
Chapter 2

Dynamical Simulation of Electron Backscatter
Diffraction Patterns

Aimo Winkelmann

2.1 Introduction

To extract the maximum amount of information from
experimental electron backscatter diffraction (EBSD)
patterns, it is necessary to realistically model the phys-
ical processes that lead to the formation of the char-
acteristic diffraction features in the form of Kikuchi
bands and lines. Whereas the purely geometrical rela-
tions in the observed networks of bands and lines can
be explained by mapping out Bragg’s law for the rel-
evant reflecting lattice planes, the dynamical theory of
electron diffraction is needed to explain the observed
intensities. This theory takes into account the fact that
electrons interact strongly with matter, which leads to
multiple elastic and inelastic scattering of the electron
waves in a crystal.

To simulate a realistic EBSD pattern, we will need
to model the very general situation of an incident elec-
tron beam which hits a sample and which subsequently
undergoes elastic and inelastic interactions to result in
the intensity pattern on the observation screen. The
incident primary beam contains electron waves within
a relatively narrow range of energies and directions
(defined by the properties of the electron gun), whereas
the backscattered electrons have a broad spectrum of
energies (due to inelastic scattering) and are distributed
over all possible directions (due to momentum changes
by inelastic as well as elastic scattering). Because the
exact solution of the combined elastic and inelastic
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scattering problem is one of the most difficult problems
in electron diffraction theory, we will use a simplified
model, which is expected to capture the most important
aspects of the problem.

2.2 Model of Electron Backscatter
Diffraction

For a general description of the intertwined elastic and
inelastic redistribution of electrons from the states of
the incident beam to the outgoing states, the quan-
tum mechanical density matrix formalism can be used
(Dudarev et al. 1993). It enables one to describe in a
consistent way the coherent elastic scattering that is
at the heart of the diffraction process, together with
the loss of energy and the increasing randomization of
quantum mechanical phase relationships between the
involved states by inelastic scattering. If the relevant
states and scattering processes are identified, it is in
principle possible to calculate the evolution of the pop-
ulation in those states observed on the phosphor screen
in an EBSD experiment.

The density matrix formalism allows the most gen-
eral description, but a full ab initio treatment of EBSD
intensities is very complicated. To make the dynami-
cal simulations useable in practical situations, we will
apply a simplified model, which captures the most
important aspects of the problem using some reason-
able approximations. Our main approximation will
be that the inelastic scattering, which produces the
sources for the subsequently diffracted electrons, can
be handled independently of the diffraction process
in the outgoing path (Fig. 2.1). This means that no
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Fig. 2.1 Schematic model for the simulation of EBSD patterns:
The multiple elastic and inelastic scattering of primary electrons
leads to an incoherent distribution nB of electrons over energy
and thickness. The diffraction is assumed to take place inde-
pendently for each energy and from each backscattering depth
according to the weight function nB

coherence between the incident electrons and the elec-
trons forming the EBSD pattern is left. We will assume
that we know the distribution nB(θ, φ, θin, φin, E, t) of
inelastically scattered electrons at energy E, in a depth
t inside the sample that are scattered into the direction
(�,�) if the primary beam is incident from the direc-
tion (θin, φin). In this way, nB is assumed to represent
the accumulated effects of elastic and inelastic scatter-
ing from the incident beam; but it also needs to include
those electrons which are lost from the diffracted wave
field by inelastic scattering in the outgoing path. A
practical way to approximately determine nB(E, t),
for instance, is by Monte Carlo simulations. We will
see in the following that the observed EBSD intensity
distributions can be explained without very detailed
assumptions about the function nB , because in an
EBSD experiment, we are actually less interested in the
absolute intensities which are inelastically scattered,
but rather in the small-scale variations that are intro-
duced by dynamical diffraction on a relatively smooth
background of inelastically scattered electrons. In the
following, we will assume that nB(E, t) is given and
we will illustrate what consequences different depth
distributions will have on the dynamical diffraction
intensities.

Under the assumptions of our model, we can sym-
bolically write down the observed intensity IB as an
integral over all inelastically scattered electrons which
are diffracted in the outgoing pathway with initial

distribution function nB from the primary energy E p

down to zero kinetic energy, and which come from the
sample surface up to a maximum thickness tmax:

IB ∝
E p∫

0

d E

tmax∫

0

dt D [nB(θ, φ, θin, φin, E, t)] . (2.1)

The diffraction process of the electrons at energy E
is symbolized by an operator D.

2.3 Dynamical Electron Diffraction
in EBSD

According to our model, we describe the observed
EBSD patterns as a superposition of diffraction pat-
terns from electrons having a fixed energy E. The con-
tributions from different energies are added accord-
ing to the weight function nB . In the following, we
will introduce the theoretical framework necessary to
describe the dynamical diffraction process.

2.3.1 Using the Reciprocity Principle

The reciprocity principle (Fig. 2.2) is based on time
reversal symmetry and states that it makes no differ-
ence whether we calculate the intensity at point D
which is due to the elastic scattering of waves emitted
from point P, or whether we calculate the intensity at
point P which is due to the scattering of waves emitted
from point D (Pogany and Turner 1968).

The tremendous advantage of using the time-
reversed path in Fig. 2.2b comes from the fact that in
Fig. 2.2a we are detecting the intensity at a distance
that is basically infinite compared to the separations
of the scattering atoms. In this limit, a plane wave is
detected at D. Turning this around, it means that we can
start a single plane wave along the direction defined
by the point D and then we calculate how this single
plane wave is scattered by the atoms of the sample.
For perfect crystals, the Bloch wave theory is a con-
venient method to solve this problem. It turns out that
by this approach we not only obtain the wave function
at a single point P, but instead, in a single run we get
the wave function in the whole crystal. In this way, we
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Fig. 2.2 Application of the reciprocity principle for EBSD cal-
culations: (a) EBSD patterns are formed by elastic scattering
of electrons which are emitted into all directions from a point
source at P. These electrons are detected at point D on the phos-
phor screen, which is practically infinitely far away. In this limit,
a plane wave is detected. (b) The problem (a) is equivalent to
starting a plane wave in a single direction from D and detect-
ing the intensity arriving at point P. (c) The big advantage of
calculating the time-reversed problem in (b) stems from the fact
that we need only one initial plane wave. This advantage would
be lost if D is near the crystal surface and we would have to
consider waves emitted into all directions whether we start the
calculation from D or from P

are able to analytically integrate the effects of different
emitters from various depths and positions in the unit
cell.

The reciprocity principle can be used to con-
nect the dominant outgoing diffraction process in
EBSD to other types of methods that are governed
by the diffraction of ingoing electrons. This includes
electron-channelling patterns, where the total number
of backscattered electrons is monitored as a function
of the incidence angle of an electron beam. Impor-
tant conclusions for EBSD can be drawn from pre-
vious studies of electron channelling patterns by the
dynamical theory (Marthinsen and Høier 1986, 1988;
Rossouw et al. 1994; Dudarev et al. 1995). Another
close connection can be seen between EBSD and meth-
ods of transmission electron microscopy (TEM). To
describe TEM, the diffraction and corresponding mod-
ulation in intensity of transmitted plane waves needs to
be calculated. Obviously, this is related to the problem
illustrated in Fig. 2.2b, with the principal difference
that in TEM, the relevant thickness is the thickness of
the sample; whereas in EBSD, the plane wave needs to
be evaluated at the thickness of the emitter at point P.

There exists a number of computational approaches
to describe the diffraction of transmitted electrons.
These approaches include most prominently the mul-

tislice and the Bloch wave approaches. One can in
principle use these existing approaches for TEM sim-
ulations to also simulate EBSD patterns (disregarding
numerical limitations). We just have to appropriately
account for the property of the diffracted wave field
that is observed in EBSD: the probability density inside
the crystal at the atomic positions P.

2.3.2 Bloch Wave Formalism

In our simulations, we will apply the Bloch wave
approach. This theory solves the diffraction problem
for electrons in a perfect crystal lattice by exploiting
the fact that the wave function must have a very spe-
cific form in a three-dimensionally periodic potential.
The use of this method is described in several accessi-
ble reviews (Humphreys 1979; Spence and Zuo 1992).
In the following we will summarize the most important
aspects.

The wave function inside the crystal is described as
a superposition of Bloch waves with wave vectors k( j)


(r) =
∑

j

c j exp(2π ik( j) · r)
∑

g

C ( j)
g exp(2π ig · r).

(2.2)

The aim of this approach is to get the expansion
coefficients c j and C ( j)

g , as well as the k( j). After this
is accomplished, the wave function 
 is known and,
in the next step, the coupling of the inelastic scattering
processes to the diffractionally modulated probability
amplitude 
 is taken into account.

The wave function 
 is a solution of the
Schrödinger equation for an incident plane wave
exp(2π iK0 · r), corresponding to an energy of
h2 K 2

0 /2m:

−h2

8π2m


(r) − |e|V (r)
(r) = h2 K 2

0

2m

(r). (2.3)

To proceed with the determination of 
, one uses
the translational invariance of the crystal to write the
potential as a Fourier series:

U (r) = U c(r) + iU ′(r) =
∑

g

Ug exp(i2πg · r).

(2.4)
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U is a scaled potential which is measured in Å
−2

and which is formed from complex electron struc-
ture factors U c

g = 2m|e|Vg/h2, with Vg being a Fourier
coefficient of the crystal potential in volts and the rela-
tivistic electron mass m. The loss of electrons from the
diffracted coherent population due to inelastic effects
is taken into account by corresponding Fourier coeffi-
cients U ′

g of an imaginary part of the crystal potential.
Substitution of these expressions for the wave func-

tion and the potential into the Schrödinger equation
leads to the standard dispersion relation:

[K2 − (k( j) + g)2]C ( j)
g +

∑

h

Ug−hC ( j)
h = 0. (2.5)

K is the incident electron wave vector inside the
crystal, K 2

0 = K 2 − U c
0 , with the mean inner potential

U c
0 and the electron wave vector in vacuum K0.
Then k( j) is written as:

k( j) = K + λ( j)n, (2.6)

where n is a unit vector normal to the surface. One
can then transform (2.5) into an eigenvalue problem,
which gives the eigenvalues λ( j) and eigenvectors with
elements C ( j)

g (Spence and Zuo 1992). This includes
the effects due to the tilt of the outgoing direction with
respect to the surface (Allen and Rossouw 1989) and
is also valid for reciprocal space vectors g in higher
order Laue zones (HOLZ). The boundary conditions at
the surface determine the coefficients c j in (2.2). These
quantities are given by the elements of the first column
of the inverse of the matrix whose elements are C ( j)

g .
After this, the wave function (2.2) is known.

The Fourier coefficients of the real and the imag-
inary part of the crystal potential can be calculated
from the contributions of the atoms that constitute the
unit cell. These contributions can be obtained from
published parameterizations for the real and imaginary
part of the potential (Weickenmeier and Kohl 1991).

The eigenvalue method described above scales as
N 3 with the number N of the included reflecting planes.
This quickly leads to impractically long computa-
tion times if a large number of reflections has to be
included. This can be overcome by the use of the Bethe
perturbation scheme, which allows the inclusion of the
effects of weak reflections Uh by the transformation
into an effective potential of the strong beams U eff

g

without increasing the matrix dimensions:

U eff
g = Ug −

∑

h

UhUg−h

2K Sh
, (2.7)

where 2K Sh is defined by 2K Sh = K 2 − (K + h)2,
containing the excitation error Sh . For the use of the
Bethe perturbation, beam selection and convergence
criteria have been developed in the context of conver-
gent beam electron diffraction (Zuo and Weickenmeier
1995). Strong and weak beams are selected accord-
ing to their structure factor and the excitation error,
describing how strong the influence of a certain reflect-
ing plane is at the considered point in the diffraction
pattern.

2.3.3 Inclusion of the Backscattering
Process

Using the Bloch wave approach, we can determine the
diffraction-induced changes in the probability of an
electron to leave the crystal from an arbitrary posi-
tion r inside the crystal. The backscattered electrons
start predominantly from the positions of the atoms.
In a first approximation, this simply means that we
need to calculate the probability density 

∗ at the
atomic positions P. This is straightforward by using
Equation (2.2) (Allen and Rossouw 1989). For arbi-
trary inelastic processes, the interaction of diffracted
electrons with the crystal can be modelled by general-
ized potentials (Allen and Rossouw 1990). In the case
of backscattering, these potentials have the form of
delta functions (point sources), which are broadened
by the thermal vibrations. The dynamically backscat-
tered intensity integrated from depth t1 to t2 is then
given by (Rossouw et al. 1994):

IDY N ∝
∑

n,i j

Z2
n Bi j (t1, t2)

∑

g,h

C (i)
g C ( j)∗

h

× exp(−Bns2) exp[2π i(g − h) · rn],

(2.8)

with atoms at rn , Debye-Waller factors exp(−Bns2),
and a depth integrated interference term Bi j (t1, t2) of
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the Bloch waves i and j:

Bi j (t1, t2) =

ci c
∗
j

exp[2π i(λi − λ j∗
)t2] − exp[2π i(λi − λ j∗

)t1]

2π i(λi − λ j∗ )
.

(2.9)
Because the wave functions are known to be of the

form in Equation (2.2), the thickness integration for an
inelastic source extending from t1 to t2 can be carried
out analytically.

Using the method described above, the backscat-
tering pattern can be calculated point by point, each
describing a well-defined wave vector direction K0.
The application of the Bethe perturbation scheme
allows the inclusion of a large number of reflecting
planes, so that the large viewing angles in EBSD can
be handled (Winkelmann et al. 2007).

2.4 Applications

In this section we will apply the developed computa-
tional approach to a number of important basic prob-
lems of the EBSD technique.

2.4.1 A Real-Space View of EBSD

To illustrate the basic mechanism behind a typical
intensity distribution in Kikuchi bands, we calculated
a hypothetical nine-beam EBSD pattern of the {110}
and {200} families of lattice planes from bcc iron,
which is shown in the top middle part of Fig. 2.3. It
is one of the very useful properties of the Bloch wave
approach that we can selectively switch off all other
lines in the diffraction pattern because of the one-to-
one correspondence between the Fourier coefficients
(reciprocal lattice vectors) considered in the many-
beam problem and the observed Kikuchi lines. For the
simplified EBSD pattern shown in Fig. 2.3, we can now
calculate the probability density in the crystal that cor-
responds to some typical points in the Kikuchi bands.
Because the considered lattice planes are perpendicu-
lar to the surface, we can show the probability density
averaged along the [001] surface normal direction as a
two-dimensional plot over 3 × 3 unit cells in the other

panels of Fig. 2.3. The crystal surface is viewed from
the direction of the surface normal, the centered atoms
of the bcc cells are drawn smaller.

In the right part of Fig. 2.3, we see the proba-
bility density corresponding to the middle (d, blue
dashed) and to the border (c, red dashed) of a {200}
Kikuchi band. It is clearly seen that in the middle of
the Kikuchi band, the probability density is concen-
trated at the atomic positions; while at the border of
the band, the probability density is focused between
the atomic planes. The same process happens for the
{110} Kikuchi band in the left part of Fig. 2.3, a and b.
One sees how nicely the diffracted probability density
has to conform to the symmetry implied by the respec-
tive lattice planes. This becomes particularly important
near the zone axis in the center (e) of the EBSD pattern,
where the full interaction of all crossing lattice planes
has to be considered. Correspondingly, the probabil-
ity density is confined to the channel along the [001]
atomic columns (lower middle panel of Fig. 2.3; the
remaining intensity between the atoms is due to the
limited number of 9 beams in the calculation).

From the probability density of diffraction we can
draw conclusions regarding the observed intensity in
a typical EBSD pattern. There will be high intensity in
the pattern in directions where the diffraction probabil-
ity density overlaps strongly with those places where
the inelastic electrons are created. These places coin-
cide with the atomic positions in the case of thermal
diffuse (phonon) scattering. In summary, this means
that we should see high intensity in the middle of the
Kikuchi bands (probability density is focused mainly
on the atomic planes), and low intensity at the bor-
der (probability density is mainly between the atomic
planes).

This explanation suffices for the majority of EBSD
patterns taken in standard setups with incidence angles
in the order of 70 degrees. However, under special
experimental circumstances, a contrast reversal of the
observed Kikuchi bands can take place, and the above
explanation has to be extended. In early investigations
of Kikuchi patterns, it has been observed that the con-
trast within a band is reversed for electrons leaving
the sample with low take-off angles when the inci-
dence angle of the electron beam is decreased so that
it impinges more steeply on the surface (Alam et al.
1954). In such a situation, the backscattered electrons
come from a larger depth below the sample surface
(Reimer 1998). Similar contrast reversals of Kikuchi
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Fig. 2.3 Nine-beam EBSD pattern (top middle) of a bcc struc-
ture and diffraction probability distributions at selected direc-
tions, which are marked by solid and dashed colored squares in

the diffraction pattern. The centered atoms in the bcc structure
are drawn smaller

bands have also been observed in transmission electron
microscopy, and theoretical models for the thickness
dependent contrast reversal of Kikuchi bands in trans-
mission electron diffraction were given (Hall 1970;
Chukhovskii et al. 1973).

In the dynamical theory, the contrast reversal with
thickness appears due to the much stronger absorp-
tion of those Bloch waves which travel along the
atomic positions, compared to the Bloch waves which
travel between the atomic planes. This has an impor-
tant consequence if we increase the depth from which
the electron waves start the backscatter diffraction
process.

This is illustrated in Fig. 2.4 by a simple model cal-
culation, similar to the real-space view of Fig. 2.3. This
calculation was carried out for a source which is near
the surface (upper part) and another source which is
deeper inside the crystal (lower part). In the middle

we see the calculated Kikuchi band intensity. On the
left of Fig. 2.4, we see the type II wave field which
is excited predominantly at the edges of a Kikuchi
band. On the right side of Fig. 2.4, we see the type
I wave excited in the middle part of a Kikuchi band.
We emphasize that the elastic diffraction effect of the
excitation of two different types of Bloch waves is
not a function of thickness. What changes is the num-
ber of electrons in both types of fields: in the upper
part, both fields are excited almost equally, and the
increased overlap of the type I field on the right with
the backscattering atoms leads to a high intensity in
the middle of the band. In the situation in the lower
part of the figure, although the type I wave field geo-
metrically still overlaps better with the atomic posi-
tions, this wave field is of very low intensity because
it is absorbed strongly. Effectively, the smaller resid-
ual overlap of the type II field with the backscattering
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Fig. 2.4 Principle of contrast reversal with increasing thick-
ness. The type I Bloch wave is localized at the atomic planes
and is also more strongly absorbed. Beyond a certain thickness,

the type I wave is almost completely absorbed. Because the type
I wave dominates in the middle of the band, there will be a min-
imum of intensity for a deep source

atoms on the right still leads to a higher signal on the
edges of the Kikuchi band from the deeper source. Cor-
respondingly, we observe a Kikuchi band with inverted
contrast.

2.4.2 Full Scale Simulation of EBSD
Patterns

We now demonstrate that by inclusion of all relevant
lattice planes in a dynamical calculation, we can sim-
ulate a complete EBSD pattern with very good agree-
ment to experimentally measured patterns.

As a first example, we choose molybdenum, with
a bcc structure and a lattice constant of 3.147 Å. The
Debye-Waller factor B was assumed to be 0.25 Å2

(Peng et al. 1996), and all reflections which appear
within 50 degrees from the [001] zone axis to have
a minimum lattice spacing of dhkl > 0.35Å and a
minimum structure amplitude Uhkl > 0.005Å

−2
. This

leads to a set of about 1200 beams, which need to
be taken into account. On average, about 150 beams
were treated exactly in the many-beam problem, the
rest were taken into account by the Bethe perturba-
tion. We assumed that backscattered electrons were
excited from a thickness up to 150 nm. The final

simulated picture has been smoothed according to
an angular resolution of about 1 mrad. The con-
trast has been changed very slightly to correspond
to the measured pattern. The calculation was car-
ried out for 640 × 480 data points and took 3.5
days on a single CPU of a Pentium D 3.4 GHz
processor.

In Fig. 2.5, we show the comparison with an exper-
imental pattern taken at 25 keV incident beam energy.
Apart from the increased noise in the outer parts of the
experimental pattern, it can be seen that the simula-
tion and the experiment match almost perfectly. Also,
the typical ring structures appear in the dynamical cal-
culation. The mechanism that leads to the formation
of the rings can be interpreted as a transmission reso-
nance and has been extensively discussed for the case
of an incident plane wave, which at the resonance angle
θr strongly couples to states bound in the atomic col-
umn along the respective zone axis (Dudarev and Peng
1993b, a). By reciprocity, we can see that this effect
works analogously for the coupling between Bloch
waves moving in the potential of an atomic column and
outgoing plane waves, which form the ring intensity
near the angle θr .

The specific reciprocal lattice vectors that label the
Fourier coefficients of the crystal potential involved in
the transfer of intensity between the atomic column
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experimentMo 25kV

simulation

Fig. 2.5 Full scale many-beam dynamical simulation of an
EBSD pattern from molybdenum and comparison with an exper-
imental pattern. In the calculation, a total of 1200 reflections
were considered; on average 150 reflections were treated exactly,
the others were included by perturbation. A lattice constant of
c = 3.147 Å was used (experimental pattern courtesy of E.
Langer)

and the ring have non-zero components along the
respective zone axis. This is why the rings in EBSD
patterns have been termed “HOLZ rings” for short
(Higher Order Laue Zone). Measuring the diameter of
the HOLZ rings allows the estimation of lattice con-
stants, which has been shown to be useful for phase
identification using EBSD patterns (Michael and Eades
2000). Due to the inherently many-beam nature of the
HOLZ ring effect, it is expected that corresponding
dynamical simulations can be additionally applied to

extract high precision lattice parameters from mea-
sured rings.

2.4.3 The Influence of the Energy
Spectrum of the Backscattered
Electrons

In view of the good agreement of the simulation shown
in Fig. 2.5 with the experiment, it is necessary to
analyze the influence of the energy spectrum of the
backscattered electrons on the diffraction pattern. We
saw that the simulation done at the energy level of the
incident electrons with inclusion of a limited angu-
lar resolution does in fact match quite nicely to the
experiment. Obviously, electrons in a relatively lim-
ited energy range below the incident beam energy are
decisive for most of the observed diffraction features.
Since the width of a Kikuchi band is a function of
the energy of the diffracted electrons, an increasingly
broader energy spectrum will tend to wash out the
diffraction features. A limit on the energy spread which
is compatible with an EBSD pattern can be estimated
by comparison of the finest structures in the exper-
imental pattern with dynamical simulations that are
integrated for a range of energies. We will investigate
such a scenario for the case of GaN thin films, which
show very detailed patterns.

The simulations have been carried out for a limited
field of view of about 25 degrees centered around the
[02̄1] zone axis. We took into account 431 reflectors
with a lattice spacing of dhkl > 0.3Å and a structure
amplitude Uhkl > 0.005Å

−2
. The Debye-Waller factor

B was assumed at 0.25 Å
2
. The calculations were done

for 300 × 300 pixels in 50 eV steps, starting from the
incident beam energy of 20 kV down to 15 kV.

The experimental pattern is shown in Fig. 2.6e.
We see simulated patterns for the energies of 20 kV,
19.5 kV, and 18.5 kV in parts a, b, and c, respectively.
By comparing these simulations with the experiment,
one immediately recognizes that the central dark spot
in the center of the [02̄1] zone axis is becoming smaller
with energy, and at 18.5 kV is already smaller than
observed in experiment. A further reduction of the rel-
evant energy range is supported by the feature which
is indicated by the arrows. This feature is located near
the HOLZ ring around the [02̄1] zone axis, and it is
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experimenteb 19.5kV

20...19.5kV
1.5mrad resolution

d20kVa

c 18.5kV 20...15kVf

Fig. 2.6 Estimation of the influence of an energy spread in
EBSD from GaN: (a, b, c) calculations at the specified energies
(without any image processing). Note the delicately changing
fine structure in the zone axis in the center of the ring, as well
as the change in the feature at which the arrows are pointing. (d)

average of 11 diffraction patterns in 50 eV steps, from 20 kV
to 19.5 kV, with angular averaging according to 1.5 mrad res-
olution. (e) experimental pattern from GaN with incident beam
voltage of 20 kV (courtesy of A. P. Day). (f) average of 100
diffraction patterns from 20 kV to 15 kV
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very sensitive to the electron energy. In the experiment,
we notice a gap in the intensity distribution of this fea-
ture. In the simulation, we see this gap opening at about
19.5 kV, whereas it is clearly closed at 18.5 kV. In this
way, observation of the fine structure in the pattern has
given us a clear indication that electrons in the range of
20 kV to 19.5 kV dominate in producing the observed
features. In order to see how the averaging of such an
energy spread compares to the experiment, we summed
11 patterns in 50 eV steps from 20 kV to 19.5 kV, and
we applied an additional angular averaging according
to a 1.5 mrad angular resolution. This additional angu-
lar broadening takes into account the limited pixel size
of the CCD camera plus a possible additional angu-
lar smearing of the intensity due to lattice defects and
surface contamination. The averaged simulated pattern
compares very well with the experimental observa-
tions. Taking into account that we have not used any
information about the experimental energy spectrum
(we assumed nB = 1 for 19.5 . . .20 kV), the possibil-
ity of obtaining good agreement with the experiment in
a calculation for a single or a very limited number of
energies would greatly reduce the required computa-
tion times. Our observation compares nicely to exper-
imental observations using energy-filtered EBSD from
Si samples. It was found that low loss electrons with
energies not less than about 3% of the primary beam
are predominant in producing the observed contrast
(Deal et al. 2008).

We have seen that the comparison of experimen-
tal and simulated energy dependent fine structure in
EBSD patterns allows important conclusions regarding
the energy spectrum. In many cases, however, EBSD
patterns do not show such relatively sharp features as
in Fig. 2.6e. This is not necessarily due to a broad
energy spectrum, but can also be caused, e.g., by lattice
imperfections. From very general considerations, we
can expect higher density materials to show a broader
energy spectrum due to the increased multiple inelas-
tic scattering (Reimer 1998). This then should corre-
late with a reduced fine structure in these materials. As
an extreme case, we illustrate in Fig. 2.6f that even an
energy spread of 5 kV, from 15 kV to 20 kV (100 pat-
terns in 50 eV steps), still leads to pronounced Kikuchi
bands with an overall character that might resemble
experimental patterns from some materials with not as
much fine structure as GaN or Si. It seems that a rather
broad energy spectrum is compatible with EBSD pat-
terns that do not show higher order fine structure. In

turn this would mean that energy filtering would pro-
duce significantly more detail if the loss of fine struc-
ture were caused by energy broadening alone (whereas
energy filtering would not help if the fine structure
is lost due to lattice imperfections). More systematic
insight is expected in the future if realistic Monte Carlo
simulations of inelastic scattering are coupled with the
many-beam dynamical simulations.

2.4.4 Dynamical Effects of Anisotropic
Backscattering

In this section we will show which qualitative changes
appear in the EBSD patterns if we take into account
that the incident electrons are backscattered with dif-
ferent intensity in different directions. The scatter-
ing at high kinetic energies is strongly enhanced in
the forward direction. Due to the usual geometry of
EBSD experiments using relatively shallow incidence
angles, a significant anisotropy of the initial distribu-
tion of the inelastically scattered electrons with respect
to the detected directions is created. This directly influ-
ences the overall intensity distribution of the observed
EBSD pattern neglecting any diffraction effects: the
patterns show higher intensity towards the forward
scattering direction and significantly decrease in inten-
sity towards larger backscattering angles. However,
within the small angular range of the Kikuchi band
cross sections that we are interested in, this will be a
relatively smoothly varying background, which can be
removed by flat-fielding techniques used for enhancing
the diffraction contrast in experimental patterns.

The anisotropy of each distinctive backscattering
event (emitting an anisotropic coherent wave) also
enters into the dynamical diffraction problem. This
results in selective enhancement or suppression of the
intensity of Kikuchi lines as a function of their ori-
entation with respect to the incoming beam direction.
The mechanism of these excess and deficiency lines
has been discussed for the case of transmission elec-
tron microscopy Kikuchi patterns (Kainuma 1955).

The excess lines usually appear at scattering angles,
which are farther away from the incident beam direc-
tion than the deficiency lines. If the backscattered
electrons with wave vectors near the incident beam
direction have a higher intensity than the wave vectors
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Fig. 2.7 Mechanism of the formation of excess and deficiency
lines in EBSD patterns

for larger scattering angles, the intensity is then asym-
metrically removed by diffraction from the position of
the deficiency line and transferred to the excess line.

In Fig. 2.7, we show the basic ingredients that
are necessary to qualitatively understand the excess-
deficiency effect in electron backscatter diffraction.

The sources S of backscattered electrons are local-
ized at atomic positions inside the crystal. The creation
of the backscattered electron waves is not isotropic,
and a single electron is scattered into the directions A
and B with different probabilities. What is important
for the effect is only that a difference exists between
the numbers of electrons that are initially excited into
the different directions A and B. Subsequently, these
electrons are dynamically diffracted by the surround-
ing crystal lattice. In Fig. 2.7, we show the case that
beams along A will be scattered by lattice plane g,
whereas beams along B will be scattered by –g, cor-
responding to a pair of Kikuchi lines, with a band
of increased intensity between them. The intensities
along k(1)

out and k(2)
out in the EBSD pattern can be thought

to be formed by electrons that are moving into these
directions without scattering, plus electrons that are
dynamically scattered from other initial directions into
these final directions. Assuming equally strong scat-
tering by g and –g, the dynamical diffraction problem
is perfectly symmetric. Correspondingly, the dynam-
ically diffracted intensities in the directions k(1)

out and
k(2)

out would not show an excess-deficiency asymmetry
if we had the same number of A and B electrons. Now
we consider the case in which A is initially stronger

than B. When there are more A electrons than there
are B electrons, a higher number of electrons is neces-
sarily scattered by g away from the initial direction of
the A electrons into the direction k(1)

out , than the number
of B electrons scattered by –g from k(1)

out back to the ini-
tial A direction k(2)

out . By this mechanism more intensity
ends up in direction k(1)

out than in direction k(2)
out , and the

excess E and deficiency D features are formed.
We have demonstrated a simple and transparent

way to incorporate the relevant effects of anisotropic
backscattering into Equation (2.8) (Winkelmann
2008). It was assumed that the beams g are excited
with different strengths according to a function � that
depends on g and the incident and detected beam direc-
tions:

fn(q + g) ∝ Zn · χg(kin, kα
out ). (2.10)

For simplicity, we assumed that the relative strength
of excitation shows a Gaussian distribution as a func-
tion of wave-vector transfer q from some effective inci-
dent beam direction ke ff

in :

χg = 1 + a · exp

(
−(kα

out − ke ff
in + g)2

b2

)

. (2.11)

In this equation, q = kα
out − ke ff

in . The phenomeno-
logical parameters a, b, and ke ff

in have to be chosen
for best agreement with the experiment. The factor
χg describes the deviation from isotropic scattering,
which is obtained by setting all χg = 1. With this, a
refined version of Equation (2.8) results:

I E D
DY N (ke ff

in , ke ff
out ) ∝ A

∑

n,i j
Z2

n Bi j (t)

×
∑

g,h

χgχhC (i)
g C ( j)∗

h exp(−Bns2) exp[2π i(g−h)·rn]

(2.12)
This very simplified model shows the basic proper-

ties necessary for the appearance of excess-deficiency
features in a transparent way, without increasing the
computational load beyond practical limits and without
relying on the exact microscopic details. A compar-
ison of the isotropic and anisotropic models with an
experimental pattern from CaF2 is shown in Fig. 2.8.
The simulation has been carried out at 19.5 kV using
a lattice constant of 5.471 Å, including 673 reflections
with a lattice spacing of dhkl > 0.3Å and a structure
amplitude Uhkl > 0.005Å

−2
. The Debye-Waller factor
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Fig. 2.8 Excess-deficiency
effect in EBSD from CaF2 at
20 kV. Left: experimental
pattern. Right: simulation for
an isotropically emitting
source (top) and for an
anisotropic source (bottom).
The gray and black lines
indicate the relative difference
between excess and deficient
intensity. The
excess-deficiency effect is
semi-quantitatively
reproduced by the anisotropic
model (experimental pattern
courtesy of G. Nolze)

B was assumed to be 0.4Å
2
. We assumed an angular

broadening of 1.5 mrad. For the excess-deficiency
model, we used a = 5000 and b = 4.9Å

−1
. The

anisotropic model reproduces very well the qualitative
changes that are caused by the excess-deficiency
effect. The effect resembles an illumination from the
top, which corresponds to the incident beam direction.
Our model also reproduces the observation that not
all lines are affected equally by the excess-deficiency
effect: line pair C in Fig. 2.8, which runs almost
parallel to the incident beam direction, is not affected
much because the inelastic scattering in our model is
rotationally symmetric around the effective incident
beam direction. This leads to nearly equal intensity
scattered by the corresponding g and –g reflections of
the line pair C.

2.5 Summary

We have seen how the Bloch wave approach can be
used for a dynamical many-beam description of EBSD
patterns. Very good agreement between experiment
and simulation is reached in a number of cases. In
the future, such dynamical simulations might become

a useful tool to push the EBSD technique to new limits
in the characterization of materials.
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