
Lecture 2
Second-Order Differential

Equations

Generally, second-order differential equations with variable coefficients
cannot be solved in terms of the known functions. In this lecture we shall
show that if one solution of the homogeneous equation is known, then its
second solution can be obtained rather easily. Further, by employing the
method of variation of parameters, the general solution of the nonhomo-
geneous equation can be constructed provided two solutions of the corre-
sponding homogeneous equation are known.

Homogeneous equations. For the homogeneous linear DE of
second-order with variable coefficients

y′′ + p1(x)y′ + p2(x)y = 0, (2.1)

where p1(x) and p2(x) are continuous in J, there does not exist any method
to solve it. However, the following results are well-known.

Theorem 2.1. There exist exactly two solutions y1(x) and y2(x) of
(2.1) which are linearly independent (essentially different) in J, i.e., there
does not exist a constant c such that y1(x) = cy2(x) for all x ∈ J.

Theorem 2.2. Two solutions y1(x) and y2(x) of (2.1) are linearly
independent in J if and only if their Wronskian defined by

W (x) = W (y1, y2)(x) =
∣∣∣∣ y1(x) y2(x)

y′
1(x) y′

2(x)

∣∣∣∣ (2.2)

is different from zero for some x = x0 in J.

Theorem 2.3. For the Wronskian defined in (2.2) the following Abel’s
identity holds:

W (x) = W (x0) exp
(
−
∫ x

x0

p1(t)dt

)
, x0 ∈ J. (2.3)

Thus, if Wronskian is zero at some x0 ∈ J, then it is zero for all x ∈ J.

Theorem 2.4. If y1(x) and y2(x) are solutions of (2.1) and c1 and c2

are arbitrary constants, then c1y1(x) + c2y2(x) is also a solution of (2.1).
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Further, if y1(x) and y2(x) are linearly independent, then any solution y(x)
of (2.1) can be written as y(x) = c1y1(x) + c2y2(x), where c1 and c2 are
suitable constants.

Now we shall show that, if one solution y1(x) of (2.1) is known (by
some clever method) then we can employ variation of parameters to find
the second solution of (2.1). For this, we let y(x) = u(x)y1(x) and substitute
this in (2.1), to get

(uy1)′′ + p1(uy1)′ + p2(uy1) = 0,

or
u′′y1 + 2u′y′

1 + uy′′
1 + p1u

′y1 + p1uy′
1 + p2uy1 = 0,

or
u′′y1 + (2y′

1 + p1y1)u′ + (y′′
1 + p1y

′
1 + p2y1)u = 0.

However, since y1 is a solution of (2.1), the above equation with v = u′ is
the same as

y1v
′ + (2y′

1 + p1y1)v = 0, (2.4)

which is a first-order equation, and it can be solved easily provided y1 �= 0
in J. Indeed, multiplying (2.4) by y1, we find

(y2
1v′ + 2y′

1y1v) + p1y
2
1v = 0,

which is the same as
(y2

1v)′ + p1(y2
1v) = 0;

and hence

y2
1v = c exp

(
−
∫ x

p1(t)dt

)
,

or, on taking c = 1,

v(x) =
1

y2
1(x)

exp
(
−
∫ x

p1(t)dt

)
.

Hence, the second solution of (2.1) is

y2(x) = y1(x)
∫ x 1

y2
1(t)

exp
(
−
∫ t

p1(s)ds

)
dt. (2.5)

Example 2.1. It is easy to verify that y1(x) = x2 is a solution of the
DE

x2y′′ − 2xy′ + 2y = 0, x �= 0.

For the second solution we use (2.5), to obtain

y2(x) = x2

∫ x 1
t4

exp
(
−
∫ t(

−2s

s2

)
ds

)
dt = x2

∫ x 1
t4

t2dt = −x.
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We note that the substitution w = y′/y converts (2.1) into a first-order
nonlinear DE

w′ + p1(x)w + p2(x) + w2 = 0. (2.6)

This DE is called Riccati’s equation. In general it is not integrable, but
if a particular solution, say, w1(x) is known, then by the substitution z =
w − w1(x) it can be reduced to Bernoulli’s equation (see Problem 1.6). In
fact, we have

z′ + w′
1(x) + p1(x)(z + w1(x)) + p2(x) + (z + w1(x))2 = 0,

which is the same as

z′ + (p1(x) + 2w1(x))z + z2 = 0. (2.7)

Since this equation can be solved easily to obtain z(x), the solution of (2.6)
takes the form w(x) = w1(x) + z(x).

Example 2.2. It is easy to verify that w1(x) = x is a particular solution
of the Riccati equation

w′ = 1 + x2 − 2xw + w2.

The substitution z = w − x in this equation gives the Bernoulli equation

z′ = z2,

whose general solution is z(x) = 1/(c−x), x �= c. Thus, the general solution
of the given Riccati’s equation is w(x) = x + 1/(c− x), x �= c.

Nonhomogeneous equations. Now we shall find a particular
solution of the nonhomogeneous equation

y′′ + p1(x)y′ + p2(x)y = r(x). (2.8)

For this also we shall apply the method of variation of parameters. Let
y1(x) and y2(x) be two solutions of (2.1). We assume y(x) = c1(x)y1(x) +
c2(x)y2(x) is a solution of (2.8). Note that c1(x) and c2(x) are two unknown
functions, so we can have two sets of conditions which determine c1(x) and
c2(x). Since

y′ = c1y
′
1 + c2y

′
2 + c′1y1 + c′2y2

as a first condition we assume that

c′1y1 + c′2y2 = 0. (2.9)

Thus, we have
y′ = c1y

′
1 + c2y

′
2
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and on differentiation

y′′ = c1y
′′
1 + c2y

′′
2 + c′1y

′
1 + c′2y

′
2.

Substituting these in (2.8), we get

c1(y′′
1 + p1y

′
1 + p2y1) + c2(y′′

2 + p1y
′
2 + p2y2) + (c′1y

′
1 + c′2y

′
2) = r(x).

Clearly, this equation, in view of y1(x) and y2(x) being solutions of (2.1),
is the same as

c′1y
′
1 + c′2y

′
2 = r(x). (2.10)

Solving (2.9), (2.10), we find

c′1 = − r(x)y2(x)∣∣∣∣ y1(x) y2(x)
y′
1(x) y′

2(x)

∣∣∣∣
, c′2 =

r(x)y1(x)∣∣∣∣ y1(x) y2(x)
y′
1(x) y′

2(x)

∣∣∣∣
;

and hence a particular solution of (2.8) is

yp(x) = c1(x)y1(x) + c2(x)y2(x)

= −y1(x)
∫ x r(t)y2(t)∣∣∣∣ y1(t) y2(t)

y′
1(t) y′

2(t)

∣∣∣∣
dt + y2(x)

∫ x r(t)y1(t)∣∣∣∣ y1(t) y2(t)
y′
1(t) y′

2(t)

∣∣∣∣
dt

=
∫ x

H(x, t)r(t)dt,

(2.11)
where

H(x, t) =
∣∣∣∣ y1(t) y2(t)

y1(x) y2(x)

∣∣∣∣
/ ∣∣∣∣ y1(t) y2(t)

y′
1(t) y′

2(t)

∣∣∣∣ . (2.12)

Thus, the general solution of (2.8) is

y(x) = c1y1(x) + c2y2(x) + yp(x). (2.13)

The following properties of the function H(x, t) are immediate:

(i). H(x, t) is defined for all (x, t) ∈ J × J ;

(ii). ∂jH(x, t)/∂xj , j = 0, 1, 2 are continuous for all (x, t) ∈ J × J ;

(iii). for each fixed t ∈ J the function z(x) = H(x, t) is a solution of the
homogeneous DE (2.1) satisfying z(t) = 0, z′(t) = 1; and

(iv). the function

v(x) =
∫ x

x0

H(x, t)r(t)dt
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is a particular solution of the nonhomogeneous DE (2.8) satisfying y(x0) =
y′(x0) = 0.

Example 2.3. Consider the DE

y′′ + y = cotx.

For the corresponding homogeneous DE y′′ + y = 0, sin x and cosx are
solutions. Thus, its general solution can be written as

y(x) = c1 sinx + c2 cosx +
∫ x

∣∣∣∣ sin t cos t
sinx cosx

∣∣∣∣∣∣∣∣ sin t cos t
cos t − sin t

∣∣∣∣
cos t

sin t
dt

= c1 sinx + c2 cosx −
∫ x

(sin t cosx − sin x cos t)
cos t

sin t
dt

= c1 sinx + c2 cosx − cosx sin x + sin x

∫ x 1 − sin2 t

sin t
dt

= c1 sinx + c2 cosx − cosx sin x − sin x

∫ x

sin tdt + sin x

∫ x 1
sin t

dt

= c1 sinx + c2 cosx + sin x

∫ x cosec t(cosec t − cot t)
(cosec t − cot t)

dt

= c1 sinx + c2 cosx + sin x ln[cosecx − cotx].

Finally, we remark that if the functions p1(x), p2(x) and r(x) are contin-
uous on J and x0 ∈ J, then the DE (2.8) together with the initial conditions

y(x0) = y0, y′(x0) = y1 (2.14)

has a unique solution. The problem (2.8), (2.14) is called an initial value
problem. Note that in (2.14) conditions are prescribed at the same point,
namely, x0.

Problems

2.1. Given the solution y1(x), find the second solution of the following
DEs:

(i) (x2 − x)y′′ + (3x − 1)y′ + y = 0 (x �= 0, 1), y1(x) = (x − 1)−1

(ii) x(x − 2)y′′ + 2(x − 1)y′ − 2y = 0 (x �= 0, 2), y1(x) = (1 − x)
(iii) xy′′ − y′ − 4x3y = 0 (x �= 0), y1(x) = exp(x2)
(iv) (1 − x2)y′′ − 2xy′ + 2y = 0 (|x| < 1), y1(x) = x.
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2.2. The differential equation

xy′′ − (x + n)y′ + ny = 0

is interesting because it has an exponential solution and a polynomial so-
lution.

(i) Verify that one solution is y1(x) = ex.

(ii) Show that the second solution has the form y2(x) = cex
∫ x

tne−tdt.
Further, show that with c = −1/n!,

y2(x) = 1 +
x

1!
+

x2

2!
+ · · · + xn

n!
.

Note that y2(x) is the first n + 1 terms of the Taylor series about x = 0 for
ex, that is, for y1(x).

2.3. The differential equation

y′′ + δ(xy′ + y) = 0

occurs in the study of the turbulent flow of a uniform stream past a circular
cylinder. Verify that y1(x) = exp(−δx2/2) is one solution. Find its second
solution.

2.4. Let y1(x) �= 0 and y2(x) be two linearly independent solutions of
the DE (2.1). Show that y(x) = y2(x)/y1(x) is a nonconstant solution of
the DE

y1(x)y′′ + (2y′
1(x) + p1(x)y1(x))y′ = 0.

2.5. Let the function p1(x) be differentiable in J. Show that the substi-
tution y(x) = z(x) exp

(
− 1

2

∫ x
p1(t)dt

)
transforms (2.1) to the differential

equation

z′′ +
(

p2(x) − 1
2
p′1(x) − 1

4
p2
1(x)
)

z = 0.

In particular show that the substitution y(x) = z(x)/
√

x transforms
Bessel’s DE

x2y′′ + xy′ + (x2 − a2)y = 0, (2.15)

where a is a constant (parameter), into a simple DE

z′′ +
(

1 +
1 − 4a2

4x2

)
z = 0. (2.16)

2.6. Let v(x) be the solution of the initial value problem

y′′ + p1y
′ + p2y = 0, y(0) = 0, y′(0) = 1
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where p1 and p2 are constants. Show that the function

y(x) =
∫ x

x0

v(x − t)r(t)dt

is the solution of the nonhomogeneous DE

y′′ + p1y
′ + p2y = r(x)

satisfying y(x0) = y′(x0) = 0.

2.7. Find general solutions of the following nonhomogeneous DEs:

(i) y′′ + 4y = sin 2x

(ii) y′′ + 4y′ + 3y = e−3x

(iii) y′′ + 5y′ + 4y = e−4x.

2.8. Verify that y1(x) = x and y2(x) = 1/x are solutions of

x3y′′ + x2y′ − xy = 0.

Use this information and the variation of parameters method to find the
general solution of

x3y′′ + x2y′ − xy = x/(1 + x).

Answers or Hints

2.1. (i) lnx/(x−1) (ii) (1/2)(1−x) ln[(x−2)/x]−1 (iii) e−x2
(iv)(x/2)×

ln[(1 + x)/(1 − x)] − 1.

2.2. (i) Verify directly (ii) Use (2.5).

2.3. e−δx2/2
∫ x

eδt2/2dt.

2.4. Use y2(x) = y1(x)y(x) and the fact that y1(x) and y2(x) are solu-
tions.

2.5. Verify directly.

2.6. Use Leibniz’s formula:
d
dx

∫ β(x)

α(x) f(x, t)dt = f(x, β(x))dβ
dx − f(x, α(x))dα

dx +
∫ β(x)

α(x)
∂f
∂x (x, t)dt.

2.7. (i) c1 cos 2x + c2 sin 2x − 1
4x cos 2x (ii) c1e

−x + c2e
−3x − 1

2xe−3x

(iii) c1e
−x + c2e

−4x − 1
3xe−4x.

2.8. c1x + (c2/x) + (1/2)[(x − (1/x)) ln(1 + x) − x ln x − 1].
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