
      Chapter 2   
 Applications of Prediction Models        

  Background    In this chapter, we consider several areas of application of prediction 
models in public health, clinical practice, and medical research. We use several 
small case studies for illustration.  

  2.1 Applications: Medical Practice and Research  

 Broadly speaking, prediction models are valuable for medical practice and for 
research purposes (Table  2.1 ). In public health, prediction models may help to tar-
get preventive interventions to subjects at relatively high risk of having or develop-
ing a disease. In clinical practice, prediction models may inform patients and their 
treating physicians on the probability of a diagnosis or a prognostic outcome. 
Prognostic estimates may for example be useful for planning of remaining life-time 
in terminal disease; or give hope for recovery if a good prognosis is expected after 
an acute event such as a stroke. Classification of a patient according to his/her risk 
may also be useful for communication among physicians. A key condition for this 
type of application of a prediction model is that predictions are reliable. This means 
that when a 10% risk is predicted, on average 10% of patients with these character-
istics should have the outcome (“calibration”, Chap. 4 and 15).     

 In the diagnostic work-up, predictions can be useful to estimate the probability 
that a disease is present. When the probability is relative high, treatment is indi-
cated; if the probability is low, no treatment is indicated and further diagnostic 
testing may be considered necessary. In therapeutic decision-making, treatment 
should only be given to those who benefit from the treatment. Prognostic predic-
tions may support the weighing of harms vs. individual benefits. If risks of a poor 
outcome are relatively low, the maximum benefit will also be relatively low. Any 
harm, such as a side effect of treatment, may then readily outweigh any benefits. 
The claim of prediction models is that better decisions can be made with a model 
than without. 

 In research, prediction models may assist in the design and analysis of rand-
omized trials. Models are also useful to control for confounding variables in observational 
research, either in traditional regression analysis or with modern approaches such 
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as “propensity scores”. Several areas of application are discussed in the next 
sections.  

  2.2 Prediction Models for Public Health  

  2.2.1 Targeting of Preventive Interventions 

 Various models have been developed to predict the future occurrence of disease in 
asymptomatic subjects in the population. Well-known examples include the Framingham 
risk functions for cardiovascular disease. 487  The Framingham risk functions underpin 
several of the current policies for preventive interventions. For example, statin therapy 
is only considered for those with relatively high risk of cardiovascular disease. Similarly, 
prediction models have been developed for breast cancer, where more intensive screen-
ing or chemoprophylaxis can be considered for those at elevated risk. 130,131   

  *2.2.2 Example: Incidence of Breast Cancer 

 In 1989, Gail et al. presented a by now famous risk prediction model for developing 
breast cancer. 131  The model was based on case–control data from the Breast Cancer 
Detection Demonstration Project (BCDDP). The BCDDP recruited 280,000 women 
from 1973 to 1980 who were monitored for 5 years. From this cohort, 2,852 white 
women developed breast cancer and 3,146 controls were selected, all with complete 
risk factor information. The model includes age at menarche, age at first live birth, 

 Table 2.1    Some areas of application of clinical prediction models  

 Application area  Example in this chapter 

  Public health  

 Targeting of preventive interventions 
 Incidence of disease  Models for (hereditary) breast cancer 

  Clinical practice  

 Diagnostic work-up 
 Test ordering  Probability of renal artery stenosis 
 Starting treatment  Probability of deep venous thrombosis 

 Therapeutic decision-making 
 Surgical decision making  Replacement of risky heart valves 
 Intensity of treatment  More intensive chemotherapy in cancer patients 
 Delaying treatment  Spontaneous pregnancy chances 

  Research  
 Inclusion in an RCT  Traumatic brain injury 
 Covariate adjustment in an RCT  Primary analysis of GUSTO-III 
 Confounder adjustment with a propensity 

score 
 Statin effects on mortality 

 Case-mix adjustment  Provider profiling 
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number of previous biopsies, and number of first-degree relatives with breast cancer. 
Individualized breast cancer probabilities were calculated from information on relative 
risks and the baseline hazard rate in the general population. The calculations accounted 
for competing risks (the risk of dying from other causes). 

 The predictions were validated later on other data sets from various populations, 
with generally favorable conclusions. 83,94  Practical application of the original model 
involved cumbersome calculations and interpolations. Hence, more easily applica-
ble graphs were created to estimate the absolute risk of breast cancer for individual 
patients for intervals of 10, 20, and 30 years. 33  The absolute risk estimates have 
been used to design intervention studies, to counsel patients regarding their risks of 
disease, and to inform clinical decisions, such as whether or not to take tamoxifen 
to prevent breast cancer. 132  

 Other models for breast cancer risk include the Claus model, which is useful to 
assess risk for familial breast cancer. 74  This is breast cancer that runs in families but 
is not associated with a known hereditary breast cancer susceptibility gene. Unlike 
the Gail model, the Claus model requires the exact ages at breast cancer diagnosis 
of first or second-degree relatives as an input. 

 Some breast cancers are caused by a mutation in a breast cancer susceptibility 
gene (BRCA), referred to as hereditary breast cancer. A suspicious family history 
for hereditary breast cancer includes many cases of breast and ovarian cancers, or 
family members with breast cancers under age 50. Simple tables have been pub-
lished to determine the risk of a BRCA mutation, based on specific features of per-
sonal and family history. 127  Another model considers the family history in more 
detail (BRCAPRO 323 ). It explicitly uses the genetic relationship in families, and is 
therefore labeled a Mendelian model. Calculations are based on Bayes’ theorem. 
BRCAPRO was shown to perform at least as good as experienced genetic 
counselors. 116  

 Friedenson provides an interesting overview of risk models in breast cancer and 
their clinical implications (Table  2.2 ). 128  Various measures are possible to reduce 
breast cancer risk, including behavior (e.g. exercise, weight control, alcohol intake) 
and medical interventions (e.g. tamoxifen use).       

  2.3 Prediction Models for Clinical Practice  

  2.3.1 Decision Support on Test Ordering 

 Prediction models may be useful to estimate the probability of an underlying dis-
ease, such that we can decide on further testing. When a diagnosis is very unlikely, 
no further testing is indicated, while more tests may be indicated when the diagno-
sis is not yet sufficiently certain for decision-making on therapy. Further testing 
usually involves one or more imperfect tests (sensitivity below 100%, specificity 
below 100%). Ideally, a gold standard test is available (sensitivity=100%, specifi-
city=100%). A gold standard test is the diagnostic test that is regarded as definitive 
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in determining whether a subject has the disease. The gold standard test may not be 
suitable to apply in all subjects suspected of the disease because it is burdensome 
(e.g. invasive), or costly.  

  *2.3.2 Example: Predicting Renal Artery Stenosis 

 Renal artery stenosis is a rare cause of hypertension. The gold standard for diagnos-
ing renal artery stenosis, renal angiography, is invasive and costly. Krijnen et al. 
aimed to develop a prediction rule for renal artery stenosis from clinical character-
istics. The rule might be used to select patients for renal angiography. 243  Logistic 
regression analysis was performed with data from 477 hypertensive patients who 
underwent renal angiography. A simplified prediction rule was derived from the 
regression model for use in clinical practice. Age, sex, atherosclerotic vascular dis-
ease, recent onset of hypertension, smoking history, body mass index, presence of 
an abdominal bruit, serum creatinin concentration, and serum cholesterol level 
were selected as predictors. The diagnostic accuracy of the regression model was 
similar to that of renal scintigraphy, which had a sensitivity of 72% and a specificity 
of 90%. The conclusion was that this clinical prediction rule can help to select 

 Table 2.2    Risk factors in four prediction models for breast cancer: two for breast cancer inci-
dence, two for presence of mutation in BRCA1 or BRCA2 genes  128

 Risk factor  Gailmodel  Clausmodel  Myriad tables  BRCAPRO model 

 Woman’s personal information 
    Age  +  +  +  + 
    Race/ethnicity  + 
    Ashkenazi Jewish  +  + 
    Breast biopsy  + 
    Atypical hyperplasia  + 
 Hormonal factors 
    Age at menarche  + 
    Age at first live birth  + 
    Age at menopause  + 
 Family history 
    1st degree relatives with 

breast cancer 
 +  +  Age <50/≥50  Age for all affected 

    2nd degree relatives with 
breast cancer 

 +  Age <50/≥50  Age for all affected 

    1st or 2nd degree with 
ovarian cancer 

 +  Age for all affected 

    Bilateral breast cancer  + 
    Male breast cancer  + 
 Outcome predicted  Incident breast 

cancer 
 BRCA 1/2 mutation 
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patients for renal angiography in an efficient manner by reducing the number of 
angiographic procedures without the risk for missing many renal artery stenoses. 
The modelling steps summarized here will be described in more detail in Part II. 

 An interactive Excel program is available to calculate diagnostic predictions for 
individual patients. Figure  2.1  shows the example of a 45-year-old male with recent 
onset of hypertension. He smokes, has no signs of atherosclerotic vascular disease, a 
BMI<25, no abdominal bruit is heart, serum creatinin is 112 µmol/L, and serum 
cholesterol is not elevated. According to a score chart (see Chap. 18), the sum score 
was 11, corresponding to a probability of stenosis of 25%. According to exact logistic 
regression calculations, the probability was 28% [95% confidence interval 17–43 %].   

  2.3.3 Starting Treatment: the Treatment Threshold 

 Decision analysis is a method to formally weigh pros and cons of decisions. For 
starting treatment after diagnostic work-up, a key concept is the treatment thresh-
old. This threshold is defined as the probability where the expected benefit of treat-
ment is equal to the expected benefit of avoiding treatment. If the probability of the 
diagnosis is lower than the threshold, no treatment is the preferred decision, and if 
the probability of the diagnosis is above the threshold, treatment is the preferred 
decision. 325  The threshold is determined by the relative weight of false-negative vs. 
false-positive decisions. If a false-positive decision is much less important than a 
false-negative decision, the threshold is low. For example, a 1:100 ratio leads to a 
1% threshold. On the other hand, if false-positive decisions confer serious risks, the 
threshold should be higher. Further details on the threshold concept are beyond the 
scope of this book, but the issue returns when we discuss the performance of pre-
diction models with decision curves 469  (Chap. 16). 

1
2

3   Predictor
4   Smoking   
5   Current age
6   Gender
7   Atherosclerotic vascular disease* 
8   Onset of hypertension within 2 years
9   Body mass index >= 25 kg/m2

10  Presence of abdominal bruit
11  Serum creatinine concentration
12  Serum cholesterol level > 6.5 mmol /L**

17  Sumscore

18
19  Predicted probability of renal artery stenosis
20  Confidence interval

21   *  femoral or carotid bruit, angina pectoris, claudication, myocardial infarction, CVA, or vascular surgery
22   ** or cholesterol lowering therapy

A B C D E F G H

Prediction rule for renal artery stenosis

Value Score
former or current =1 1 -
years 45 4.4
male = 1 1 0
yes = 1 0 0
yes = 1 1 1
yes = 1 0 2
yes = 1 0 0
µmol/L 112 4.1
yes = 1 0 0

11

Formula Score chart
28% 25%

17% - 43% See figure for graphical illustration
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  Fig. 2.1    Prediction rule for renal artery stenosis as implemented in an Excel spreadsheet       



1616 2 Applications of Prediction Models

 Note that a single treatment threshold applies only when all diagnostic work-up 
is completed, including all available tests for the disease. If more tests can still be 
done, a more complex decision analysis needs to be performed to determine the 
optimal choices on tests and treatments. We then have two thresholds: a low thresh-
old between no treatment and further testing; and a higher threshold between fur-
ther testing and treatment. This concept is illustrated with the diagnosis of deep 
venous thrombosis using ultrasound.  

  *2.3.4 Example: Probability of Deep Venous Thrombosis 

 A systematic review of 54 studies indicated that individual clinical features are of 
limited value in diagnosing deep venous thrombosis (DVT). Characteristics such as 
previous DVT, malignant disease, recent immobilization, and recent surgery only 
modestly increased the probability of DVT. 144  A clinical prediction rule developed 
by Wells et al. combines nine signs, symptoms and risk factors to categorize 
patients as having low, moderate or high probability of DVT. 482  This rule stratifies 
a patient’s probability of DVT much better than individual findings. 144  

 Patients who are found to be at low pretest probability (“score ≤ 1”) can have 
DVT safely excluded (1) on the basis of a single negative ultrasound result, or (2) 
a negative plasma D-dimer test. Patients who are at increased pretest probability 
(“score > 1”) require both a negative ultrasound result, and a negative D-dimer test 
to exclude DVT. 481  A possible diagnostic algorithm is shown in Fig.  2.2 . 369    

  2.3.5 Intensity of Treatment 

 Prognostic estimates are also important to guide decision-making once a diagnosis 
is made. Decisions include, for example, more or less intensive treatment approaches. 
The framework for decision-making based on prognosis is very similar to that 
based on diagnostic probabilities as discussed before. 

 A treatment should only be given to a patient if a substantial gain is expected, 
which exceeds any risks and side effects (Fig.  2.3 ). Glasziou and Irwig illustrate 
this approach with a case study in anticoagulants and risk of atrial fibrillation. 138  
Anticoagulants are very effective in reducing the risk of stroke in patients with non-
rheumatic atrial fibrillation. However, using these drugs increases the risk of seri-
ous bleedings. Hence, the risk of stroke has to outweigh the bleeding risk before 
treatment is considered.  

 The specific calculation of the net benefit of a treatment requires various steps: 138 

   (1)     Estimate benefit and harm: randomized controlled trials (RCTs) may often 
provide the most reliable source for relative risk estimates for both benefits and 
harms of treatment.  
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  Fig. 2.2    A possible diagnostic algorithm for patients suspected of DVT with D-dimer testing and 
ultrasound imaging 369        

Determination of pretest
probability of DVT 
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D-dimer test

Ultrasound No DVT Ultrasound Ultrasound

No DVTTreat with
anticoagulation

therapy  

Repeat
ultrasound
in 1 weak  

Treat with
anticoagulation

therapy  

No DVT

No DVT

+

+

+

+ +

+

− −

−
− −

−

0%

5%

10%

15%

20%

0% 10% 20% 30% 40% 50%

p(cancer-specific mortality | standard treatment)

D
if

fe
re

n
ce

 in
 m

o
rt

al
it

y

Benefit

Harm

  Fig. 2.3    Graphical illustration of weighing benefit and harm of treatment. Benefit of treatment 
(reduction in absolute risk) increases with cancer-specific mortality (relative risk set to 0.7). Harm 
of treatment (excess absolute risk, e.g. due to toxicity of treatment) is assumed to be constant at 
4%. Net benefit occurs only when the cancer-specific mortality given standard treatment is above 
the threshold of 11% 451        
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   (2)      Check assumptions of relative benefit and absolute harm: subgroup effects of 
treatment may exist, both for benefit and harm, which invalidate the simple 
decision-analytic model in Fig.  2.3 .  

   (3)     Weigh up benefit and harm: If the assumptions of relative risk reduction and 
constant harm are fulfilled the predicted benefit needs to be weighed up against 
the potential harm. This results in a graph as Fig.  2.3 , with actual numbers on 
the  Y -axis.  

   (4)     Predict patient’s risk: To identify patients who should expect benefit to be 
greater than harm, we need to predict each patient’s risk. Prognostic models are 
important for this step.      

  *2.3.6 Example: Defining a Poor Prognosis Subgroup in Cancer 

 As an example we consider high-dose chemotherapy (HD-CT) as first line treat-
ment to improve survival of patients with non-seminomatous testicular cancer. 451  
Several non-randomized trials reported a higher survival for patients treated with 
HD-CT as first line treatment (including etoposide, ifosfamide, cisplatin) with 
autologous stem cell support, compared to standard-dose (SD) chemotherapy 
(including bleomycin, etoposide, cisplatin). However, HD-CT is related to a higher 
toxicity, both during treatment (e.g. granulocytopenia, anaemia, nausea/vomiting, 
diarrhoea), shortly after treatment (e.g. pulmonary toxicity), and long after treat-
ment (e.g. leukemia, cardiovascular disease). HD-CT should therefore only be 
given to patients with a relatively poor prognosis. 

 We can specify the threshold for such a poor prognosis group by weighing 
expected benefit against harms. Benefit of HD-CT treatment is the reduction in 
absolute risk of cancer mortality. Benefit increases linearly with risk of cancer 
mortality, if we assume that patients with the highest risk have most to gain. Harm 
is the increase in absolute risk of treatment mortality (e.g. related to toxicity) due 
to treatment. The level of harm is the same for all patients, assuming that the toxic-
ity of treatment is independent of prognosis. Patients are candidates for more 
aggressive treatment when their risk of cancer mortality is above the threshold, i.e. 
when benefit is higher than harm (Fig.  2.3 ).  

  2.3.7 Cost-Effectiveness of Treatment 

 Cost-effectiveness of treatment also directly depends on prognosis. Treatments may 
not be cost-effective if the gain is small (for patients at low risk), and the costs high 
(e.g. for all patients the same drug costs are made). For example, statin therapy should 
only be given to those at increased cardiovascular risk. 157  And more aggressive throm-
bolysis should only be used in those patients with an acute myocardial infarction 
(AMI) who are at increased risk of 30-day mortality. 63  Many other examples can be 
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found, where the relative benefit of treatment is assumed to be constant across various 
risk groups, and the absolute benefit hence increases with higher risk. 

 Another approach is to search for differential treatment effects among subgroups 
of patients. The assumption of a fixed relative benefit is then relaxed. Some patients 
respond well to a certain treatment and others do not. Patient characteristics such 
as age, or the specific type of disease, may interact with treatment response. Effects 
of drugs are affected by the drug metabolism, which is, e.g. mediated by cyto-
chrome P450 enzymes and drug transporters (P-glycoprotein). 103  Research in the 
field of pharmacogenomics aims to further understand the relation between an 
individual patient’s genetic make-up (genotype) and the response to drug treatment, 
such that response can better be predicted. 45  Cost-effectiveness will vary depending 
on the likelihood of response to treatment .  

  2.3.8 Delaying Treatment 

 In medical practice, prediction models may provide information to patients and 
their relatives, such that they have realistic expectations of the course of disease. 
A conservative approach can sometimes be taken, which means that the natural 
history of the disease is followed. For example, many men may opt for a watchful 
waiting strategy if a probably unimportant (“indolent”) prostate cancer is 
detected. 227,424  Or women may be reassured on their pregnancy chances if they have 
relatively favourable characteristics.  

  *2.3.9 Example: Spontaneous Pregnancy Chances 

 Several models have been published for the prediction of spontaneous pregnancy 
among subfertile couples. 76,111,393  A “synthesis model” was developed for predicting 
spontaneous conception leading to live birth within 1 year after start of follow-up 
based on data from three previous studies. 205  This synthesis models hence had a 
broader empirical basis than the original models. The predictors included readily 
available characteristics such as the duration of subfertility, women’s age, primary 
or secondary infertility, percentage of motile sperm, and whether the couple was 
referred by a general practitioner or by a gynaecologist (referral status). The chance 
of spontaneous pregnancy within 1 year can easily be calculated. First a prognostic 
index score is calculated. The score corresponds to a probability, which can be read 
from a graph (Fig.  2.4 ).  

 For example, a couple with a 35-year-old woman (7 points), 2-year duration of 
infertility (3 points), but with one child already (secondary infertility, 0 points), 
normal sperm motility (0 points), and directly coming to the gynecologist (second-
ary care couple, 0 points), has a total score of 10 points. This corresponds to a 
chance of becoming pregnant of 42%. 



2020 2 Applications of Prediction Models

 Most couples who have tried for more than 1 year to become pregnant demand 
immediate treatment. 205  In their judgment, further waiting is senseless because they 
consider themselves as infertile. Moreover, the psychological pressure caused by 
feelings of uncertainty and frustration may increase a desire for immediate action. 
In addition, most couples overestimate the success of assisted reproduction, such as 

 Subfertility  
 Score  

 Woman’s age 
(years) 

 21–25  26–31  32–35  36–37  38–39  40–41 

 Score   0    3    7    10    13    15   …….. 
 Duration of 

subfertility 
(yrs) 

 1  2  3–4  5–6  7–8 

 Score   0    3    7    12    18   …….. 
 Type of 

subfertility 
 Secondary  Primary 

 Score   0    8  
 Motility (%)  ≥60  40–59  20–39  0–19 

 Score   0    2    4    6   …….. 
 Referral 

status 
 Secondary 

care 
 Tertiary care 

 Score   0    4    ……..  
 Prognostic 

index score 
(Sum) 

 …….. 

  Fig. 2.4    Score chart to estimate the chance of spontaneous pregnancy within 1 year after intake 
resulting in live birth.  Upper part : calculating the score;  lower part : predicting 1-year pregnancy 
rate. 205  Procedure: circle the subfertility score for each of the variables, transfer to rightmost col-
umn and add to get the prognostic index score. Insert the score in the figure below to read off the 
chance of spontaneous pregnancy within 1 year resulting in live birth       
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in vitro fertilization, and underestimate the related risks. The estimations of spon-
taneous pregnancy leading to live birth can be a tool in advising these couples in 
the following manner. If the chances are low, e.g. below 20%, there is no point in 
further waiting, and advising the couple to quickly undergo treatment is realistic. In 
contrast, if the chances are favourable, e.g. above 40%, the couple should be 
strongly encouraged to wait for another year, because there is a substantial chance 
of success.     

  2.3.10 Surgical Decision-Making 

 In surgery, it is typical that short-term risks are taken to reduce long-term risks. 
Short-term risks include both morbidity and mortality. The surgery aims to reduced 
long-term risks that would occur in the natural history. Acute situations include sur-
gery for trauma, and for acute conditions such as a ruptured aneurysm (a widened 
artery). Elective surgery is done for many conditions, and even for such planned and 
well-prepared surgery, the short-term risk and burden are never zero. In oncology, 
increased surgical risks typically lead to the choice for less risky treatments, e.g. 
chemotherapy or radiation, or palliative treatments. For example, in many cancers, 
older patients and those with comorbidity do less often undergo surgery. 6,169,207  

 Many prognostic models have been developed to estimate short-term risks of 
surgery, e.g. 30-day mortality. These models vary in complexity and accuracy. 
Also, long-term risks have been modeled explicitly for various diseases, although 
it is often hard to find a suitable group of patients for the natural course of a disease 
without surgical intervention. As an example, we consider a surgical decision prob-
lem on replacement of risky heart valves (Fig.  2.5 ). Prognostic models were used 
to estimate surgical mortality, individualized risk of the specific valve, and individ-
ual survival. 37,415,449    

  *2.3.11 Example: Replacement of Risky Heart Valves 

 Björk–Shiley convexo–concave (BScc) mechanical heart valves were withdrawn 
from the market in 1986 after reports of mechanical failure (outlet strut fracture). 
Worldwide, approximately 86,000 BScc valves had been implanted by then. 
Fracture of the outlet strut occurs suddenly and is often lethal. 448  Therefore, prophy-
lactic replacement by another, safer valve, may be considered to avert the risk of 
fracture. Decision analysis is a useful technique to weigh the long-term loss of life 
expectancy due to fracture against the short-term surgical mortality risk (Fig.  2.5 ). 
The long-term loss of life expectancy due to fracture depends on three aspects:
   1.    The annual risk of fracture, given that a patient is alive  
   2.    The fatality of a fracture  
   3.    The annual risk of death (survival).     
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 This long-term loss of life expectancy has to be weighed against the risk of sur-
gical mortality. If the patient survives surgery, the fracture risk is assumed to be 
reduced to zero. Predictive regression models were developed for each aspect, 
based on the follow-up experience from 2,263 patients with BScc valves implanted 
between 1979 and 1985 in The Netherlands. 223,415  We considered 50 fractures that 
had occurred during follow-up and 883 patients who died (excluding fractures). 

 The risk of fracture is the key consideration in this decision problem. But the low 
number of fractures makes predictive modelling challenging, and various variants 
of models have been proposed. A relatively detailed model included four traditional 
predictors (age, position (aortic/mitral), type (70° opening angle valves had higher 
risks than 60° valves), size (larger valves had higher risks)), and two production 
characteristics. 415  The fatality of a fracture depended on the age of the patient, and 
the position (higher fatality in aortic position). Survival was related to age, gender, 
position of the valve, and also to time since implantation. This meant that patients 
of a given age (e.g. 50 years), had higher risks when the implantation of the valve 
was longer ago (e.g. implantation at age 35 vs 45 years). Finally, surgical risk was 
modelled in relation to age and position of the valve. This was a relatively rough 
approach, since many more predictors are relevant, and a later prediction model 
was much more detailed. 454  

 The results of this decision analysis depended strongly on age: replacement was 
only indicated for younger patients, who have lower surgical risks, and a higher 
long-term impact of fracture because of longer survival (Table  2.3 ). Also, the posi-

Mortality

p(surgical mortality)
Surgery

p(survival)

Patient

No fracture
with BScc
valve

Fatality
No surgery

p(fatality)
Fracture

p(Fracture) Survive

Surgical mortality

Survival with new valve

Survival with old valve

Fracture mortality

Survival with new valve

  Fig. 2.5    Schematic representation of surgical decision-making on short-term vs. long-term risk 
in replacement of a risky BScc heart valve.  Square  indicates a decision,  circle  a chance node. 
Predictions (‘p’) are needed for four probabilities: surgical mortality, long-term survival, fracture, 
and fatality of fracture       
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tion of the valve affects all four aspects (surgical risk, survival, fracture, fatality). 
Before, results were presented as age-thresholds for eight subgroups of valves: by 
position (aortic/mitral), by type (70°/60°), and by size (large/small). 449  The more 
recent analysis was so detailed that individualized calculations were necessary, 
which were performed for all patients who were alive in The Netherlands in 1998. 
The recommendations from this decision analysis were rather well followed in 
clinical practice. 455        

  2.4 Prediction Models for Medical Research  

 In medical research, prediction models may serve several purposes. In experimental 
studies, such as a randomized controlled trial (RCT), predictive baseline character-
istics may assist in the inclusion and stratification of patients, and improve the sta-
tistical analysis. In observational studies, adequate controlling for confounding 
factors is essential. 

  2.4.1 Inclusion and Stratification in an RCT 

 In a RCT, prognostic estimates may be used for selection of subjects for the study. 
Traditionally, a set of inclusion and exclusion criteria is applied to define the subjects 
for the RCT. Some criteria aim to create a more homogeneous group according to 
expected outcome. Traditionally, all inclusion criteria have to be fulfilled, and none 
of the exclusion criteria. Alternatively, some prognostic criteria can be combined in 
a prediction model, with selection based on individualized predictions. This leads 
to a more refined selection. 

 Table 2.3    Patient characteristics used in the decision analysis of replacement of risky heart 
valves 415   

 Characteristic  Surgical risk  Survival  Fracture 
 Fatality
fracture 

 Patient related 
    Age (years)  +  +  +  + 
    Sex (male/female)  + 
    Time since implantation (years)  + 
 Valve related 
    Position (aortic/mitral)  +  +  +  + 
    Opening angle (60°/70°),  + 
    Size (<29 mm or >=29 mm)  + 
    Production characteristics  + 
 Type of prediction model  Logistic 

regression 
 Poisson 

regression 
 Poisson 

regression 
 Logistic 

regression 
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 Stratification is often advised in RCTs for the main prognostic factors. 18,338,496  In 
this way, balance is obtained between arms of a trial with respect to baseline progno-
sis. This may facilitate simple, direct comparisons of treatment results, especially for 
smaller RCTs, where some imbalance may readily occur. Prediction models may 
refine stratification of patients, especially when many prognostic factors are known.  

  *2.4.2 Example: Selection for TBI Trials 

 As an example, we consider the selection of patients for RCTs in traumatic brain 
injury (TBI). Patients above 65 years of age and those with non-reacting pupils are 
often excluded because of a high likelihood of a poor outcome. Indeed we find a 
higher than 50% mortality at 6-month follow-up in patients fulfilling either criterion 
(Table  2.4 ). Hence, we can simply select only those less than 65 years with at least 
one reacting pupil (Table  2.5 , part A). However, we can use a prognostic model for 
more efficient selection that inclusion based on separate criteria. A simple logistic 
regression model with “age” and “pupils” can be used to calculate the probability of 
mortality in a more detailed way. If we aim to exclude those with a predicted risk 
over 50%, this leads to an age limit of 30 years for those without any pupil reaction, 
and an age limit of 76 years for those with any pupil reaction (Table  2.5 , part B). So, 
patients under 30 years of age can always be included, and patients between 65 and 
75 years can be included if they have at least one reacting pupil (Table  2.5 ).          

 Table 2.4    Analysis of outcome in 7,143 patients with severe moderate traumatic brain injury 
according to reactive pupils and age dichotomized at age 65 years 276   

 >= 1 Reactive pupil  Non-reactive pupils 

 <65  >=65 years  <65  >=65 years 
 6-month 

mortality 
 926/5101 (18%)  159/284 (56%)  849/1644 (52%)  97/114 (85%) 

 Table 2.5    Selection of patients with two criteria (age and reactive pupils) in a traditional way (A) 
and according to a prognostic model (probability of 6-month mortality < 50%, B)  

 A: Traditional 
selection 

 B: Prognostic 
selection 

 < 65  > = 65 years  <30  30–75  > = 76 years 
 Pupillary  No reactivity  Exclude  Exclude  Include  Exclude  Exclude 

 reactivity  >=1 pupil  Include  Exclude  Include  Include  Exclude 



2.4 Prediction Models for Medical Research    2525

  2.4.3 Covariate Adjustment in an RCT 

 Even more important is the role of prognostic baseline characteristics in the analy-
sis of an RCT. The strength of randomization is that comparability is created 
between treated groups both with respect to observed  and unobserved  baseline 
characteristics (Fig.  2.6 ). No systematic confounding can hence occur in RCTs. But 
some observed baseline characteristics may be strongly predictive of outcome. 
Adjustment for such covariates has several advantages: 133,182,188,190,339,348 

   1.    To reduce any distortion in the estimate of treatment effect that occurred by ran-
dom imbalance between groups  

   2.    To improve the precision of the estimated treatment effect  
   3.    To increase the statistical power for detection of a treatment effect      

 Remarkably, covariate adjustment works differently for linear regression models 
and generalized linear models (e.g. logistic, Cox regression, Table  2.6 ).      

   1.    For randomized clinical trials the randomization guarantees that the bias is zero 
a priori, both for observed and unobserved baseline characteristics. However, 
random imbalances may occur, generating questions such as: What would have 
been the treatment effect had the two groups been perfectly balanced? We may 
think of this distortion as a bias a posteriori, since it affects interpretation simi-
larly as in observational epidemiological studies. 

 Regression analysis is an obvious technique to correct for such random imbal-
ances. When no imbalances have occurred for predictors considered in a regression 
model, the adjusted and unadjusted estimates of the treatment effect would be 
expected to be the same. This is indeed the case in linear regression analysis. 
Remarkably, in generalized linear models such as logistic regression, the adjusted and 
unadjusted estimates of a treatment effect are not the same, even when predictors are 

  Fig. 2.6    Schematic representation of the role of base-
line characteristics in an RCT. By randomization, there 
is no systematic link between baseline characteristics 
and treatment. Baseline characteristics are still impor-
tant, since they are prognostic for the outcome       

Treatment Outcome

Baseline
characteristics 

Randomize

 Table 2.6    Comparison of adjustment for predictors in linear and generalized linear models (e.g. 
logistic regression) in estimation and testing of treatment effects, when predictors are completely 
balanced  

 Method  Effect estimate  Standard error  Power 

 Linear model  Identical  Decreases  Increases 
 Generalized linear model  Further from zero  Increases  Increases 
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completely balanced 133  (see Questions 2.3 and 22.2). Adjusted effects are expected to 
be further from zero (neutral value, OR further from 1). This phenomenon is referred 
to as a “stratification effect”, and does not occur with linear regression. 403   

   2.    With linear regression, adjustment for important predictors leads to an improve-
ment in precision of the estimated treatment effect, since part of the variance in 
the outcome is explained by the predictors. Contrary, in generalized linear mod-
els such as logistic regression, the standard error of the treatment effect always 
increases with adjustment. 348   

   3.    In linear regression, adjusted analyses provide more power to the analysis of 
treatment effect, since the standard error of the treatment effect is smaller. For a 
generalized linear model such as logistic regression, the effect of adjustment on 
power is not so straightforward. It has however been proven that the expected 
value of the treatment effect estimate increases more than the standard error. 
Hence, the power for detection of a treatment effect is larger in an adjusted 
logistic regression analysis compared to an unadjusted analysis. 348       

  2.4.4 Gain in Power by Covariate Adjustment 

 The gain in power by covariate adjustment depends on the correlation between the 
baseline covariates (predictors) and the outcome. For continuous outcomes, this 
correlation can be indicated by Pearson’s correlation coefficient ( r ). Pocock et al. 
showed that in the continuous outcome situation, the sample size can be reduced 
with 1 − r 2 , to achieve the same statistical power with a covariate adjusted analysis 
as an unadjusted analysis. 339  A very strong predictor may have  r =0.7 ( r  2  50%), e.g. 
a baseline covariate of a repeated measure such as blood pressure, or a question-
naire score. The required number of patients is then roughly halved. The saving is 
less than 10% for  r =0.3 ( r  2  9%). 339  

 Similar results have been obtained in empirical evaluations with dichotomous 
outcomes, where Nagelkerke’s  R  2   309  was used to express the correlation between 
predictor and outcome. 188,190,403  The reduction in sample size was slightly less than 

 Table 2.7    Illustration of reduction in sample size with adjustment for baseline covariates with 
dichotomous outcomes  

 Application area  Correlation baseline–outcome  Reduction in sample size 

 Acute MI: 30-day mortality 403  
   Age adjustment  R 2  13%  12% 
   17 predictor adjustment  R 2  25%  19% 
 Traumatic brain injury: 

6-month mortality 189  
   3 predictor model  R 2  30%  25% 
   7 predictor model  R 2  40%  30% 
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1 −  R  2  in simulations for mortality among acute MI patients 403  and among TBI 
patients 189  (Table  2.7 ).      

  *2.4.5 Example: Analysis of the GUSTO-III Trial 

 The GUSTO-III trial considered patients with an acute myocardial infarction. 4  The 
outcome was 30-day mortality. The protocol pre-specified a prognostic model for 
the primary analysis of the treatment effect. This model combined age, systolic 
blood pressure, Killip class, heart rate, infarct location, and age-by-Killip-class inter-
action. These predictors were previously found to comprise 90% of the predictive 
information of a more complex model for 30-day mortality in the GUSTO-I trial. 255  
A review of RCTs published in the major medical journals after the year 2000 shows 
that covariate adjustment is used in approximately 50% of the cases. 339   

  2.4.6 Prediction Models and Observational Studies 

 Confounding is the major concern in epidemiological analyses of observational 
studies. When treatments are compared, groups are often quite different because of 
a lack of randomization. Subjects with specific characteristics are more likely to 
have received a certain treatment than other subjects (“indication bias”, Fig.  2.7 ). If 
these characteristics also affect the outcome, a direct comparison of treatments is 
biased, and may merely reflect the lack of initial comparability (“confounding”). 
Instead of treatment, many other factors can be investigated for their causal effects. 
Often, randomization is not possible, and observational studies are the only possi-
ble design. Dealing with confounding is an essential step in such analyses.  

  Fig. 2.8    Schematic representation of adjustment for 
baseline characteristics in an observational study. By 
adjustment, we aim to correct for the systematic link 
between observed baseline characteristics and outcome, 
hence answering the question what the treatment effect 
would be if observed baseline characteristics were simi-
lar between treatment groups       

  Fig. 2.7    Schematic representation of confounding in an 
observational study. Baseline characteristics act as con-
founders since they are related to the treatment and to 
the outcome       

Treatment Outcome

Baseline
characteristics 

Treatment Outcome

Observed
baseline
characteristics 

Adjust
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 Regression analysis is a commonly used method to control for imbalances 
between treatment groups, e.g. with logistic or Cox regression. 235  Many baseline 
characteristics can be simultaneously adjusted for (Fig.  2.8 ). Similarly, regression 
analysis can be used to control for confounders in aetiologic research.   

  2.4.7 Propensity Scores 

 A problem arises when the outcome is relatively rare. Constructing a regression 
model with many predictors is then problematic. This may lead to biased and inef-
ficient estimates of the difference between groups in the adjusted analysis. 66  An 
alternative in the setting of rare outcomes is to use a propensity score. 55  The pro-
pensity score defines the probability that a subject receives a particular treatment 
(“Tx”) given a set of confounders: p(Tx | confounders). For calculation of the pro-
pensity score, the confounders are usually used in a logistic regression model to 
predict the treatment, without including the outcome. 60,359  The propensity score is 
subsequently used in a second stage as a summary confounder (Fig.  2.9 ). 
Approaches in this second stage are matching on propensity score, stratification of 
propensity score (usually by quantile), and inclusion of the propensity score with 
treatment in a regression model for the outcome. 89   

 Empirical comparisons provided no indication of superiority of propensity score 
methods over conventional regression analysis for confounder adjustment. 381,429  
Simulation studies however suggest a benefit of propensity scores in the situation 
of few outcomes relatively to the number of confounding variables. 66   

  *2.4.8 Example: Statin Treatment Effects 

 Seeger et al. investigated the effect of statins on the occurrence of acute myocardial 
infarction (AMI). 378  They studied members of a Community Health Plan with a 
recorded LDL>130 mg dl −1  at any time between 1994 and 1998. Members who ini-
tiated therapy with a statin were matched using propensity scores to members who 
did not initiate statin therapy. The propensity score predicted the probability of sta-

  Fig. 2.9    Schematic representation of propensity 
score adjustment for baseline characteristics in 
an observational study. The propensity score esti-
mates the probability of receiving treatment. By 
subsequent adjustment for the propensity score, 
we mimic an RCT, since we removed the sys-
tematic link between baseline characteristics and 
treatment. We can however only include 
observed baseline characteristics, and have no 
control over unobserved characteristics       

Treatment Outcome

Observed
baseline
characteristics 

Propensity score adjustment 
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tin initiation. Scores were estimated using a logistic regression model that included 
52 variables and 6 quadratic terms (Table  2.8 ). Statin initiators were matched to a 
noninitiator within a 0.01 caliper of propensity. Initiators for whom no suitable 
noninitiator could be found were excluded, leaving 2,901 matched initiators out of 
4,144 initiators (70%). The 4,144 statin initiators had a higher prevalence of estab-
lished coronary heart disease risk factors than did unmatched noninitiators. The 
follow-up of these unmatched cohorts identified 325 AMIs in the statin initiator 
group and 124 in the noninitiator group (hazard ratio 2.1, 95% confidence interval 
1.5–3.0). The propensity score-matched cohorts (2 ×  n =2,901) were very similar 
with respect to 51 of the 52 baseline characteristics. There were 77 cases of AMI 
in statin initiators compared with 114 in matched non-initiators (hazard ratio 0.69, 
95% confidence interval 0.52–0.93). The authors hence conclude that statin use in 
the members of this Community Health Plan was beneficial on the occurrence of 
AMI, but warn that predictors that are not part of the model may remain unbalanced 
between propensity score matched cohorts, leading to residual confounding.      

  2.4.9 Provider Profiling 

 Another area of application of prediction models is in the comparison of outcomes 
from different hospitals (or other providers of care, “provider profiling”). 47  The 
quality of health care providers is being compared by their outcomes, which are 
considered as performance indicators. Simple comparisons between providers may 
obviously be biased by differences in case-mix; for example, academic centers may 
see more severe patients, which accounts for poorer outcome on average. Prediction 
models are useful for case-mix adjustment in such comparisons.  

  *2.4.10 Example: Ranking Cardiac Outcome 

 New York State was among the first to publicly release rankings of outcome of coro-
nary artery bypass surgery by surgeon and hospital. Such cardiac surgery report 
cards have been criticized because of their methodology. 136  Adequate risk adjust-
ment is nowadays better possible with sophisticated prediction models. An example 
is a model published by Krumholz et al., who present a prediction model for 30-day 
mortality rates among patients with AMI. 245  The model used information from 

 Table 2.8    The effect of statins on the occurrence of acute myocardial infarction 378   

 Confounders   N  with AMI  HR [95% CI] 

 Unadjusted  –  325 vs. 124  2.1 [1.5–3.0] 
 Propensity score 

adjusted 
 52 main effects, 6 

quadratic terms 
 77 vs. 114  0.69 [0.52–0.93] 
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administrative claims and aimed to support profiling of hospital performance. They 
analyzed 140,120 cases discharged from 4,664 hospitals in 1998. They compared the 
model from claims data with a model using medical record data and found high 
agreement. They also found adequate stability over time (data from years 1995 to 
2001). The final model included 27 variables and had an area under the receiver 
operating characteristic curve of 0.71. The authors conclude that this administrative 
claims-based model is as adequate for profiling hospitals as a medical record model. 
Chapter 21 provides a more in-depth discussion of this research area.   

  2.5 Concluding Remarks  

 We have discussed several areas of potential application of prediction models, 
including public health (targeting of preventive interventions), clinical practice 
(diagnostic work-up, therapeutic decision making), and research (design and analysis 
of RCTs, confounder adjustment in observational studies). More types of applica-
tion can probably be thought of. Obtaining predictions from a model has to be sepa-
rated from obtaining insights in the disease mechanisms and patho-physiological 
processes. Such insights are related to the estimated effects of predictors in a 
model. Often, prediction models serve the latter purpose too, but the primary aim 
considered in this book is outcome prediction.  



  Questions   

   2.1    Examples of applications of prediction models
   (a)     What is a recent application of a prediction model that you encountered? 

Search PubMed [  http://www.ncbi.nlm.nih.gov/sites/entrez    ] if nothing comes 
to mind.  

   (b)     How could you use a prediction model in your own research or in your clinical 
practice?      

   2.2    Cost-effectiveness 
 How could prediction models contribute to targeting of treatment and to 
increasing cost-effectiveness of medical care?  

   2.3    Covariate adjustment in an RCT 
 What are the purposes of covariate adjustment in an RCT? Explain and distin-
guish between logistic and linear regression.  

   2.4    Propensity score
   (a)    What is the definition of a propensity score?  
   (b)     Explain the difference between adjustment for confounders through regression 

analysis and through a propensity score.  
   (c)     When is propensity score specifically appropriate? See papers by Braiman 

and by Cepeda. 55,66                 

Questions 31
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