Lecture 2

Second-Order Differential
Equations

Generally, second-order differential equations with variable coeflicients
cannot be solved in terms of the known functions. In this lecture we shall
show that if one solution of the homogeneous equation is known, then its
second solution can be obtained rather easily. Further, by employing the
method of variation of parameters, the general solution of the nonhomo-
geneous equation can be constructed provided two solutions of the corre-
sponding homogeneous equation are known.

Homogeneous equations. For the homogeneous linear DE of
second-order with variable coefficients

Y+ pi(x)y’ + pa(x)y =0, (2.1)

where p;(z) and pa(z) are continuous in J, there does not exist any method
to solve it. However, the following results are well-known.

Theorem 2.1. There exist exactly two solutions y;(z) and y2(z) of
(2.1) which are linearly independent (essentially different) in J, i.e., there
does not exist a constant ¢ such that y; (z) = cya(x) for all x € J.

Theorem 2.2. Two solutions yi(z) and ya(x) of (2.1) are linearly
independent in J if and only if their Wronskian defined by

W) = Wionm)(o) = | 210 200 (22)

is different from zero for some x = zq in J.
Theorem 2.3. For the Wronskian defined in (2.2) the following Abel’s
identity holds:

W(x) = W (zo) exp (— / w pl(t)dt> el (2.3)

Thus, if Wronskian is zero at some xg € J, then it is zero for all z € J.

Theorem 2.4. If y;(z) and y2(z) are solutions of (2.1) and ¢; and ¢
are arbitrary constants, then c1y1(x) + coya(z) is also a solution of (2.1).
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Further, if y; (z) and y2(x) are linearly independent, then any solution y(z)
of (2.1) can be written as y(z) = c1y1(x) + caya(x), where ¢ and co are
suitable constants.

Now we shall show that, if one solution y;(z) of (2.1) is known (by
some clever method) then we can employ variation of parameters to find
the second solution of (2.1). For this, we let y(z) = u(z)y1 (x) and substitute
this in (2.1), to get

(uy1)” + p1(uy1)’ + p2(uy1) = 0,
or
u''yy + 2u'y) + uyy + pru'ys + pruy) + pauyr =0,

or
u"y1 + (2y) + py)u + (y) + pryy + payi)u = 0.

However, since y; is a solution of (2.1), the above equation with v = v’ is
the same as
y1v' + (241 + p1y1)v = 0, (2.4)

which is a first-order equation, and it can be solved easily provided y; # 0
in J. Indeed, multiplying (2.4) by y1, we find

(yiv' + 2yiy1v) + pryiv = 0,

which is the same as
(y7v) + p1(yiv) = 0;

T
fo=cosn (- [0,
or, on taking ¢ =1,

o(z) = y%tx) exp (— / . (t)dt) .

Hence, the second solution of (2.1) is

w@ =@ [ e (- [ t pr(s)ds ) . (25)

Example 2.1. 1t is easy to verify that y;(x) = 22 is a solution of the
DE

and hence

22y —2xy' +2y=0, x#0.

For the second solution we use (2.5), to obtain

“1 b2 “1
yz(x):xQ/ 44 OXP <—/ <—S§) ds) dt:a:Z/ t4t2dt=—a:.
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We note that the substitution w = y'/y converts (2.1) into a first-order
nonlinear DE

w' + pr(z)w + pa(z) +w? = 0. (2.6)

This DE is called Riccati’s equation. In general it is not integrable, but
if a particular solution, say, w(x) is known, then by the substitution z =
w — w1 (x) it can be reduced to Bernoulli’s equation (see Problem 1.6). In
fact, we have

2+ wi(z) + pi(2)(z + wi (@) +pa(@) + (2 +wi(2))? = 0,
which is the same as
2+ (p1(z) 4+ 2w (x))z + 22 = 0. (2.7)

Since this equation can be solved easily to obtain z(x), the solution of (2.6)
takes the form w(z) = wy(z) + z(z).

Example 2.2. It is easy to verify that wy (x) = x is a particular solution
of the Riccati equation

w =1+ 2% — 22w + w?.

The substitution z = w — x in this equation gives the Bernoulli equation

whose general solution is z(z) = 1/(c—z), x # c. Thus, the general solution
of the given Riccati’s equation is w(z) =z + 1/(c — x), = # c.

Nonhomogeneous equations. Now we shall find a particular
solution of the nonhomogeneous equation

Y +pi(@)y + pa(x)y = r(x). (2.8)

For this also we shall apply the method of variation of parameters. Let
y1(z) and y2(x) be two solutions of (2.1). We assume y(z) = ¢1(z)y1(z) +
c2(z)y2(x) is a solution of (2.8). Note that ¢;(z) and cz(z) are two unknown
functions, so we can have two sets of conditions which determine ¢ (x) and
co(x). Since

Y = ca1y) + cayy + Sy + e

as a first condition we assume that
yr + chys = 0. (2.9)

Thus, we have
y' = c1y) + oy
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and on differentiation
y" = cryl + ey + iy + chyp.
Substituting these in (2.8), we get
ci(yy +pryt + payr) + ca(ys + prys + paye) + (c1yt + cays) = r(2).

Clearly, this equation, in view of y;(z) and ya(z) being solutions of (2.1),
is the same as
iy + chyp = 1(x). (2.10)

Solving (2.9), (2.10), we find

PR 4 CI1C) o @)
' ‘ yi(z) ye(z) |7 2 ' yi(z)  ya(z) "
yi(z)  ya() yi(z)  ya(w)

Yp(x) = ca@)yi(2) + c2(2)y2(2)
o [T e RO
- b )/ ' y1(t)  ya(t) ‘dt+y2( )/ ' yi(t) () 'dt
yi(t)  ys(t) yi(t)  ys(t)
= ’ H(x,t)r(t)dt,
(2.11)
where
) ya(t) yi(t)  y2(t)
H“”’”“ yi(@) (o) ‘/ ‘ ORI ‘ (2.12)
Thus, the general solution of (2.8) is
y(z) = c1yi(x) + cay2(2) + yp(2). (2.13)

The following properties of the function H(z,t) are immediate:
(i). H(z,t) is defined for all (z,t) € J x J;
(ii). 07H(z,t)/0x7, j =0,1,2 are continuous for all (z,t) € J x J;

(iii). for each fixed ¢t € J the function z(z) = H(z,t) is a solution of the
homogeneous DE (2.1) satisfying z(t) = 0, z/(¢t) = 1; and

(iv). the function

v(z) = /w H(z,t)r(t)dt
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is a particular solution of the nonhomogeneous DE (2.8) satisfying y(z¢) =
y'(z0) =0.
Example 2.3. Consider the DE

y' + 1y = cotx.

For the corresponding homogeneous DE y” + y = 0, sinz and cosz are
solutions. Thus, its general solution can be written as

sint cost
) T | sinx cosx | cost
y(z) = cisinx + cacosx + . )
sint  cost sint

cost —sint

. v . cost
= ¢18inx + cacosT — (sintcosx —sinxcost) |  dt
sint
. ) ) 1 —sin?t
= C1SINX + C3 COST — coSxSINx + sinx int
sin

xT xT
= clsina:+(32cosx—cosxsina:—sinx/ sintdt+sinx/ . tdt
sin

¥ cosect(cosect — cot t)

= c¢1sinx + cycosx +sinx
(cosect — cot t)

= ¢y sinx + ¢y cosx 4 sinx Infcosecx — cot z].

Finally, we remark that if the functions p; (), p2(x) and r(x) are contin-
uous on J and x¢ € J, then the DE (2.8) together with the initial conditions

y(zo) = yo, Y (x0) =01 (2.14)

has a unique solution. The problem (2.8), (2.14) is called an initial value
problem. Note that in (2.14) conditions are prescribed at the same point,
namely, xg.

Problems

2.1. Given the solution y; (z), find the second solution of the following
DEs:
i) (@@ -2y +Br—1)y+y=0 (x#0,1), vyi(x)=(

(
(i) z(@—-2)y"+2(x -1y -2y=0 (x#0,2), wn(z)=
t
(

—~ =R
[S
I
8
S~—

i) 2y’ —y —4ay=0 (z#0), yi(x)=exp(z?)
iv) (1—-22)y" —2zy' +2y=0 (|z[| <1), wi(z)=2z.
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2.2. The differential equation
zy" —(x+n)y +ny=0

is interesting because it has an exponential solution and a polynomial so-
lution.

(i)  Verify that one solution is y1(z) = e”.
(ii) Show that the second solution has the form ya(z) = ce® [ t"e tdt.
Further, show that with ¢ = —1/nl,

x? "

yala) =14 [y ot
Note that yo(x) is the first n + 1 terms of the Taylor series about x = 0 for
e®, that is, for y1(x).

2.3. The differential equation
y' +o(xy +y)=0

occurs in the study of the turbulent flow of a uniform stream past a circular
cylinder. Verify that y;(x) = exp(—dz?/2) is one solution. Find its second
solution.

2.4. Let y1(z) # 0 and y2(x) be two linearly independent solutions of
the DE (2.1). Show that y(z) = y2(z)/y1(z) is a nonconstant solution of
the DE

yi(@)y" + 2y (x) + pi(x)y1(2))y" = 0.

2.5. Let the function p; (z) be differentiable in J. Show that the substi-
tution y(z) = z(z)exp (—3 [“ p1(t)dt) transforms (2.1) to the differential
equation

1 1
4 (o) = Johte) — @) = =o.
In particular show that the substitution y(z) = z(x)/+/z transforms
Bessel’s DE
22y’ +xy + (2% — a®)y =0, (2.15)

where a is a constant (parameter), into a simple DE

1 —4a?
1"
z" + (1 + A2 ) z=0. (2.16)

2.6. Let v(z) be the solution of the initial value problem

Y +piy +py =0, y(0)=0, % (0)=1
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where p; and ps are constants. Show that the function

y(z) = /ﬂﬁ v(x —t)r(t)dt

0
is the solution of the nonhomogeneous DE
Y +py + pay =r(x)

satisfying y(zo) = v/ (zo) = 0.
2.7. Find general solutions of the following nonhomogeneous DEs:

(i) y" 44y =sin2z
(ii) y// 4 4y/ 4 3y — 3%
(iii) o” + 5y’ + 4y = e~ 4=,
2.8. Verify that y;(z) = 2 and ya(z) = 1/x are solutions of

23y + 2%y —ay = 0.

Use this information and the variation of parameters method to find the
general solution of

3y + 2y —ay=2/(1 + ).

Answers or Hints

2.1. (i) Ina/(z—1) (i) (1/2)(1—2)In[(x—2)/z]—1 (iii) e (iv)(z/2) x
In[(1+4+2)/(1 —2)] — 1.

. (i) Verify directly (ii) Use (2.5).
2.3. e 97/2 [T /2

2.4. Use y2(z) = y1(z)y(x) and the fact that y;(x) and ya(z) are solu-
tions.

2.

2.5. Verify directly.

2.6. Use Leibniz’s formula:

LD fa t)dt = f(o, B(2) D — fla,al@) e + [0 5 (@, Dt
2.7. (i) c1cos2x + cosin2z — txcos2x (i) cre™ + coe3* — Lae3
4 2
(i) c1e™™ + o4 — Lae 7.

2.8. cz+ (co/x)+ (1/2)[(x — (1/2))In(1 + ) — xlnx — 1].
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