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Early History of the Pell Equation

2.1 The Cattle Problem of Archimedes

This chapter is devoted to various aspects of the history of the Pell equation
before the work of Lagrange. As this topic has already been dealt with in some
detail by Konen,1 Whitford,2, and Dickson,3 our discussion here will be brief.
We will concentrate on providing a more modern historical perspective and
a somewhat different presentation of this material than that given in these
earlier works.

In 1773, the poet and literary critic Gotthold Ephraim Lessing (1729–1781)
published4 a Greek epigram which he had edited from an Arabic manuscript
in the Herzog-August Library in Wolfenbüttel in northern Germany. The text
of this epigram consists of a heading, followed by a poem of 44 lines made
up of 22 elegiac distichs, a scholium giving a (false) solution, and a lengthy
analysis of the problem by Chr. Leiste. There has been some controversy5

concerning the exact translation of the heading, but it seems that Fraser’s
version,6 given belown, is about as accurate as can be expected.

A problem which Archimedes set in epigrammatic form and sent to
those interested in these matters in Alexandria, in the letter addressed
to Eratosthenes of Cyrene.

The most frequently cited translation of the problem itself is that of Thomas.7

If thou art diligent and wise, O stranger, compute the number of
cattle of the Sun, who once upon a time grazed on the fields of the
Thrinacian isle of Sicily, divided into four herds of different colours,
one milk white, another a glossy black, the third yellow and the last
dappled. In each herd were bulls, mighty in number according to these
proportions: Understand, stranger, that the white bulls were equal to
a half and a third of the black together with the whole of the yellow,
while the black were equal to the fourth part of the dappled and
a fifth, together with, once more, the whole of the yellow. Observe
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further that the remaining bulls, the dappled, were equal to a sixth
part of the white and a seventh, together with all the yellow. These
were the proportions of the cows: The white were precisely equal to the
third part and a fourth of the whole herd of the black; while the black
were equal to the fourth part once more of the dappled and with it a
fifth part, when all, including the bulls went to pasture together. Now
the dappled in four parts8 were equal in number to a fifth part and a
sixth of the yellow herd. Finally the yellow were in number equal to
a sixth part and a seventh of the white herd. If thou canst accurately
tell, O stranger, the number of cattle of the Sun, giving separately the
number of well-fed bulls and again the number of females according
to each colour, thou wouldst not be called unskilled or ignorant of
numbers, but not yet shall thou be numbered among the wise. But
come, understand also all these conditions regarding the cows of the
Sun. When the white bulls mingled their number with the black, they
stood firm, equal in depth and breadth, and the plains of Thrinacia,
stretching far in all ways, were filled with their multitude. Again,
when the yellow and the dappled bulls were gathered into one herd
they stood in such a manner that their number, beginning from one,
grew slowly greater till it completed a triangular figure, there being
no bulls of other colours in their midst nor none of them lacking.
If thou art able, O stranger, to find out all these things and gather
them together in your mind, giving all the relations, thou shalt depart
crowned with glory and knowing that thou hast been adjudged perfect
in this species of wisdom.

Recently, a charming translation9 by Hillion and Lenstra has appeared, which
possesses much of the light-hearted spirit of the original.

This problem is referred to in a scholium to Plato’s Charmides as being
called the Cattle Problem by Archimedes. It may also have been mentioned
in some work of Cicero.10 Since Krumbiegel’s11 criticism of this work in 1880,
it has been customary to regard the problem, now called the Cattle Problem,
as most likely having originated with Archimedes (c. 287–212 BC), but the
poem itself as a Hellenistic fabrication. However, Fraser12 has argued very
convincingly that we should also accept Archimedes as the author of the
poetical form of the problem, and there seeems to be no good reason to dispute
this judgement.

The problem is to find the numbers W,X, Y , and Z of the white, black,
dappled, and yellow bulls, respectively and the numbers w, x, y, and z of the
cows of corresponding colours. We can now write the equations which these
quantities satisfy as

W =
(

1
2

+
1
3

)

X + Z , (2.1)
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X =
(

1
4

+
1
5

)

Y + Z , (2.2)

Y =
(

1
6

+
1
7

)

W + Z , (2.3)

w =
(

1
3

+
1
4

)

(X + x) , (2.4)

x =
(

1
4

+
1
5

)

(Y + y) , (2.5)

y =
(

1
5

+
1
6

)

(Z + z) , (2.6)

z =
(

1
6

+
1
7

)

(W + w) , (2.7)

W +X = � , (2.8)
Y + Z = � . (2.9)

Leiste13 found integral solutions of (2.1), (2.2), and (2.3) as

Y = 1580m , Z = 891m , W = 2226m , X = 1602m , (2.10)

where m is an integer parameter. (This is simply linear algebra.) He then
went on to find solutions to (2.1)–(2.7) for the unknowns that were all 20
times larger than they might be. However,14 if we multiply (2.4) by 4800,
(2.5) by 2800, (2.6) by 1260, and (2.7) by 462 and add, we get

4657w = 2800X + 1260Y + 462Z + 143W .

By using (2.10), we find that m = 4657n, for an integer parameter n. From
this and (2.4)–(2.7), we find that

W = 10366482n , X = 7460514n ,
Y = 7358060n , Z = 4149387n ,
w = 7206360n , x = 4893246n ,
y = 3515820n , z = 5439213n .

(2.11)

Since the coefficients of n have greatest common divisor 1, (2.11) represents
all of the possible solutions of (2.1)–(2.7). As mentioned earlier, Leiste gave a
solution with n = 20 and the scholium,15 with no explanation, gives a solution
for n = 80. Neither of these satisfies (2.8) or (2.9).

It remains to consider (2.8) and (2.9). Since W +X must be a square and

W +X = 4× 957× 4657n ,

we must have n = 957 · 4657U2 = 4456749U2. Also, Y + Z = V (V + 1)/2
means that
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T 2 = 8(Y + Z) + 1 = DU2 + 1 ,

where T = 2V + 1 and

D = 410286423278424 . (2.12)

Thus, in order to solve the Cattle Problem, we must solve the Pell equation
(1.7) of Chapter 1 with D given by (2.12). We will discuss in the next chapter
(Example 3.10) how this problem can be solved.

There has been some dispute16 about the exact wording of the Cattle
Problem, but no significant changes to it have been met with acceptance
by modern scholars. Some doubt has been expressed concerning whether the
second part of the problem actually reduces to a Pell equation. This has to
do with whether to interpret the text of the problem as asking for W +X to
be an integral square or whether the bulls when packed together should fill a
square. As a bull is longer than it is broad, the latter reading would simply ask
that W +X should be a rectangular number. This problem is called Wurm’s
problem,17 as it was solved by him to produce a solution where

W +X = 1409076 · 1485583 .

This suggests, then, that the ratio of the length to the breadth of the bulls
would be 1485583/1409076, which is rather close to 1. As the authors of this
book come from the cattle-producing province of Alberta, we are able to attest
that we have seen many bulls, but never a bull with these proportions, and it
is unlikely that the bulls in Sicily ever had such proportions either. Indeed, as
Dijksterhuis18 has noted, this apparently simplifying assumption is nothing
of the sort, because if we assume that the ratio of the length to the breadth
of a bull is λ, a rational number, then the condition that W +X be a square
becomes W + X is λ times a square, and the supposed simplification of the
problem is lost. Moreover, as Archimedes was far too good a mathematician
not to include in his statement of the problem all of the values needed to solve
it, and no value for λ is provided, we must assume that his intent was that the
second part of the problem should reduce to what we now call a Pell equation.
Although it is only implicit, as far as is currently known, the Cattle Problem
represents the earliest mention in history of a Pell equation.

We are left with a number of questions concerning this remarkable work.
For example, what caused Archimedes to devise it in the first place? Hultsch19

has provided a very clever explanation for this. Apollonius of Perga (c. 262–
c. 190 BC) in his Easy Delivery produced a better approximation to π than
that of Archimedes in his earlier Measurement of the Circle, and it seems that
part of Apollonius’s motivation for doing this was to exhibit his superior skill
in this sort of numerical manipulation. Certainly, he must have performed
more difficult multiplications than those mentioned in the Measurement of
the Circle. Another work of Apollonius concerning the multiplication of large
numbers, preserved within the Synogoge or Collection of Pappus (c. 290–c. 350
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AD), although inspired by Archimedes’s Sand-reckoner , also seems to imply
some criticism of Archimedes’ methods. Thus, it does not seem unreasonable
for Archimedes to have responded by issuing the Cattle Problem as a challenge
to Apollonius and others; for, as we shall see in §3.3, solving the second part
of it involves the manipulation of enormous numbers. This supposition is to
some extent supported by the Cattle Problem’s lightly satirical tone, which is
particularly evident in the mockery displayed in the last lines of the epigram,
which Fraser20 translates as:

If thou findest out these things, and layest them to mind, giving all
the measures of the numbers, go victorious in glory and know in truth
that thou hast been judged consummate in this wisdom at least.

From a mathematician’s perspective, the tone of this provides us with the best
reason to reject the Wurm hypothesis mentioned earlier: his solution is just too
simple to derive. Of course, as Dijksterhuis21 rightly points out, it is impossible
to verify these suppositions, but it is interesting that, as Apollonius spent most
of his career in Alexandria, he might very likely have been there during the
time that the letter containing the problem was sent to Eratosthenes (276–
194 BC). Knorr22 has made the interesting suggestion that Eratosthenes had
composed the first part of the problem and that Archimedes had responded
by sending it back to him with the addition of the second, more difficult part.
This suggestion, however, does not seem to have found much support among
scholars, as most seem to accept Krumbiegel’s earlier judgement23 that “there
is no ground whatever in the poem for... a division of authorship.”

The problem appears to owe some of its inspiration to Homer; for, in Book
XII, lines 127–139, of the Odyssey, the poet wrote24:

Your next landfall will be the island of Thrinacie, where the Sun-god
pastures his large herds and well-fed sheep. There are seven herds of
cattle and as many flocks of beautiful sheep, with fifty head in each.

The Greek word “thrinacian” means three-cornered and was used to designate
the three-cornered Island of Sicily,25 where Archimedes lived. Notice that there
also seems to be a computation problem in Homer’s lines. Any educated Greek
of the time would have recognized this Homeric allusion in the Cattle Problem.

There is also another important question concerning this problem: Could
Archimedes himself solve it? Given our discussion of its solution in §3.3, the
answer must be no. Although the basic idea of how to go about solving it
had been demonstrated by Amthor26 as early as 1880, it was not until the
advent of modern computing devices that it was possible to compute the
enormous numbers representing the size of the various herds. Indeed, as late
as 1964, Beiler27 could write concerning this problem that “stupendous feats of
calculation have been performed and the answers have not yet been completely
computed nor is it likely that they ever will be.” The more important question,
as noted by Vardi,28 is: Did Archimedes know that it had a solution? As we
will see in the next section, this could be the case, but we will likely never know
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for certain. One thing, however, must be borne in mind. In our modern society,
with its very sophisticated mathematics and computers, it is easy to lose sight
of what a remarkable piece of work this is. Given its date of composition and
the state of mathematics (as far as we currently understand it) at this time, it
must be regarded as a work of considerable genius. Who else, but Archimedes,
could have posed it? Moreover, the poem with its lighter side also contributes
something to our understanding of this extraordinary man. In this regard, we
can do no better than to conclude this section with a quote of Fraser.29

The poem... helps us to gain a picture of Archimedes as one who,
for all his extraordinary pre-eminence in his abstract and theoretical
world, possessed a warm and lively human sympathy, and this side
of his character is worthy of emphasis no less than the superlative
tributes to his mathematical genius.

2.2 Further Contributions of the Greeks

The first explicit mention of a Pell equation seems to occur in the work of
Theon of Smyrna. (c. 130 AD)30 If we put s1 = 1 and d1 = 1 and compute

sn+1 = sn + dn, dn+1 = 2sn + dn (n = 1, 2, 3, . . . ) ,

then
d2

n − 2s2n = (−1)n . (2.13)

Of course, Theon does not use the modern notation that we are employing
here, nor did he provide a proof of (2.13), being content instead to simply
verify it for the first few cases. Some further light was shed on these obser-
vations much later by the neoplantonist philosopher Proclus31 (412–485 AD).
He referred to an identity, which in our notation would be expressed as

(2x+ y)2 + y2 = 2x2 + 2(x+ y)2 (2.14)

and appears to appeal to Proposition 10 in Book II of Euclid’s Elements for
a proof. If we rewrite the identity, we get

(2x+ y)2 − 2(x+ y)2 = −(y2 − 2x2) ,

which does provide a proof of (2.13), although Proclus does not say this.
Most mathematical historians agree that both Theon and Proclus appear to
be drawing on a much earlier Pythagorean source for this material. What
is remarkable about these side and diagonal numbers is that they suggest
that the Pythagoreans used the values of dn/sn as a means of producing ever
better rational approximations of

√
2. As the early Greek mathematicians were

interested in the problem of irrationality, it is possible that the existence of
this infinite sequence approaching, but never reaching, the value of

√
2 might
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have been used in producing an early (but incorrect) proof of the irrationality
of this quantity.

In fact, it is possible to use (2.13) to produce a correct proof of the irra-
tionality of

√
2. For, if we assume that

√
2 is rational, then

√
2 = a/b for some

a, b ∈ Z>0. Hence, we can rewrite (2.13) as

bdn + asn =
b2

|bdn − asn| .

Since bdn−asn �= 0 (otherwise (2.13) could not hold), we have |bdn−asn| ≥ 1
and

0 < bdn + asn < b2 . (2.15)

As dn and sn increase beyond any limit, we see that (2.15) is impossible for
all n ∈ Z>0. While this proof seems very simple to us, it is by no means likely
that the Pythagoreans would have discovered it.

Thus, it appears that the early Greeks knew how to produce solutions of
(1.7) when D = 2. It is difficult to say with any certainty that they extended
the idea of side and diagonal numbers any further, but if32 we put D = 3 and
define s1 = 1 and d1 = 2,

sn+1 = sn + dn, dn+1 = 3sn + dn (n = 1, 2, 3, . . . ) ,

we get

dn

sn
=

2
1
,
5
3
,
7
4
,
19
11

,
26
15

,
71
41

,
97
56

,
265
153

,
362
209

,
989
571

,
1351
780

, . . . (2.16)

as n = 1, 2, 3, . . . , 11, . . . . These are exactly the convergents in the simple con-
tinued fraction expansion (see §3.2) of

√
3. Furthermore, in the Measurement

of the Circle, Archimedes33 introduces with no explanation the inequality

265
153

<
√

3 <
1351
780

. (2.17)

Note that both of the bounds used in this occur in (2.16). However, there are
several other methods34 by which Archimedes might have discovered (2.17).
What does seem to be clear is that the Greeks were in possession of some
techniques that allowed them to find good rational approximations to

√
n (and

other irrationals) for certain integral values of n. As will be demonstrated in
Chapter 3, simple continued fractions can be used to produce the best rational
approximations to a given irrational. Could the Greeks have been aware, at
least on some level, of these objects? The answer is yes. In Proposition 2 of
Book X of Euclid’s Elements we have:

If, when the less of two unequal magnitudes is continually subtracted
in turn from the greater, that which is left never measures the one
before it, the magnitudes will be incommensurable.
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The process Euclid (c. 325–265 BC) is describing here is called anthyphairesis,
and it has become the subject of considerable scrutiny by modern historians of
early Greek mathematics. Anything like a full discussion of this is well beyond
the scope of this book, and we refer the interested reader to the excellent books
of Knorr35 and Fowler36 for a fascinating treatment of this subject. We will
be content here with a few simple observations.

Euclid’s understanding of a magnitude is what we might call a line segment
and is distinct from what he understood by a number (integer). If we have
two line segments A and B, we will write A < B to denote that the line
segment A is shorter than the line segment B. Now, suppose we are given
two line segments L0 and L1, where L1 < L0. We apply the anthyphairesis
process to L1 and L0; that is, we subtract L1 from L0 a certain number of
times, say q0 times, until we get a remaining line segment L2 < L1. We then
repeat the procedure with L2 and L1, etc. We will get the following sequence
of equations, where the q values are all positive integers:

L0 = q0L1 + L2 (L2 < L1) ,
L1 = q1L2 + L3 (L3 < L2) ,

...
Li = qiLi+1 + Li+2 (Li+2 < Li+1) ,

...

If this process does not terminate (no Ln ever “measures” Ln−1; i.e., no length
of any Ln+1 is ever 0), then L0 and L1 are not commensurable or, in more
modern parlance, L0/L1 is irrational. If we examine this process from a mod-
ern perspective and put

φi =
Li

Li+1
(i = 0, 1, 2, . . . ) ,

then
0 < φi − qi =

Li+2

Li+1
< 1 .

Thus, qi = �φi� and

φi+1 = (φi − qi)−1 > 1 (i = 0, 1, 2, . . . ) ; (2.18)

that is, the anthyphairesis of L0/L1 is given by

L0

L1
= φ0 = [q0, q1, q2, . . . , qi, . . .] ,

the simple continued fraction expansion of φ0 (see §3.2). We call the qi (i =
1, 2, . . . ) the partial quotients in this representation.

We know that there were several instances in which the Greeks might
have employed this process, both geometrically and arithmetically.37 This is
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corroborated by early references to the ancient’s (5th-4th century BC) un-
derstanding that magnitudes are in proportion to each other if they have the
same anthyphairesis (same sequence of partial quotients). Indeed, this seems
to have formed the basis of their concept of proportion. Concerning this,
Knorr38 states:

We can conceive of only one reason for the ancients’ invention of the
anthyphairetic definition of proportion: to extend the formal numerical
definition so that proportions of incommensurable magnitudes may be
included.

We also know that the early Greek mathematicians were very interested in the
problem of incommensurability; in particular, they seem to have spent a lot
of effort in demonstrating the possible incommensurability of line segments
whose ratio is

√
n/
√
m, where m and n are positive integers,39 and they could

construct geometrically such line segments. It is not unreasonable to assume
in their earliest investigations into this that they might have employed the
anthyphairetic process to such line segments. This certainly seems to be what
is behind parts of Books II, X, and XIII of the Elements . The main problem in
doing this, as Fowler40 has observed, would be the difficulty that they would
face in determining the partial quotients that would be needed to express the
anthyphairesis of

√
n/
√
m. This is simply because their arithmetic procedures

would not permit the easy manipulation of the decimal numbers that would
result. Fowler41 has provided a possible and plausible solution to this problem
by making use of concepts that would be known to the ancients. The basis
of his procedure is what he calls the Parmenides Proposition (PP), which
we give below as Proposition 2.1. A form of this result appears in Plato’s
Parmenides and was very likely known to the Greeks of Plato’s time (427–
347 BC). Certainly, it appears in the much later Collection of Pappus and
could easily be derived from results42 in Books VII or V of the Elements . We
give this proposition next.

Proposition 2.1 (The Parmenides Proposition). Let A,B,C,D ∈ Z>0.
If A/B < C/D, then

A

B
<
A+ C

B +D
<
C

D
.

Now, suppose φ is any real number and

A

B
< φ <

C

D
,

where A,B,C,D ∈ Z>0. We have φB − A > 0 and C − φD > 0; hence,
(φB − A)/(C − φD) > 0, and, consequently, there exist positive integers p
and p′ such that p > (φB −A)/(C − φD) and p′ > (C − φD)/(φB −A). This
means that

pC +A

pD +B
> φ and

p′A+ C

p′B +D
< φ .
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These observations lead us to the following simple algorithm, proposed by
Fowler, for finding rational approximations to φ.

Algorithm 2.1:
Input: Suppose φ,A,B,C,D are defined as above, and

A

B
< φ <

C

D
.

1: Compute R = (A+ C)/(B +D). We now have two cases.
2: case 1: R > φ
3: Apply PP repreatedly to find a q so that

A

B
<

(q + 1)A+ C

(q + 1)B +D
< φ <

qA+ C

qB +D
<
C

D
.

4: Return q, C′ = qA+ C, and D′ = qB +D. Note that

A

B
< φ <

C′

D′ <
C

D
.

5: end case
6: case 2: R < φ
7: Apply PP repeatedly to find a q so that

A

B
<
A+ qC

B + qD
< φ <

A+ (q + 1)C
B + (q + 1)D

<
C

D
.

8: Return q, A′ = A+ qC, and B′ = B + qD. Note that

A

B
<
A′

B′ < φ <
C

D
.

9: end case

When this algorithm is applied repeatedly, the cases will strictly alternate;
that is, if a given iteration falls under Case 1, then the next iteration will fall
under Case 2, and vice versa.

In Case 1 we can compute q directly from

q =
⌊
C − φD
φB −A

⌋

and in Case 2 from

q =
⌊
φB −A
C − φD

⌋

.

Suppose we consider the simple case of φ =
√
n/1 =

√
n for some non-

square positive integer n. We begin with
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�φ�
1

< φ <
�φ�+ 1

1
. (2.19)

If φ0 = φ, q0 = �φ0�, and R = �φ� + 1/2 < φ, then q1 = 1/(φ− q0) = 1; but
if R > φ, then we can apply Algorithm 2.1 to (2.19) to obtain

�φ�
1

< φ <
q�φ�+ �φ�+ 1

q + 1
,

where

q =
⌊�φ�+ 1− φ

φ− �φ�
⌋

= q1 − 1 .

Thus, if R < φ, we already have, by (2.19),

q0
1
< φ <

q1q0 + 1
q1

,

and if R > φ, we get
q0
1
< φ <

q1q0 + 1
q1

after the application of Algorithm 2.1 to (2.19).
To proceed further with our analysis we will need a result which is proved

in §3.1. If we put A−2 = 0, A−1 = 1, B−2 = 1, and B−1 = 0 and define
subsequent values for Ai and Bi by the recursive formulas (3.4), then by (3.9)
we have

φi+1 =
Ai−1 − φBi−1

φBi −Ai
. (2.20)

By our previous remarks we may assume that we have, after a possible appli-
cation of Algorithm 2.1 to (2.19),

A0

B0
<
√
n <

A1

B1
.

Also, it is easy to see that if for some i ≥ 1,

Ai−1

Bi−1
<
√
n <

Ai

Bi
, (2.21)

then since φi+1 > 1, we must have R = (Ai +Ai−1)/(Bi +Bi−1) <
√
n. Thus,

on applying Algorithm 2.1 to (2.21), we get

q =
⌊
Ai−1 − φBi−1

φBi −Ai

⌋

= �φi+1� = qi+1

by (2.18) and (2.20). Also,

Ai+1

Bi+1
<
√
n <

Ai

Bi
.
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Similarly, if
Ai

Bi
<
√
n <

Ai−1

Bi−1
,

we find after the application of Algorithm 2.1 (hereR > φ =
√
n) that qi+1 = q

and
Ai

Bi
<
√
n <

Ai+1

Bi+1
.

By induction (a process of deduction not likely known to the early Greek
mathematicians), this procedure of repeated application of Algorithm 2.1 will
produce the anthyphairesis of

√
n/1 = [q0, q1, q2, . . .].

Algorithm 2.1 is evidently a very simple process that anyone with knowl-
edge of the PP could, for example, apply successively to

√
n/1 in the manner

that we have described above. It is highly unlikely, of course, that the Greeks
of the time would have been able to prove formally that this procedure would
produce the anthyphairesis of

√
n/1 as we have done here, but they could

easily have computed the successive convergents Ai/Bi to
√
n and discovered

their anthyphairesis to be [q0, q1, q2, . . . , qi] (i = 0, 1, 2, . . . ). As they would
have known by construction of the convergents that the value of

√
n is al-

ways bounded above and below by two successive convergents, they would
likely conclude (correctly) that the anthyphairesis

√
n/1 is [q0, q1, q2, . . .]. For

small values of n, they would notice the periodic structure of [q0, q1, q2, . . .]
and perhaps, as Fowler43 suggests, be able to prove geometrically that their
conjectured anthyphairesis is correct. The difficulty of checking the inequali-
ties that occur in Algorithm 2.1 would be much diminished because φ =

√
n;

hence, all that would be needed in each case is the determination of whether
or not some rational number a/b exceeded

√
n. This, of course, is possible

simply by checking the value of the integer a2 − nb2. During the process of
checking these values, the Greeks would have discovered that if this process is
carried out far enough for a given n, they would get A2

i − nB2
i = 1 (see §3.3)

for perhaps several values of i, and thereby find solutions to the Pell equation
for D = n. While this would not have been their original objective, they would
nevertheless have been struck by the discovery, just as the Pythagoreans were
in the case of n = 2.

Of course, this is conjectural, and it is possible to develop other plausi-
ble processes whereby the ancients might have been able to find good rational
approximations to

√
n, but it fits very well with what we have been able to de-

duce from the few tantalizing grains of information that have survived time’s
winnowing. Certainly, the Greeks must have been able to perform some cal-
culations like these, at least for small values of n. For example, if Archimedes
had applied this to

√
27 (a better choice than

√
3 for his purpose44), he would

have found that the first few convergents are 5/1, 26/5, 265/51, and 1351/260
and that

265
51

<
√

27 <
1351
260

,
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which, on dividing by 3, yields (2.17). Indeed, 13512 − 3 · 7802 = 1. Thus,
it is reasonable to infer that an expert calculator like Archimedes had some
knowledge about how to solve the Pell equation for small values of D, at least.
Possibly these investigations prompted him to believe that the Pell equation
is always solvable, but that when D is large, this is a very difficult problem.
This would explain his thinking in setting the Cattle Problem.

One other place where the Pell equation is explicitly mentioned by the
Greeks is in Diophantus’ Arithmetica. In Sections 9 and 11 of Book V, he
solved (1.7) for D = 26 and D = 30, respectively. While this might cause us to
think that the later Greeks had found a technique for solving the Pell equation,
it is important to realize that the method given would, in general, only find
rational solutions to the Pell equation, not integral ones. Diophantus also
showed in a lemma in Section 14 of Book VI how one could find, given rationals
x and y and integers D and r, a second rational solution to x2 − Dy2 =
r2. The concentration in the Arithmetica on techniques that only produce
rational solutions to Diophantine equations strongly suggests that the later
Greeks were either not able or not interested in producing integral solutions.
Tannery45 suggested that possibly Diophantus might have considered such
problems, particularly the Pell equation, in the then lost seven books of the
Arithmetica; however, although more recent research46 has revealed some of
these lost books, there is still no evidence that Diophantus ever considered
the problem of finding only integral solutions. This, then, represents the very
unsatisfactory state of our knowledge concerning the ancients’ contributions
to the study of the Pell equation.

2.3 The Indian Mathematicians

The situation is much different when we consider the achievements of the
Indian mathematicians of the early to late middle ages.47 As early as the 5th
century AD, Aryabhata I (b. 476 AD) had developed a method for solving
the linear Diophantine equation

ax− by = c (2.22)

for integers x and y, given positive integers a, b, and c. Aryabhata’s original
problem was to find an integer n which on being divided by a given integer a
leaves a given remainder of r1 and on division by a given b leaves a remainder
r2. On putting c = |r1− r2|, this problem reduces to making either (ax+ c)/b
or (by + c)/a a positive integer according to whether r1 > r2 or r2 > r1.
Aryabhata then goes on to describe a solution technique, called the kuttaka
(pulverizer), which is a variant of the now standard method of solving this
problem by making use of the continued fraction expansion of a/b (see §3.2).
It is often assumed by number theorists that the Greeks must have found a
method of solving (2.22). Indeed, no less of an authority than Thomas Heath48

seems to have believed this.
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Thus, the solution of the equation ax−by = c, given by Aryabhata. . . is
an easy development from Euclid’s method of finding the greatest
common measure or proving by that process that two numbers have
no common factor (Eucl. VII. 1, 2, X. 2, 3), and it would be strange
if the Greeks had not taken this step.

It would not be strange, however, if the Greeks had no interest in the prob-
lem. We have seen that the earlier Greeks were concerned with finding rational
approximations to irrationals, but the problem of finding a rational approxi-
mation to a rational like a/b, would likely not have been regarded as a problem
at all. The later Greeks seemed to be interested only in rational solutions of
Diophantine equations, and this explains why Diophantus never dealt with
(2.22). In any event, what is true is that we have no evidence at all that any
of the Greek mathematicians made the slightest contribution to the problem
of solving (2.22) for integers x and y.

In 628, Brahmagupta (598–670) was the first to discover our identity (1.4);
that is, if

A2 −DB2 = Q (2.23)

and
P 2 −DR2 = S , (2.24)

then
(AP +DBR)2 −D(AR +BP )2 = QS . (2.25)

Today we call this process of multiplying two quadratic forms to yield a
third quadratic form composition, but the Indian mathematicians referred to
it as samasa.

If we have Q = S = ±2, A = P , and B = R, then T = (A2 + DB2)/2 =
A2− (±1), U = AB is a solution of (1.7). Brahmagupta discovered this result
together with those in Table 1.1 and this enabled him to solve the Pell equation
whenever he had any solution (A,B) of

A2 −DB2 = −1 ,±2 ,±4 . (2.26)

However, he could do more than this: He developed an ad hoc way of solving
the Pell equation. For example,49 consider the equation x2 − 92y2 = 1, about
which Brahmagupta declared, “[a person solving this problem] within a year
[is] a mathematician.” He first notes that 102 − 92 = 8 and then composes
this with itself to obtain 1922− 92 · 202 = 64. After dividing this equation by
64, he gets 242 − 92(5/2)2 = 1, and on composing this latter equation with
itself, he obtains 11512 − 92 · 1202 = 1. Brahmagupta also realized that by
using this composition principle he could produce many more solutions to the
Pell equation, once he had one solution.

However, the crowning achievement of Indian mathematics with respect to
the Pell equation was the development of the cyclic method for solving it. The
technique, described by Bhaskara II (1114–1185) in 1150 AD, and its history
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are well described by Selenius50 and the interested reader should consult this
work for further details and references. We will only sketch, with additional
information, a variant (there are several) of the algorithm here.

We will assume that Q,A,B ∈ Z and that (A,B) = 1 in (2.23); this means
that (B,Q) = 1. As the technique for solving (2.22) was known, the step of
finding an integer P such that Q | BP + A could be easily achieved by the
kuttaka process. It follows that since (B,Q) = 1, we must have Q | P 2 −D
and Q | AP +DB. By putting R = 1 in (2.24), we see from (2.25) that

(
AP +DB

Q

)2

−D
(
A+BP

Q

)2

=
P 2 −D
Q

. (2.27)

From this simple observation we can develop the cyclic method for solving the
Pell equation.

Given integers n,An−1, Bn−1, Qn, and Pn where (An−1, Bn−1) = 1 such
that ∣

∣A2
n−1 −DB2

n−1

∣
∣ = Qn ,

find by the kuttaka process a positive51 integer Pn+1 such that |P 2
n+1 −D| is

minimal and Qn | (Pn+1Bn−1 +An−1). Put Qn+1 = |P 2
n+1 −D|/Qn,

An =
An−1Pn+1 +DBn−1

Qn
, Bn =

Bn−1Pn+1 +An−1

Qn
. (2.28)

By (2.27) we get ∣
∣A2

n −DB2
n

∣
∣ = Qn+1 , (2.29)

and (An, Bn) = 1. The latter result follows easily by observing that |AnBn−1−
BnAn−1| = 1. The method terminates when, for some n, Qn+1 = 1, 2, 4
because, as we have explained above, Brahmagupta had already shown how
to solve the Pell equation once any solution of (2.26) is known.

Consider the example of D = 67. We begin with n = 0, A−1 = 1, B−1 = 0,
Q0 = 1, and P0 = 0. We now summarize in Table 2.1 the solution of the Pell
equation by this process, called the cakravala (the circle or cyclic method) by
the Indians.

Table 2.1. Cakravala for D = 67

n Pn Qn An−1 Bn−1 Pn+1 (mod Qn)

0 0 1 1 0 1

1 8 3 8 1 1

2 7 6 41 5 5

3 5 7 90 11 2

4 9 2 221 27
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Since 2212− 67 · 272 = −2, we get T = 2212 +1 = 48842, U = 27 · 221 = 5967
as a solution of the Pell equation T 2 − 67U2 = 1. Concerning this technique,
Hankel52 stated, “It is beyond all praise; it is certainly the finest thing that
was achieved in the theory of numbers before Lagrange.” Unfortunately, the
Indians did not provide a proof that the cyclic method would always work.
They were content, it seems, in the empirical knowledge that it always seemed
to do so, and they used it to solve the Pell equation for D = 61, 67, 97, 103.
It was not until the late 1930s that a proof that the cyclic method would
always produce a value of Qi = 1 was produced by Ayyangar.53 He noted
that this process could be represented as the expansion of

√
D into a type of

semiregular continued fraction which would always be periodic.
We note that if (as is certainly the case for n = 0)

PnBn−1 ≡ An−1 (mod Qn) ,

then, by (2.28),

Pn+1Bn −An = Bn−1(P 2
n+1 −D)/Qn

≡ 0 (mod Qn+1) .

Thus, by induction we may assume that Qn | (PnBn−1 − An−1). Since Qn |
(Pn+1Bn−1 + An−1) by construction and (Qn, Bn−1) | (An−1, Bn−1), we get
(Qn, Bn−1) = 1 and

Pn+1 ≡ −Pn (mod Qn) .

Hence,
Pn+1 = qnQn − Pn (2.30)

for some qn ∈ Z. If we now begin with n = 0 and define

φi =
Pi +

√
D

Qi
(> 0) (i = 0, 1, 2, . . . ) ,

ηi+1 = sign(P 2
i+1 −D) ,

we get

φi+1 =
Pi+1 +

√
D

Qi+1
=

ηi+1Qi√
D − Pi+1

.

By (2.30), √
D − Pi+1

Qi
= φi − qi ;

hence,
φi+1 =

ηi+1

φi − qi . (2.31)

We now investigate the problem of the value of qn.

Theorem 2.2. If we put q = �(Pn +
√
D)/Qn�, then 0 < q ≤ qn ≤ q + 1.
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Proof. Put P = qQn − Pn, P ′ = (q + 1)Qn − Pn and note that P ≡ P ′ ≡
Pn+1 (mod Qn). By definition of q, we have P <

√
D and P ′ >

√
D.

If qn < q, then

0 < Pn+1 = qnQn − Pn < P <
√
D .

Hence, |D− P 2
n+1| = D− P 2

n+1, |D − P 2| = D − P 2. Since Pn+1 < P , we get
D − P 2

n+1 > D − P 2, which is impossible by selection of Pn+1.
If qn > q + 1, then

Pn+1 = qnQn − Pn > P ′ >
√
D .

In this case, |D − P 2
n+1| = P 2

n+1 −D, |D − P ′2| = P ′2 −D, and P 2
n+1 −D >

P ′2 −D, which is also impossible. ��
By Theorem 2.2 and (2.31), we see that

φi+1 > 1 (i = 0, 1, 2, . . . ) .

This means that the expression (2.31) can be used to give us

√
D = q0 +

η1

q1 +
η2

q2 +
η3

q3 + .. .

, (2.32)

a semiregular54 continued fraction expansion of
√
D.

A number of misconceptions continue to circulate concerning the cyclic
method. One of these is that it was rediscovered by Lagrange. This, as Sele-
nius has pointed out, is not the case. Lagrange made use of simple continued
fractions, which would not necessarily be the same as the semiregular contin-
ued fractions implicitly employed by the cyclic method. Often the algorithm
is attributed to Bhaskara II, but as mentioned by Shankar Shukla,55 Bhaskara
made no claim to being the originator of the method, and as Jayadeva, who
worked in the 10th century or earlier, had discovered a variant of the tech-
nique, it seems that it must have been developed much earlier than the time
of Bhaskara. Finally, there is the belief, perhaps due to Tannery,56 that the
cyclic method derives from Greek influences. There seems, in spite of Tan-
nery’s analysis, to be little solid evidence in support of this. The simple fact is
that, as mentioned earlier, we do not really know what the Greeks knew about
the Pell equation. What we do know, however, is that the Indian methods dis-
play a history of steady development and refinement up to and including the
discovery of the cyclic method, and this very strongly suggests that Hankel’s57

position that the Indians evolved the technique by themselves is the correct
one.
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2.4 Fermat and His Successors

The story of the Pell equation resumes with the challenge58 issued in 1657 to
Frénicle in particular and mathematicians in general by Fermat. Fermat had
most likely, through his research, come to recognize the fundamental nature
of the Pell equation. He asks for a proof of the following statement:

Given any [positive] number [D] whatever that is not a square, there
are also given an infinite number of squares such that, if the square is
multiplied into the given number and unity is added to the product,
the result is a square.

It next requests a general rule by which solutions of the problem could be
determined and, as examples, asks for solutions when D = 109, 149, 433.

The story of how the second part of this challenge was answered by
Brouncker and Wallis has been very well told by Weil59 and Mahoney60

and needs no elaboration here. Instead, we will content ourselves with giv-
ing a somewhat different account from that provided by Weil61 concerning
Brouncker’s technique for solving the Pell equation. We emphasize that, al-
though Brouncker’s method is equivalent to what we will describe, he did not
think about it in quite this way.

Let P,Q,R ∈ Z, where Q �= 0,

P 2 −QR = D > 0 ,

and D is not an integral square. Put

F (X,Y ) = QX2 − 2PXY +RY 2 (2.33)

and let ρ and ρ′ denote the zeros of F (x, 1). Since D is not a square, we know
that ρ, ρ′ �∈ Q. Brouncker seems to have used the following result, although
he provides no proof of it.

Proposition 2.3. Suppose ρ > 1 and ρ′ < 0. If F (X,Y ) = 1, where X,Y ∈ Z

and X > Y > 1, then �ρ� < X/Y < �ρ�+ 1.

Proof. Since F (X,Y ) = 1, we may assume that X = qY +Z, where 0 < Z <
Y . Also,

|Q||X − ρ′Y ||X − ρY | = 1 . (2.34)

Since ρ′ < 0, we get |X−ρ′Y | = X−ρ′Y > X > 1. Also,X−ρY = (q−ρ)Y+Z;
thus, if q − ρ < −1, then X − ρY < −Y + Z ≤ −1, and if q − ρ > 0, then
X − ρY > Z ≥ 1. In either case, |X − ρY | > 1, which is impossible by (2.34).
It follows that ρ− 1 < q < ρ or q = �ρ�. ��

If we substitute X = qY + Z in (2.33), we get

F ′(Y, Z) = Q′Y 2 − 2P ′Y Z +R′Z2 ,
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where Q′ = q2Q− 2qP +R, P ′ = P − qQ, R′ = Q, and

P ′2 −Q′R′ = D . (2.35)

It is easy to show that

P ′ −√D
Q′ =

1
P+

√
D

Q − q
,

P ′ +
√
D

Q′ =
1

P−√
D

Q − q
.

Thus, if τ and τ ′ are the zeros of F ′(x, 1), then τ = 1/(ρ− q), τ ′ = 1/(ρ′− q).
If ρ > 1, ρ′ < 0, and q = �ρ�, then τ > 1, τ ′ < 0.

With these preliminary observations, we can now go on to describe
Brouncker’s very ingenious technique. We suppose T, U is a solution of
T 2 −DU2 = 1 and put Q0 = 1, P0 = 0, R0 = −D, X0 = T , and X1 = U . We
have F0(X0, X1) = Q0X

2
0 − 2P0X0X1 +R0X

2
1 = 1 and ρ0 =

√
D, ρ′0 = −√D

are the zeros of F0(x, 1). Putting q0 = �ρ0� and substituting q0X1 + X2 for
X0 in F0(X0, X1) we get F1(X1, X2) = 1 (0 < X2 < X1). Here,

Q1 = q20Q0 − 2q0P0 +R0, P1 = P0 − q0Q0, R1 = Q0 .

We put ρ1 = 1/(ρ0− q0), q1 = �ρ1�, and X1 = q1X2 +X3 (0 < X3 < X2) and
compute F2(X2, X3) (= 1), etc. In fact, if Fi(Xi, Xi+1) = 1 (0 < Xi+1 < Xi),
we put

ρi =
1

ρi−1 − qi−1
, (2.36)

qi = �ρi�, and
Xi = qiXi+1 +Xi+2 (2.37)

in Fi to obtain Fi+1(Xi+1, Xi+2) = 1 with

Qi+1 = (P 2
i+1 −D)/Qi, Pi+1 = Pi − qiQi, Ri+1 = Qi ,

by (2.35).
As the sequence {Xi} is a strictly decreasing (for increasing i) sequence

of positive integers, this process must come to a halt with Xj = 1, Xj+1 = 0
for some j ≥ 0. To find T and U , all that is necessary is to proceed backward
using (2.37) once all the values of q0, q1, q2, . . . , qj−1 have been determined.

We will now exemplify62 the process for the case of

T 2 − 13U2 = 1 . (2.38)

Here,

F0(X0, X1) = X2
0 − 13X2

1 , q0 =
⌊√

13
⌋

= 3 ;

F1(X1, X2) = −4X2
1 + 6X1X2 +X2

2 , q1 =

⌊
3 +

√
13

4

⌋

= 1 ;
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F2(X2, X3) = 3X2
2 − 2X2X3 − 4X2

3 , q2 =

⌊
1 +

√
13

3

⌋

= 1 ;

F3(X3, X4) = −3X2
3 + 4X3X4 + 3X2

4 , q3 =

⌊
2 +

√
13

3

⌋

= 1 ;

F4(X4, X5) = 4X2
4 − 2X4X5 − 3X2

5 , q4 =

⌊
1 +

√
13

4

⌋

= 1 ;

F5(X5, X6) = −X2
5 + 6X5X6 + 4X2

6 , q5 =

⌊
3 +

√
13

1

⌋

= 6 ;

F6(X6, X7) = 4X2
6 − 6X6X7 −X2

7 , q6 =

⌊
3 +

√
13

4

⌋

= 1 ;

F7(X7, X8) = −3X2
7 + 2X7X8 + 4X2

8 , q7 =

⌊
1 +

√
13

3

⌋

= 1 ;

F8(X8, X9) = 3X2
8 − 4X8X9 − 3X2

9 , q8 =

⌊
2 +

√
13

3

⌋

= 1 ;

F9(X9, X10) = −4X2
9 + 2X9X10 + 3X2

10 , q9 =

⌊
1 +

√
13

4

⌋

= 1 ;

F10(X10, X11) = X2
10 − 6X10X11 − 4X2

11 .

We observe that F10(X10, X11) = 1 can be easily achieved with X10 = 1
and X11 = 0. We can now find

X9 = q9X10 +X11 = 1 , X8 = q8X9 +X10 = 2 , X7 = 3 ,
X6 = 5 , X5 = 33 , X4 = 38 ,
X3 = 71 , X2 = 109 , X1 = 180 ,
X0 = 649 ,

and put T = 649, U = 180 as a solution of (2.38).
Brouncker used his method to find solutions of several difficult Pell equa-

tions, including x2 − 433y2 = 1. This was a major feat of calculation, as
the value of y is a number of 19 digits. However, neither he nor Wallis nor
Frénicle was able to provide a proof that the Pell equation could always be
solved (non-trivially) for any positive non-square value of D. Fermat63 took
notice of this and stated that he had such a proof “by means of descente
duly and appropriately applied.” Unfortunately, Fermat provided no further
information concerning his proof than this. Hofmann64 and, with greater suc-
cess, Weil65 have attempted to reconstruct what Fermat’s method might have
been. While we may never really know what this was, it is nevertheless very
likely that Fermat did have a proof. The fact that he selected 109, 149, and
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433 for values of D as challenge examples is particularly suggestive because
the corresponding Pell equations have large values of t and u.

The method of Brouncker was modified and extended by Euler, who re-
alized that, as is apparent from (2.36), continued fractions could be used to
provide an efficient algorithm for solving the Pell equation. However, even
through he had devised all of the important tools, he just fell short of prov-
ing that his method would work for any non-square D. As mentioned earlier,
the development of such a technique was first done by Lagrange in a rather
clumsy work, which he later improved. For further information on this partic-
ularly interesting part of mathematical history, the reader is referred to Weil’s
book. In the next chapter we will describe Lagrange’s method of using simple
continued fractions to solve the Pell equation.66
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