
Chapter 2
Learning with Boltzmann–Gibbs Statistical
Mechanics
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2.1 Boltzmann–Gibbs Entropy

2.1.1 Entropic Forms

The entropic forms (1.1) and (1.3) that we have introduced in Chapter 1 correspond
to the case where the (microscopic) states of the system are discrete. There are,
however, cases in which the appropriate variables are continuous. For these, the BG
entropy takes the form

SBG = −k
∫

dx p(x) ln[σ p(x)] , (2.1)

with

∫
dx p(x) = 1 , (2.2)

where x/σ ∈ R
D , D ≥ 1 being the dimension of the full space of microscopic

states (called Gibbs � phase-space for classical Hamiltonian systems). Typically x
carries physical units. The constant σ carries the same physical units as x , so that
x/σ is a dimensionless quantity (we adopt from now on the notation [x] = [σ ],
hence [x/σ ] = 1). For example, if we are dealing with an isolated classical N -body
Hamiltonian system of point masses interacting among them in d dimensions, we
may use σ = �

Nd . This standard choice comes of course from the fact that, at
a sufficiently small scale, Newtonian mechanics becomes incorrect and we must
rely on quantum mechanics. In this case, D = 2d N , where each of the d pairs of
components of momentum and position of each of the N particles has been taken
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20 2 Learning with Boltzmann–Gibbs Statistical Mechanics

into account (we recall that [momentum][posi tion] = [�]). For the case of equal
probabilities (i.e., p(x) = 1/�, where � is the hypervolume of the admissible
D-dimensional space), we have

SBG = k ln(�/σ ) . (2.3)

A particular case of p(x) is the following one:

p(x) =
W∑

i=1

pi 
(x − xi ) (W ≡ �/σ ) , (2.4)

where 
(x−xi ) denotes a normalized uniform distribution centered on xi and whose
“width” is σ (hence its height is 1/σ ). In this case, Eqs. (2.1), (2.2) and (2.3) pre-
cisely recover Eqs. (1.1), (1.2) and (1.3).

In both discrete and continuous cases that we have addressed until now, we
were considering classical systems in the sense that all physical observables are
real quantities and not operators. However, for intrinsically quantum systems, we
must generalize the concept. In that case, the BG entropic form is to be written (as
first introduced by von Neumann) in the following manner:

SBG = −k T rρ ln ρ , (2.5)

with

T rρ = 1 , (2.6)

where ρ is the density matrix acting on a W -dimensional Hilbert vectorial space
(typically associated with the solutions of the Schroedinger equation with the chosen
boundary conditions; in fact, quite frequently we have W → ∞).

A particular case of ρ is when it is diagonal, i.e., the following one:

ρi j = pi δi j , (2.7)

where δi j denotes Kroenecker’s delta function. In this case, Eqs. (2.5) and (2.6)
exactly recover Eqs. (1.1) and (1.2).

All three entropic forms (1.1), (2.1), and (2.5) will be generically referred in the
present book as BG-entropy because they are all based on a logarithmic measure
for disorder. Although we shall use one or the other for specific purposes, we shall
mainly address the simple form expressed in Eq. (1.1).
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2.1.2 Properties

2.1.2.1 Non-negativity

If we know with certainty the state of the system, then pi0 = 1, and pi =
0,∀ i �= i0. Then it follows that SBG = 0, where we have taken into account that
limx→0(x ln x) = 0. In any other case, we have pi < 1 for at least two different
values of i . We can therefore write Eq. (1.1) as follows:

SBG = −k〈ln pi 〉 = k
〈

ln
1

pi

〉
, (2.8)

where 〈· · · 〉 ≡ ∑W
i=1 pi (. . .) is the standard mean value. Since ln(1/pi ) > 0 (∀i), it

clearly follows that SBG is positive.

2.1.2.2 Maximal at Equal Probabilities

Energy is a concept which definitively takes into account the physical nature of the
system. Less so, in some sense, the BG entropy.1 This entropy depends of course
on the total number of possible microscopic configurations of the system, but it is
insensitive to its specific physical support; it only takes into account the (abstract)
probabilistic information on the system. Let us make a trivial illustration: a spin
that can be up or down (with regard to some external magnetic field), a coin that
comes head or tail, and a computer bit which can be 0 or 1 are all equivalent for
the concept of entropy. Consequently, entropy is expected to be a functional which
is invariant with regard to any permutations of the states. Indeed, expression (1.1)
exhibits this invariance through the form of a sum. Consequently, if W > 1, the
entropy must have an extremum (maximum or minimum), and this must occur for
equal probabilities. Indeed, this is the unique possibility for which the entropy is
invariant with regard to the permutation of any two states. It is easy to verify that it
is a maximum, and not a minimum. In fact, the identification as a maximum (and
not a minimum) will become obvious when we shall prove, later on, that SBG is a
concave functional. Of course, the expression that SBG takes for equal probabilities
has already been indicated in Eq. (1.3).

2.1.2.3 Expansibility

Adding to a system new possible states with zero probability should not modify
the entropy. This is precisely what is satisfied by SBG if we take into account the

1 This statement is to be revisited for the more general entropy Sq . Indeed, as we shall see, the
index q does depend on some universal aspects of the physical system, e.g., the type of inflexion
of a dissipative unimodal map, or, possibly, the type of power-law decay of long-range interactions
for Hamiltonian systems.
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already-mentioned property limx→0(x ln x) = 0. So, we have that

SBG(p1, p2, . . . , pW , 0) = SBG(p1, p2, . . . , pW ) . (2.9)

2.1.2.4 Additivity

Let O be a physical quantity associated with a given system, and let A and B be
two probabilistically independent subsystems. We shall use the term additive if and
only if O(A + B) = O(A) +O(B). If so, it is clear that if we have N equal systems,
then O(N ) = NO(1), where the notation is self-explanatory. A weaker condition
is O(N ) ∼ N� for N → ∞, with 0 < |�| < ∞, i.e., limN→∞ O(N )/N is
finite (generically � �= O(1)). In this case, the expression asymptotically additive
might be used. Clearly, any observable, which is additive with regard to a given
composition law, is asymptotically additive (with � = O(1)), but the opposite is
not necessarily true.

It is straightforwardly verified that, if A and B are independent, i.e., if the joint
probability satisfies pA+B

i j = pA
i pB

j (∀(i j)), then

SBG(A + B) = SBG(A) + SBG(B) . (2.10)

Therefore, the entropy SBG is additive.

2.1.2.5 Concavity

Let us assume two arbitrary and different probability sets, namely {pi } and {p′
i },

associated with a single system having W states. We define an intermediate proba-
bility set as follows:

p′′
i = λpi + (1 − λ)p′

i (∀i ; 0 < λ < 1) . (2.11)

The functional SBG({pi }) (or any other functional in fact) is said concave if and only
if

SBG({p′′
i }) > λSBG({pi }) + (1 − λ)SBG({p′

i }) . (2.12)

This is indeed satisfied by SBG . The proof is straightforward. Because of its negative
second derivative, the (continuous) function −x ln x (x > 0) satisfies

−p′′
i ln p′′

i > λ(−pi ln pi ) + (1 − λ)(−p′
i ln p′

i ) (∀i ; 0 < λ < 1) . (2.13)

Applying
∑W

i=1 on both sides of this inequality, we immediately obtain Eq. (2.12),
i.e., the concavity of SBG .
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2.1.2.6 Lesche-Stability or Experimental Robustness

An entropic form S({pi }) (or any other functional of the probabilities, in fact) is said
Lesche-stable or experimentally robust [79] if and only if it satisfies the following
continuity property. Two probability distributions {pi } and {p′

i } are said close if they
satisfy the metric property:

D ≡
W∑

i=1

|pi − p′
i | ≤ dε , (2.14)

where dε is a small real number. Then, experimental robustness is verified if, for any
ε > 0, a dε exists such that D ≤ dε implies

R ≡
∣∣∣
S({pi }) − S({p′

i })
Smax

∣∣∣ < ε , (2.15)

where Smax is the maximal value that the entropic form can achieve (assuming its
extremum corresponds to a maximum and not a minimum). For SBG the maximal
value is of course ln W .

Condition (2.15) should be satisfied under all possible situations, including for
W → ∞. This implies that the condition

lim
dε→0

lim
W→∞

∣∣∣
S({pi }) − S({p′

i })
Smax

∣∣∣ = 0 (2.16)

should also be satisfied, in addition to limW→∞ limd→0

∣∣∣ S({pi })−S({p′
i })

Smax

∣∣∣ = 0, which is

of course always satisfied.
What this property essentially guarantees is that similar experiments performed

onto similar physical systems should provide similar results (i.e., a small percentage
discrepancy) for the measured physical functionals. Lesche showed [79] that SBG

is experimentally robust, whereas the Renyi entropy SR
q ≡ ln

∑W
i=1 pq

i
1−q is not. See

Fig. 2.1.
It is in principle possible to use, as a concept for distance, a quantity different

from that used in Eq. (2.14). We could use for instance the following definition:

Dμ ≡
[ W∑

i=1

|pi − p′
i |μ

]1/μ

(μ > 0) . (2.17)

Equation (2.14) corresponds to μ = 1. The Pythagorean metric corresponds to
μ = 2. What about other values of μ? It happens that only for μ ≥ 1 the triangular
inequality is satisfied, and consequently it does constitute a metric. Still, why not
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Fig. 2.1 Illustration of the Lesche-stability of SBG . QC and QE P stand for quasi-certainty and
quasi-equal-probabilities, respectively (see details in [110, 113]).

using values of μ > 1? Because, only for μ = 1, the distance D does not depend
on W , which makes it appropriate for a generic property [80].

We come back in Section 3.2.2 onto this interesting property introduced by
Lesche.

2.1.2.7 Shannon Uniqueness Theorem

Let us assume that an entropic form S({pi }) satisfies the following properties:

(i) S({pi }) is a continuous f unction of {pi }; (2.18)

(i i) S(pi = 1/W,∀i) monotonically increases wi th the total

number of possibili ties W ; (2.19)

(i i i) S(A + B) = S(A) + S(B) i f pA+B
i j = pA

i pB
j ∀(i, j) , (2.20)
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where S(A + B) ≡ S({pA+B
i j }), S(A) ≡ S({pA

i }) (pA
i ≡

WB∑

j=1

pA+B
i j ) ,

and S(B) ≡ S({pB
j }) (pB

j ≡
WA∑

i=1

pA+B
i j ) ;

(iv) S({pi }) = S(pL , pM ) + pL S({pi/pL}) + pM S({pi/pM}) (2.21)

wi th pL ≡
∑

L terms

pi , pM ≡
∑

M terms

pi ,

L + M = W , and pL + pM = 1 .

Then and only then [25]

S({pi }) = −k
W∑

i=1

pi ln pi (k > 0) . (2.22)

2.1.2.8 Khinchin Uniqueness Theorem

Let us assume that an entropic form S({pi }) satisfies the following properties:

(i) S({pi }) is a continuous f unction of {pi }; (2.23)

(i i) S(pi = 1/W,∀i) monotonically increases wi th the total

number of possibili ties W ; (2.24)

(i i i) S(p1, p2, . . . , pW , 0) = S(p1, p2, . . . , pW ); (2.25)

(iv) S(A + B) = S(A) + S(B|A), (2.26)

where S(A + B) ≡ S({pA+B
i j }), S(A) ≡ S({pA

i }) (pA
i ≡

WB∑

j=1

pA+B
i j ) ,

and the conditional entropy S(B|A) ≡
WA∑

i=1

pA
i S({pA+B

i j /pA
i }) .

Then and only then [81]

S({pi }) = −k
W∑

i=1

pi ln pi (k > 0) . (2.27)

2.1.2.9 Composability

A dimensionless entropic form S({pi }) (i.e., whenever expressed in appropriate con-
ventional units, e.g., in units of k) is said composable if the entropy S(A + B)
corresponding to a system composed of two independent subsystems A and B can
be expressed in the form
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S(A + B) = F(S(A), S(B); {η}) , (2.28)

where F(x, y; {η}) is a function which, besides depending symmetrically on (x, y),
depends on a (typically small) set of universal indices {η}. In other words, it does
not depend on the microscopic configurations of A and B. Equivalently, we are able
to macroscopically calculate the entropy of the composed system without any need
of entering into the knowledge of the microscopic states of the subsystems. This
property appears to be a natural one for an entropic form if we desire to use it as a
basis for a statistical mechanics which would naturally connect to thermodynamics.

The BG entropy is composable since it satisfies Eq. (2.10). In other words, we
have F(x, y) = x + y. Since SBG is nonparametric, no index exists.

2.1.2.10 Sensitivity to the Initial Conditions, Entropy Production per Unit
Time, and a Pesin-Like Identity

For a one-dimensional dynamical system (characterized by the variable x) the sen-
sitivity to the initial conditions ξ is defined as follows:

ξ ≡ lim

x(0)→0


x(t)


x(0)
. (2.29)

It can be shown [82, 83] that ξ paradigmatically satisfies the equation

dξ

dt
= λ1 ξ , (2.30)

whose solution is given by

ξ = eλ1 t . (2.31)

(The meaning of the subscript 1 will become transparent later on). If the Lyapunov
exponent λ1 > 0 (λ1 < 0), the system will be said to be strongly chaotic (regu-
lar). The case where λ1 = 0 is sometimes called marginal and will be extensively
addressed later on.

At this point let us briefly review, without proof, some basic notions of nonlinear
dynamical systems. If the system is d-dimensional (i.e., it evolves in a phase-space
whose d-dimensional Lebesgue measure is finite), it has d Lyapunov exponents: d+
of them are positive, d− are negative, and d0 vanish, hence d+ + d− + d0 = d. Let
us order them all from the largest to the smallest: λ

(1)
1 ≥ λ

(2)
1 ≥ . . . ≥ λ

(d+)
1 >

λ
(d++1)
1 = λ

(d++2)
1 = . . . = λ

(d++d0)
1 = 0 > λ

(d++d0+1)
1 ≥ λ

(d++d0+2)
1 ≥ . . . ≥ λ

(d)
1 .

An infinitely small segment (having then a well defined one-dimensional Lebesgue
measure) diverges like eλ

(1)
1 t ; this precisely is the case focused in Eq. (2.31). An in-

finitely small area (having then a well defined two-dimensional Lebesgue measure)
diverges like e(λ(1)

1 +λ
(2)
1 ) t . An infinitely small volume diverges like e(λ(1)

1 +λ
(2)
1 +λ

(3)
1 ) t , and

so on. An infinitely small d-dimensional hypervolume evolves like e[
∑d

r=1 λ
(r )
1 ] t . If
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the system is conservative, i.e., if the infinitely small d-dimensional hypervolume
remains constant with time, then it follows that

∑d
r=1 λ

(r )
1 = 0. An important par-

ticular class of conservative systems is constituted by the so-called symplectic ones.
For these, d is an even integer, and the Lyapunov exponents are coupled two by
two as follows: λ

(1)
1 = −λ

(d)
1 ≥ λ

(2)
1 = −λ

(d−1)
1 ≥ . . . ≥ λ

(d+)
1 = −λ

(d++d0+1)
1 ≥

λ
(d++1)
1 = . . . = λ

(d++d0)
1 = 0. Consistently, such systems have d+ = d− and

d0 is an even integer. The most popular illustration of symplectic systems is the
Hamiltonian systems. They are conservative, which precisely is what the classical
Liouville theorem states!

Do all these degrees of freedom contribute, as time evolves, to the erratic explo-
ration of the phase-space? No, they do not. Only those associated with the d+ posi-
tive Lyapunov exponents, and some of the d0 vanishing ones, do. Consistently, it is
only these which contribute to our loss of information, as time evolves, about the lo-
cation in phase-space of a set of initial conditions. As we shall see, these remarks en-
able an intuitive understanding to the so-called Pesin identity, that we will soon state.

Let us now address the interesting question of the BG entropy production as
time t increases. More than one entropy production can be defined as a function of
time. Two basic choices are the so-called Kolmogorov–Sinai entropy (or KS entropy
rate) [84], based on a single trajectory in phase-space, and the one associated to the
evolution of an ensemble of initial conditions. We shall preferentially use here the
latter, because of its sensibly higher computational tractability. In fact, excepting for
pathological cases, they both coincide.

Let us schematically describe the Kolmogorov–Sinai entropy rate concept or
metric entropy [83, 84, 286]. We first partition the phase-space in two regions,
noted A and B. Then we choose a generic initial condition (the final result will
not depend on this choice) and, applying the specific dynamics of the system at
equal and finite time intervals τ , we generate a long string (infinitely long in prin-
ciple), say AB B B AAB B AB AAA . . .. Then we analyze words of length l = 1.
In our case, there are only two such words, namely A and B. The analysis con-
sists in running along the string a window whose width is l, and determining
the probabilities pA and pB of the words A and B, respectively. Finally, we cal-
culate the entropy SBG(l = 1) = −pA ln pA − pB ln pB . Then we repeat for
words whose length equals l = 2. In our case, there are four such words, namely
AA, AB, B A, B B. Running along the string a l = 2 window letter by letter,
we determine the probabilities pAA, pAB, pB A, pB B , hence the entropy SBG(l =
2) = −pAA ln pAA − pAB ln pAB − pB A ln pB A − pB B ln pB B . Then we repeat for
l = 3, 4, . . . and calculate the corresponding values for SBG(l). We then choose
another two-partition, say A′ and B ′, and repeat the whole procedure. Then we do
in principle for all possible two partitions. Then we go to three partitions, i.e., the
alphabet will be now constituted by three letters, say A, B, and C . We repeat the
previous procedure for l = 1 (corresponding to the words A, B, C), then for l = 2
(corresponding to the words AA, AB, AC, B A, B B, BC, C A, C B, CC), etc. Then
we run windows with l = 3, 4, . . .. We then consider a different three-partition, say
A′, B ′, and C ′ . . . Then we consider four-partitions, and so on. Of all these entropies
we retain the supremum. In the appropriate limits of infinitely fine partitions and
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τ → 0 we obtain finally the largest rate of increase of the BG entropy. This is
basically the Kolmogorov–Sinai entropy rate.

It is not necessary to insist on how deeply inconvenient this definition can be for
any computational implementation! Fortunately, a different type of entropy produc-
tion can be defined [85], whose computational implementation is usually very sim-
ple. It is defined as follows. First partition the phase-space into W little cells (nor-
mally equal in size) and denote them with i = 1, 2, . . . , W . Then randomly place
M initial conditions in one of those W cells (if d+ ≥ 1, normally the result will not
depend on this choice). And then follow, as time evolves, the number of points Mi (t)
in each cell (

∑W
i=1 Mi (t) = M). Define the probability set pi (t) ≡ Mi (t)/M (∀i),

and calculate finally SBG(t) through Eq. (1.1). The entropy production per unit time
is defined as

K1 ≡ lim
t→∞ lim

W→∞
lim

M→∞
SBG(t)

t
. (2.32)

The Pesin identity [86], or more precisely the Pesin-like identity that we shall
use here, states, for large classes of dynamical systems [85],

K1 =
d+∑

r=1

λ
(r )
1 . (2.33)

As it will become gradually clear along the book, this relationship (and its q-
generalization) will play an important role in the determination of the particular
entropic form which is adequate for a given nonlinear dynamical system.

2.2 Kullback–Leibler Relative Entropy

In many problems the question arises on how different are two probability distri-
butions p and p(0); for reasons that will become clear soon, p(0) will be referred to
as the reference. It becomes therefore interesting to define some sort of “distance”
between them. One possibility is of course the distance introduced in Eq. (2.17). In
other words, for say continuous distributions, we can use

Dμ(p, p(0)) ≡
[∫

dx |p(x) − p(0)(x)|μ
]1/μ

(μ > 0) . (2.34)

In general we have that Dμ(p, p(0)) = Dμ(p(0), p), and that Dμ(p, p(0)) = 0
if and only if p(x) = p(0)(x) almost everywhere. We remind, however, that the
triangular inequality is satisfied only for μ ≥ 1. Therefore, only then the distance
constitutes a metric. If p(x) = ∑W

i=1 pi 
(x −xi ) and p(0)(x) = ∑W
i=1 p(0)

i 
(x −xi ),
(see Eq. (2.4)) Eq. (2.34) leads to
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Dμ(p, p(0)) ≡
[ W∑

i=1

|pi − p(0)
i |μ

]1/μ

(μ > 0) , (2.35)

which exactly recovers Eq. (2.17).
For some purposes, this definition of distance is quite convenient. For others, the

Kullback–Leibler entropy [87] has been introduced (see, for instance, [88, 92] and
references therein). It is occasionally called cross entropy, or relative entropy, or
mutual information, and it is defined as follows:

I1(p, p(0)) ≡
∫

dx p(x) ln
[ p(x)

p(0)(x)

]
= −

∫
dx p(x) ln

[ p(0)(x)

p(x)

]
. (2.36)

It can be proved, by using ln r ≥ 1 − 1/r (with r ≡ p(x)/p(0)(x) > 0),
that I1(p, p(0)) ≥ 0, the equality being valid if and only if p(x) = p(0)(x) al-
most everywhere. It is clear that in general I1(p, p(0)) �= I1(p(0), p). This incon-
venience is sometimes overcome by using the symmetrized quantity [I1(p, p(0)) +
I1(p(0), p)]/2.

I1(p, p(0)) (like the distance (2.34)) has the property of being invariant under
variable transformation. Indeed, if we make x = f (y), the measure preserva-
tion implies p(x)dx = p̃(y)dy. Since p(x)/p(0)(x) = p̃(x)/ p̃(0)(x), we have
I1(p, p(0)) = I1( p̃, p̃(0)), which proves the above-mentioned invariance. The BG
entropy in its continuous (not in its discrete) form SBG = − ∫

dx p(x) ln p(x) lacks
this important property. Because of this fact, the BG entropy is advantageously
replaced, in some calculations, by the Kullback–Leibler one. Depending on the
particular problem, the referential distribution p(0)(x) is frequently taken to be a
standard distribution such as the uniform, or Gaussian, or Lorentzian, or Poisson
or BG ones. When p(0)(x) is chosen to be the uniform distribution on a compact
support of Lebesgue measure W , we have the relation

I1(p, 1/W ) = ln W − SBG(p) . (2.37)

Because of relations of this kind, the minimization of the Kulback–Leibler en-
tropy is sometimes used instead of the maximization of the Boltzmann–Gibbs–
Shannon entropy.

Although convenient for a variety of purposes, I1(p, p(0)) has a disadvantage.
It is needed that p(x) and p(0)(x) simultaneously vanish, if they do so for certain
values of x (this property is usually referred to as being absolutely continuous).
Indeed, it is evident that otherwise the quantity I1(p, p(0)) becomes ill-defined. To
overcome this difficulty, a different distance has been defined along the lines of the
Kullback–Leibler entropy. We refer to the so-called Jensen–Shannon divergence.
Although interesting in many respects, its study would take us too far from our
present line. Details can be seen in [93, 94] and references therein.
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Let us mention also that, for discrete probabilities, definition (2.36) leads to

I1(p, p(0)) ≡
W∑

i=1

pi ln
[ pi

p(0)
i

]
= −

W∑

i=1

pi ln
[ p(0)

i

pi

]
. (2.38)

Various other interesting related properties can be found in [95, 96].

2.3 Constraints and Entropy Optimization

The most simple entropic optimization cases are those worked out in what follows.

2.3.1 Imposing the Mean Value of the Variable

In addition to

∫ ∞

0
dx p(x) = 1 , (2.39)

we might know the mean value of the variable, i.e.,

〈x〉 ≡
∫ ∞

0
dx xp(x) = X (1) . (2.40)

By using the Lagrange method to find the optimizing distribution, we define

�[p] ≡ −
∫ ∞

0
dx p(x) ln p(x) − α

∫ ∞

0
dx p(x) − β(1)

∫ ∞

0
dx xp(x) , (2.41)

and then impose δ�[p]/δp(x) = 0. We straightforwardly obtain 1 + ln popt + α +
β(1)x = 0 (opt stands for optimal), hence

popt = e−β(1)x

∫ ∞
0 dx e−β(1)x

= β(1) e−β(1)x , (2.42)

where we have used condition (2.39) to eliminate the Lagrange parameter α. By
using condition (2.40), we obtain the following relation for the Lagrange parameter
β(1):

β(1) = 1

X (1)
, (2.43)

hence, replacing in (2.42),
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popt = e− x/X (1)

X (1)
. (2.44)

2.3.2 Imposing the Mean Value of the Squared Variable

Another simple and quite frequent case is when we know that 〈x〉 = 0. In such case,
in addition to

∫ ∞

−∞
dx p(x) = 1 , (2.45)

we might know the mean value of the squared variable, i.e.,

〈x2〉 ≡
∫ ∞

−∞
dx x2 p(x) = X (2) > 0 . (2.46)

By using, as before, the Lagrange method to find the optimizing distribution, we
define

�[p] ≡ −
∫ ∞

−∞
dx p(x) ln p(x) − α

∫ ∞

−∞
dx p(x) − β(2)

∫ ∞

−∞
dx x2 p(x) , (2.47)

and then impose δ�[p]/δp(x) = 0. We straightforwardly obtain 1 + ln popt + α +
β(2)x2 = 0, hence

popt = e−β(2)x2

∫ ∞
−∞ dx e−β(2)x2

=
√

β(2)

π
e−β(2)x2

, (2.48)

where we have used condition (2.45) to eliminate the Lagrange parameter α.
By using condition (2.46), we obtain the following relation for the Lagrange

parameter β(2):

β(2) = 1

2X (2)
, (2.49)

hence, replacing in (2.48),

popt = e− x2/(2X (2))

√
2π X (2)

. (2.50)

We thus see the very basic connection between Gaussian distributions and BG
entropy.
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2.3.3 Imposing the Mean Values of both the Variable
and Its Square

Let us unify here the two preceding subsections. We impose

∫ ∞

−∞
dx p(x) = 1 (2.51)

and, in addition to this, we know that

〈x〉 ≡
∫ ∞

−∞
dx xp(x) = X (1) , (2.52)

and

〈(x − 〈x〉)2〉 ≡
∫ ∞

−∞
dx (x − 〈x〉)2 p(x) = X (2) − (X (1))2 ≡ M (2) > 0 . (2.53)

By using once again the Lagrange method, we define

�[p] ≡ −
∫ ∞

−∞
dx p(x) ln p(x) − α

∫ ∞

−∞
dx p(x)

−β(1)
∫ ∞

−∞
dx x p(x) − β(2)

∫ ∞

−∞
dx (x − 〈x〉)2 p(x) , (2.54)

and then impose δ�[p]/δp(x) = 0. We straightforwardly obtain 1 + ln popt + α +
β(1)x + β(2)(x − 〈x〉)2 = 0, hence

popt = e−β(1)x−β(2)(x−〈x〉)2

∫ ∞
−∞ dx e−β(1)x−β(2)(x−〈x〉)2

=
√

β(2)

π
e−β(2)(x−〈x〉)2

, (2.55)

where we have used condition (2.51) to eliminate the Lagrange parameter α. By us-
ing conditions (2.52) and (2.53), we obtain the following relations for the Lagrange
parameters β(1) and β(2):

β(1) = 1

X (1)
, (2.56)

and

β(2) = 1

2[X (2) − (X (1))2]
. (2.57)
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Replacing (2.57) in (2.55), we finally obtain

popt = e
− (x−X (1))2

2[X (2)−(X (1))2]
√

2π [X (2) − (X (1))2]
. (2.58)

We see that the only effect of a nonzero mean value of x is to re-center the
Gaussian.

2.3.4 Others

A quite general situation would be to impose, in addition to

∫
dx p(x) = 1 , (2.59)

the constraint
∫

dx f (x) p(x) = F , (2.60)

where f (x) is some known function and F a known number. We obtain

popt = e−β f (x)
∫

dx e−β f (x)
. (2.61)

It is clear that, by appropriately choosing f (x), we can force popt (x) to be virtually
any distribution we wish. For example, by choosing f (x) = |x |γ (γ ∈ R), we
obtain a generic stretched exponential popt (x) ∝ e−β|x |γ ; by choosing f (x) = ln x ,
we obtain for popt (x) a power law. But the use of such procedures hardly has any
epistemological interest at all, since it provides no hint onto the underlying nature
of the problem. Only choices such as f (x) = x or f (x) = x2 are sound since such
constraints correspond to very generic informational features, namely the location
of the center and the width of the distribution. Other choices are, unless some ex-
ceptional fact enters into consideration (e.g., f (x) being a constant of motion of the
system), quite ad hoc and uninteresting. Of course, this mathematical fact is by no
means exclusive of SBG : the same holds for virtually any entropic form.

2.4 Boltzmann–Gibbs Statistical
Mechanics and Thermodynamics

There are many formal manners for deriving the BG entropy and its associated
probability distribution for thermal equilibrium. None of them uses exclusively first
principle arguments, i.e., arguments that entirely remain at the level of mechanics
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(classical, quantum, relativistic, or any other). That surely was, as previously men-
tioned, one of the central scientific goals that Boltzmann pursued his entire life,
but, although he probably had a strong intuition about this point, he died without
succeeding. The difficulties are so heavy that even today we do not know how to
do this. At first sight, this might seem surprising given the fact that SBG and the
BG weight enjoy the universal acceptance that we all know. So, let us illustrate
our statement more precisely. Assume that we have a quite generic many-body
short-range-interacting Hamiltonian. We currently know that its thermal equilibrium
is described by the BG weight. What we still do not know is how to derive this
important result from purely mechanical and statistical logical steps, i.e., without
using a priori generic dynamical hypothesis such as ergodicity, or a priori postu-
lating the validity of macroscopic relations such as some or all of the principles
of thermodynamics. For example, Fisher et al. [97–99] proved long ago, for a vast
class of short-range-interacting Hamiltonians, that the thermal equilibrium physical
quantities are computable within standard BG statistical mechanics. Such a proof,
no matter how precious might it be, does not prove also that this statistics indeed
provides the correct description at thermal equilibrium. Rephrasing, it proves that
BG statistics can be the correct one, but it does not prove that it is the correct one.
Clearly, there is no reasonable doubt today that, for such systems, BG is the correct
one. It is nevertheless instructive that the logical implications of the available proofs
be outlined.

On a similar vein, even for the case of long-range-interacting Hamiltonians (e.g.,
infinitely-long-range interactions), the standard BG calculations can still be per-
formed through convenient renormalizations of the coupling constants (e.g., a la
Kac, or through the usual mean field approximation recipe of artificially dividing the
coupling constant by the number N of particles raised to some appropriate power).
The possibility of computability does by no means prove, strictly speaking, that BG
statistics is the correct description. And certainly it does not enlighten us on what the
necessary and sufficient first-principle conditions could be for the BG description
to be the adequate one.

In spite of all these mathematical difficulties, at least one nontrivial example
has been advanced in the literature [100] for which it has been possible to exhibit
numerically the BG weight by exclusively using Newton’s F = ma as microscopic
dynamics, with no thermostatistical assumption of any kind.

Let us anticipate that these and worse difficulties exist for the considerably more
subtle situations that will be addressed in nonextensive statistical mechanics.

In what follows, we shall conform to more traditional, though epistemologically
less ambitious, paths. We shall primarily follow the Gibbs’ elegant lines of first
postulating an entropic form, and then using it, without proof, as the basis for a
variational principle including appropriate constraints. The philosophy of such path
is quite clear. It is a form of Occam’ s razor, where we use all that we know and
not more than we know. This is obviously extremely attractive from a conceptual
standpoint. However, that its mathematical implementation is to be done with a
given specific entropic functional with given specific constraints is of course far
from trivial! After 130 years of impressive success, there can be no doubt that BG
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concepts and statistical mechanics provide the correct connection between micro-
scopic and macroscopic laws for a vast class of physical systems. But – we insist –
the mathematically precise qualification of this class remains an open question.

2.4.1 Isolated System – Microcanonical Ensemble

In this and subsequent subsections, we briefly review BG statistical mechanics (see,
for instance, [35]). We consider a quantum Hamiltonian system constituted by N in-
teracting particles under specific boundary conditions, and denote by {Ei } its energy
eigenvalues.

The microcanonical ensemble corresponds to an isolated N -particle system
whose total energy U is known within some precision δU (to be in fact taken at
its zero limit at the appropriate mathematical stage). The number of states i with
U ≤ Ei ≤ U + δU is denoted by W . Assuming that the system is such that its
dynamics leads to ergodicity at its stationary state (thermal equilibrium), we assume
that all such states are equally probable, i.e., pi = 1/W , and the entropy is given by
Eq. (1.3). The temperature T is introduced through

1

T
≡ �SBG

�U
= k

� ln W

�U
. (2.62)

2.4.2 In the Presence of a Thermostat – Canonical Ensemble

The canonical ensemble corresponds to an N -particle system defined in a Hilbert
space whose dimension is noted W , and which is in longstanding thermal contact
with a (infinitely large) thermostat at temperature T . Its exact energy is unknown,
but its mean energy U is known since it is determined by the thermostat. We must
optimize the entropy given by Eq. (1.1) with the norm constraint (1.2), and with the
energy constraint

W∑

i=1

pi Ei = U . (2.63)

Following along the lines of Section 2.3, we obtain the celebrated BG weight

pi = e−βEi

Z BG
, (2.64)

with the partition function given by

Z BG ≡
W∑

i=1

e−βEi , (2.65)

the Lagrange parameter β being related with the temperature through β ≡ 1/(kT ).
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We can prove also that

1

T
= �SBG

�U
, (2.66)

that the Helmholtz free energy is given by

FBG ≡ U − T SBG = − 1

β
ln Z BG , (2.67)

and that the internal energy is given by

U = − �

�β
ln Z BG . (2.68)

In the limit T → ∞ we recover the microcanonical ensemble.

2.4.3 Others

The system may be exchanging with the thermostat not only energy, so that the
temperature is that of the thermostat, but also particles, so that also the chemical
potential is fixed by the reservoir. This physical situation corresponds to the so-
called grand-canonical ensemble. This and other similar physical situations can be
treated along the same path, as shown by Gibbs. We shall not review here these
types of systems, which are described in detail in [35], for instance.

Another important physical case, which we do not review here either, is when the
particles cannot be considered as distinguishable. Such is the case of bosons (leading
to Bose–Einstein statistics), fermions (leading to Fermi–Dirac statistics), and the so-
called gentilions (leading to Gentile statistics, also called parastatistics [101–103],
which unifies those of Bose–Einstein and Fermi–Dirac).

All these various physical systems, and even others, constitute what is currently
referred to as BG statistical mechanics, essentially because at its basis we find, in
one way or another, the entropic functional SBG . It is this entire theoretical body
that in principle we intend to generalize in the rest of the book, through the general-
ization of SBG itself.
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