Chapter 2
Sampling from Known Distributions

In this chapter, we give an overview of different methods that can be used to
generate random variates from a given distribution. Even if inversion should
be the preferred choice for quasi-Monte Carlo users, it is important to be
aware of other methods that are available for that purpose. First of all, in-
version is sometimes slower and more difficult to apply than other methods.
In such cases, Monte Carlo users may prefer these other methods. Also, when
working with predefined functions (e.g., randn in Matlab) to generate obser-
vations from a given distribution, it is quite possible that the underlying
method is not based on inversion. In addition, there are applications for
which the common approach used by people working in that area is to use
something other than inversion (e.g., in computer graphics, for ray genera-
tion). In such cases, even if ultimately the quasi-Monte Carlo user will try to
use inversion instead of these other methods in order to modify code or algo-
rithms appropriately, it is important to understand what the other method
does. Finally, in some cases inversion may not be directly applicable, and an
alternative method needs to be used.

We assume the reader is familiar with common distributions such as those
already encountered in Chap. 1 — exponential, gamma, binomial, and normal
— and will not describe specifically how to handle each one of these in this
chapter. Instead, we wish to describe general techniques that can be used
for a variety of models. More precisely, we describe four general approaches
that can be used for generating random variates from a given (univariate)
distribution and then talk about the multivariate case. Much more extensive
coverage of specific distributions and algorithms can be found in [45, 75, 196,
243, 391]. In particular, Luc Devroye’s book (which is out of print) can be
downloaded from his Web page [485].

Before we do this, we want to briefly discuss a few distributions that are
often encountered in simulation models.
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2.1 Common distributions arising in stochastic models

Our goal in this section is simply to talk about a few distributions that are
commonly used in stochastic models. Our discussion is by no means extensive,
as we restrict ourselves to distributions arising in the different examples used
throughout the book.

Normal and Lognormal Distribution

The normal distribution arises very often in financial simulation models. We
already saw an example in Sect. 1.6 when discussing equity-linked contracts.
One reason why it arises so often is that the Brownian motion is often used
as a building block to model asset prices, and the increments of a Brownian
motion are normally distributed. Because of the importance of this process,
we give a formal definition before going further. The reader is referred to
[212, 350, 388] for more information.

Definition 2.1. A standard Brownian motion is a continuous-time stochastic
process {B(t),t > 0} with the following properties:

1. B(0) = 0.

2. The increments over disjoint intervals are independent. That is, for r <
s <t <wu, B(u) — B(t) and B(s) — B(r) are independent.

3. The increments are stationary. That is, for any r,s,t > 0, B(r +t) — B(r)
and B(s 4 t) — B(s) have the same probability function, which is normal
with mean p = 0 and variance ¢.

If {B(t),t > 0} is a standard Brownian motion, then for o > 0 and p € R, the
process {oB(t) + ut,t > 0} is a Brownian motion with drift 4 and diffusion
coefficient o.

The simplest financial model that uses a Brownian motion is the lognormal
model encountered in Chap. 1, which amounts to having the asset price S(t)
at time ¢ given by

S(t) = S(0) exp ((,u — 02/2)t + aB(t)) ,

where p and o are the instantaneous return rate and volatility of the asset
price, respectively. Since B(t) ~ N(0,t), we have that S(¢) has a lognormal
distribution with parameters ((u — o?/2)t, ot).

In financial simulations, the multinormal distribution is also often encoun-
tered either when modeling a vector of financial assets — in which case they
are driven by Brownian motions that are correlated — or when looking at a
given asset value at different times.
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Exponential, Gamma, Weibull, and Poisson distributions

The exponential distribution is frequently encountered in simulation models,
partly because Poisson processes are often used to model stochastic processes
that count the occurrence of a certain event — for example, client arrivals
in a queue, molecular reactions in a chemical system, claims arrivals for an
insurance company — and in this case the interarrival time between two
events is known to have an exponential distribution.

The gamma distribution shows up in financial models that include jumps,
as we discuss in Sect. 7.2 of our chapter on financial applications. It also
arises as the distribution of the kth event from a Poisson process and more
generally as a sum of exponential random variables. The Weibull distribution
arises as the minimum of a sample of i.i.d. exponential random variables. All
three distributions can also be used to model failure times.

The Poisson distribution is used to count the number of events in a Poisson
process. An example was discussed in Prob. 1.17. Users may sometimes want
to draw from it directly rather than generating exponential interarrival times
until a certain time limit is reached. Inversion can be used to do that, and
specific aspects of this task are discussed in [129].

Beta distribution

The beta distribution often arises when studying order statistics. More pre-
cisely, it comes up when we look at a sample of n i.i.d. U(0, 1) random vari-
ables u1,...,up, because then the ith smallest observation wu(; has a beta
distribution with parameters (i,n + 1 — ).

Copula-based models

Models based on copulas have become increasingly popular over the last ten
years or so, for instance in biostatistics and risk management [104, 130].
Formally, a copula is a joint distribution C' defined over [0, 1]* and such that
each marginal distribution is a U(0, 1). A theorem by Sklar [404] says that for
any joint CDF F(x1,...,x)) with given marginal CDFs Hy(x1), ..., Hi(zy),
there exists a copula such that we can write

F(xy,...,xp) = C(Hy(x1), ..., Hp(zk)). (2.1)

By writing the joint CDF F(z1,...,x)) in this way, we specify the distribu-
tion in two steps. We start by choosing the marginal distributions and then
introduce the dependence relation between the variables X; via the copula
function C. This formulation also naturally suggests the use of inversion to
generate (z1,...,x). We will come back to copulas in Sect. 2.6.
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2.2 Inversion

This method goes back to the beginnings of Monte Carlo. It was proposed
by von Neumann in a letter to Stan Ulam discussing their “random numbers
work” [95]. We discussed on p. 16 of Chap. 1 how to use inversion for the
exponential distribution. More generally, for a continuous distribution with
CDF F(-), it can be applied as in Fig. 2.1.

1. U +— Rand01().
2. Return X = F~1(U).

Fig. 2.1 Steps to apply inversion for continuous distributions.

This looks very simple, but the applicability and effectiveness of this
method rests on how easy it is to compute the inverse CDF F~!. For the expo-
nential, Weibull (see Prob. 2.2), and other distributions, the inverse function
can be determined rather easily. But for the normal, gamma, beta, and other
distributions, in particular those that do not have closed-form expressions for
the corresponding CDF, inversion cannot be applied directly, and an approx-
imation for F~! must first be determined. For instance, Kennedy and Gentle
discuss rational fraction approximations for the inverse CDF of a normal dis-
tribution [216, pp. 95-96]. In that setting, F'~!(u) can be approximated by a
function of the form [349]

t t? 3 t4
F_l(u)zt+p0+p1 +p22+p33+p44
qo + q1t + qot* + q3t° + qat

for u > 0.5 and constants ¢;,p;, where t = (In(1/u?))*/2. The case u < 0.5
is handled by using the symmetry of the normal pdf, which implies that
F~1(u) = —=F~1(1 — u). Another well-known approximation for the inverse
CDF of a normal, which is particularly popular in finance [145, p. 68], is the
one proposed by Moro [324]. For other distributions, approximations have
been implemented in various software packages and libraries, for example in
Matlab’s statistical toolbox.

For a distribution that is not continuous, inversion is applied as shown
in Fig. 2.2. We give in Fig. 2.3 an example where a simple discrete distri-
bution with P(X = z) equal to 0.22, 0.16, 0.33, and 0.29 for = = 0, 1,2, 3,
respectively, is inverted. If U falls in the interval [0, 0.22), we return X = 0; in
[0,22,0.38), we return X = 1; in [0.38,0.71), we return X = 2; and in [0.71, 1],
we return X = 3. This clearly causes X to have the correct distribution.

Several known discrete distributions are such that inf{y : F(y) > u} can
be determined explicitly. For instance, if X has a geometric distribution with
parameter p, then P(X = z) = p(1 — p)*, where x € {0,1,...}. Therefore,
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1. U « Rand01().
2. Return X = inf{y : F(y) > U}.

Fig. 2.2 Steps to apply inversion for noncontinuous distributions.
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Fig. 2.3 Inverting the CDF of a discrete distribution over {0, 1,2, 3}. The u shown is such
that inversion returns = = 3.

and thus

inf{y : F(y) > u} = inf{y: (1 - (1—p)¥) > u}
inf{fy:1—u>(1-p)¥}

inf{y: (1—u)"/Y>1-p}

inf{y : (1/5) (1 —u) > (1 - p)}
fln(1 - p)/ In(1 — u)]

Just as in the continuous case, though, for some distributions we might
not be able to derive an explicit expression for inf{y : F'(y) > u}. When this
happens, using inversion turns out to be a searching problem, where for a
given U the goal is to quickly find the index ¢ such that

i—1 i
> pi <UD ), (2.2)
j=0 j=0

where p; = P(X = z;), and we assumed the domain of X was {zg,z1,...},

where x; < x4 for all j > 0. (We also assumed that the sum Zj_:lo p; =0.)
As required, the index i satisfying (2.2) is the smallest one such that F'(z;) >
U. Of course, one can perform a simple linear search starting from ¢ = 0
in order to identify the correct index, but more efficient methods can (and
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should) be used. For instance, we can use a binary search rather than a linear
one, or a “bucket scheme” meant to improve on binary search [45].

Even if inversion is sometimes slower than other methods, the fact that
it uses one uniform number per random variate and transforms this number
in a monotone way makes it the preferred choice when used in combination
with quasi-Monte Carlo and other variance reduction techniques. As we will
see below, it also works naturally well with joint distributions specified by
copula functions.

2.3 Acceptance-rejection

Here the idea is to generate random variates from an alternative distribution
and then accept or reject them according to a criterion designed so that over-
all the variates that are output have the correct distribution. More precisely,
to generate random variates with a pdf ¢(z), we first find a function #(x)
that is majoring o (z) over its domain (i.e., t(x) > (z) for all 2) and whose
integral is finite. Note that ¢(z) itself usually is not a density function since

T= /t(x)dx > /gp(m)dm =1, (2.3)

but r(z) := t(x)/T is a density function. The function ¢(z) should be chosen
so that it is easy to generate observations from r(z). The algorithm described
in Fig. 2.4 can then be used.

1. Generate Y having density r(x).
2. Generate U ~ U(0, 1), independent of Y.
3. U < ¢(Y)/t(Y), then return X = Y; otherwise go back to step 1.

Fig. 2.4 Steps for acceptance-rejection.

To understand why acceptance-rejection works, we follow the proof given
in [243, App. 8A]. We first notice that each time we go through the three steps
above, a pair (Y,U) is generated. To be accepted, a pair must be such that
U < ¢o(Y)/t(Y). Hence, an observation X output by this algorithm has the
same distribution as (YU < p(Y)/t(Y)); i.e., the conditional distribution of
Y given that Y is accepted. Therefore,

PY <z,U < p(Y)/t(Y))

PX so) =P < 2lU < o)/1Y) = =55 =25 vy

Now,
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P (Y <z,U< fgf;) = /; P (U < t((j))) r(y)dy = /; f((s))r(y)dy
= % ; e(y)dy = F(Tx)7

where F(x) is the CDF corresponding to ¢(z), and T is as defined in (2.3).
In addition, we have

oY) = ey 1
Plrsts) =) fgrom=¢
Hence P(X < z) = F(x), as required.

Figure 2.5 illustrates the acceptance-rejection method in the case where
o(z) = 122%(1 —x) for 0 < z < 1, which corresponds to the Beta distribution
with parameters & = 3 and 8 = 2. Since the maximum of ¢(x) occurs at
x = 2/3, where ¢(x) = 16/9, this means we can take t(xz) = 16/9, for
x € ]0,1], corresponding to a uniform density r(z) over [0,1]. In Fig. 2.5, we
show ¢(x), t(x), and 200 points corresponding to trials (Y, Ut(Y")). When the
second coordinate Ut(Y) is below ¢(Y'), the point is accepted; otherwise it
is rejected. For this particular sample, 111 points were accepted and 89 were

rejected for a proportion 111/200 = 0.555 of acceptance, not too far from the
theoretical one of 1/T = 9/16 = 0.5625.

0 0.‘1 0‘.2 0.‘3 - 0‘4 0‘.5 0.‘6 0‘.7 0‘.8 0‘5 ] 1
Fig. 2.5 Acceptance-rejection method for ¢(z) = 1222(1 — z) (solid line); t(z) = 16/9 is
the dotted line.

For practical applications, one should obviously try to use a majoring
function ¢(x) that more closely follows the pdf under consideration. By doing
50, the probability 1/T of accepting Y increases, which causes the expected
number of trials to decrease. To illustrate this, Fig. 2.6 gives an example of an
acceptance-rejection algorithm for the Gamma(k, 1) distribution [391, 431].
The majoring function in this case is based on a Laplace distribution and is
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such that
p(z) (0D o — (k= D] + (k= 1)(0 + 1)
2 ~lo=n| (- i ) @

The Laplace distribution with location parameter k—1 and scale parameter
0 — also called double exponential — is described by the pdf [391]

r(z) = Q—IGeXp (W) . (2.5)

The alternative name double exponential comes from the fact that, when
k =1, for > 0 the pdf (2.5) is just a scaled exponential pdf, which is
reflected around the y-axis to get the © < 0 part. The pdf (2.5) is simple
enough that we can easily use inversion to perform Step 1 of the algorithm
described in Fig. 2.6; see Prob. 2.10.

1. Generate a Laplace variate Y with location parameter K — 1 and scale 8 = 1 +
Vak = 3/2.

2. If Y <0, then return to Step 1.

U < Rand01().

4. If U < o(Y)/t(Y), then return Y; otherwise go back to Step 1.

w

Fig. 2.6 Steps describing an acceptance-rejection algorithm for the gamma distribution
with parameters (k, 1), where (-)/t(+) is given in (2.4). At least two uniform numbers are
used every time we go through these four steps.

2.4 Composition

This method can be used when the CDF from which we want to generate
observations can be written as a sum,

F(z) = Z piFi(x), (2.6)

where p; > 0, Y72, p; = 1, and each F;(-) is a CDF. Hence a random vari-
able with a CDF of the form (2.6) is such that with probability p; it has a
distribution determined by F;(-). We can then use the algorithm shown in
Fig. 2.7 to generate variates from a CDF of the form (2.6).

Of course, each of the two steps themselves require that some generating
method be used, for instance inversion based on two independent uniform
numbers U; and Us (one for generating I, the other for X). Note also that,
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1. Generate I according to P(I = i) = p;.
2. Return an observation X having CDF Fj(-) and independent from I.

Fig. 2.7 Steps describing how to use composition to generate random variates.

unlike inversion, we need at least two uniform numbers to generate one vari-
ate.

The composition method arises naturally for mixture distributions, but
it can also be useful for tackling complicated density functions by breaking
them down into different components, in which case p; corresponds to the area
under the curve of the ith component. We illustrate this idea in Example 2.2.

Ezample 2.2. Consider the beta density function ¢(z) = 122%(1 — z) for 0 <
x < 1. Here we can form a piecewise linear function as illustrated in Fig. 2.8.
This function passes through the maximum of p(x) occurring at (2/3,16/9);
the inflection point (1/3,8/9), where the second derivative of ¢(x) becomes
negative; the endpoint (1,0); and the point (1/9,0) obtained by drawing a line
from the inflection point (1/3,8/9) that has the same slope as ¢(z) at that
point. (This slope is given by 4.) The remainder of the area under the curve
of p(z) can then be split into three areas. The area under the curve of the
piecewise linear function can be shown to be 68/81, which means that about
84% of the draws based on the composition method will require generating
observations from a distribution with a piecewise linear pdf, something that
is relatively easy to achieve (see Prob. 2.6). Problem 2.5 at the end of the
chapter asks you to find the corresponding values of p; and F;(z),i=1,...,4,
for Fig. 2.8.

Fig. 2.8 Composition applied to the beta pdf 1222(1 — ). The area under the curve is
partitioned into four pieces.
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2.5 Convolution and other useful identities

The convolution method is useful for random variables that can be written as
a sum of i.i.d. random variables, typically coming from a simpler distribution.
More precisely, we assume X =Y; + ...+ Y, where the Y; are i.i.d. random
variables. Well-known examples are as follows:

1. X ~ Gamma(n, 3): Y; ~ Exp(f).

2. X ~x%(n):Y; = Z2, where Z; ~ N(0,1).

3. X ~ Binomial(n,p): ¥; ~ Bernoulli(p).

4. X ~ Negative Binomial(n, p): Y; ~ Geometric(p).

The main disadvantage of this method is that it requires that n random
variates be generated in order to get a single observation from X.

More generally, relationships between different distributions can be used
for random variate generation. For instance, Fox [126] uses the fact that, for
a sample of n i.i.d. uniform variates in [0, 1], the ith order statistic has a beta
distribution with parameters (i,n + 1 — ). Based on this, he suggests the
method shown in Fig. 2.9 for generating a random variate X ~ Beta(a,b),
where a and b are positive integers.

1. Generate a + b — 1 i.i.d. uniform numbers in (0, 1).
2. Return the ath smallest observation.

Fig. 2.9 Steps for generating a beta variate with parameters (a,b) using ranked data.

Another way of generating a beta variate is to use the fact that if Y7 is a
Gamma(a, 1) and Y3 is a Gamma(b, 1), independent from Y7, then Y7 /(Y7 +
Y3) is a Beta(a, b).

Finally, a clever way of generating normal variates, due to Box and Muller
[36], exploits the idea that the joint pdf of two independent standard normal
variables = and y is given by

1
S0X7Y(x7y) = 2767(12+y2)/27 —o0 <,y < o0.

T
We can then perform a change of variables using polar coordinates — which is
why a variation of this method, due to Marsaglia [301] and based on rejection,
is called the polar method — as follows: r = y/22 4+ y? and 6 = arctan(y/x).
Hence we have x = rcos# and y = rsin#, and the joint pdf of r and 6 is

/|

pro(r) = e/ r>00<60<0m

where |J| is the Jacobian of the transformation given by
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cosf —rsin6
sinf rcos@

’ =rcos’f+rsin®f =r.

Hence pgr,o(r,0) = (r/2m)e~""/2 with corresponding CDF
Fre(r.0) = (0/2m)(1—¢"/2),r>0,0<0 < 2r.

Thus r and € are independent, and we can generate them by inversion as

r=+/—In2(1-"U0U,),

0 = 27TUQ.

Transforming these back into x and y gives us the Box-Muller method de-
scribed in Fig. 2.10. This method is quite popular for generating normal
variates, but users should know that the sample produced when the source of
randomness is a simple LCG has abnormal properties, as is illustrated nicely
in [314].

Uy < Rand01()

Uz < Rand01()

X1« /—2In(1 — Uy) cos(27U2)
Xo — /=2In(1 — Uy) sin(27U2)
return (X1, X2)

Fig. 2.10 Pseudocode for the Box-Muller method. It returns two independent standard
normal variates.

2.6 Multivariate case

Here we consider the problem of generating vectors (z1,...,zx) of observa-
tions with a joint CDF F(x1,...,x%). First, a general approach that can
be used is what we could call nested conditioning [243], where we generate
each variate x1,...,x) successively, starting with x1, for which we need the
marginal distribution Fx, (x) given by

FXl(aj):/ / / o(x1, ..., zk)dzg . . . deeday,

where ©(z1,...,xx) is the joint pdf associated with the CDF F. Once we
have x1, then we generate xo conditionally on x;. That is, we generate an
observation xy from Fx,|x, (z[z1) given by
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Y © o(ry,...,x
FX2|X1($|x1) :/ / / dek...dxgdxg,

where ¢1(x1) is the marginal pdf of X;. We continue like this until the last
variate xy, generated from the conditional distribution

Fxy 0 (@l o).

Of course, for this method to be applicable, we need to be able to determine
the marginal and conditional distributions and have a way of generating
variates from each of them. Also, the efficiency of the method depends heavily
on the order we chose for generating the variates x;. That is, among the k!
possible choices, some might lead to a much faster generation of the vector
(x1,..., k) [391].

Here is a simple example to illustrate this method.

Ezample 2.3. Suppose we want to generate a vector (1, 2z2) having the joint
pdf

0 else. (27)

p(x1,22) = {

We have that the marginal pdf of X is
xp
e1(z1) = / 2dxy = 211, 0<x <1,
0

and thus the marginal CDF of X; is
FXl(l‘l):{E%, 0§$1§1

We must then get the conditional pdf of X5 given X,

1
SOX2|X1<332|331):;; 0<w <u <1,
1
so that the conditional CDF of X5 given X = z1 is
T2
Fx,ix, (z2]21) = 7 0 <y <y,
1
Overall, the algorithm shown in Fig. 2.11 can be used to generate (z1,x2).

Second, an important case to discuss is the multinormal distribution. That

is, suppose we want to generate a vector (z1,...,xx) that follows a multinor-
mal distribution with mean g = (u1,...,u)T and covariance matrix X. In
that case, we can use the fact that if Z = (Z1,...,Z;)T is a vector of i.i.d.

standard normal random variables, then AZ has a multinormal distribution
with mean zero and covariance matrix AAT. Hence, by using a matrix C such
that CC™ = X, we can use the identity
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U; « Rand01()
z1 — VU1

Uz «— Rand01()
zg — 21U2
return(zi, x2)

Fig. 2.11 Pseudocode for using nested conditioning for the simple bivariate distribution
(2.7).

X=pu+CZ,

where X = (x1,...,2;)T. To get a matrix C such that CCT = X, we can use
the lower-triangular matrix obtained from the Cholesky decomposition of X.
As we will see in Chap. 6, other choices might be more suitable when using
quasi—-Monte Carlo sampling.

The third case we discuss is the use of copulas to model a joint distribution.
The general approach to generate a vector (x1, ..., z) of variates having the
joint CDF F(z1,...,2x) given by (2.1) is shown in Fig. 2.12.

Generate (u1,...,ug) according to C.
return z; = H]._l(u]-), j=1,... k.

Fig. 2.12 Steps describing the general approach for generating random variates modeled
using a copula C' and having marginal CDF Hy,..., Hg.

We illustrate with the following two examples how models described by
copulas tend to lend themselves nicely to the use of inversion. More examples
are given in [130, 462], for instance.

Ezample 2.4. Consider a bivariate Gaussian copula. In this case, we have
C(u,v) = B ,(P~ (u), & (v)), where d~! denotes the inverse standard nor-
mal CDF, and @, , represents the CDF of a bivariate normal with correlation
coefficient p, for which the covariance matrix is

(1)

Here, we can generate (Uy,Us) so that they follow C by first generating a
vector (Z1,Zs) from the bivariate normal with correlation p and then set
Uy = @(Z;) and Uy = $(Z3). This works since then we have
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P(Ul S ’U,17U2 S UQ) = P(@(Zl) § uhé(Zg) S Ug)
=P(Z1 <9 (w), Zo < & uz))
= @27,,(@71(’111),@71(’&2)) = C’(ul,uQ).

Note that the second equality in the display above holds because the inverse
transform &' is a continuous and monotonically increasing function. Once
we have (U, Us) with the desired dependence structure — as prescribed
by the copula — then we get X; and X5 by applying the chosen marginal
distribution to U; and Uy. That is, we let X1 = H; '(U1) and Xo = Hy ' (Uy).
This clearly produces a pair (X1, X2) with the correct distribution since

P(Xl § 1’1,X2 S 1’2) = P(Hl_l(Ul) S xl,Hgl(Ug) S ZL'Q)

P(Uy < Hy(z1),Us < Ha(3))
C(H1(z1), Ha(x2)).

Example 2.5. A well-known family of copulas are the Archimedean copulas,
which can be expressed as

Clu,...,ua) = ¢~ (d(ur) + ... + $lur)),

where ¢ is a convex, decreasing function with domain (0, 1] and range [0, 00)
such that ¢(1) = 0, and is called the generator of the copula. A member of
this family is Frank’s bivariate copula, where

(exp(aur) — 1)(exp(awvy) — 1)>
exp(a) — 1 '

Cur,uz) = éln (1 +

For this special case, correlated uniform numbers (U, Us) following this bi-
variate CDF can be generated as in Fig. 2.13, where & = e* [136].

FrankBivCopula(&)
V1 < Rand01()
V5 +— Rand01()
T —a"1 4+ (a—a"1 )V
U — W
Us — logs[T/(T + (1 — &)Us2)]
return (Ui, Usz)

Fig. 2.13 Pseudocode showing how to generate (Ui, Usz) according to Frank’s bivariate
copula.
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Problems

2.1. Show that if {B(t),t > 0} is a standard Brownian motion, then we have
that Cov(B(s), B(t)) = min(s,t) for ¢,s > 0.

2.2. A Weibull random variable has a pdf given by

k rax\k-1 k
_M(L —(@/X)
x) = e ,
#le) ( ) )
where k£ > 0 is the shape parameter and A > 0 is the scale parameter. Describe
an algorithm that uses inversion to generate random variates having a Weibull
distribution with generic parameters (k, A).

2.3. Suppose you want to generate observations from a truncated distribu-
tion. That is, for some real numbers a < b and some pdf ¢(x) (with associated
CDF F(+)), oo < & < 00, you want to generate random variates having the
truncated pdf

(=)
Blz) = Fo-F 0 ST <D
0 else.

Assume the inverse CDF F~1(-) can be computed. Describe an algorithm to
generate variates from the truncated pdf above.

2.4. Describe an algorithm to generate observations from the continuous em-
pirical distribution F;, defined in Prob. 1.15.

2.5. Compute the values of p; and F;(z) for the composition method applied
to the beta pdf ¢(z) = 122%(1 — ) discussed in Example 2.2.

2.6. Consider the pdf that corresponds to the piecewise linear function shown
in Fig. 2.8, which, as discussed in Example 2.2, accounts for about 85% of the
draws when using the composition method. (a) Give an expression for that
pdf. (b) Give an algorithm to generate variates from this pdf using inversion.

2.7. For the beta pdf ¢(x) = 122%(1 — z), 0 < z < 1, implement the
acceptance-rejection approach described on p. 47, and for a sample of 100,000
beta variates compute the average number of uniform variates required to
output one beta variate.

2.8. An example of an acceptance-rejection algorithm to generate random
variates is given in [11, p. 25]. In this case, the goal is to generate three-
dimensional random unit vectors. To do so by acceptance-rejection, the idea
is to generate a random point uniformly in [—1,1)3, accept it if it is within
the unit sphere centered at (0, 0, 0) (and then rescale it so that its length is
one), and reject it otherwise. (a) Prove that this method correctly generates
a random unit vector. (b) What is the expected number of trials required
in order to generate one vector? (c) Use a two-dimensional version of that
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method to perform the Buffon’s needle experiment, which can be used to
estimate 7 as follows [42]. Throw n needles of length 0.5 on a floor with
planks of width 1 and infinite length; estimate = by the fraction n/k, where
k is the number of times the needle fell across a crack in the floor. To simplify
things, assume we want to estimate 1/7 and thus can use the approximation
k/n. Use n = 1000, and verify whether a 95% confidence interval based on
this sample contains 1/7 or not.

2.9. Consider a random variable X having the following probability distri-
bution:

P(X =0) = 0.05,

P(X =1) = 0.10,

P(X =2) =0.15,
Po<X<y)=cly—z)for0<z<y<l

and l <z <y <2

(a) Find the value of ¢ such that the distribution above is a valid probability
distribution. (b) Give an algorithm using inversion to generate random vari-
ates having the distribution above. Make sure the transformation you use is
monotone.

2.10. Consider the Laplace distribution whose pdf is given in (2.5). (a) De-
scribe one way of applying composition to generate Laplace random variates.
(b) Describe how to use inversion to generate Laplace random variates.

2.11. Consider the bivariate distribution under study in the pseudocode given
in Fig. 2.11. Suppose the goal is to estimate p = E(X;+X5) by drawing n i.i.d.
pairs of observations (z;1,x;2) for ¢ = 1,...,n. (a) Compute the variance
of the estimator obtained based on the approach described in Fig. 2.11. (b)
Give pseudocode for the approach that consists in first generating X5 instead
of Xi. (¢) Compare the variance of the estimator for p obtained using the
approach in (b) with the one from (a).

2.12. Consider a multivariate normal vector X with covariance matrix X
having entries of the form o;; = 0;0;p;;, where o? is the variance of X;, for
i =1,...,d, and p;; is the correlation between X; and X; for 1 <1i,5 < d.
Give a formula for the entries of the d x d lower-triangular matrix C obtained
by Cholesky decomposition of X.

2.13. Find the generator ¢ corresponding to the Gumbel-Hougaard copula
[130]
Ol v) = exp { [~ ) + (~ o))}

2.14. Show that the pair (Uy, Us) output by the algorithm described in Fig.
2.13 has the desired distribution.
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