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Abstract. In multivariate interpolation problems, increase in both
the number of independent variables of the sought function and the
number of nodes appearing in the data set causes computational and
mathematical difficulties. It may be a better way to deal with less
variate partitioned data sets instead of an N-dimensional data set in a
multivariate interpolation problem. New algorithms such as high-
dimensional model representation (HDMR), generalized HDMR,
factorized HDMR, hybrid HDMR are developed or rearranged for
these types of problems. Up to now, the efficiency of the methods in
mathematical sense was discussed in several papers. In this work,
the efficiency of these methods in computational sense will be
discussed. This investigation will be done by using several
numerical implementations.
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2.1 Introduction

If the values of a multivariate function f(x,,...,x,) are given for only a

finite number of points in the space of its arguments and it is asked to de-
termine an analytical structure for the sought multivariate function, stan-
dard multivariate routines may become cumbersome as the dimensionality
grows. This urges us to use a divide-and-conquer algorithm which ap-
proximates the function for the mentioned multivariate interpolation prob-
lems. Hence, the given multivariate data are partitioned into low variate
data and then an analytical structure determined with the aid of these parti-
tioned data.

For this purpose, two new data partitioning methods were developed by
using the philosophy given in high-dimensional model representation
(HDMR) method which was first proposed by I. M. Sobol [1]. The equa-
tion given by Sobol for this method is as follows:

N N (2.1)
FOnxy)= o+ fi )+ D fi s (6 ,x,)

i =l iy, =1
1, <,

+ot fv (X xy)

This expansion is a finite sum and is composed of a constant term, uni-
variate terms, bivariate terms, and so on. These are the HDMR compo-
nents of a given multivariate function.

Then, several other new algorithms based on this method were proposed
in more comprehensive forms for different types of engineering problems
by H. Rabitz, M. Demiralp, and their groups [2—11].

A multivariate function can be given by its values at a finite number of
nodes of a hyperprismatic regular grid. These nodes can be represented by N
tuples which are the elements of a cartesian product of the given individual
sets of values for each independent variable. high-dimensional model repre-
sentation is used to approximately partition these given multivariate data
into low variate data [7].

On the other hand, data need not be given at all nodes of hyperprismatic
regular grid. Instead, it can be given at certain randomly chosen nodes.
Hence, certain level of incompleteness may be encountered in HDMR
method for such data sets. This time, generalized high-dimensional model
representation (GHDMR), which is based on the HDMR expansion, is
used as a data partitioning technique [8].

At this point, the nature of the given data, in other words the nature of
the sought function, and the construction features of the data set affect the
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behavior of the interpolation problem and the structure of the high-
dimensional model representation method. To this end, HDMR or gener-
alized HDMR (GHDMR) can be used to partition the multivariate data and
to determine an approximate analytical structure for the sought function.
These methods work well for the sought functions having additive nature
as a result of the additive structure of the HDMR expansion. For the
sought functions having dominantly or entirely multiplicative nature, fac-
torized HDMR (FHDMR) is used [9,10]. Hybrid HDMR (HHDMR)
method is used when the sought function has intermediate nature, that is,
it has neither a dominantly additive nor a dominantly multiplicative nature [11].

These above-mentioned methods were developed and published in sev-
eral journals. In this work, we will discuss CPU times spent for each algo-
rithm in different types of multivariate interpolation problems. There exists
a chapter related to the numerical testing implementations for this investi-
gation. The results are obtained by using certain program codes (scripts)
written in MuPAD 4.0, Multi Processing Algebra Data tool [12,13]. This
software is developed by the MuPAD Research Group at the University of
Paderborn in Germany. MuPAD is a general-purpose computer algebra
system for symbolic and numerical computations. Additionally, PERL
Scripting Language, Practical Extraction and Report Language, is used for
making the given multivariate data amenable for MuPAD program codes
[14]. MuPAD program codes run in a 20-digits precision environment.
These results are obtained on a PC of P-IV 2400 MHz CPU speed and 512
MB RAM.

2.2 Data partitioning via HDMR

HDMR is constructed as an expansion for a given multivariate function
such that its components are ordered starting from a constant component
(zeroth-order multivariance) and continuing in ascending multivariance,
that is, univariate, bivariate, trivariate components, and so on. The main
step of the algorithm is to determine the right-hand-side components of the
HDMR expansion given in Eq. (2.1). To obtain the structure of the
constant term, the following operator is defined:

b, b, (2.2)
I F(x),...,xy)= Idlel(xl)xmx deNWN(xN)F(xl,...,xN)

a, ay
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Similarly, the following operator is defined to build a way to determine
the structure of the univariate HDMR term of the given multivariate
function:

b, b, (2.3)
1, F(x),...,xy) = J-dlel(xl)me Idxm_le_l(xm_l)

4 -1

b, by
X Idxm+le+1(xm+1)X"'XIdeWN(xN)F(X1a~"axN)

m+1 ay

where 1<m<N. The function F(x,,...,x,) appearing in these two
relations is an arbitrary square integrable function. When the above-
mentioned operators are applied to both sides of the HDMR expansion
given in Eq. (2.1), the structures of the constant and univariate terms are
obtained [7]. Other operators can be defined in a similar philosophy to
determine the structures of the other HDMR terms, such as bivariate terms.

Additionally, to uniquely determine these components, the following
vanishing conditions are used in the evaluation of the integrals appearing
in the above-mentioned operators:

hooob (2.4)
jabc1 ---IdeW(xl,...,xN)ﬁ(x,.) =0

a ay

where 1<i< N . Since we need to perform a multivariate interpolation on
a finite number of discrete points we can extend the domain of HDMR
variables to the entire space without imposing any extra conditions. Hence,
we assume that the interval for each independent variable is (—oo, o). It is
assumed that the structure of the function f(x,,...,xy) is not given

analytically. Instead it is specified by values on a finite number of points
of the Euclidean space defined by the independent variables x,...,xy .

These points are defined through a cartesian product. For this definition,
first the datum of the variable x; is defined as the following set:

D=l b fenam] @5)

where 1< j<N. The cartesian product mentioned above can be
constructed from these sets as follows:



Computational complexity mvestigations for high-dimensional model 19

D =D xD,x---XD, (2.6)

The weight function appearing in the vanishing conditions is assumed to
be a product of univariate functions each of which depends on a different
independent variable. The structure which needs to be created through the
interpolation must include the values of the function f(x,,...,x,) on the

given points only. This structure can be obtained by formatting the weight
function for this purpose. In this sense the necessary action is to define the
weight function as a linear combination of several Dirac delta functions
[15]. Hence, the following univariate weight functions are selected:

", (2.7)
Wj(xj)EZOt,E-f)é'(xj—f;k’)), xje[aj,bj], ISj<N
k=1

Using this weight function the operators mentioned in this section can
be applied to both sides of the HDMR expansion by the help of the
vanishing conditions and the given multivariate data are partitioned into
low-variate data sets. In this work we deal with constant, univariate, and at
most bivariate terms.

After several integrations a constant value, univariate partitioned data
set, and bivariate partitioned data set are obtained. To this end, we have a

constant value, 7, ordered pairs for the univariate function f (x, ), and
(x,,,\x,. ) [7]. The

next step is to determine analytical structures for these partitioned data sets
and build the HDMR expansion of the sought function by using these
structures. This step will be given in the fourth section of this chapter. The
next section is about another data partitioning technique.

n, n, ordered pairs for the bivariate function f

m; " m, mm

2.3 Data partitioning via GHDMR

If a multivariate datum is given for the determination of a multivariate
function, the location of data points in hyperspace of the independent
variables gains a lot of importance. If they are located at the points of a set
which is constructed as a direct product of univariate sets, high-
dimensional model representation (HDMR) can be successfully used to
partition the data into less variate data. On the other hand HDMR becomes
unemployable when the data are random or not given at all points of a grid
which is constructed via direct product of univariate meshes due to the
incompleteness of the data. Hence, for these cases, a new high-dimensional
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model representation method is needed. generalized high-dimensional
model representation (GHDMR) is used for this purpose. In this method a
general multivariate weight function is used instead of a product-type
weight function. The algorithm uses the HDMR components of this
general weight function. The steps of the method include first the
determination of the HDMR components of the general multivariate
weight function by using a product-type auxiliary weight function.

N (2.8)
Q.. x) =] [Q,(x)

J=1

Then, these components are employed in the formulae to obtain the
GHDMR components of the given multivariate function. In this way, the
multivariate data are partitioned into low-variate data. Here, the constant
and the univariate terms of GHDMR expansion are obtained to get an
approximation. Similar operators as given in the first section are used for
this purpose. This time, the integrations will be evaluated by also using the
HDMR components of the general weight function under the auxiliary
weight function. The following orthogonality conditions are employed in
these evaluations:

b b, (2.9)
jdxl XX jdeQ(xl,...,xN)W(xl,...,xN)fi(xl.) =0

a ay

wherel <i< N . As a result constant and univariate GHDMR terms are
obtained. Relation for the univariate terms corresponds to an integral
equation system whose unknowns are the univariate GHDMR terms [8].

When we use this method to partition the multivariate random data, the
following general weight function is selected:

W (x,,...,xy) = Zm:ajd(xl —xff))x---xé(xN _x]v)) (2.10)
j=1

where «; parameters are used for making it possible to give different

importance to each individual datum.

Using this general weight function and the orthogonality conditions
given in Eq. (2.9) when applying the above-mentioned operators to the
HDMR expansion, a constant value and a number of linear equations
whose unknowns are the univariate component values at the given data
points of N-dimensional space are obtained. The final step of this
algorithm is to determine the unknowns of this equation set. This
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completes the construction of the univariate components at the data
points [8].

At this point, approximate analytical structure should be determined by
using these partitioned data. For this purpose, Lagrange interpolation
formula will be used. The next section is about this subject.

2.4 Interpolation

By partitioning the given multivariate data via HDMR or GHDMR a table
of pairs of data can be obtained instead of an analytical structure for the
function f, (x,). This table provides an opportunity to determine the

function f,,(x,) under an assumed structure, that is, to interpolate the

corresponding data. By this way, multivariate interpolation, at least for
these functions, can be approximately reduced to a set of univariate
interpolations. To determine the overall structure of the function, an
analytical structure should be defined or a calculation rule should be
imposed on the interpolation. If the function to be determined by HDMR
or GHDMR is sufficiently smooth, then the function can be represented
with a multinomial of all independent variables over the continuous region
produced by the cartesian product of the related intervals. For this purpose,
first a multinomial representation should be built for £, (x,,):

(2.11)
P, =D L (x,) [, (&S, &Y eD,, 1sm<
km

Here L, (x,)s are Lagrange coefficient polynomials [16] which are

independent of the structure of the function. The structures of these
polynomials are given:

(2.12)
L (x,)= H(—)((k) (12 , &eD,, 1<k, <n,, 1Sm<N
j¢k 5 5

As Lagrange polynomials are constructed, univariate functions given by
the relation Eq. (2.11) are uniquely determined within continuous
polynomial interpolation. These functions can be considered as univariate
components of HDMR or GHDMR for the multivariate function
f(x,,...,xy) . The expansion formed by the summation of these functions

and the constant term provides the following multinomial approximation
which is called “univariate approximation™:
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N 2.13
(X0 X)) = fy+ D P(x,,) @1

Same relations for the higher variate approximations can be defined in a
similar way.

2.5 Factorized HDMR

We have observed that the truncations of both HDMR and GHDMR work
well as long as the multivariate function under consideration has additive
nature. If it is completely additive then data partitioning is exact, otherwise
a certain level of truncation error is encountered. Additivity is one end of
the behavior of the multivariate function. The other hand is multiplicativity
where all HDMR components contribute to the function at similar orders.
Therefore, truncation approximation fails to describe the multivariate
function under consideration. In those cases we need to formulate a
different truncation approximation which somehow takes all components
of HDMR or GHDMR into consideration. The first step is to write this
new equality (FHDMR) for this method:

N N
S xy) = ”o{l_[(l‘”’i1 (x; ))] H(1+riliz (% ,x;, )) (2.14)

i =1 iy iy =1
i <i,

X"'X[(l""’”i,mN(xl,---,xN))]
The right-hand-side components of the above relation can be determined
by making comparisons between the right-hand-side of equation Eq. (2.1)
and the additive form of the right-hand-side in Eq. (2.14). To make

comparisons, idempotent operators will be used as auxiliary tools. These
operators satisfy the following relations:

Iﬁid)llgid) = I]gid)];id), [];id)]z = I;id) (2.15)

where j,k=1,...,N. Using these operators HDMR and FHDMR
expansions are replaced by the following generalized ones:
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2.16
S(xl,...,xN):fO]+ﬁ:fil (x, )Il%id)_i_”‘ ( )

i=1

R(x;,...,Xy) :r{ﬁ(ljwﬁ (x; )Ilfi"))]x...

i =1

These two entities represent the same multivariate function. Hence, their
right-hand-sides must match for all idempotent operators. This permits us
to determine the constant term, the univariate terms, and higher order
terms of the FHDMR expansion.

As a result, constant, univariate, and bivariate FHDMR terms are
obtained in terms of HDMR or GHDMR as follows:

nw=f 2.17)
r (xil )= %:il)
ot (e ux )= S () f ()

T, (65X, ) = (fo +f; (x; ))(fo + /i, (x;, ))

1

2.6 Hybrid HDMR

In most cases the given multivariate data and the sought multivariate
function have neither purely additive nor purely multiplicative nature.
They have a hybrid nature. So, a new method is used to obtain better
results and it is called hybrid high-dimensional model representation
(HHDMR). This new expansion includes both the HDMR (or GHDMR)
and the FHDMR expansions through a hybridity parameter, 7 :

N (2.18)
f(xl,...,xN):y£f0+Zfil (xi,)""”]

+(1- 7)(%{1%[ (147 (x, ))}x}

Using Eq. (2.18) an HHDMR approximant can be defined as follows by
using the HDMR and the FHDMR approximants:
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By (X Xy 7) = ysj(xl,...,xN)+(1—y)ﬂk(xl,...,xN), (2.19)
0<j, k<N

where  s;(x;,...,xy) stands for the jih HDMR approximant and

7. (x,...,xy) stands for the kth FHDMR approximant which is a

truncated product including at most k-variate factors.
The most important step here is to determine the hybridity parameter y .

For this purpose, a functional is defined as

FO) = fuw = Frnom (2.20)

where

org

and f,,w stand for the original function and the function

obtained from the HHDMR expansion respectively. We need to obtain the
7 value that minimizes the value of this norm. This minimization criterion

can be written as

oF _ (2.21)

Iy
Using this criterion, the best value for that parameter can be obtained

[11]. By this way the best representation for the sought multivariate
function can be determined via hybrid HDMR.

0

2.7 Error analysis

According to the above-mentioned methods, HDMR or GHDMR,
FHDMR, and HHDMR, several representations can be obtained
approximately by using the constant, univariate, and bivariate terms of the
mentioned expansions. For obtaining these several representations there
exist questions, that is, how to find the best expansion for the sought
multivariate function or whether the obtained representations are or are not
the acceptable solutions for the given engineering problems. For this
purpose, the following relative norm

_f;)rg - f;‘IEW
ﬁ)rg

(2.22)

N=
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will be evaluated. Here, f,_  stands for the multivariate function obtained

via a high-dimensional model representation expansion.

The minimum norm value obtained by using this relation through all the
evaluated norm values will show the best representation for the sought
multivariate function. This result is assumed to be the best representation
for the multivariate function.

2.8 Numerical implementations

In this section, the numerical implementations are classified into two main
parts. The first part includes the examples in which the HDMR method is
used as a data partitioning technique. In this part FHDMR and HHDMR
algorithms are used to partition data obtained through HDMR. In the
second part, the examples are constructed by using GHDMR method.
FHDMR and HHDMR algorithms are used to partition data which are
obtained through the GHDMR method.

The results are obtained by using MuPAD 4.0. The CPU time results for
each implementation are evaluated by using “time()” function which
returns the total CPU time in milliseconds that was spent by the current
MuPAD process. Only the relative error values and CPU times spent for
the evaluations are given in this work.

It is assumed that the following (N+1) — tuples are taken as data to
describe a multivariate function f(x,...,xy)

d, =, x00p,),  1<j<m (2.23)

J

where @, is the value of f(x,...,xy) , the sought function, at the point
described by the first N components of d; in the N-dimensional space we

are concerned. That is,
0, =fx,. . x0),  1<j<m (2.24)

To construct the information for the data set which is the values of the
sought multivariate function at the nodes of the grid, analytical structures
of known multivariate functions are used.
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2.9 HDMR-based implementations

The first example considered here is a multivariate function which is
completely additive, that is, the sum of univariate functions as follows:

10 2.25
f(xl,...,xlo):Zaixi, a;=2i-1 (229
i=1

This function has 10 independent variables and it is assumed that the
given data set has 16,384 nodes in it. The relative error value obtained for
the univariate HDMR approximant and the CPU time spent for this
approximation are

N, =2.84x107, 1 =4.48 mins (2.26)
respectively. Because the programming environment has 20 decimal digit
accuracy, this result can be assumed to be zero and it means that the
representation obtained is exact for the multivariate function dealt with.

In the second example, the selected multivariate function has five
independent variables where the function is of purely multiplicative nature

Ty, X0 X5, X4, X5 ) = X, X5 X3 X, X 2.27)

and there are 640 nodes in the given hyperprismatic regular grid. The
results of the relative error analysis and the CPU times spent for each
algorithm are obtained as follows:

N, =3.16x107", ¢ =1.56secs (2.28)
N, =8.66x107, ¢ =6.44secs
N, =837x107, 1 =647secs

where s, s,, and 7, correspond to the univariate HDMR, bivariate

HDMR, and univariate FHDMR approximants.
The analytical structure of the multivariate function is defined as
follows as the third example with six independent variables:

5
f(xl,xz,x3,x4,x5,x6)= (x1+x2 +x3 +x4 +x5 +x6) (2.29)

In this example the given data set is constructed by using 6400 nodes.
The relative error values and the CPU times are obtained as follows:
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N, =7.30x107, t, =9.32 secs (2.30)
N, =743x107, t, =22.79 secs

N, =192x107, 1, =9.34secs

N, =1.14x107, ¢, =22.93 secs

N, =5.13x107, ¢, =19.37 secs

N, =6.06x10", 1, =391.15secs

h

2.10 GHDMR-based implementations

In the following example we know the nodes of the mesh and the values of
the sought function at the nodes of the given mesh. Hence, the domains for
the independent variables are known. For the following numerical
implementation there are 4,976,640 nodes in the mesh. From this mesh
100 nodes are selected randomly. Using these nodes and the values of the
following selected multivariate function at these nodes a multivariate data
set is constructed:

- 231
f(xl,...,xlo)ZZi_xi ( )

i=1

The relative error value and the CPU time spent for this generalized
form HDMR method are obtained as follows:

N, =1.76x107, 1. =7.69 secs (2.32)

Sy

where s, corresponds to the univariate GHDMR approximant.
The last example is given to discuss the performance results of
GHDMR, FHDMR, and HHDMR methods for the following multivariate

interpolation problem. The analytical structure of the sought function is
selected as

3 (2.33)
f(xl9x27x37x4’x5):H(1+4xi)
i=1
where the problem has 100 nodes. It has both additive and multiplicative
features. Hence, it is expected that the HHDMR approximants will give
better results than GHDMR and FHDMR. To make this comparison the
following relative error values of all approximants obtained through
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GHDMR, FHDMR, and HHDMR are calculated, and needed CPU times
for these calculations are measured:

N, =1.84x107", t, =2.10 secs (2.34)
N, =1.03x107", t, =2.16secs
N, =752x107, 1, =825secs

2.11 Concluding remarks

In this work, the basic idea is to partition the given data to less variate data
and then to interpolate them individually to fit an analytical structure to the
multivariate function to be determined. The elements of data set are
assumed to be given at the nodes of a hyperprismatic grid. Certain nodes
may be missing to locate data or entire nodes are used to specify the values
of the multivariate function under consideration. If data are given at all
nodes of a hyperprismatic grid then classical HDMR can be used for
partitioning. On the other hand, GHDMR should be used instead of
HDMR when the data have no datum for certain nodes. The nature of the
sought multivariate function also affects the method in use. Since the
HDMR expansion has an additive structure, these two methods seem to be
effective for additive-type functions. As the sought function has not only
additive but also multiplicative nature, the obtained representation via
HDMR or GHDMR for the sought function gets worse. Hence, certain new
methods are needed to determine better representations for the functions
having multiplicative or intermediate natures. For this purpose, FHDMR
and HHDMR methods are used.

As a result, we have HDMR, GHDMR, FHDMR, and HHDMR
methods to deal with the functions whose nature is additive or
multiplicative or intermediate type.

When the results given in the previous section are examined carefully
depending on the nature of the sought multivariate function the results get
better while we use the method that best fits. However, when the number
of nodes or the number of HDMR terms taken into consideration increases,
more time periods are needed to obtain better results. This brings much
more CPU time need for the mentioned algorithms. This means that if you
want the best solution for your problem you have to wait much more for
the results. On the other hand, if a result obtained by using an approximant
having less variate terms is sufficient for the given problem, then you may
spend less CPU time for your work.
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