, to the user
flows boarding and alighting the vehicles of each line:

(2.4.30)

Sal@ + fo
Td, = +V2<M V3

Op
where

fai@y s the user flow on the alighting link
Sfor@  1s the user flow on the boarding link
Op is the door capacity of the vehicle
Y1, Y2, y3 are parameters of the function
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Another example is the function relating the average waiting time to the flow of
users staying on board and those waiting to board a single line. This function takes
into account the “refusal” probability, that is, the probability that some users may
not be able to get on the first arriving run of a given line because it is too crowded
and have to wait longer for a subsequent one. In the case of a single attractive line /
the waiting time function can be formally expressed as

0
T = (f b + w“) 2.431)
Din(.) an

where @, (.) is the actual available frequency of line /n, that is, the average number
of runs of the line for which there are available places. It depends on the ratio be-
tween the demand for places — sum of the user flow staying on board fj() and the
user flow willing to board, fy,() — and the line capacity Qy,. This formula is valid
only for fp() + fuw() > Qin-

Note that both performance functions (2.4.30) and (2.4.31) are nonseparable, in
that they depend on flows on links other than the one to which they refer.

Discomfort functions relate the average riding discomfort on a given line section
represented by link a, dc,, to the ratio between the flow on the link (average number
of users on board) and the available line capacity Q,:

f Y5
dea =3 fa+ y4<Q—“) (2.4.32)

where, as usual, y3, y4, and ys are positive parameters, usually with ys larger than
one expressing more-than-linear effect of crowding.

Reference Notes

The application of network theory to the modeling of transportation supply sys-
tems can be found in most texts dealing with mathematical models of transportation
systems, such as Potts and Oliver (1972), Newell (1980), Sheffi (1985), Cascetta
(1998), Ferrari (1996), and Ortuzar and Willumsen (2001). All of these, however,
deal primarily or exclusively with road networks. The presentation of a general
transportation supply model and its decomposition into submodels as described in
Fig. 2.14 is original.

Performance models and the traffic flow theory are dealt with in several books
and scientific papers. The former include Pignataro (1973), the ITE manual (1982),
May (1990), McShane and Roess (1990), the Highway Capacity Manual (2000), and
the relevant entries in the encyclopaedia edited by Papageorgiou (1991). Among the
latter, the pioneering work of Webster (1958), later expanded in Webster and Cobbe
(1966) and those of Catling (1977), Kimber et al. (1977), Kimber and Hollis (1978),
Robertson (1979), and Akcelik (1988) on waiting times at signalized intersections.
In-depth examinations of some aspects of traffic flow theory can be found in Da-
ganzo (1997).
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For a theoretical analysis of queuing theory, reference can be made to Newell
(1971) and Kleinrock (1975).

The work of Drake et al. (1967) reviews the main speed—flow—density relation-
ships, and gives an example of their calibration. The linear model was proposed
by Greenshields (1934). References to nonstationary traffic flow models are in part
reported in the bibliographical note to Chap. 7.

A review of the road network cost functions can be found in Branston (1976),
Hurdle (1984), and Lupi (1996). The study of Carteni and Punzo (2007) contains ex-
perimental speed—flow relationships for urban roadways, reported in the text (2.4.5)
and updates the work by Festa and Nuzzolo (1989). The cost function for parking
links (2.4.26) was proposed by Bifulco (1993).

Supply models for scheduled services have traditionally received less attention
in the scientific community. The line representations of scheduled systems are de-
scribed in Ferrari (1996) and in Nuzzolo and Russo (1997).

Several authors, such as Seddon and Day (1974), Jolliffe and Hutchinson (1975),
Montella and Cascetta (1978), and Cascetta and Montella (1979), have studied the
relationships between waiting times and service regularity in urban transit systems.
Congested performance models discussed in Sect. 2.4.2 have been proposed by Nuz-
zolo and Russo (1993), and other models for waiting time at congested bus stops are
quoted in Bouzaiene-Ayari et al. (1998). Mechanics of motion is treated in detail in
several classical books. For an updated bibliographical note see Cantarella (2001).
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