
Preface

In 1902, after three decades that Ludwig Boltzmann formulated the first version of
standard statistical mechanics, Josiah Willard Gibbs shares, in the Preface of his su-
perb Elementary Principles in Statistical Mechanics [1]: “Certainly, one is building
on an insecure foundation . . . .” After such words by Gibbs, it is, still today, uneasy
to feel really comfortable regarding the foundations of statistical mechanics from
first principles. At the time that I take the decision to write the present book, I would
certainly second his words. Several interrelated facts contribute to this inclination.

First, the verification of the notorious fact that all branches of physics deeply
related with theory of probabilities, such as statistical mechanics and quantum me-
chanics, have exhibited, along history and up to now, endless interpretations, rein-
terpretations, and controversies. All this fully complemented by philosophical and
sociological considerations. As one among many evidences, let us mention the elo-
quent words by Gregoire Nicolis and David Daems [2]: “It is the strange privilege
of statistical mechanics to stimulate and nourish passionate discussions related to
its foundations, particularly in connection with irreversibility. Ever since the time of
Boltzmann it has been customary to see the scientific community vacillating between
extreme, mutually contradicting positions.”

Second, I am inclined to think that, together with the central geometrical concept
of symmetry, virtually nothing more basically than energy and entropy deserves
the qualification of pillars of modern physics. Both concepts are amazingly subtle.
However, energy has to do with possibilities, whereas entropy with the probabilities
of those possibilities. Consequently, the concept of entropy is, epistemologically
speaking, one step further. One might remember, for instance, the illustrative dia-
log that Claude Elwood Shannon had with John von Neumann [3]: “My greatest
concern was what to call it. I thought of calling it “information,” but the word was
overly used, so I decided to call it “uncertainty.” When I discussed it with John
von Neumann, he had a better idea. Von Neumann told me, “You should call it
entropy, for two reasons. In the first place your uncertainty function has been used
in statistical mechanics under that name, so it already has a name. In the second
place, and more important, nobody knows what entropy really is, so in a debate you
will always have the advantage.” It certainly is frequently that we hear and read
diversified opinions about what should and what should not be considered as “the
physical entropy,” its connections with heat, information, and so on.
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Third, the dynamical foundations of the standard, Boltzmann–Gibbs (BG) statis-
tical mechanics are, mathematically speaking, not yet fully established. It is known
that, for classical systems, exponentially diverging sensitivity to the initial condi-
tions (i.e., positive Lyapunov exponents almost everywhere, which typically imply
mixing and ergodicity, properties that are consistent with Boltzmann’s celebrated
“molecular chaos hypothesis”) is a sufficient property for having a meaningful sta-
tistical theory. More precisely, one expects that this property implies, for many-body
Hamiltonian systems attaining thermal equilibrium, central features such as the cel-
ebrated exponential weight, introduced and discussed in the 1870s by Ludwig Boltz-
mann (very especially in his 1872 [5] and 1877 [6] papers) in the so called μ-space,
thus recovering, as particular instance, the velocity distribution published in 1860
by James Clerk Maxwell [7]. More generally, the exponential divergence typically
leads to the exponential weight in the full phase space, the so-called �-space first
proposed by Gibbs. However, are hypothesis such as this exponentially diverging
sensitivity necessary? In the first place, are they, in some appropriate logical chain,
necessary for having BG statistical mechanics? I would say yes. But are they also
necessary for having a valid statistical mechanical description at all for any type of
thermodynamic-like systems?1 I would say no. In any case, it is within this belief
that I write the present book. All in all, if such is today the situation for the suc-
cessful, undoubtedly correct for a very wide class of systems, universally used, and
centennial BG statistical mechanics and its associated thermodynamics, what can
we then expect for its possible generalization only 20 years after its first proposal,
in 1988?

Fourth, – last but not least – no logical-deductive mathematical procedure exists,
nor will presumably ever exist, for proposing a new physical theory or for generaliz-
ing a pre-existing one. It is enough to think about Newtonian mechanics, which has
already been generalized along at least two completely different (and compatible)
paths, which eventually led to the theory of relativity and to quantum mechanics.
This fact is consistent with the evidence that there is no unique way of generalizing
a coherent set of axioms. Indeed, the most obvious manner of generalizing it is to
replace one or more of its axioms by weaker ones. And this can be done in more
than one manner, sometimes in infinite manners. So, if the prescriptions of logics
and mathematics are helpful only for analyzing the admissibility of a given gener-
alization, how generalizations of physical theories, or even scientific discoveries in
general, occur? Through all types of heuristic procedures, but mainly – I would say –
through metaphors [11]. Indeed, theoretical and experimental scientific progress
occurs all the time through all types of logical and heuristic procedures, but the
particular progress involved in the generalization of a physical theory immensely, if
not essentially, relies on some kind of metaphor.2 Well-known examples are the idea
of Erwin Schroedinger of generalizing Newtonian mechanics through a wave-like

1 For example, we can read in a recent paper by Giulio Casati and Tomaz Prosen [9] the following
sentence: “While exponential instability is sufficient for a meaningful statistical description, it is
not known whether or not it is also necessary.”
2 I was first led to think about this by Roald Hoffmann in 1995.
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equation inspired by the phenomenon of optical interference, and the discovery by
Friedrich August Kekule of the cyclic structure of benzene inspired by the shape
of the mythological Ouroboros. In other words, generalizations not only use the
classical logical procedures of deduction and induction, but also, and overall, the
specific type of inference referred to as abduction (or abductive reasoning), which
plays the most central role in Charles Sanders Peirce’s semiotics. The procedures
for theoretically proposing a generalization of a physical theory somehow crucially
rely on the construction of what one may call a plausible scenario. The scientific
value and universal acceptability of any such a proposal are of course ultimately dic-
tated by its successful verifiability in natural and/or artificial and/or social systems.
Having made all these considerations the best I could, I hope that it must by now
be very transparent for the reader why, in the beginning of this Preface, I evoked
Gibbs’ words about the fragility of the basis on which we are founding.

The word “nonextensive” that – after some hesitation – I eventually adopted, in
the title of the book and elsewhere, to refer to the present specific generalization of
BG statistical mechanics may – and occasionally does – cause some confusion, and
surely deserves clarification. The whole theory is based on a single concept, namely
the entropy noted Sq which, for the entropic index q equal to unity, reproduces the
standard BG entropy, here noted SBG . The traditional functional SBG is said to be
additive. Indeed, for a system composed of any two (probabilistically) independent
subsystems, the entropy SBG of the sum coincides with the sum of the entropies.
The entropy Sq (q �= 1) violates this property, and is therefore nonadditive. As we
see, entropic additivity depends, from its very definition, only on the functional form
of the entropy in terms of probabilities. The situation is generically quite different
for the thermodynamic concept of extensivity. An entropy of a system or of a sub-
system is said extensive if, for a large number N of its elements (probabilistically
independent or not), the entropy is (asymptotically) proportional to N . Otherwise, it
is nonextensive. This is to say, extensivity depends on both the mathematical form of
the entropic functional and the correlations possibly existing within the elements of
the system. Consequently, for a (sub)system whose elements are either independent
or weakly correlated, the additive entropy SBG is extensive, whereas the nonaddi-
tive entropy Sq (q �= 1) is nonextensive. In contrast, however, for a (sub)system
whose elements are generically strongly correlated, the additive entropy SBG can be
nonextensive, whereas the nonadditive entropy Sq (q �= 1) can be extensive for a
special value of q. Probabilistic systems exist such that Sq is not extensive for any
value of q, either q = 1 or q �= 1. All these statements are illustrated in the body of
the book.3 We shall also see that, consistently, the index q appears to characterize

3 During more than one century, physicists have primarily addressed weakly interacting systems,
and therefore the entropic form which satisfies the thermodynamical requirement of extensivity
is SBG . A regretful consequence of this fact is that entropic additivity and extensivity have been
practically considered as synonyms in many communities, thus generating all kinds of confu-
sions and inadvertences. For example, our own book Nonextensive Entropy—Interdisciplinary
Applications [69] should definitively have been more appropriately entitled Nonadditive Entropy—
Interdisciplinary Applications! Indeed, already in its first chapter, an example is shown where the
nonadditive entropy Sq (q �= 1) is extensive.
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universality classes of nonadditivity, by phrasing this concept similarly to what is
done in the standard theory of critical phenomena. Within each class, one expects to
find infinitely many dynamical systems.

Coming back to the name nonextensive statistical mechanics, would it not be
more appropriate to call it nonadditive statistical mechanics? Certainly yes, if one
focuses on the entropy that is being used. However, there is, on one hand, the fact
that the expression nonextensive statistical mechanics is by now spread in thou-
sands of papers. There is, on the other hand, the fact that important systems whose
approach is expected to benefit from the present generalization of the BG theory are
long-range-interacting many-body Hamiltonian systems. For such systems, the total
energy is well known to be nonextensive, even if the extensivity of the entropy can
be preserved by conveniently choosing the value of the index q.

Still at the linguistic and semantic levels, should we refer to Sq as an entropy or
just as an entropic functional or entropic form? And, even before that, why should
such a minor-looking point have any relevance in the first place? The point is that,
in physics, since more than one century, only one entropic functional is considered
“physical” in the thermodynamical sense, namely the BG one. In other areas, such
as cybernetics, control theory, nonlinear dynamical systems, information theory,
many other (well over 20!) entropic functionals have been studied and/or used as
well. In the physical community only the BG form is undoubtfully admitted as
physically meaningful because of its deep connections with thermodynamics. So,
what about Sq in this specific context? A variety of thermodynamical arguments –
extensivity, Clausius inequality, first principle of thermodynamics, and others – that
are presented later on, definitively point Sq as a physical entropy in a quite analogous
sense that SBG surely is. Let us further elaborate this point.

Complexity is nowadays a frequently used yet poorly defined – at least quantita-
tively speaking – concept. It tries to embrace a great variety of scientific and tech-
nological approaches of all types of natural, artificial, and social systems. A name,
plectics, has been coined by Murray Gell-Mann to refer to this emerging science
[12]. One of the main – necessary but by no means sufficient – features of complex-
ity has to do with the fact that both very ordered and very disordered systems are, in
the sense of plectics, considered to be simple, not complex. Ubiquitous phenomena,
such as the origin of life and languages, the growth of cities and computer networks,
citations of scientific papers, co-authorships and co-actorships, displacements of
living beings, financial fluctuations, turbulence, are frequently considered to be
complex phenomena. They all seem to occur close, in some sense, to the frontier
between order and disorder. Most of their basic quantities exhibit nonexponential
behaviors, very frequently power-laws. It happens that the distributions and other
relevant quantities that emerge naturally within the frame of nonextensive statistical
mechanics are precisely of this type, becoming of the exponential type in the q = 1
limit. One of the most typical dynamical situations has to do with the edge of chaos,
occurring in the frontier between regular motion and standard chaos. Since these
two typical regimes would clearly be considered “simple” in the sense of plectics,
one is strongly tempted to consider as “complex” the regime in between, which has
some aspects of the disorder of strong chaos but also some of the order lurking
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nearby.4 Nonextensive statistical mechanics turns out to be appropriate precisely
for that intermediate region, thus suggesting that the entropic index q could be a
convenient manner for quantifying some relevant aspects of complexity, surely not
in all cases but probably so far vast classes of systems. Regular motion and chaos
are time analogs for the space configurations occurring respectively in crystals and
fluids. In this sense, the edge of chaos would be the analog of quasi-crystals, glasses,
spin-glasses, and other amorphous, typically metastable structures. One does not
expect statistical concepts to be intrinsically useful for regular motions and regular
structures. On the contrary, one naturally tends to use probabilistic concepts for
chaos and fluids. These probabilistic concepts and their associated entropy, SBG ,
would typically be the realm of BG statistical mechanics and standard thermody-
namics. It appears that, in the marginal cases, or at least in very many of them,
between great order and great disorder, the statistical procedures can still be used.
However, the associated natural entropy would not anymore be the BG one, but
Sq with q �= 1. It then appears quite naturally the scenario within which BG sta-
tistical mechanics is the microscopic thermodynamical description properly asso-
ciated with Euclidean geometry, whereas nonextensive statistical mechanics would
be the proper counterpart which has privileged connections with (multi)fractal and
similar, hierarchical, statistically scale-invariant, structures (at least asymptotically
speaking). As already mentioned, a paradigmatic case would be those nonlinear
dynamical systems whose largest Lyapunov exponent is neither negative (easily
predictable systems) nor positive (strong chaos) but vanishing instead, e.g., the edge
of chaos (weak chaos5). Standard, equilibrium critical phenomena also deserve a
special comment. Indeed, I have always liked to think and say that “criticality is a
little window through which one can see the nonextensive world.” Many people have
certainly had similar insights. Alberto Robledo, Filippo Caruso, and I have recently
exhibited some rigorous evidences – to be discussed later on – along this line. Not
that there is anything wrong with the usual and successful use of BG concepts to
discuss the neighborhood of criticality in cooperative systems at thermal equilib-
rium! But, if one wants to make a delicate quantification of some of the physical
concepts precisely at the critical point, the nonextensive language appears to be a
privileged one for this task. It may be so for many anomalous systems. Paraphrasing
Angel Plastino’s (A. Plastino Sr.) last statement in his lecture at the 2003 Villasimius
meeting, “for different sizes of screws one must use different screwdrivers”!

A proposal of a generalization of the BG entropy as the physical basis for deal-
ing, in statistical mechanical terms, with some classes of complex systems might –

4 It is frequently encountered nowadays the belief that complexity emerges typically at the edge
of chaos. For instance, the final words of the Abstract of a lecture delivered in September 2005
by Leon O. Chua at the Politecnico di Milano were “Explicit mathematical criteria are given to
identify a relatively small subset of the locally-active parameter region, called the edge of chaos,
where most complex phenomena emerge.” [14].
5 In the present book, the expression “weak chaos” is used in the sense of a sensitivity to the initial
conditions diverging with time slower than exponentially, and not in other senses used currently in
the theory of nonlinear dynamical systems.
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in the view of many – in some sense imply in a new paradigm, whose validity may
or may not be further validated by future progress and verifications. Indeed, we shall
argue in the entire book that q is determined a priori by the microscopic dynamics of
the system. This is in some sense less innocuous than it looks at first sight. Indeed,
this means that the entropy to be used for thermostatistical purposes would be not
universal but would depend on the system or, more precisely, on the nonadditive
universality class to which the system belongs. Whenever a new scientific viewpoint
is proposed, either correct or wrong, it usually attracts quite extreme opinions. One
of the questions that is regularly asked is the following: “Do I really need this? Is it
not possible to work all this out just with the concepts that we already have, and that
have been lengthily tested?”. This type of question is rarely easy to answer, because
it involves the proof without ambiguity that some given result can by no means be
obtained within the traditional theory. However, let me present an analogy, basically
due to Michel Baranger, in order to clarify at least one of the aspects that are relevant
for this nontrivial problem. Suppose one only knows how to handle straight lines and
segments and wants to calculate areas delimited by curves. Does one really need the
Newton–Leibnitz differential and integral calculus? Well, one might approach the
result by approximating the curve with polygonals, and that works reasonably well
in most cases. However, if one wants to better approach reality, one would consider
more and more, shorter and shorter, straight segments. But one would ultimately
want to take an infinity of such infinitely small segments. If one does so, then one
has precisely jumped into the standard differential and integral calculus! How big
was that step epistemologically speaking is a matter of debate, but its practicality
is out of question. The curve that is handled might, in particular, be a straight line
itself (or a finite number of straight pieces). In this case, there is of course no need
to do the limiting process. Let me present a second analogy, this one primarily due
to Angel Ricardo Plastino (A. Plastino Jr.). It was known by ancient astronomers
that the apparent orbits of stars are circles, form that was considered geometrically
“perfect.” The problematic orbits were those of the planets, for instance that of
Mars. Ptolemy proposed a very ingenious way out, the epicycles, i.e., circles turning
around circles. The predictions became of great precision, and astronomers along
centuries developed, with sensible success, the use of dozens of epicycles, each one
on top of the previous one. It remained so until the proposal of Johannes Kepler:
the orbits are well described by ellipses, a form which generalizes the circle by
having an extra parameter, the eccentricity. The eccentricities of the various plan-
ets were determined through fitting with the observational data. We know today,
through Newtonian mechanics, that it would in principle be possible to determine
a priori those eccentricities (the entire orbits, in fact) if we knew all positions and
velocities of the celestial bodies and masses at some time in the past, and if we had a
colossal computer which would be able to handle such data. Not having in fact that
information, nor the computer, astronomers just fit, by using however the correct
functional forms, i.e., the Keplerian ellipses. In few years, virtually all European
astronomers abandoned the use of the complex Ptolemaic epicycles and adopted
the simple Keplerian orbits. We know today, through Fourier transform, that the
periodic motion on one ellipse is totally equivalent to an infinite number of specific
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circular epicycles. So we can proceed either way. It is clear, however, that an ellipse
is by far more practical and concise, even if in principle it can be thought as very
many circles. We must concomitantly “pay the price” of an extra parameter, the
eccentricity.

Newton’s decomposition of white light into the rainbow colors, not only provided
a deeper insight on the nature of what we know today to classically be electromag-
netic waves, but also opened the door to the discovery of infrared and ultraviolet.
While trying to follow the methods of this great master, it is my cherished hope that
the present, nonextensive generalization of Boltzmann–Gibbs statistical mechanics,
may provide a deeper understanding of the standard theory, in addition to proposing
some extension of the domain of applicability of the methods of statistical mechan-
ics. The book is written at a graduate course level, and some basic knowledge of
quantum and statistical mechanics, as well of thermodynamics, is assumed. The
style is however slightly different from a conventional textbook, in the sense that
not all the results that are presented are proved. The quick ongoing development
of the field does not yet allow for such ambitious task. Various relevant points of
the theory are still only partially known and understood. So, here and there we are
obliged to proceed by heuristic arguments. The book is unconventional also in the
sense that here and there historical and other side remarks are included as well.
Some sections of the book, the most basic ones, are presented with all details and
intermediate steps; some others, more advanced or quite lengthy, are presented only
through their main results, and the reader is referred to the original publications to
know more. We hope however that a unified perception of statistical mechanics, its
background, and its basic concepts does emerge.

The book is organized in four parts, namely Part I—Basics or How the theory
works, Part II—Foundations or Why the theory works, Part III—Applications or
What for the theory works, and Part IV—Last (but not least). The first part con-
stitutes a pedagogical introduction to the theory and its background (Chapters 1,
2, and 3). The second part contains the state of the art in its dynamical founda-
tions, in particular how the index (indices) q can be obtained, in some paradigmatic
cases, from microscopic first principles or, alternatively, from mesoscopic principles
(Chapters 4, 5, and 6). The third part is dedicated to list brief presentations of typical
applications of the theory and its concepts, or at least of its functional forms, as well
as possible extensions existing in the literature (Chapter 7). Finally, the fourth part
constitutes an attempt to place the present – intensively evolving, open to further
contributions, improvements, corrections, and insights [13] – theory into contempo-
rary science, by addressing some frequently asked or still unsolved current issues
(Chapter 8). An Appendix with useful formulae has been added at the end, as well
as another one discussing escort distributions and q-expectation values.

Towards this end, it is a genuine pleasure to warmly acknowledge the contri-
butions of M. Gell-Mann, maı̂tre à penser, with whom I have had frequent and
delightfully deep conversations on the subject of nonextensive statistical mechan-
ics . . . as well as on many others. Very many other friends and colleagues have
substantially contributed to the ideas, results, and figures presented in this book.
Those contributions range from insightful questions or remarks – sometimes fairly
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critical – to entire mathematical developments and seminal ideas. Their natures are
so diverse that it becomes an impossible task to duly recognize them all. So, faute
de mieux, I decided to name them in alphabetical order, being certain that I am
by no means doing justice to their enormous and varied intellectual importance. In
all cases, my gratitude could not be deeper. They are S. Abe, G.F.J. Ananos, F.C.
Alcaraz, C. Anteneodo, N. Ay, G. Baker Jr., F. Baldovin, M. Baranger, C. Beck,
I. Bediaga, G. Bemski, A.B. Bishop, H. Blom, B.M. Boghosian, E. Bonderup,
J.P. Boon, E.P. Borges, L. Borland, E. Brezin, B.J.C. Cabral, M.O. Caceres, S.A.
Cannas, A. Carati, M. Casas, G. Casati, N. Caticha, A. Chame, P.-H. Chavanis,
E.G.D. Cohen, A. Coniglio, M. Coutinho Filho, E.M.F. Curado, S. Curilef, S.A.
Dias, A. Erzan, J.D. Farmer, R. Ferreira, M.A. Fuentes, P.-G. de Gennes, A.
Giansanti, P. Grigolini, D.H.E. Gross, G.R. Guerberoff, R. Hanel, H.J. Haubold, R.
Hersh, H.J. Herrmann, H.J. Hilhorst, R. Hoffmann, L.P. Kadanoff, G. Kaniadakis,
T.A. Kaplan, S. Kawasaki, T. Kodama, D. Krakauer, P.T. Landsberg, V. Latora, C.M.
Lattes, E.K. Lenzi, S.V.F. Levy, M.L. Lyra, S.D. Mahanti, A.M. Mariz, J. Marsh, R.
Maynard, G.F. Mazenko, R.S. Mendes, L.C. Mihalcea, L.G. Moyano, J. Naudts,
K. Nelson, F.D. Nobre, J. Nogales, F.A. Oliveira, P.M.C. Oliveira, I. Oppenheim,
A.W. Overhauser, G. Parisi, A. Plastino, A.R. Plastino, A. Pluchino, D. Prato, P.
Quarati, S.M.D. Queiros, A.K. Rajagopal, A. Rapisarda, M.A. Rego-Monteiro, A.
Robledo, A. Rodriguez, S. Ruffo, G. Ruiz, S.R.A. Salinas, Y. Sato, V. Schwammle,
L.R. da Silva, R.N. Silver, A.M.C. Souza, H.E. Stanley, D.A. Stariolo, D. Stauffer,
S. Steinberg, R. Stinchcombe, H. Suyari, H.L. Swinney, F.A. Tamarit, S. Thurner, U.
Tirnakli, R. Toral, A.C. Tsallis, A.F. Tsallis, S. Umarov, M.E. Vares, M.C.S. Vieira,
C. Vignat, J. Villain, B. Widom, G. Wilk, H.O. Wio, I.I. Zovko. Unavoidably, I must
have forgotten to mention some – this idea started developing more than two decades
ago! –: to them my most genuine apologies. Finally, as in virtually all the fields of
science and very especially during the first stages of any new development, there are
also a few colleagues whose intentions have not been – I confess – very transparent
to me. But they have nevertheless – perhaps even unwillingly – contributed to the
progress of the ideas that are presented in this book. They surely know who they are.
My gratitude goes to them as well: it belongs to human nature to generate fruitful
ideas through all types of manners.

Along the years I have relevantly benefited from the partial financial support
of various Agencies, especially the Brazilian CNPq, FAPERJ, PRONEX/MCT and
CAPES, the USA NSF, SFI, SI International and AFRL, the Italian INFN and
INFM, among others. I am indebted to all of them.

Finally, some of the figures that are presented in the present book have been re-
produced from various publications indicated case by case. I gratefully acknowledge
the gracious authorization from their authors to do so.

In the mind of its author, a book, like a living organism, never stops evolving.

Rio de Janeiro and Santa Fe – New Mexico, through the period 2004–2008

C. T.
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