Introductory Time Series with R:

Selected solutions from odd
numbered exercises

Paul Cowpertwait & Andrew Metcalfe
August 5, 2009

Chapter 1 Solutions

1. The data can be read into R and the plots obtained using the following
code. In the plots it will be seen that the chocolate production series
exhibits an increasing trend — this will be particular clear in the plot
of the aggregated series. In addition, the boxplot will indicate that
production tends to reach a minimum in January (possibly following
post-Christmas sales).

www = "http://www.massey.ac.nz/ pscowper/ts/cbe.dat"
cbe read.table(www, head=T)

choc.ts <- ts(cbel[,1], st=1958, fr=12)

plot(choc.ts)

plot(aggregate(choc.ts))

boxplot(choc.ts ~ cycle(choc.ts))
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3. Below the data are entered into R and LI and PI found.

> q0 <- c(0.33, 2000, 40, 3, 2)

> p0 <- c(18000, 0.8, 40, 80, 200)
> gt <- ¢(0.5, 1500, 20, 2, 1)

> pt <- ¢(20000, 1.6, 60, 120, 360)
> LI <- sum(qO0 * pt)/sum(q0 * pO)

> PI <- sum(qt * pt)/sum(qt * pO)

> c(LI, PD)

[1] 1.358 1.250



(a)
(b)

()

From the R code we see that PI, = 1.250.

LI; uses the quantities from the base year, which is earlier than
quantities used in PI;. PI is usually less than LI because people
tend to move away from items that show sharp price increases to
substitutes that have not shown such steep price increases. In this
case the cost of new cars has increased by a factor of 1.11, whereas
the cost of servicing has increased by a factor of 1.50 and the cost
of petrol has doubled. People have tended to buy more new cars
thus reducing the costs of servicing and petrol consumption.

The code below calculates the Irving-Fisher index.
> sqrt (LI * PI)
[1] 1.303

Chapter 2 Solutions

1.

(a)

The code below reads the data in and then produces a scatter
plot and calculates the correlation between the x and y variables.
The plot indicates an almost quadratic relationship, which is not
reflected in the value of the correlation (since correlation is a mea-
sure of linear relationship).

> www = "http://www.massey.ac.nz/ pscowper/ts/varnish.dat"
> varnish = read.table(www, head=T)
> plot(varnish)
> cor(varnish)
X y
x 1.0000000 -0.2528782
y -0.2528782 1.0000000

There is a clear pattern but it is non-linear resulting in small
correlation.

> www = "http://www.massey.ac.nz/ pscowper/ts/guesswhat.dat"
> guesswhat = read.table(www, head=T)
> plot(guesswhat)
> cor(guesswhat)
X y
1.00000000 0.06457764
y 0.06457764 1.00000000

o]

The data can be read into R as follows and a plot of the decom-
posed series obtained from plot(decompose()).



www = "http://www.massey.ac.nz/ pscowper/ts/global.dat"
global = scan(www)

global.ts = ts(global, st=1856, fr=12)

global.decom = decompose(global.ts)

plot(global.decom)
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Since the data are ‘global’ temperature we would not expect to
observe substantial seasonal variation. This is supported by the
close standard deviations and a boxplot (from the code below).

> sd(global.ts)

[1] 0.2735360

> sd(global.ts - global.decom$seas)

[1] 0.2715033
> boxplot(global.ts ~ cycle(global.ts))

A plot of the trend with seasonal effect added is given by:

> ts.plot(global.decom$trend,
global.decom$trend+global .decom$seas, lty=1:2)

(b) The residual series will have the first and last six values missing
due to estimation of the trend by a moving average. Hence, the
correlogram of the residuals is given by:

> length(global.decom$rand)

[1] 1800

> acf(global.decom$rand[-c(1:6,1795:1800)]1)
In the plot there is evidence of short-term positive serial correla-
tion (lag 1) and periodic correlation (negative serial correlation at
lag 5 and positive serial correlation at lag 10). This suggests global
temperatures persist from one month to the next and include some
cyclical trends different from the seasonal period.

Chapter 3 Solutions

1. (a) x and y are linearly related since substraction yields y; = x; + €
(t = 1,...,100), where ¢ is an N(0,0?) random variable, with
0% = 2k2. Hence, we find high crosscorrelation which decreases as
k increases.

(b) The variables = and y both follow sine waves of period 37 time
units, with z lagging behind y by 4 time units. The relationship
between the variables can be seen using plot(x,y) which shows x
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and y have a non-linear relationship scattered about an elliptical
path.

3. (a) Differentiating F'(t) gives:

2 —2
f(t) = —(p +4) [1 + ge—(p+q)t] e~ (Pta)t
p p

Dividing this by 1 — F(t) gives:

f@  _ p+q
1—F@) 1+ felrat

=p+qF(t)

as required.

(b) The required plot can be obtained in R using:

> F.logis = function(t) 1+exp(-pi*t/sqrt(3))
> T = seq(-3,3, length=1000)
> plot(pnorm(T), F.logis(T), type='1l")

(c) Differentiating f(t) gives:

(p + q)’e” WHOt(ge~PHal —p)

/ —
f (t> - p2(1 + %e—(p+q)t)3

At the peak (maximum) f’(¢) = 0, which occurs when
ge~P+9t _ 5 =0, and the result follows.

Chapter 4 Solutions

1. Using w <- rexp(1000) - 1, the correlogram for w, obtained from
acf (w) indicates white noise, and the histogram show a positively
skewed distribution.

3. (a) g —pu=a(riy —p)+w = 2= (1 —a)u+ axy_y + wy from
which we obtain: ag = (1 — a)u and oy = a.
(b) An AR(2) model with non-zero mean can be written as either:
(1) 20 — o = (s — ) + Bl — 1) + w or
(i) & = ap+ 141 + oo +w;. Expanding and rearranging (i)
gives: vy = (1—a—p)u+ oz 1+ prio+w, = ap = (1—a—F)pu,
a; =« and ap = .



Chapter 5 Solutions

1.

(a)

Time = 1:100
w = rnorm(100, sd=25)
zZ =W

X =2
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o
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plot(x, type='1l")

> x.1m = Im(x ~ Time + I(Time~2))

> coef(x.1m)

70 + 2xTime - 3*Time™2 + z

(Intercept) Time I(Time"2)
70.369283 2.019250 -3.001847

> confint(x.1m)

2.5 % 97.5 %
(Intercept) 51.456393 89.282172
Time 1.154880 2.883620
I(Time"2) -3.010138 -2.993555

The above confidence intervals contains the underlying population
values of 70, 2, and —3. These confidence intervals are narrower
than they should be because the errors are positively correlated —

see solution to part (e).

The correlogram of the residuals (obtained from the code below)
shows a significant value at lag 1, due to the autocorrelation in-
troduced using a simulated AR process of residual errors.

> acf(resid(x.1m))

The GLS fit has wider standard errors for the parameter estimates.
This is most apparent in a confidence interval (not asked for but

also shown below).

> x.gls = gls(x ~ Time + I(Time"2), cor=corAR1(0.5))

> summary(x.gls)

Coefficients:

Value Std.Error
(Intercept) 73.24947 16.736346
Time 1.86129 0.765383

(i in 2:100) z[i] = 0.5*z[i-1] + w[i]

t-value p-value

4.3767
2.4318

I(Time~2) -3.00019 0.007332 -409.1942

> confint(x.gls)

0.0000
0.0169
0.0000



3.

(a)

2.5 % 97.5 %
(Intercept) 40.4468388 106.052109
Time 0.3611645  3.361409
I(Time"2) -3.0145624 -2.985822

The data have an increasing variance. If the standard deviation
is approximately proportional to the mean (constant coefficient of
variation) the logarithms of the data will have a constant standard
deviation (and hence constant variance). This makes modelling
easier. Furthermore simulating the logarithm of a variable ensures
that all the simulated values of the variable itself are positive.

The code is shown below, from which it can be seen that the best
model (with smallest AIC) includes all explanatory variables.

> wwuw = "http://www.massey.ac.nz/ pscowper/ts/cbe.dat"
> cbe = read.table(www, head=T)
> cbell1:2,]
choc beer elec
1 1451 96.3 1497
2 2037 84.4 1463

> attach(cbe)

> length(elec)

[1] 396

> length(elec)/12

[1] 33

imth = rep(1:12,33)

Tl = 1:396

T2 = T172

elec.1lm = Im(log(elec) "T1+T2+factor(imth))
step(elec.1lm)

Start: AIC=-2717.56

log(elec) ~ T1 + T2 + factor(imth)

vV V V Vv V

Df Sum of Sq RSS AIC

<none> 0.39 -2717.56

- factor(imth) 11 2.49 2.88 -1944.07

- T2 1 2.56 2.95 -1914.39

- T1 1 20.40 20.78 -1141.12
(Intercept) T1 T2 factor(imth)2
7.271e+00 7.960e-03 -6.883e-06 -1.991e-02
factor(imth)3 factor(imth)4  factor(imth)5 factor(imth)6
6.598e-02 3.288e-02 1.462e-01 1.777e-01



factor(imth)7 factor(imth)8 factor(imth)9 factor(imth)10

2.375e-01 1.994e-01 1.074e-01 9.044e-02
factor(imth)11 factor(imth)12
4.278e-02 2.350e-02
(C) > cl=cos(2xpix*T1/12); sl=sin(2*pi*T1/12)
> c2=cos(2x2%pi*T1/12); s2=sin(2*2*pixT1/12)
> c3=cos(3*2*pi*T1/12); s3=sin(3*2*pixT1/12)
> c4=cos(4*2xpi*T1/12); s4=sin(4*2xpi*T1/12)
> cb=cos(5*2*pi*T1/12); sb=sin(5*2*pi*T1/12)
> c6=cos (6*2xpi*T1/12)
> elec.harm = 1m(log(elec) "T1+T2+cl+sl+c2+s2+c3+s3+c4+s4+cb+s5+c6)
> step(elec.harm)
Coefficients:
(Intercept) T1 T2 cl s1
7.363e+00 7.961e-03 -6.883e-06 -8.840e-02 -5.803e-02
c2 s2 s3 ch s5
1.496e-02 1.510e-02  -1.544e-02 1.003e-02 2.190e-02
c6
-7.985e-03

(d) The best fitting model is (marginally) the harmonic model with
an AIC of —2722. The correlogram indicates there is still some
seasonal effects present. The partial correlogram is difficult to
interpret in the presence of existing seasonal effects. However,
the high lag 1 term followed by low values suggest that an AR(1)
process with seasonal terms for the error series would be worth
trying.

> elec.best = 1Im(log(elec) "T1+T2+cl+sl+c2+s2+
+ s3+cb+sb+c6)

(e) > ar(resid(elec.best))

Coefficients:

1 2 3 4 5 6 7
0.3812 0.2187 0.0853 0.0274 -0.0004 0.0350 -0.0241
8 9 10 11 12 13 14
0.0071 0.1094 0.0317 0.1208 0.1715 -0.0889 -0.0664
15 16 17 18 19 20 21
-0.0458 -0.0896 0.0211 0.0038 -0.1251 0.0162 -0.0539

22 23

-0.0161  0.1609

Order selected 23 sigma”2 estimated as 0.0003933
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(f)

The correlogram indicates the residuals of the fitted AR model
are approximately white noise. Note the first 23 values had to be
removed, since an AR(23) model had been fitted so the first 23
residuals were NA.

> fit.ar <- ar(resid(elec.best))
> acf(fit.ar$res[-(1:23)1)

The equation of the best fitted model is:

log(w;) = 7.36+7.96 x 107%t — 6.88 x 107 ¢
—8.84 x 102 cos(2nt/12) — 5.80 x 102 sin(2nt/12)
+1.50 x 1072 cos(4mt/12) 4+ 1.51 x 102 sin(4rt/12)
—1.54 x 102 sin(67t/12) + 1.00 x 1072 cos(107t/12)
+2.19 x 10™?sin(107t/12) — 7.99 x 1073 cos(mt) + 2

where x; is the electricity production at time ¢ (t = 1,...,396),
z; is the residual series, which follows an AR(23) process, and ¢ is
the time in months (¢t =1,...,396).

The predicted values are in elec.pred, and these have been ad-
justed using a correction factor of %02 to account for the bias due
to taking logs. Finally, the predicted values are added to the time
plot of the original series. When viewing this plot it is evident
that the predictions are not particularly good, since they fail to
follow the trends, and that better predictions would probably be
obtained using a multiplicative Holt-Winters procedure.

> new.t = 397:(397+119)

> new.cl = cos(2*pi*new.t/12); new.sl = sin(2*pi*new.t/12)

> new.c2 = cos(2x2*pi*new.t/12); new.s2 = sin(2*2*pi*new.t/12)

> new.c3 = cos(3*2*pi*new.t/12); new.s3 = sin(3*2*pi*new.t/12)

> new.ch = cos(5x2*pi*new.t/12); new.sb = sin(5*2*pi*new.t/12)

> new.c6 = cos(6x2*pi*new.t/12);

> new.t2 = new.t"2

> new.dat = data.frame(Tl=new.t, T2=new.t2, cl=new.cl, sl=new.sl,
+ c2=new.c2, s2=new.s2, s3=new.s3, cb=new.cb, sb=new.sb, c6=new.c6)
> ar.pred = predict(ar(resid(elec.best)), n.ahead=120)

> log.pred = predict(elec.best, new.dat)

> elec.pred = exp(log.pred + ar.pred$pred + 0.5%0.0003933)

> elec.ts = ts(elec, st=1958, fr=12)

> elec.pred.ts = ts(elec.pred, st=1991, fr=12)

> ts.plot(elec.ts, elec.pred.ts, lty=1:2)



Chapter 6 Solutions

1.

q q q
Ty = Z Biw,—; = (k) = cov (Z Biwg—s, Zﬁjwt—i-k—j)
i=0 i=0 j=0

- Z Z BiBicov (wy—i, Wit g—j)

i=0 j=0

= Z @'@‘02

i=j—k
q—k

2

= 0 Zﬁiﬁiﬂc
i=0

from which the result follows using p(k) = v(k)/v(0).

3. (a) Rearranging and expressing in terms of the backward shift opera-

tor B gives:
1, 1
1 1
= (1 - 53)2% = (1+ EB)wt

which is ARMA(2, 1) and is both stationary and invertible since
the roots of the equations in B all exceed unity in absolute value.

(b)

Ty = 241 — Ty—o +wy
= (]_ — 2B + BQ)I't = Wt
= (1 — B)2It = Wt

This is ARMA(2,0) and is non-stationary since B = 1 is a solu-
tion to the characteristic equation taken from the left-hand-side
of the equation. The model is invertible, since the MA part on

the right-hand-side is just white noise. The model would usually
be expressed as ARIMA(0,2,0).



(c) Rearranging and expressing in terms of B gives:

3 I 1 1,
1 1 1
= (1-B)(1 - §B)xt = (1— 53 + 132)wt

This is ARMA(2,2) and is non-stationary since the characteristic
equation taken from the left-hand-side has a unit root B = 1. The
model would usually be expressed as ARIMA(1,1,2). The model is
invertible, since the complex roots of the right-hand-side equation
exceed unity in absolute value:

> polyroot(c(1,-1/2,1/4))

[1] 1+1.732051i 1-1.7320511i

> Mod(polyroot(c(1,-1/2,1/4)))
[1] 2 2

Chapter 7 Solutions

1.

3.

(a) Rearranging in terms of B gives:

(1-B+025B%z = (1+0.5B)w,
= (1-0.5B)%% = (1+0.5B)w,
which is an ARIMA(2,0,1) or ARMA(2,1) model, and is stationary

because the roots of the polynomial on the left hand side, B = 2,
exceed unity:.

(a) Using the equation x; = a + bt 4+ w, gives:

vy = Vy

Ty — Tr—1
a+bt+w —{a+b(t—1)+w_1}

= b+wt—wt_1

t t
=>$0+Zyi = l‘o—f'Z{b‘sz‘—wz‘—l}
i=1 i=1

= 2o+ bt+w =1z

as required (taking wy = 0). Note zy = a.
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(b) Back-substituting for x;_;:

Ty = X1+ b+ w + Pwy_q
= Xy o+ b+ w1+ Pwi_o+b+w + Pw_,q
= my_p + 20+ w + (14 Blwi—1 + fwi—s
= T3+ 3b+w + 1+ w1 + (14 B)wi—g + Pwy_3

t—1

= mo+bt+w+(1+0)) w

i=1
This has variance:
Var(z;) = o, {1+ (1+8)*(t—1)}

which increases as t increases, unless = —1 in which case the
variance is o2

w*

Chapter 8 Solutions

1. (a) > www <- "http://www.massey.ac.nz/ pscowper/ts/LAN.txt"
> x <- read.table(www, head=T)
> attach(x)
> hist(bits)
> boxplot(bits)

(b) > mean((bits-mean(bits))~3)/sd(bits) 3
[1] 2.888421
> mean((bits-mean(bits))~4)/sd(bits) 4
[1] 11.27845

logbit <- log(l+bits)

boxplot(logbit)

hist (logbit)
mean((logbit-mean(logbit))~3)/sd(logbit) "3
[1] -1.063624

> mean((logbit-mean(logbit))~4)/sd(logbit) "4
[1] 3.413031

vV V V

\4

(d) The fractionally differenced series can be found using the code
on pl62, which can be pasted into R from via the book website
(www.massey.ac.nz,/ pscowper/ts/scripts.R).
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x <- bits
fds.fit <- fracdiff(x, nar=0, nma=0)
n <- length(x)
L <- 30
d <- fds.fit$d
fdc <- d
fdc[1] <- fdc
for (k in 2:L) fdc[k] <- fdc[k-1] * (d+1-k) / k
y <- rep(0, L)
for (i in (L+1):n) {
csm <- x[i]
for (j in 1:L) csm <- csm + ((-1)7j) * fdc[j]l * x[i-j]
y[i] <- csm
}
y <= y[(L+1):n]
y.ar <- ar(y)
y.res <- y.ar$res[-c(1l:y.ar$order)]
boxplot(y.res)
hist(y.res)

VVVVYV + + 4+ +VVVVVVVVVYV

(e) A range of models can be fitted and tested using the arima func-
tion nested within AIC as shown below.

> AIC(arima(y, order=c(1,0,1)))
[1] 70358.06
> AIC(arima(y, order=c(2,0,2)))
[1] 70243.97
> AIC(arima(y, order=c(5,0,5)))
[1] 70198.84
> AIC(arima(y, order=c(6,0,6)))
[1] 70201.07
> AIC(arima(y, order=c(6,0,5)))
[1] 70199.11
> AIC(arima(y, order=c(4,0,5)))
[1] 70207.49
> AIC(arima(y, order=c(5,0,4)))
[1] 70199.53

A best fitting model is ARMA(5, 5). This is better than the fitted
AR model because the residual variance (adjusted by degrees of
freedom) is smaller.

> y.ar

Order selected 22 sigma”2 estimated as 2781676
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> y.arma

sigma”2 estimated as 2780911

x <- logbits
fds.fit <- fracdiff(x, nar=2, nma=0)
n <- length(x)
L <- 30
d <- fds.fit$d
fdc <- d
fdc[1] <- fdc
for (k in 2:L) fdc[k] <- fdc[k-1] * (d+1-k) / k
y <- rep(0, L)
for (i in (L+1):n) {
csm <- x[i]
for (j in 1:L) csm <- csm + ((-1)7j) * fdc[j]l * x[i-j]
y[i] <- csm
}
y <= y[(L+1):n]

y.ar <- ar(y)

y.ar$order

1] 26

plot(y, type='1l")

acf (y)

acf (y.ar$res[-c(1:26)])
acf(y.ar$res[-c(1:26)1°2)

VVVVmMPQAVYVYYVYY 4+ 4+ 4+ 4V VYV VYV VYVYVYVYV

Chapter 9 Solutions
1. (a) > TIME <- 1:128

cl <- cos(2xpi*TIME/128)

sl <- sin(2*pi*TIME/128)

c2 <- cos(4*xpi*TIME/128)

var(cl)

[1] 0.503937

> var(sl)

[1] 0.503937

> var(c2)

[1] 0.503937

> cor(cl,sl)

[1] 3.020275e-18

> cor(cl,c2)

[1] -9.62365e-17

V V V Vv V

13



(b)

()

> cor(sl,c2)
[1] -3.823912e-17

From the above code, we can see that the harmonic terms are
uncorrelated and have variance approximately 1/2. This approxi-
mation improves for higher n, e.g. for n = 10000 we have:

> var(cos(2*pi*(1:10000)/10000))
[1] 0.50005

> var(cos(pi*(1:10000)/10000))
[1] 0.50005

Also, note that Var{cos(nt)} is approximately 1:

> var (cos(pi*(1:10000)))
[1] 1.0001

Hence, from p173, and using a2, + b2, = A2 and b2 = 0, we have:

1 1 1 1
Var(z;) = TS+ 4 _ai/Q—l + 5172/2—1 + ai/z

PR 2
I I 2

which is equivalent to Parseval’s Theorem.

This follows from the fact that b,/ = 0 and Var{cos(mt)} =1 (as
mentioned above).

Chapter 12 Solutions

1. (a)

(b)

Increasing the variance of w; means the filter follows the series
more closely, because a higher variance enables greater adaptation
of the parameter 6 at each time step.

Increasing both variances — the parameter variance to 10 and the
observation variance to 200 — produces an almost identical result to
the initial result shown in the text (Fig. 12.1) which had variances
0.1 and 2 for w; and v; (respectively). Note the ratios of the
observation and parameter variances are identical in both cases
which is the reason for the results being so similar. The slight
discrepancy is due to initial conditions.

After the data are entered into R (into a vector morg.dat), the
variances can be found as follows.
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> length(morg.dat)
[1] 64
morg.var <- vector(len=13)
morg.var[1] <- var(morg.dat[1:5])
morg.var[2] <- var(morg.dat[6:10])
morg.var[3] <- var(morg.dat[11:14]) # 3rd week has 4 trading days
k = 10 # an initial first index value
for (i in 4:13) {
k=k +5
morg.var[i] <- var(morg.dat[k: (k+4)])
3
> morg.var
[1] 1.090530 1.414130 0.560625 5.231030 18.970800 2.206530 1.722170
[8] 28.039030 2.530550 2.224150 1.996750 2.056080 1.407570
> mean(morg.var)
[1] 5.342303

V V V V Vv V

morg.mean <- vector(len=13)
morg.mean[1] <- mean(morg.dat[1:5])
morg.mean[2] <- mean(morg.dat[6:10])
morg.mean[3] <- mean(morg.dat[11:14])
k=10
for (i in 4:13) {

k<-k +5

morg.mean[i] <- mean(morg.dat[k: (k+4)])

}

> morg.mean
[1] 38.2040 39.4560 41.2925 39.7060 26.4800 26.3460 23.1080 16.0160
[9] 19.2200 18.7800 15.4500 17.0660 13.1680

vV V V V VvV V

> morg.mean.var <- var(morg.mean)

> morg.var.mean <- mean(morg.var)

> morg.mean.var - morg.var.mean / 5
[1] 108.3423

week <- vector(len=64)
week[1:5] <- 1
week[6:10] <- 2
week[11:14] <- 3
k <- 10
wk <- 3
for (i in 4:13) {
k <-k + 5
wk <- wk + 1
week[k: (k+4)] <- wk
}

> anova(aov(morg.dat ~ factor(week)))

V V V V V V VvV
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Analysis of Variance Table

Response: morg.dat

Df Sum Sq Mean Sq F value Pr(>F)
factor(week) 12 6318.2 526.5 96.856 < 2.2e-16 *x*
Residuals 51 277.2 5.4

Allowing for the Labor Day holiday gives a within-week variance
of 5.4.
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