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Abstract. In multivariate interpolation problems, increase in both 
the number of independent variables of the sought function and the 
number of nodes appearing in the data set causes computational and 
mathematical difficulties. It may be a better way to deal with less 
variate partitioned data sets instead of an N-dimensional data set in a 
multivariate interpolation problem. New algorithms such as high-
dimensional model representation (HDMR), generalized HDMR, 
factorized HDMR, hybrid HDMR are developed or rearranged for 
these types of problems. Up to now, the efficiency of the methods in 
mathematical sense was discussed in several papers. In this work, 
the efficiency of these methods in computational sense will be 
discussed. This investigation will be done by using several 
numerical implementations. 
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2.1 Introduction 

If the values of a multivariate function ),,( 1 Nxxf K  are given for only a 
finite number of points in the space of its arguments and it is asked to de-
termine an analytical structure for the sought multivariate function, stan-
dard multivariate routines may become cumbersome as the dimensionality 
grows. This urges us to use a divide-and-conquer algorithm which ap-
proximates the function for the mentioned multivariate interpolation prob-
lems. Hence, the given multivariate data are partitioned into low variate 
data and then an analytical structure determined with the aid of these parti-
tioned data.  

For this purpose, two new data partitioning methods were developed by 
using the philosophy given in high-dimensional model representation 
(HDMR) method which was first proposed by I. M. Sobol [1]. The equa-
tion given by Sobol for this method is as follows: 

),,(

),()(),,(

11

1,
,

1
01

21

21

2121

1

11

NN

N

ii
ii

iiii

N

i
iiN

xxf

xxfxffxxf

KL

K

L++

++= ∑∑
<

==  

(2.1) 

This expansion is a finite sum and is composed of a constant term, uni-
variate terms, bivariate terms, and so on. These are the HDMR compo-
nents of a given multivariate function.  

Then, several other new algorithms based on this method were proposed 
in more comprehensive forms for different types of engineering problems 
by H. Rabitz, M. Demiralp, and their groups [2–11]. 

A multivariate function can be given by its values at a finite number of 
nodes of a hyperprismatic regular grid. These nodes can be represented by N 
tuples which are the elements of a cartesian product of the given individual 
sets of values for each independent variable. high-dimensional model repre-
sentation is used to approximately partition these given multivariate data 
into low variate data [7].  

On the other hand, data need not be given at all nodes of hyperprismatic 
regular grid. Instead, it can be given at certain randomly chosen nodes. 
Hence, certain level of incompleteness may be encountered in HDMR 
method for such data sets. This time, generalized high-dimensional model 
representation (GHDMR), which is based on the HDMR expansion, is 
used as a data partitioning technique [8].  

At this point, the nature of the given data, in other words the nature of 
the sought function, and the construction features of the data set affect the 
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behavior of the interpolation problem and the structure of the high-
dimensional model representation method. To this end, HDMR or gener-
alized HDMR (GHDMR) can be used to partition the multivariate data and 
to determine an approximate analytical structure for the sought function. 
These methods work well for the sought functions having additive nature 
as a result of the additive structure of the HDMR expansion. For the 
sought functions having dominantly or entirely multiplicative nature, fac-
torized HDMR (FHDMR) is used [9,10]. Hybrid HDMR (HHDMR) 
method is used when the sought function has intermediate nature, that is, 
it has neither a dominantly additive nor a dominantly multiplicative nature [11].  

These above-mentioned methods were developed and published in sev-
eral journals. In this work, we will discuss CPU times spent for each algo-
rithm in different types of multivariate interpolation problems. There exists 
a chapter related to the numerical testing implementations for this investi-
gation. The results are obtained by using certain program codes (scripts) 
written in MuPAD 4.0, Multi Processing Algebra Data tool [12,13]. This 
software is developed by the MuPAD Research Group at the University of 
Paderborn in Germany. MuPAD is a general-purpose computer algebra 
system for symbolic and numerical computations. Additionally, PERL 
Scripting Language, Practical Extraction and Report Language, is used for 
making the given multivariate data amenable for MuPAD program codes 
[14]. MuPAD program codes run in a 20-digits precision environment. 
These results are obtained on a PC of P-IV 2400 MHz CPU speed and 512 
MB RAM. 

2.2 Data partitioning via HDMR 

HDMR is constructed as an expansion for a given multivariate function 
such that its components are ordered starting from a constant component 
(zeroth-order multivariance) and continuing in ascending multivariance, 
that is, univariate, bivariate, trivariate components, and so on. The main 
step of the algorithm is to determine the right-hand-side components of the 
HDMR expansion given in Eq. (2.1). To obtain the structure of the 
constant term, the following operator is defined: 
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Similarly, the following operator is defined to build a way to determine 
the structure of the univariate HDMR term of the given multivariate 
function: 
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(2.3) 

where Nm ≤≤1 . The function ),,( 1 NxxF K  appearing in these two 
relations is an arbitrary square integrable function. When the above-
mentioned operators are applied to both sides of the HDMR expansion 
given in Eq. (2.1), the structures of the constant and univariate terms are 
obtained [7]. Other operators can be defined in a similar philosophy to 
determine the structures of the other HDMR terms, such as bivariate terms. 

Additionally, to uniquely determine these components, the following 
vanishing conditions are used in the evaluation of the integrals appearing 
in the above-mentioned operators: 
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where Ni ≤≤1 . Since we need to perform a multivariate interpolation on 
a finite number of discrete points we can extend the domain of HDMR 
variables to the entire space without imposing any extra conditions. Hence, 
we assume that the interval for each independent variable is ( )∞∞− , . It is 
assumed that the structure of the function ),,( 1 Nxxf K  is not given 
analytically. Instead it is specified by values on a finite number of points 
of the Euclidean space defined by the independent variables Nxx ,,1 K . 
These points are defined through a cartesian product. For this definition, 
first the datum of the variable jx  is defined as the following set: 
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where Nj ≤≤1 . The cartesian product mentioned above can be 
constructed from these sets as follows:  
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NDDDD ×××≡ L21  (2.6) 

The weight function appearing in the vanishing conditions is assumed to 
be a product of univariate functions each of which depends on a different 
independent variable. The structure which needs to be created through the 
interpolation must include the values of the function ),,( 1 Nxxf K  on the 
given points only. This structure can be obtained by formatting the weight 
function for this purpose. In this sense the necessary action is to define the 
weight function as a linear combination of several Dirac delta functions 
[15]. Hence, the following univariate weight functions are selected: 
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Using this weight function the operators mentioned in this section can 
be applied to both sides of the HDMR expansion by the help of the 
vanishing conditions and the given multivariate data are partitioned into 
low-variate data sets. In this work we deal with constant, univariate, and at 
most bivariate terms.  

After several integrations a constant value, univariate partitioned data 
set, and bivariate partitioned data set are obtained. To this end, we have a 
constant value, mn  ordered pairs for the univariate function ( ),m mf x  and 

21 mm nn  ordered pairs for the bivariate function 
1 2 1 2

( , \ )m m m mf x x  [7]. The 
next step is to determine analytical structures for these partitioned data sets 
and build the HDMR expansion of the sought function by using these 
structures. This step will be given in the fourth section of this chapter. The 
next section is about another data partitioning technique.  

2.3 Data partitioning via GHDMR 

If a multivariate datum is given for the determination of a multivariate 
function, the location of data points in hyperspace of the independent 
variables gains a lot of importance. If they are located at the points of a set 
which is constructed as a direct product of univariate sets, high-
dimensional model representation (HDMR) can be successfully used to 
partition the data into less variate data. On the other hand HDMR becomes 
unemployable when the data are random or not given at all points of a grid 
which is constructed via direct product of univariate meshes due to the 
incompleteness of the data. Hence, for these cases, a new high-dimensional 
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model representation method is needed. generalized high-dimensional 
model representation (GHDMR) is used for this purpose. In this method a 
general multivariate weight function is used instead of a product-type 
weight function. The algorithm uses the HDMR components of this 
general weight function. The steps of the method include first the 
determination of the HDMR components of the general multivariate 
weight function by using a product-type auxiliary weight function.  
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Then, these components are employed in the formulae to obtain the 
GHDMR components of the given multivariate function. In this way, the 
multivariate data are partitioned into low-variate data. Here, the constant 
and the univariate terms of GHDMR expansion are obtained to get an 
approximation. Similar operators as given in the first section are used for 
this purpose. This time, the integrations will be evaluated by also using the 
HDMR components of the general weight function under the auxiliary 
weight function. The following orthogonality conditions are employed in 
these evaluations: 
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where Ni ≤≤1 . As a result constant and univariate GHDMR terms are 
obtained. Relation for the univariate terms corresponds to an integral 
equation system whose unknowns are the univariate GHDMR terms [8].  

When we use this method to partition the multivariate random data, the 
following general weight function is selected: 
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where jα  parameters are used for making it possible to give different 
importance to each individual datum.  

Using this general weight function and the orthogonality conditions 
given in Eq. (2.9) when applying the above-mentioned operators to the 
HDMR expansion, a constant value and a number of linear equations 
whose unknowns are the univariate component values at the given data 
points of N-dimensional space are obtained. The final step of this 
algorithm is to determine the unknowns of this equation set. This 
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completes the construction of the univariate components at the data 
points [8].  

At this point, approximate analytical structure should be determined by 
using these partitioned data. For this purpose, Lagrange interpolation 
formula will be used. The next section is about this subject.  

2.4 Interpolation 

By partitioning the given multivariate data via HDMR or GHDMR a table 
of pairs of data can be obtained instead of an analytical structure for the 
function )( mm xf . This table provides an opportunity to determine the 
function )( mm xf  under an assumed structure, that is, to interpolate the 
corresponding data. By this way, multivariate interpolation, at least for 
these functions, can be approximately reduced to a set of univariate 
interpolations. To determine the overall structure of the function, an 
analytical structure should be defined or a calculation rule should be 
imposed on the interpolation. If the function to be determined by HDMR 
or GHDMR is sufficiently smooth, then the function can be represented 
with a multinomial of all independent variables over the continuous region 
produced by the cartesian product of the related intervals. For this purpose, 
first a multinomial representation should be built for )( mm xf : 
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Here )( mk xL
m

s are Lagrange coefficient polynomials [16] which are 
independent of the structure of the function. The structures of these 
polynomials are given: 
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As Lagrange polynomials are constructed, univariate functions given by 
the relation Eq. (2.11) are uniquely determined within continuous 
polynomial interpolation. These functions can be considered as univariate 
components of HDMR or GHDMR for the multivariate function 

),,( 1 Nxxf K . The expansion formed by the summation of these functions 
and the constant term provides the following multinomial approximation 
which is called “univariate approximation”: 
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Same relations for the higher variate approximations can be defined in a 
similar way.  

2.5 Factorized HDMR 

We have observed that the truncations of both HDMR and GHDMR work 
well as long as the multivariate function under consideration has additive 
nature. If it is completely additive then data partitioning is exact, otherwise 
a certain level of truncation error is encountered. Additivity is one end of 
the behavior of the multivariate function. The other hand is multiplicativity 
where all HDMR components contribute to the function at similar orders. 
Therefore, truncation approximation fails to describe the multivariate 
function under consideration. In those cases we need to formulate a 
different truncation approximation which somehow takes all components 
of HDMR or GHDMR into consideration. The first step is to write this 
new equality (FHDMR) for this method: 
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(2.14) 

The right-hand-side components of the above relation can be determined 
by making comparisons between the right-hand-side of equation Eq. (2.1) 
and the additive form of the right-hand-side in Eq. (2.14). To make 
comparisons, idempotent operators will be used as auxiliary tools. These 
operators satisfy the following relations: 
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where Nkj ,,1, K= . Using these operators HDMR and FHDMR 
expansions are replaced by the following generalized ones:  
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These two entities represent the same multivariate function. Hence, their 
right-hand-sides must match for all idempotent operators. This permits us 
to determine the constant term, the univariate terms, and higher order 
terms of the FHDMR expansion.  

As a result, constant, univariate, and bivariate FHDMR terms are 
obtained in terms of HDMR or GHDMR as follows:  
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2.6 Hybrid HDMR 

In most cases the given multivariate data and the sought multivariate 
function have neither purely additive nor purely multiplicative nature. 
They have a hybrid nature. So, a new method is used to obtain better 
results and it is called hybrid high-dimensional model representation 
(HHDMR). This new expansion includes both the HDMR (or GHDMR) 
and the FHDMR expansions through a hybridity parameter, γ :  
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Using Eq. (2.18) an HHDMR approximant can be defined as follows by 
using the HDMR and the FHDMR approximants:  
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where ),,( 1 Nj xxs K  stands for the thj HDMR approximant and 

),,( 1 Nk xx Kπ  stands for the thk  FHDMR approximant which is a 
truncated product including at most k-variate factors.  

The most important step here is to determine the hybridity parameter γ . 
For this purpose, a functional is defined as  

2

org HHDMR( ) ( )F f fγ γ≡ −  (2.20) 

where orgf  and HHDMRf  stand for the original function and the function 
obtained from the HHDMR expansion respectively. We need to obtain the 
γ  value that minimizes the value of this norm. This minimization criterion 
can be written as  

0=
∂
∂

γ
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Using this criterion, the best value for that parameter can be obtained 
[11]. By this way the best representation for the sought multivariate 
function can be determined via hybrid HDMR.  

2.7 Error analysis 

According to the above-mentioned methods, HDMR or GHDMR, 
FHDMR, and HHDMR, several representations can be obtained 
approximately by using the constant, univariate, and bivariate terms of the 
mentioned expansions. For obtaining these several representations there 
exist questions, that is, how to find the best expansion for the sought 
multivariate function or whether the obtained representations are or are not 
the acceptable solutions for the given engineering problems. For this 
purpose, the following relative norm  
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will be evaluated. Here, newf  stands for the multivariate function obtained 
via a high-dimensional model representation expansion.  

The minimum norm value obtained by using this relation through all the 
evaluated norm values will show the best representation for the sought 
multivariate function. This result is assumed to be the best representation 
for the multivariate function.  

2.8 Numerical implementations 

In this section, the numerical implementations are classified into two main 
parts. The first part includes the examples in which the HDMR method is 
used as a data partitioning technique. In this part FHDMR and HHDMR 
algorithms are used to partition data obtained through HDMR. In the 
second part, the examples are constructed by using GHDMR method. 
FHDMR and HHDMR algorithms are used to partition data which are 
obtained through the GHDMR method.  

The results are obtained by using MuPAD 4.0. The CPU time results for 
each implementation are evaluated by using “time()” function which 
returns the total CPU time in milliseconds that was spent by the current 
MuPAD process. Only the relative error values and CPU times spent for 
the evaluations are given in this work.  

It is assumed that the following (N+1) – tuples are taken as data to 
describe a multivariate function ),,( 1 Nxxf K  
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where jϕ  is the value of ),,( 1 Nxxf K , the sought function, at the point 

described by the first N components of jd  in the N-dimensional space we 
are concerned. That is,  

( ) mjxxf j
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To construct the information for the data set which is the values of the 
sought multivariate function at the nodes of the grid, analytical structures 
of known multivariate functions are used.  
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2.9 HDMR-based implementations 

The first example considered here is a multivariate function which is 
completely additive, that is, the sum of univariate functions as follows:  
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This function has 10 independent variables and it is assumed that the 
given data set has 16,384 nodes in it. The relative error value obtained for 
the univariate HDMR approximant and the CPU time spent for this 
approximation are  

1 1

252.84 10 , 4.48 minss sN t−= × =  (2.26) 

respectively. Because the programming environment has 20 decimal digit 
accuracy, this result can be assumed to be zero and it means that the 
representation obtained is exact for the multivariate function dealt with.  

In the second example, the selected multivariate function has five 
independent variables where the function is of purely multiplicative nature  

( ) 5432154321 ,,,, xxxxxxxxxxf =  (2.27) 

and there are 640 nodes in the given hyperprismatic regular grid. The 
results of the relative error analysis and the CPU times spent for each 
algorithm are obtained as follows:  
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(2.28) 

where 1s , 2s , and 1π  correspond to the univariate HDMR, bivariate 
HDMR, and univariate FHDMR approximants.  

The analytical structure of the multivariate function is defined as 
follows as the third example with six independent variables:  

( ) ( )5
654321654321 ,,,,, xxxxxxxxxxxxf +++++=  (2.29) 

In this example the given data set is constructed by using 6400 nodes. 
The relative error values and the CPU times are obtained as follows:  
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2.10 GHDMR-based implementations 

In the following example we know the nodes of the mesh and the values of 
the sought function at the nodes of the given mesh. Hence, the domains for 
the independent variables are known. For the following numerical 
implementation there are 4,976,640 nodes in the mesh. From this mesh 
100 nodes are selected randomly. Using these nodes and the values of the 
following selected multivariate function at these nodes a multivariate data 
set is constructed:  
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The relative error value and the CPU time spent for this generalized 
form HDMR method are obtained as follows:  

1 1

251.76 10 , 7.69 secss sN t−= × =  (2.32) 

where 1s  corresponds to the univariate GHDMR approximant.  
The last example is given to discuss the performance results of 

GHDMR, FHDMR, and HHDMR methods for the following multivariate 
interpolation problem. The analytical structure of the sought function is 
selected as  
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where the problem has 100 nodes. It has both additive and multiplicative 
features. Hence, it is expected that the HHDMR approximants will give 
better results than GHDMR and FHDMR. To make this comparison the 
following relative error values of all approximants obtained through 
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GHDMR, FHDMR, and HHDMR are calculated, and needed CPU times 
for these calculations are measured:  
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2.11 Concluding remarks 

In this work, the basic idea is to partition the given data to less variate data 
and then to interpolate them individually to fit an analytical structure to the  
multivariate function to be determined. The elements of data set are 
assumed to be given at the nodes of a hyperprismatic grid. Certain nodes 
may be missing to locate data or entire nodes are used to specify the values 
of the multivariate function under consideration. If data are given at all 
nodes of a hyperprismatic grid then classical HDMR can be used for 
partitioning. On the other hand, GHDMR should be used instead of 
HDMR when the data have no datum for certain nodes. The nature of the 
sought multivariate function also affects the method in use. Since the 
HDMR expansion has an additive structure, these two methods seem to be 
effective for additive-type functions. As the sought function has not only 
additive but also multiplicative nature, the obtained representation via 
HDMR or GHDMR for the sought function gets worse. Hence, certain new 
methods are needed to determine better representations for the functions 
having multiplicative or intermediate natures. For this purpose, FHDMR 
and HHDMR methods are used.  

As a result, we have HDMR, GHDMR, FHDMR, and HHDMR 
methods to deal with the functions whose nature is additive or 
multiplicative or intermediate type.  

When the results given in the previous section are examined carefully 
depending on the nature of the sought multivariate function the results get 
better while we use the method that best fits. However, when the number 
of nodes or the number of HDMR terms taken into consideration increases, 
more time periods are needed to obtain better results. This brings much 
more CPU time need for the mentioned algorithms. This means that if you 
want the best solution for your problem you have to wait much more for 
the results. On the other hand, if a result obtained by using an approximant 
having less variate terms is sufficient for the given problem, then you may 
spend less CPU time for your work.  
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