
   Chapter 2   
 A Guide to Implementing Quantitative 
Bias Analysis        

  Introduction  

 Estimates of association from nonrandomized epidemiologic studies are susceptible 
to two types of error: random error and systematic error. Random error, or sampling 
error, is often called chance, and decreases toward zero as the sample size increases 
and the data are more efficiently distributed in the categories of the adjustment 
variables. The amount of random error in an estimate of association is measured by 
its precision. Systematic error, often called bias, does not decrease toward zero as 
the sample size increases or with more efficient distributions in the categories of the 
analytic variables. The amount of systematic error in an estimate of association is 
measured by its validity. 

 Conventional confidence intervals depict the random error about an estimate of 
association, but give no information about the amount of systematic error. The 
objective of quantitative bias analysis is to estimate quantitatively the systematic 
error that remains after implementing a study design and analysis. For comprehen-
sive guidance on study design and analysis, the reader should consult an epidemiol-
ogy methods textbook, such as  Modern Epidemiology  (Rothman et al.,   2008b    ). This 
text not only assumes that the reader has applied established principles for study 
design and analysis but also recognizes that the systematic error remaining after 
implementing those principles merits quantification and presentation. The next sec-
tions briefly review principles of design and analysis that have presumably been 
applied. They are followed by sections on planning for quantitative bias analysis 
and a brief overview of the types of bias analyses described in this chapter.  

  Reducing Error  

 The objective of analytic epidemiologic research is to obtain an accurate (precise 
and valid) estimate of the effect of an exposure on the occurrence of a disease. 
Epidemiologic studies should be designed and analyzed with this objective in mind, 
but epidemiologists should realize that this objective can never be completely achieved. 
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Every study has limited sample size, which means that every study contains some 
random error. Similarly, every study is susceptible to sources of systematic error. 
Even randomized epidemiologic studies are susceptible to selection bias from 
losses to follow-up and to misclassification of analytic variables. Since the research 
objective can never be achieved perfectly, epidemiologists should instead strive to 
reduce the impact of error as much as possible. These efforts are made in the design 
and analysis of the study. 

  Reducing Error by Design 

 To reduce random error in a study’s design, epidemiologists can increase the size 
of the study or improve the efficiency with which the data are distributed into the 
categories of the analytic variables. Increasing the size of the study requires enrolling 
more subjects and/or following the enrolled subjects for a longer period, and this 
additional information ought to reduce the estimate’s standard error. A second 
strategy to improve an estimate’s precision is to improve the efficiency with which 
the data are distributed into categories of the analytic variables. This strategy also 
reduces the standard error of the estimate of association, which improves its precision. 
Consider the standard error of the odds ratio, which equals the square root of 
the sum of inverses of the frequencies of the interior cells of a two-by-two table. 
As displayed in Table  2.1 , the two-by-two table is the simplest contingency table 
relating exposure to disease.  

  Table 2.1    The two-by-two contingency table relating exposure to disease    

 Exposed  Unexposed 

 Disease  a  b 
 Undiseased  c  d 

 With this data arrangement, the odds ratio equals ( a / c )/( b / d ) and its standard error 
equals Ö(1/ a  + 1/ b  + 1/ c  + 1/ d ). In a study with 100 subjects and each interior cell 
frequency equal to 25, the odds ratio equals its null value of 1.0 and the standard error 
of the odds ratio equals Ö(1/25 + 1/25 + 1/25 + 1/25) = 0.4. The 95% confidence 
interval about the null odds ratio equals 0.46 to 2.19. If only 40% of the cases were 
located, but the sample size remained constant by increasing the case to control ratio 
to 1 to 4, rather than 1 to 1, the odds ratio would remain null. The odds ratio’s 
standard error would then equal Ö(1/10 + 1/10 + 1/40 + 1/40) = 0.5 and the 95% 
confidence interval would equal 0.38 to 2.66. Although the sample size (100 subjects) 
did not change, the standard error and the width of the confidence interval (measured 
on the log scale) have both increased by 25% due only to the less efficient distribution 
of the subjects within the contingency table. This example illustrates how the 
efficiency of the distribution of data within the categories of analytic variables affects 
the study precision, given a fixed sample size, even when no bias is present. 

 Improving the efficiency with which the data are distributed requires an under-
standing of the distribution of the exposure and disease in the source population. If 
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one is interested in studying the relation between sunlight exposure and melanoma 
incidence, then a population in the northern United States might not have an efficient 
distribution of the exposure compared with a population in the southern United 
States where sunlight exposure is more common. If one is interested in studying the 
relation between tanning bed exposure and melanoma incidence, then a population 
in the northern United States might have a more efficient distribution of the exposure 
than a population in the southern United States. Careful selection of the source popula-
tion is one strategy that investigators can use to improve the efficiency of the distri-
bution of subjects within the categories of the analytic variables. 

 Matching is a second strategy to improve the efficiency of this distribution. 
Matching a predetermined number of controls to each case on potential confound-
ers assures that the controls will appear in a constant ratio to cases within the cat-
egories of the confounder. For example, skin type (freckled vs unfreckled) might 
confound the relation between sunlight exposure and melanoma incidence. Cases 
of melanoma may be more likely to have freckled skin than the source population 
that gives rise to cases, and people with freckled skin might have different exposure 
to sunlight than people with unfreckled skin. Without matching, most of the cases 
will be in the category of the confounder denoting freckled skin, and most of the 
controls will be in the category of the confounder denoting unfreckled skin because 
it is more common in the source population. This disparity yields an inefficient 
analysis, and therefore a wider confidence interval. Matching controls to cases 
assures that controls appear most frequently in the stratum where cases appear most 
frequently (e.g., freckled skin), so the analysis is more efficient and the confidence 
interval narrower. Matching unexposed to exposed persons in cohort studies can 
achieve a similar gain in efficiency. 

 To reduce systematic error in a study’s design, epidemiologists should focus on 
the fundamental criterion that must be satisfied to obtain a valid comparison of the 
disease incidence in the exposed group with the disease incidence in the unexposed 
group. That is, the unexposed group must have the disease incidence that the 
exposed group would have had, had they been unexposed (Greenland and Robins, 
  1986    ), within the strata of measured confounders. The ideal study would compare 
the disease occurrence in the exposed group (a factual, or observable, disease inci-
dence) with the incidence they would have had, had they been unexposed (a coun-
terfactual, or unobservable, disease incidence). Since the ideal comparison can never 
be realized, the disease incidence is measured in a surrogate group: a second group 
of subjects who are unexposed and whose disease experience we substitute for the 
counterfactual ideal. The validity of that substitution, which cannot be verified, 
directly impacts the validity of the estimate of association. The investigator must 
strive for the desired balance in the collapsed data, which is achievable within prob-
ability limits by randomization, or within strata of measured confounders. 

 With this criterion in mind, the design principles to enhance validity follow 
directly. The study population should be selected such that participation is not 
conditional on exposure status or disease status. When both exposure status and 
disease status affect the probability that a member of the source population partici-
pates in the study, the estimate of association will be susceptible to selection bias. 
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Enrolling subjects and/or documenting their exposure status before the disease 
occurs (i.e., prospectively) assure that disease status cannot be associated with 
initial participation. 

 Second, the study population should be selected such that the net effects of all 
other predictors of the outcome, aside from exposure itself, are in balance between 
the exposed and unexposed groups. This balance is commonly referred to as having 
no confounding. Randomization achieves this objective within limits that are statis-
tically quantifiable. When exposure status cannot be assigned by randomization, 
which is usually the situation in studies of disease etiology, the investigator can 
limit confounding by restricting the study population to one level of the confounder 
or ensuring that data are collected on potential confounders so that their effects can 
be assessed in the analysis. 

 Finally, the data should be collected and converted to electronic form with as 
few classification errors as possible. Some errors in classification are, however, 
inevitable. Investigators often strive to assure that the rates of classification errors 
do not depend on the values of other variables (e.g., rates of exposure classification 
errors do not depend on disease status, which is called nondifferential exposure 
misclassification) or on the proper classification of other variables (e.g., errors in 
classification of exposure are as likely among those properly classified as diseased 
as among those improperly classified as diseased, which is called independent 
exposure misclassification). This second objective can be readily achieved by using 
different methods to collect information on disease status from those used to collect 
information on exposure status (as well as information on confounders). The data 
collection for disease status should be conducted so that the data collector is 
blinded to the information on exposure and confounder status. Nondifferential and 
independent errors in classification often yield the most predictable, and therefore 
most readily correctable, bias of the estimate of association. Nonetheless, one may 
choose to select a design expected to yield relatively small differential classification 
errors in preference to a design expected to yield relatively large nondifferential 
classification errors, since the former would yield less bias and uncertainty. 
Generalized advice always to balance information quality across compared catego-
ries (i.e., to strive for nondifferential classification errors) ignores the potential for 
this trade-off to favor small differential errors.  

  Reducing Error in the Analysis 

 Following implementation of a design that reduces random and systematic error to 
the extent practical, a well-designed analysis of the collected data can further 
reduce error. Data analysis should begin with a clearly specified definition of each 
of the analytic variables. The conversion algorithm and variable type should be 
defined for each analytic variable, after careful consideration of the variability in 
dose, duration, and induction period that will be characterized in the analysis. 

 After completing the definition and coding of analytic variables, the analysis pro-
ceeds to a descriptive characterization of the study population. The descriptive analysis 
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shows the demographic characteristics of the people in the study. For example, 
it might show the proportion of the population enrolled at each of the study centers, the 
distribution of age, and the proportion belonging to each sex. Descriptive analyses 
should include the proportion of the study population with a missing value assigned 
to each analytic variable. The proportion with missing data helps to identify analytic 
variables with problems in data collection, definition, or format conversion. 

 Examination of the bivariate relations between analytic variables is the third step 
in data analysis. Bivariate relations compare proportions, means, or medians for 
one study variable within categories of a second. These comparisons inform the 
analyst’s understanding of the data distributions and can also identify data errors 
that would prompt an inspection of the data collection, variable definitions, or for-
mat conversions. The number of bivariate relations that must be examined grows 
exponentially as the number of analytic variables increases. If the number grows 
too large to be manageable, the analyst should restrict the examination to pairs that 
make sense a priori. However, whenever possible, all pairs ought to be examined 
because a surprising and important finding might easily arise from a pair that would 
be ignored a priori. 

 The comparisons of the proportions with the disease of interest within the cate-
gories of the analytic variables are a special subset of bivariate comparisons. These 
proportions can be explicitly compared with one another by difference or division, 
yielding estimates of association such as the risk difference, risk ratio, or a 
 difference in means. When estimates of association are calculated as a part of the 
bivariate comparison, the analysis is also called a stratified analysis. Often one 
comparison is a focus of the stratified analysis, which is the comparison of the 
disease proportions in those exposed to the agent of interest with those unexposed 
to the agent of interest. This comparison relates directly to the original objective: a 
valid and precise estimate of the effect of an exposure on the occurrence of a dis-
ease. To continue the stratified analysis, the comparisons of disease proportions in 
exposed versus unexposed are expanded to comparisons within levels of other ana-
lytic variables. For example, the risk ratio comparing exposed with unexposed 
might be calculated within each of the three age groups. An average risk ratio can 
be calculated by standardization or pooling. Comparison of this average or sum-
marized risk ratio with the crude or collapsed risk ratio (including all ages in one 
stratum) indicates whether age is an important confounder of the risk ratio. If the 
pooled risk ratio is substantially different from crude risk ratio, then the pooled risk 
ratio will provide an estimate of association that is unconfounded (by age) and is 
precision enhancing, in that its confidence interval will be narrower than those 
obtained from alternative methods for averaging the risk ratio across strata of age. 
Pooling reduces both the random error (by yielding a precision-enhancing estimate 
of association) and the systematic error (by yielding an estimate of association 
unconfounded by age). The correspondence between noncollapsibility and con-
founding holds also for the odds ratio, hazard, ratio, rate ratio, and rate difference, 
so long as the risk of disease is low (<10%) in every combination of the categories 
of exposure and the categories of controlled confounders. When the risk of disease 
is greater than 10%, these estimates of association may not be collapsible across 
strata of a control variable, even if that variable is not a confounder. 
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 The analysis can proceed by further stratification on a second variable (e.g., sex 
groups) and pooling to simultaneously adjust for confounding by both age and sex. 
The number of strata increases geometrically as additional variables are analyzed, 
which can become confusing as the number of strata increases beyond what can be 
easily reviewed on a single page. In addition, the data quickly become too sparse 
for pooling as the frequencies in some cells fall below about five and may reach 
zero. A common solution to the problem engendered by this geometric progression 
is to use regression modeling rather than stratification. Regression models yield 
estimates of association that simultaneously adjust for multiple confounders and 
that are also precision-enhancing. Their advantage over stratification is that they do 
not become cumbersome or suffer from small numbers as easily as multiple strati-
fication. However, regression modeling does not show the data distribution, so 
should not be used without first conducting the bivariate analysis and stratification 
on the critical confounders. 

 This analytic plan describes the conventional epidemiologic approach to data 
analysis. It yields a quantitative assessment of random error by producing confi-
dence intervals about the crude or pooled estimates of association. It also adjusts 
the estimate of association for confounding variables included in the stratification 
or regression model. However, there is no adjustment for selection bias, measure-
ment error, confounding by unmeasured confounders, or residual confounding by 
measured confounders that are poorly specified or poorly measured. Nor is there 
any quantification of uncertainty arising from these sources of bias. Quantitative 
bias analysis addresses these shortcomings in the conventional approach to epide-
miologic data analysis.   

  Quantifying Error  

 The goal of quality study design and analysis is to reduce the amount of error in an 
estimate of association. With that goal in mind, investigators have an obligation to 
quantify how far they are from this goal. Quantitative bias analysis achieves this 
objective. Conducting a study that will yield a measure of association with as little bias 
as practical requires careful planning and choices in the design of data collection and 
analysis. Similarly, quantifying the amount of residual bias requires choices in the 
design of data collection and analysis. Since conducting a high-quality bias analysis 
follows the same steps as conducting a high-quality epidemiologic study, plans for 
both should be integrated at each phase of the study, as depicted in Fig.  2.1 .  

  When Is Quantitative Bias Analysis Valuable? 

 Before discussing the steps involved in planning and conducting a quantitative bias 
analysis, it is important to first consider when it makes the most sense to conduct a 
bias analysis. Quantitative bias analysis is most valuable when a study is likely to 
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produce a precise estimate of association, such that the conventional confidence 
interval will be narrow. A narrow interval reflects a small amount of residual 
random error, tempting stakeholders to underestimate the true uncertainty and 
overstate their confidence that an association is truly causal and of the size 
estimated by the study. When a wider interval is obtained, inference from the 
study’s results should be tenuous because of the substantial random error, regard-
less of whether systematic error has also been estimated quantitatively. Note that 
this formulation assumes that investigators use conventional confidence intervals as 
intended, that is, as a measure of error. Investigators who simply note whether the 
interval includes the null, a surrogate for statistical significance testing, will often 
be mislead by statistically significant, but substantially imprecise estimates of asso-
ciation (Poole,   2001    ). 

 Quantitative bias analysis is also most valuable when a study is likely susceptible 
to a limited number of systematic errors. Studies susceptible to multiple substantial 
biases are not good candidates for quantitative bias analysis because the total error 
is too large to reliably quantify. These studies are similar to studies that yield wide 
conventional confidence intervals: the investigator or consumer should recognize 
that no inference will be reliable, so the effort of a quantitative bias analysis will 
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  Fig. 2.1    Integration of planning for bias analysis with conventional study design and analysis       
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not be productive. Studies with wide conventional errors or that are susceptible to 
many large systematic errors might instead be useful for generating ideas for better-
designed and larger subsequent studies. They should seldom however, provide a 
basis for inference or policy action, so the additional effort of quantitative bias 
analysis would not be an efficient use of resources. 

 Quantitative bias analysis is therefore most valuable when studies yield narrow 
conventional confidence intervals – so have little residual random error – and when 
these studies are susceptible to a limited number of systematic errors. Such studies 
often appear to be an adequate basis for inference or for policy action, even though 
only random error has been quantified by the conventional confidence interval. 
Quantification of the error due to the limited number of biases will safeguard 
against inference or policy action that takes account of only random error. Without 
a quantitative assessment of the second important source of error – systematic error 
– the inference or policy action would usually be premature.  

  Planning for Bias Analysis 

 Quantitative bias analysis is best accomplished with foresight, just as with all 
aspects of epidemiologic research. The process of conducting a well-designed bias 
analysis goes beyond simply understanding the methods used for the analysis, but 
also includes a thorough planning phase to ensure that the information needed for 
quantification of bias is carefully collected. To facilitate this collection, investiga-
tors should consider the important threats to the validity of their research while 
designing their study. This consideration should immediately suggest the quantita-
tive analyses that will explore these threats, and should thereby inform the data 
collection that will be required to complete the quantitative analyses. 

 For example, an investigator may design a retrospective case-control study of the 
relation between leisure exposure to sunlight and the occurrence of melanoma. 
Cases of melanoma and controls sampled from the source population will be inter-
viewed by telephone regarding their exposures to sunlight and other risk factors for 
melanoma. The investigator should recognize the potential for selection bias to be 
an important threat to the study’s validity: cases may be more likely than controls 
to agree to the interview, and those who spend substantial time in sunlight might 
also participate at a different rate than those who do not spend much time in the 
sun. To quantitatively address the potential selection bias (  Chap. 4    ), the investigator 
will need to know the participation proportions in cases and controls, within groups 
of high and low exposure to sunlight. Case and control status will be known by 
design, but to characterize each eligible subject’s sunlight exposure, the investiga-
tor will need to complete the interview. Sunlight exposure will not, therefore, be 
known for subjects who refuse to participate. However, in planning for a quantita-
tive bias analysis, the investigator might ask even those who refuse to participate 



Quantifying Error 21

whether they would be willing to answer a single question regarding their sunlight 
exposure. If the proportion of refusals who did agree to answer this one question 
was high, this alone would allow the investigator to crudely compare sunlight 
exposure history among cases and controls who refuse to participate, and to adjust 
the observed estimate of association for the selection bias. 

 To continue the example, the investigators might be concerned about the accuracy 
of subjects’ self-report of history of leisure-time sunlight exposure. In particular, 
melanoma cases might recall or report their history of sunlight exposure differently 
than controls sampled from the source population. This threat to validity would be 
an example of measurement error (  Chap. 6    ), which can also be addressed by quan-
titative bias analysis. To implement a bias analysis, the investigators would require 
estimates of the sensitivity and specificity of sunlight exposure classification among 
melanoma cases and among members of the source population. Classification error 
rates might be obtained by an internal validation study (e.g., comparing self-report 
of sunlight exposure history with a diary of sunlight exposure kept by subsets of the 
cases and controls) or by external validation studies (e.g., comparing self-report of 
sunlight exposure history with a diary of sunlight exposure kept by melanoma cases 
and noncases in a similar second population). 

 Finally, imagine that the investigator was concerned that the relation between 
leisure time exposure to sunlight and risk of melanoma was confounded by expo-
sure to tanning beds. Subjects who use tanning beds might be more or less likely to 
have leisure time exposure to sunlight, and tanning bed use itself might be a risk 
factor for melanoma. If each subject’s use of tanning beds was not queried in the 
interview, then tanning bed use would be an unmeasured confounder (  Chap. 5    ). 
While tanning bed use would ideally have been assessed during the interview, it is 
possible that its relation to melanoma risk was only understood after the study 
began. To plan for bias analysis, the investigator might turn to published literature 
on similar populations to research the strength of association between tanning bed 
use and leisure time exposure to sunlight, the strength of association between tan-
ning bed use and melanoma, and the prevalence of tanning bed use. In combination, 
these three factors would allow a quantitative bias analysis of the potential impact 
of the unmeasured confounder on the study’s estimate of the association of leisure 
time exposure to sunlight on risk of melanoma. 

 In these examples, planning for quantitative bias analysis facilitates the actual 
analysis. Selection forces can be best quantified if the investigator plans to ask for 
sunlight information among those who refuse the full interview. Classification error 
can be best quantified if the investigator plans for an internal validation study or 
assures that the interview and population correspond well enough to the circum-
stances used for an external validation study. Unmeasured confounding can be best 
quantified if the investigator collects data from publications that studied similar 
populations to quantify the bias parameters. Table  2.2  outlines the topics to consider 
while planning for quantitative bias analysis. These topics are further explained in 
the sections that follow.   
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  Creating a Data Collection Plan for Bias Analysis 

 As described in the preceding examples, planning for quantitative bias analysis 
during the study design will produce the most effective analyses. Investigators 
should examine the study design before data collection begins and ask, “What will 
likely be the major threats to validity once the data have been collected?” The 
answer will inform the plans for data collection necessary to conduct the quantitative 
bias analysis. If selection bias is a concern, then the investigator should collect the data 
required to calculate participation proportions within strata defined by the exposure, 
disease status, and important covariates. If classification errors are a concern, then 
the investigator should collect the data required to validate the study’s measure-
ments. The validation data can be collected by an internal design or by applying 
validation data collected in a similar population (an external design). We provide 
further guidance on selecting and implementing an internal or external design in 
  Chap. 3    . If an important candidate confounder has not been measured, then the 
investigator should plan to use internal and external data (sometimes in combination) 
to estimate the impact of the unmeasured confounder. 

 Finally, the investigator needs to consider the population targeted for collecting 
the validity data that will be used in the quantitative bias analysis. For example, 

  Table 2.2    Planning for quantitative bias analysis    

 General tasks 

 Tasks for each type of bias 

 Misclassification  Selection bias  Confounding 

 Determine likely 
threats to validity 

 Ask whether misclas-
sification or recall 
bias of any important 
analytic variables is 
a likely threat 

 Ask whether selec-
tion bias or loss-
to-follow-up is a 
likely threat 

 Ask whether residual 
confounding or 
unmeasured con-
founding is likely 

 Determine data 
needed to conduct 
bias analysis 

 Internal validation study 
of classification rates 
or external validation 
data 

 Collect information 
on selection 
proportions 

 Collect information 
on prevalence of 
confounder and its 
associations with 
exposure and disease 

 Consider the popula-
tion from which 
to collect data 

 Study population  Source population  Source population 

 Allocate resources  Develop databases that allow for recording of data, allocate time for 
data collection and analysis of data, write protocols for substudies, 
collect and understand software for analysis 

 Set order of 
corrections 

 Usually first  Usually second  Usually third 

 Consider data level  Record-level data corrections or summary data 
 Consider interrelations 

between biases 
 Important interrelations should be assessed with record-level data and 

multiple biases modeling 
 Select a technique for 

bias analysis 
 Each method in  2.3  can be applied to each bias. Consider the number 

of biases to be analyzed, the interrelations between biases, the 
inferential question, and computational requirements 
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confounding arises at the level of the population, so data used to correct for 
an unmeasured confounder should arise from the same or a similar population, 
but should not necessarily be limited to the population sampled to participate in 
the study. The study sample is included in the source population, but is rarely the 
entire source population. Selection bias arises from disease and exposure-depend-
ent participation. In assessing selection bias, the exposure and disease informa-
tion are available for study participants, so the information required should be 
collected from nonparticipants. In contrast, information bias from classification 
error arises within the actual study population, so the data required for assessing 
information bias should be collected from a subset of participants (an internal 
validity study) or from a population similar to the participants (an external validity 
study). Careful consideration of the target population will lead to a more appropriate 
bias analysis. 

 Once the major threats to validity have been ascertained, and the population from 
which validity data will be collected has been identified, the investigator should 
devise a plan for collecting the validity data. If the validity data will be external, then 
the investigator should conduct a systematic review of the published literature to find 
applicable validity studies. For example, if the investigator of the sunlight-melanoma 
relation is concerned about errors in reporting of sunlight exposure, then she should 
collect all of the relevant literature on the accuracy of self-report of sunlight exposure. 
Studies that separate the accuracy of exposure by melanoma cases and noncases will 
be most relevant. From each of these studies, she should abstract the sensitivities and 
specificities (or predictive values) of self-report of sunlight exposure. Some estimates 
might be discarded if the population is not similar to the study population. Studies of 
the accuracy of self-report of sunlight exposure in teenagers would not provide good 
external validity information for a study of melanoma cases and controls, because 
there would be little overlap in the age range of the teenagers who participated in the 
validity study and the melanoma cases and controls who participated in the investiga-
tor’s study. Even after discarding the poorly applicable validity data, there will often 
be a range of values reported in the literature, and the investigator should decide how 
to best use these ranges. An average value or a preferred value (e.g., the value from 
the external population most like the study population) can be used with simple bias 
analysis, or the range can be used with multidimensional bias analysis, probabilistic 
bias analysis, or multiple biases modeling. 

 If the validity data will be internal, then the investigator should allocate study 
resources to conduct the data collection required for the quantitative bias analysis. 
If nonparticipants will be crudely characterized with regard to basic demographic 
information such as age and sex, so that they can be compared to participants, then 
the data collection system and electronic database should allow for designation of 
nonparticipant status and for the data items that will be sought for nonparticipants. 
If a validity substudy will be implemented to characterize the sensitivity and 
specificity of exposure, then resources should be allocated to accomplish the substudy. 
A protocol should be written to sample cases and controls (usually at random) to 
participate in the diary verification of self-reported sunlight exposure. The substudy 
protocol might require additional informed consent, additional recruitment materials, 
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and will certainly require instructions for subjects on how to record sunlight exposure 
in the diary and a protocol for data entry. 

 These examples do not fully articulate the protocols required to plan and collect 
the data that will inform a quantitative bias analysis. The same principles for designing 
well-conducted epidemiologic studies apply to the design of well-conducted validity 
studies. The reader is again referred to texts on epidemiologic study design, such as 
 Modern Epidemiology  (Rothman et al., 2008b), to research the details of valid 
study design. The larger point, though, is that the data collection for a validity sub-
study should not be underestimated. The investigator should plan such studies at the 
outset, should allocate study resources to the data collection effort, and should 
assure that the validation substudy is completed with the same rigor as applied to 
the principal study.  

  Creating an Analytic Plan for a Bias Analysis 

 Valid epidemiologic data analysis should begin with an analytic strategy that 
includes plans for quantitative bias analysis at the outset. The plan for quantitative 
bias analysis should make the best use of the validation data collected per the 
design described above. 

  Order of Bias Analysis Corrections 

 When multiple sources of systematic error are to be assessed in a single study, the 
order of corrections in the analysis can be important. In particular, adjustments for 
classification errors as a function of sensitivity and specificity do not reduce to a 
multiplicative bias factor. The place in the order in which an adjustment for classifica-
tion error will be made can therefore affect the result of the bias analysis. In general, 
the investigator should reverse the order in which the errors arose. Errors in classifi-
cation arise in the study population, as an inherent part of the data collection and 
analysis, so should ordinarily be corrected first. Selection bias arises from differences 
between the study participants and the source population, so should ordinarily be 
corrected second. Confounding exists at the level of the source population, so error 
arising from an unmeasured confounder should ordinarily be analyzed last. 

 While this order holds in general, exceptions may occur. For example, if internal 
validation data on classification errors are used to correct for information bias, and 
the internal validation data were collected after participants were selected into the 
study population, then one would correct first for classification error and then for 
selection bias. Were the internal validation data collected before participants were 
selected into the study population, then one would correct first for selection bias 
and then for classification error. In short, one should follow the study design in 
reverse to determine the appropriate order of bias analysis. See   Chap. 9     on multiple 
bias analysis for a more complete discussion of the order of corrections.  
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  Type of Data: Record-Level Versus Summary 

 Many of the techniques for quantitative bias analysis described herein assume that 
the investigator has access to record-level data. That is, they assume that the original 
data set with information on each subject in the study is available for analysis. 
Record-level data, or original data, allow for a wider range of methods for quantitative 
bias analysis. With record-level data, corrections for classification errors can be 
made at the level of the individual subjects, which preserves correlations between the 
study variables and allows the analyst to adjust the corrected estimates of association 
for other confounders. Furthermore, when multiple sources of systematic error are 
assessed in the analysis, applying the bias analyses in the proper order to the record-level 
data can easily preserve the interactions of the biases. 

 Some of the techniques described herein apply to summary data, or collapsed 
data. That is, they apply to data displayed as frequencies in summary contingency 
tables or as estimates of association and their accompanying conventional confi-
dence intervals. Investigators or stakeholders with access to only summary data 
(e.g., a reader of a published epidemiology study) can use these techniques to con-
duct quantitative bias analysis. In addition, investigators with access to record-level 
data can generate these summary data and so might also use the techniques. 
However, these techniques do not necessarily preserve the interrelations between 
study variables and usually assume that multiple biases in an analysis are independent 
of one another (i.e., the biases do not interact). These assumptions are not usually 
testable and may often be incorrect. Investigators with access to record-level data 
should therefore use the analyses designed for record-level data in preference to the 
analyses designed for summary data.  

  Selecting a Technique for Bias Analysis 

 Table  2.3  summarizes the analytic strategies available to accomplish a quantitative 
bias analysis. The first column provides the names of the bias analysis techniques. 
The second column explains how bias parameters are treated in the corresponding 
techniques. Bias parameters are the values that are required to complete the quan-
titative bias analysis. For example, to analyze bias due to classification errors, the 
sensitivity and specificity of the classification method (or its predictive values) are 
required. The sensitivity and specificity of classification are therefore the bias 
parameters of that bias analysis. The third column shows whether biases are ana-
lyzed individually or jointly for the corresponding techniques. The fourth column 
describes the output of the technique and the fifth column answers whether random 
error can be combined with the output to reflect the total error in the estimate of 
association. The last column depicts the computational difficulty of each technique. 
Note that different analytic techniques refer to a class of methods used to correct 
for biases, but do not refer to any particular bias. Each could be used to correct for 
selection bias, misclassification, or an unmeasured confounder.  
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 Investigators designing or implementing a quantitative bias analysis should 
weigh three considerations as they choose the appropriate technique. When more 
than one bias will be analyzed, most of the analytic methods will treat them indi-
vidually and/or independently. If more than one bias will be analyzed, investigators 
should consider using methods in the lower rows of the table. Only multiple bias 
modeling allows more than one bias to be analyzed simultaneously and allows the 
analyst to explicitly model the relationship between each of the biases. Ignoring 
these dependencies can produce different results than when they are taken into 
account. Second, investigators should consider the inferential goal, which relates 
most closely to the output in the foregoing table. The most common inferential goal 
is to adjust the estimate of association to take account of the bias. This goal can be 
accomplished with all of the analytic methods. Another common inferential goal is 
to adjust the confidence interval to reflect total error: the sum of the systematic 
error and the random error. This goal can be accomplished with only probabilistic 
bias analysis (when only one bias will be analyzed) or multiple bias modeling 
(when more than one bias will be analyzed). A last common inferential goal is to 
determine whether an estimate of association can be completely attributed to the 
bias. This goal requires examination of the bias from different combinations of 
the bias parameters, along with a determination of whether the combinations that 
yield a null result are reasonable. Because each combination is individually examined, 
and multiple combinations are required, this inferential goal is best accomplished 
by multidimensional bias analysis. 

 The third consideration is the computational difficulty of the quantitative bias 
analysis. Although each of the analyses can be accomplished using spreadsheets or 

  Table 2.3    Summary of quantitative bias analysis techniques    

 Analytic 
technique 

 Treatment of 
bias parameters 

 Number of 
biases 
analyzed  Output 

 Combines 
random 
error? 

 Computationally 
intensive? 

 Simple 
sensitivity 
analysis 

 One fixed value 
assigned to 
each bias 
parameter 

 One at a 
time 

 Single revised 
estimate of 
association 

 usually no  no 

 Multidim-
ensional 
analysis 

 More than one 
value assigned 
to each bias 
parameter 

 One at a 
time 

 Range of revised 
estimates of 
association 

 no  no 

 Probabilistic 
analysis 

 Probability 
distributions 
assigned to 
bias 
parameters 

 One at a 
time 

 Frequency 
distribution 
of revised 
estimates of 
association 

 yes  yes 

 Multiple 
biases 
modeling 

 Probability 
distributions 
assigned to 
bias param-
eters 

 Multiple 
biases 
at once 

 Frequency 
distribution 
of revised 
estimates of 
association 

 yes  yes 
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SAS code available on the web site (see Preface), the computational difficulty varies 
widely. As the computational difficulty grows, the researcher should expect to devote 
more time and effort to completing the analysis, and more time and presentation 
space to explaining and interpreting the method. In general, investigators should 
choose the computationally simplest technique that satisfies their inferential goal 
given the number of biases to be examined and whether multiple biases can be appro-
priately treated as independent of one another. When only one bias is to be examined, 
and only its impact on the estimate of association is central to the inference, then 
computationally straightforward simple bias analysis is sufficient. When more than 
one bias is to be examined, the biases are not likely independent, and an assessment 
of total error is required to satisfy the inferential goal, then the computationally most 
difficult and resource-intensive multiple bias modeling will be required. 

 The following paragraphs summarize each of the analytic techniques and illustrate 
the method with a brief example. The detailed chapters that follow show how to imple-
ment each technique and provide guidance for choosing from among the methods used 
to accomplish each of the techniques. That choice usually depends on the available 
bias parameters (e.g., the sensitivity and specificity of classification vs the positive and 
negative predictive values), the source of the bias parameters (i.e., internal or external 
validation data), and the data form (i.e., record-level or summary data).   

  Bias Analysis Techniques 

  Simple Bias Analysis 

 With a simple bias analysis, the estimate of association obtained in the study is 
adjusted a single time to account for only one bias at a time. The output is a single 
revised estimate of association, which does not incorporate random error. For 
example, Marshall et al. (  2003    ) investigated the association between little league 
injury claims and type of baseball used (safety baseball vs traditional baseball). 
They observed that safety baseballs were associated with a reduced risk of ball-
related injury (rate ratio = 0.77; 95% CI 0.64, 0.93). They were concerned that 
injuries might be less likely to be reported when safety baseballs were used than 
when traditional baseballs were used, which would create a biased estimate of a 
protective effect. To conduct a simple bias analysis, they estimated that no more 
than 30% of injuries were unreported and that the difference in reporting rates was 
no more than 10% (the bias parameters). Their inferential goal was to adjust the 
estimate of association to take account of this differential underreporting. With this 
single set of bias parameters, the estimate of association would equal a rate ratio of 
0.88. They concluded that a protective effect of the safety ball persisted after taking 
account of the potential for differential underreporting of injury, at least conditional 
on the accuracy of the values assigned to the bias parameters. 

 Cain et al. (  2006    , 2007) conducted a simple bias analysis with the inferential 
goal of determining whether their estimate of association could be completely 
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attributed to bias. Their study objective was to estimate the association between 
highly active antiretroviral therapy (HAART) and multiple acquired immunodefi-
ciency syndrome (AIDS)-defining illnesses. Averaging over multiple AIDS-
defining illnesses, the hazard of an AIDS-defining illness in the HAART calendar 
period was 0.34 (95% CI 0.25, 0.45) relative to the reference calendar period. 
The authors were concerned that differential loss-to-follow-up might account for 
the observed protective effect. They conducted a “worst-case” simple bias analysis 
by assuming that the 68 men lost-to-follow-up in the HAART calendar period had 
an AIDS-defining illness on the date of their last follow-up, and that the 16 men 
lost-to-follow-up in the calendar periods before HAART was introduced did not 
have an AIDS-defining illness by the end of follow-up. With these bounding 
assumptions, the estimated effect of HAART equaled a hazard ratio of 0.52. The 
inference is that differential loss-to-follow-up could not account for all of the 
observed protective effect of HAART against multiple AIDS-defining illnesses, 
presuming that this analysis did in fact reflect the worst case influence of this bias. 

 Note that in both examples, the estimate of association was adjusted for only one 
source of error, that the adjustment was not reflected in an accompanying interval 
(only a point estimate was given), and that random error was not simultaneously 
incorporated to reflect total error. These are hallmarks of simple bias analysis.  

  Multidimensional Bias Analysis 

 Multidimensional bias analysis is an extension of simple bias analysis in which the 
analyst examines multiple values or combinations of values of the bias parameters, 
rather than single values. For example, Sundararajan et al. (  2002    ) investigated the 
effectiveness of 5-fluorouracil adjuvant chemotherapy in treating elderly colorectal 
cancer patients. Patients who received 5-fluorouracil therapy had a lower rate of 
colorectal cancer mortality than those who did not (hazard ratio 0.66; 95% CI 0.60, 
0.73). The investigators were concerned about bias from confounding by indication 
because the therapy assignment was not randomized. To assess the potential impact of 
this unmeasured confounder, they made assumptions about the range of (1) the prevalence 
of an unknown binary confounder, (2) the association between the confounder and 
colorectal mortality, and (3) the association between the confounder and receipt of 
5-flourouracil therapy (these are the bias parameters). The inferential goal was to 
determine whether confounding by indication could completely explain the 
observed protective effect. Most combinations of the bias parameters also yielded 
a protective estimate of association; only extreme scenarios resulted in near-null 
estimates of association. The range of revised estimates of association, which does 
not incorporate random error, is the output of the multidimensional bias analysis. 
The authors wrote, “Confounding could have accounted for this association only if 
an unmeasured confounder were extremely unequally distributed between the 
treated and untreated groups or increased mortality by at least 50%.” They therefore 
concluded that the entire protective effect could not be reasonably attributed to 
confounding by indication, which answered their inferential goal, at least conditional 
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on the accuracy of the ranges assigned as values to the bias parameters. While 
multidimensional bias analysis provides more information than simple bias analy-
sis in that it provides a set of corrected estimates, it does not yield a frequency 
distribution of adjusted estimates of association. Each adjusted estimate of associa-
tion stands alone, so the analyst or reader gains no sense of the most likely adjusted 
estimate of association (i.e., there is no central tendency) and no sense of the width 
of the distribution of the adjusted estimate of association (i.e., there is no frequency 
distribution of corrected estimates). Multidimensional bias analysis also addresses 
only one bias at a time and does not simultaneously incorporate random error, dis-
advantages that it shares with simple bias analysis.  

  Probabilistic Bias Analysis 

 Probabilistic bias analysis is an extension of simple bias analysis in which the 
analyst assigns probability distributions to the bias parameters, rather than single 
values (as with simple bias analysis) or a series of discrete values within a range 
(as with multidimensional bias analysis). By repeatedly sampling from the proba-
bility distributions and correcting for the bias, the result is a frequency distribution 
of revised estimates of association, which can be presented and interpreted simi-
larly to a conventional point estimate and frequentist confidence interval. Like the 
earlier methods, only one bias at a time is examined. For example, in a study of the 
association between periconceptional vitamin use and preeclamptic risk, Bodnar et 
al. (  2006    ) were concerned about confounding by fruit and vegetable intake, which 
had not been measured. The odds ratio associating regular periconceptional use of 
multivitamins with preeclampsia equaled 0.55 (95% CI 0.32, 0.95). High intake of 
fruits and vegetables is more common among vitamin users than nonusers and also 
reduces the risk of preeclampsia. Bodnar et al. created a distribution of the potential 
relative risk due to confounding using external information about the strength of 
association between fruit and vegetable consumption and vitamin use, strength of 
association between fruit and vegetable consumption and preeclamptic risk, and 
prevalence of high intake of fruits and vegetables. They used Monte Carlo methods 
to integrate the conventional odds ratio, distribution of the relative risk due to con-
founding, and the random error to generate output that reflects both an adjusted 
point estimate and uncertainty intervals. As expected, this probabilistic bias analy-
sis suggested that the conventional results were biased away from the null. The 
conventional OR (0.55) was attenuated to 0.63 (95% simulation interval: 0.56, 0.72 
after accounting for only systematic error; 0.36 and 1.12 after accounting for both 
systematic and random error, respectively). Unlike with the previous methods, 
there is now a sense of the central tendency of the corrected estimate of associa-
tion (0.63) and the amount of uncertainty in that estimate (as portrayed by the 
simulation intervals), and random error is integrated with systematic error. The 
bias analysis suggests that vitamin use is associated with a reduced risk of preec-
lampsia, even after taking account of the unmeasured confounding by fruit and 
vegetable intake and random error, which satisfies the inferential goal. The original 
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analysis somewhat overestimated the protective effect and the conventional interval 
somewhat underestimated the total error, at least conditional on the accuracy of the 
distributions assigned to the bias parameters.  

  Multiple Biases Modeling 

 Multiple biases modeling is also an extension of simple bias analysis in which the 
analyst assigns probability distributions to the bias parameters, rather than single 
values or ranges, but now the analyst examines the impact of more than one bias at 
a time. For example, we conducted a case-control study of the effect of pregnancy 
termination (induced and spontaneous) on breast cancer risk among parous resi-
dents of Massachusetts ages 25–55 years at breast cancer diagnosis (Lash and Fink, 
  2004    ). The study included all Massachusetts breast cancer cases reported to the 
Massachusetts cancer registry between 1988 and 2000 arising from the population 
of women who gave birth in Massachusetts between 1987 and 1999. The condi-
tional adjusted odds ratio estimate of the risk ratio of breast cancer, comparing 
women who had any history of pregnancy termination with women who had no 
history of pregnancy termination, equaled 0.91 (95% CI 0.79, 1.0). Information on 
history of pregnancy termination and potential confounders was recorded on birth 
certificates before the breast cancer diagnosis, so errors in recall or reporting of this 
history should have been nondifferentially and independently related to breast can-
cer status (Rothman et al.,   2008d    ). It may be that the observed null result derives 
from nondifferential, independent misclassification of history of termination, 
thereby masking a truly nonnull result. In addition, the study may have been subject 
to a selection bias if women who migrated from Massachusetts between the time 
they gave birth and the time they developed breast cancer differed from those who 
did not migrate with respect to pregnancy terminations. The inferential goal was to 
adjust the estimate of association and its interval to account for these biases. We 
first implemented a probabilistic bias analysis with the following bias parameters: 
(1) a triangular distribution of sensitivity of termination classification ranging from 
69% to 94% with a mode of 85%, (2) a triangular distribution of specificity of 
termination classification ranging from 95% to 100% with a mode of 99%, and (3) 
a prevalence of termination in the source population ranging from 20% to 30% 
with a mode of 25% (Holt et al.,   1989    ; Werler et al.,   1989    ; Wilcox and Horney, 
  1984    ). To allow for small deviations from perfectly nondifferential misclassifica-
tion, we allowed the sensitivity and specificity of termination classification in 
cases, versus controls, to vary independently of one another between 0.9-fold and 
1.1-fold (e.g., if the sensitivity in cases was chosen to be 85%, then the sensitivity 
in the controls could be no less than 76.5% and no greater than 93.5%). These were 
the bias parameters used to address misclassification. The probabilistic bias analy-
sis yielded a median odds ratio estimate of 0.90 (95% simulation interval 0.62, 1.2). 
Conditional on the accuracy of the distributions assigned to the bias parameters, 
this probabilistic bias analysis (which only accounts for one source of bias) sup-
ports the notion that the result is unlikely to arise from a bias toward the null induced 
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by nondifferential nondependent misclassification of the dichotomous exposure 
variable, because the central tendency remained near null and the interval remained 
narrow. 

 The expectation was that the estimates of association should be immune to ini-
tial selection bias because study eligibility did not require active participation. 
However, loss-to-follow-up by migration out of Massachusetts after giving birth 
may have been differentially related to history of pregnancy termination and breast 
cancer incidence. In a previous investigation of similar design, Tang et al. (  2000    ) 
used state-specific migration data to estimate that the loss-to-follow-up may have 
led to a 5% underestimate of the relative effect. To implement a multiple bias 
model, we combined the probabilistic misclassification bias analysis results above 
with a triangular bias parameter distribution ranging from 1 to 1.1 with mode 1.05 
to account for the potential selection bias induced by migration. This multiple bias 
model, which accounts for the selection bias and the misclassification as well as 
random error, yielded a median estimate of 0.95 (95% simulation interval 0.65, 1.3; 
with random error incorporated). While the multiple bias analysis median estimate 
and the conventional point estimate are nearly identical, the width of the multiple 
bias model’s simulation interval on the log scale is more than twice the width of the 
conventional 95% confidence interval, which conveys the additional uncertainty 
arising from the systematic errors. Taken together and conditional on the accuracy 
of the distributions assigned to the bias parameters, the bias analysis shows that the 
null result is unlikely to have arisen from misclassification of termination status or 
from selection bias arising from differential migration of subjects between the date 
of giving birth and the date of cancer diagnosis record, and that the total uncertainty 
is larger than reflected in the conventional confidence interval, but still not large 
enough to infer a nonnull result with any confidence.   

  A Note on Inference 

 In the inference segment of each of the preceding examples, the inference was 
always said to be conditional on the accuracy of the values or distributions assigned 
to the bias parameters. It is, of course, impossible to know the accuracy of these 
assignments. Nonetheless, the analyst should think that the assignments are more 
accurate than the inherent assignments made to these bias parameters in a conven-
tional data analysis (e.g., no unmeasured confounding and perfect classification). 
If stakeholders other than analyst support a different set of values, the bias analysis 
can and should be repeated with the alternate set of values to see whether the results 
of the bias analysis and the inference change substantially. 

 As will be described in   Chap. 3    , the assignment of values and distributions to 
bias parameters is equal parts art, educated guess, and science. Were the values 
known with certainty, then a bias analysis would not be necessary because alternate 
empirical methods would be superior. Circumstances such as this are rare. It is 
imperative, therefore, that in any bias analysis the values assigned to the bias 
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parameters are explicitly given, the basis for the assignment explicitly provided, 
and any inference resting on the results of the bias analysis explicitly conditioned 
on the accuracy of the assignments.   

  Conclusion  

 Well-conducted epidemiologic research begins with a sound design, including valid 
methods of data collection and assurance that the collected data will yield a suffi-
ciently precise and valid estimate of association. Nonetheless, even the estimate of 
association obtained from a well-designed study will inevitably be susceptible to 
residual error. Analysts conventionally calculate a confidence interval to quantify 
residual random error; quantitative bias analysis similarly quantifies residual sys-
tematic error. Just as investigators plan for their conventional analyses as they 
design their study, so too should they plan for quantitative bias analysis as they 
design their study. By incorporating quantitative bias analysis into all elements of 
study design and analysis, investigators will be best able to achieve the overarching 
objective of obtaining a valid and precise estimate of the effect of an exposure on 
the occurrence of disease.           
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