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Stationary Models

6.1 Purpose

As seen in the previous chapters, a time series will often have well-defined
components, such as a trend and a seasonal pattern. A well-chosen linear re-
gression may account for these non-stationary components, in which case the
residuals from the fitted model should not contain noticeable trend or seasonal
patterns. However, the residuals will usually be correlated in time, as this is
not accounted for in the fitted regression model. Similar values may cluster to-
gether in time; for example, monthly values of the Southern Oscillation Index,
which is closely associated with El Niño, tend to change slowly and may give
rise to persistent weather patterns. Alternatively, adjacent observations may
be negatively correlated; for example, an unusually high monthly sales figure
may be followed by an unusually low value because customers have supplies
left over from the previous month. In this chapter, we consider stationary
models that may be suitable for residual series that contain no obvious trends
or seasonal cycles. The fitted stationary models may then be combined with
the fitted regression model to improve forecasts. The autoregressive models
that were introduced in §4.5 often provide satisfactory models for the residual
time series, and we extend the repertoire in this chapter. The term stationary
was discussed in previous chapters; we now give a more rigorous definition.

6.2 Strictly stationary series

A time series model {xt} is strictly stationary if the joint statistical distribu-
tion of xt1 , . . . , xtn is the same as the joint distribution of xt1+m, . . . , xtn+m for
all t1, . . . , tn and m, so that the distribution is unchanged after an arbitrary
time shift. Note that strict stationarity implies that the mean and variance
are constant in time and that the autocovariance Cov(xt, xs) only depends on
lag k = |t − s| and can be written γ(k). If a series is not strictly stationary
but the mean and variance are constant in time and the autocovariance only
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122 6 Stationary Models

depends on the lag, then the series is called second-order stationary.1 We focus
on the second-order properties in this chapter, but the stochastic processes
discussed are strictly stationary. Furthermore, if the white noise is Gaussian,
the stochastic process is completely defined by the mean and covariance struc-
ture, in the same way as any normal distribution is defined by its mean and
variance-covariance matrix.

Stationarity is an idealisation that is a property of models. If we fit a
stationary model to data, we assume our data are a realisation of a stationary
process. So our first step in an analysis should be to check whether there is any
evidence of a trend or seasonal effects and, if there is, remove them. Regression
can break down a non-stationary series to a trend, seasonal components, and
residual series. It is often reasonable to treat the time series of residuals as a
realisation of a stationary error series. Therefore, the models in this chapter
are often fitted to residual series arising from regression analyses.

6.3 Moving average models

6.3.1 MA(q) process: Definition and properties

A moving average (MA) process of order q is a linear combination of the
current white noise term and the q most recent past white noise terms and is
defined by

xt = wt + β1wt−1 + . . .+ βqwt−q (6.1)

where {wt} is white noise with zero mean and variance σ2
w. Equation (6.1)

can be rewritten in terms of the backward shift operator B

xt = (1 + β1B + β2B2 + · · ·+ βqBq)wt = φq(B)wt (6.2)

where φq is a polynomial of order q. Because MA processes consist of a finite
sum of stationary white noise terms, they are stationary and hence have a
time-invariant mean and autocovariance.

The mean and variance for {xt} are easy to derive. The mean is just zero
because it is a sum of terms that all have a mean of zero. The variance is σ2

w(1+
β2

1 + . . .+β2
q ) because each of the white noise terms has the same variance and

the terms are mutually independent. The autocorrelation function, for k ≥ 0,
is given by

ρ(k) =


1 k = 0∑q−k

i=0 βiβi+k/
∑q

i=0 β
2
i k = 1, . . . , q

0 k > q

(6.3)

where β0 is unity. The function is zero when k > q because xt and xt+k

then consist of sums of independent white noise terms and so have covariance
1 For example, the skewness, or more generally E(xtxt+kxt+l), might change over

time.
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zero. The derivation of the autocorrelation function is left to Exercise 1. An
MA process is invertible if it can be expressed as a stationary autoregressive
process of infinite order without an error term. For example, the MA process
xt = (1− βB)wt can be expressed as

wt = (1− βB)−1xt = xt + βxt−1 + β2xt−2 + . . . (6.4)

provided |β| < 1, which is required for convergence.
In general, an MA(q) process is invertible when the roots of φq(B) all

exceed unity in absolute value (Exercise 2). The autocovariance function only
identifies a unique MA(q) process if the condition that the process be invertible
is imposed. The estimation procedure described in §6.4 leads naturally to
invertible models.

6.3.2 R examples: Correlogram and simulation

The autocorrelation function for an MA(q) process (Equation (6.3)) can read-
ily be implemented in R, and a simple version, without any detailed error
checks, is given below. Note that the function takes the lag k and the model
parameters βi for i = 0, 1, . . . , q, with β0 = 1. For the non-zero values (i.e.,
values within the else part of the if-else statement), the autocorrelation
function is computed in two stages using a for loop. The first loop generates
a sum (s1) for the autocovariance, whilst the second loop generates a sum
(s2) for the variance, with the division of the two sums giving the returned
autocorrelation (ACF).

> rho <- function(k, beta) {

q <- length(beta) - 1

if (k > q) ACF <- 0 else {

s1 <- 0; s2 <- 0

for (i in 1:(q-k+1)) s1 <- s1 + beta[i] * beta[i+k]

for (i in 1:(q+1)) s2 <- s2 + beta[i]^2

ACF <- s1 / s2}

ACF}

Using the code above for the autocorrelation function, correlograms for a range
of MA(q) processes can be plotted against lag – the code below provides an
example for an MA(3) process with parameters β1 = 0.7, β2 = 0.5, and
β3 = 0.2 (Fig. 6.1a).

> beta <- c(1, 0.7, 0.5, 0.2)

> rho.k <- rep(1, 10)

> for (k in 1:10) rho.k[k] <- rho(k, beta)

> plot(0:10, c(1, rho.k), pch = 4, ylab = expression(rho[k]))

> abline(0, 0)

The plot in Figure 6.1(b) is the autocovariance function for an MA(3) process
with parameters β1 = −0.7, β2 = 0.5, and β3 = −0.2, which has negative
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Fig. 6.1. Plots of the autocorrelation functions for two MA(3) processes: (a) β1 =
0.7, β2 = 0.5, β3 = 0.2; (b) β1 = −0.7, β2 = 0.5, β3 = −0.2.

correlations at lags 1 and 3. The function expression is used to get the
Greek symbol ρ.
The code below can be used to simulate the MA(3) process and plot the cor-
relogram of the simulated series. An example time plot and correlogram are
shown in Figure 6.2. As expected, the first three autocorrelations are signif-
icantly different from 0 (Fig. 6.2b); other statistically significant correlations
are attributable to random sampling variation. Note that in the correlogram
plot (Fig. 6.2b) 1 in 20 (5%) of the sample correlations for lags greater than
3, for which the underlying population correlation is zero, are expected to be
statistically significantly different from zero at the 5% level because multiple
t-test results are being shown on the plot.

> set.seed(1)

> b <- c(0.8, 0.6, 0.4)

> x <- w <- rnorm(1000)

> for (t in 4:1000) {

for (j in 1:3) x[t] <- x[t] + b[j] * w[t - j]

}

> plot(x, type = "l")

> acf(x)

6.4 Fitted MA models

6.4.1 Model fitted to simulated series

An MA(q) model can be fitted to data in R using the arima function with
the order function parameter set to c(0,0,q). Unlike the function ar, the
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Fig. 6.2. (a) Time plot and (b) correlogram for a simulated MA(3) process.

function arima does not subtract the mean by default and estimates an in-
tercept term. MA models cannot be expressed in a multiple regression form,
and, in general, the parameters are estimated with a numerical algorithm. The
function arima minimises the conditional sum of squares to estimate values of
the parameters and will either return these if method=c("CSS") is specified
or use them as initial values for maximum likelihood estimation.

A description of the conditional sum of squares algorithm for fitting an
MA(q) process follows. For any choice of parameters, the sum of squared
residuals can be calculated iteratively by rearranging Equation (6.1) and re-
placing the errors, wt, with their estimates (that is, the residuals), which are
denoted by ŵt:

S(β̂1, . . . , β̂q) =
n∑

t=1

ŵ2
t =

n∑
t=1

{
xt − (β̂1ŵt−1 + · · ·+ β̂qŵt−q)

}2

(6.5)

conditional on ŵ0, . . . , ŵt−q being taken as 0 to start the iteration. A numerical
search is used to find the parameter values that minimise this conditional sum
of squares.

In the following code, a moving average model, x.ma, is fitted to the simu-
lated series of the last section. Looking at the parameter estimates (coefficients
in the output below), it can be seen that the 95% confidence intervals (approx-
imated by coeff. ±2 s.e. of coeff.) contain the underlying parameter values (0.8,
0.6, and 0.4) that were used in the simulations. Furthermore, also as expected,
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the intercept is not significantly different from its underlying parameter value
of zero.

> x.ma <- arima(x, order = c(0, 0, 3))

> x.ma

Call:

arima(x = x, order = c(0, 0, 3))

Coefficients:

ma1 ma2 ma3 intercept

0.790 0.566 0.396 -0.032

s.e. 0.031 0.035 0.032 0.090

sigma^2 estimated as 1.07: log likelihood = -1452, aic = 2915

It is possible to set the value for the mean to zero, rather than estimate
the intercept, by using include.mean=FALSE within the arima function. This
option should be used with caution and would only be appropriate if you
wanted {xt} to represent displacement from some known fixed mean.

6.4.2 Exchange rate series: Fitted MA model

In the code below, an MA(1) model is fitted to the exchange rate series.
If you refer back to §4.6.2, a comparison with the output below indicates
that the AR(1) model provides the better fit, as it has the smaller standard
deviation of the residual series, 0.031 compared with 0.042. Furthermore, the
correlogram of the residuals indicates that an MA(1) model does not provide
a satisfactory fit, as the residual series is clearly not a realistic realisation of
white noise (Fig. 6.3).

> www <- "http://www.massey.ac.nz/~pscowper/ts/pounds_nz.dat"

> x <- read.table(www, header = T)

> x.ts <- ts(x, st = 1991, fr = 4)

> x.ma <- arima(x.ts, order = c(0, 0, 1))

> x.ma

Call:

arima(x = x.ts, order = c(0, 0, 1))

Coefficients:

ma1 intercept

1.000 2.833

s.e. 0.072 0.065

sigma^2 estimated as 0.0417: log likelihood = 4.76, aic = -3.53

> acf(x.ma$res[-1])
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Fig. 6.3. The correlogram of residual series for the MA(1) model fitted to the
exchange rate data.

6.5 Mixed models: The ARMA process

6.5.1 Definition

Recall from Chapter 4 that a series {xt} is an autoregressive process of order p,
an AR(p) process, if

xt = α1xt−1 + α2xt−2 + . . .+ αpxt−p + wt (6.6)

where {wt} is white noise and the αi are the model parameters. A useful
class of models are obtained when AR and MA terms are added together in a
single expression. A time series {xt} follows an autoregressive moving average
(ARMA) process of order (p, q), denoted ARMA(p, q), when

xt = α1xt−1+α2xt−2+. . .+αpxt−p+wt+β1wt−1+β2wt−2+. . .+βqwt−q (6.7)

where {wt} is white noise. Equation (6.7) may be represented in terms of the
backward shift operator B and rearranged in the more concise polynomial
form

θp(B)xt = φq(B)wt (6.8)

The following points should be noted about an ARMA(p, q) process:

(a) The process is stationary when the roots of θ all exceed unity in absolute
value.

(b) The process is invertible when the roots of φ all exceed unity in absolute
value.

(c) The AR(p) model is the special case ARMA(p, 0).
(d) The MA(q) model is the special case ARMA(0, q).
(e) Parameter parsimony. When fitting to data, an ARMA model will often

be more parameter efficient (i.e., require fewer parameters) than a single
MA or AR model.
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(e) Parameter redundancy. When θ and φ share a common factor, a stationary
model can be simplified. For example, the model (1 − 1

2B)(1 − 1
3B)xt =

(1− 1
2B)wt can be written (1− 1

3B)xt = wt.

6.5.2 Derivation of second-order properties*

In order to derive the second-order properties for an ARMA(p, q) process
{xt}, it is helpful first to express the xt in terms of white noise components
wt because white noise terms are independent. We illustrate the procedure for
the ARMA(1, 1) model.

The ARMA(1, 1) process for {xt} is given by

xt = αxt−1 + wt + βwt−1 (6.9)

where wt is white noise, with E(wt) = 0 and Var(wt) = σ2
w. Rearranging

Equation (6.9) to express xt in terms of white noise components,

xt = (1− αB)−1(1 + βB)wt

Expanding the right-hand-side,

xt = (1 + αB + α2B2 + . . .)(1 + βB)wt

=

( ∞∑
i=0

αiBi

)
(1 + βB)wt

=

(
1 +

∞∑
i=0

αi+1Bi+1 +
∞∑

i=0

αiβBi+1

)
wt

= wt + (α+ β)
∞∑

i=1

αi−1wt−i (6.10)

With the equation in the form above, the second-order properties follow. For
example, the mean E(xt) is clearly zero because E(wt−i) = 0 for all i, and
the variance is given by

Var(xt) = Var
[
wt + (α+ β)

∞∑
i=1

αi−1wt−i

]
= σ2

w + σ2
w(α+ β)2(1− α2)−1 (6.11)

The autocovariance γk, for k > 0, is given by

Cov (xt, xt+k) = (α+ β)αk−1σ2
w + (α+ β)2 σ2

wα
k
∞∑

i=1

α2i−2

= (α+ β)αk−1σ2
w + (α+ β)2 σ2

wα
k(1− α2)−1

(6.12)
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The autocorrelation ρk then follows as

ρk = γk/γ0 = Cov (xt, xt+k) /Var (xt)

=
αk−1(α+ β)(1 + αβ)

1 + αβ + β2
(6.13)

Note that Equation (6.13) implies ρk = αρk−1.

6.6 ARMA models: Empirical analysis

6.6.1 Simulation and fitting

The ARMA process, and the more general ARIMA processes discussed in the
next chapter, can be simulated using the R function arima.sim, which takes a
list of coefficients representing the AR and MA parameters. An ARMA(p, q)
model can be fitted using the arima function with the order function param-
eter set to c(p, 0, q). The fitting algorithm proceeds similarly to that for
an MA process. Below, data from an ARMA(1, 1) process are simulated for
α = −0.6 and β = 0.5 (Equation (6.7)), and an ARMA(1, 1) model fitted to
the simulated series. As expected, the sample estimates of α and β are close
to the underlying model parameters.

> set.seed(1)

> x <- arima.sim(n = 10000, list(ar = -0.6, ma = 0.5))

> coef(arima(x, order = c(1, 0, 1)))

ar1 ma1 intercept

-0.59697 0.50270 -0.00657

6.6.2 Exchange rate series

In §6.3, a simple MA(1) model failed to provide an adequate fit to the exchange
rate series. In the code below, fitted MA(1), AR(1) and ARMA(1, 1) models
are compared using the AIC. The ARMA(1, 1) model provides the best fit
to the data, followed by the AR(1) model, with the MA(1) model providing
the poorest fit. The correlogram in Figure 6.4 indicates that the residuals of
the fitted ARMA(1, 1) model have small autocorrelations, which is consistent
with a realisation of white noise and supports the use of the model.

> x.ma <- arima(x.ts, order = c(0, 0, 1))

> x.ar <- arima(x.ts, order = c(1, 0, 0))

> x.arma <- arima(x.ts, order = c(1, 0, 1))

> AIC(x.ma)

[1] -3.53

> AIC(x.ar)
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[1] -37.4

> AIC(x.arma)

[1] -42.3

> x.arma

Call:

arima(x = x.ts, order = c(1, 0, 1))

Coefficients:

ar1 ma1 intercept

0.892 0.532 2.960

s.e. 0.076 0.202 0.244

sigma^2 estimated as 0.0151: log likelihood = 25.1, aic = -42.3

> acf(resid(x.arma))
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Fig. 6.4. The correlogram of residual series for the ARMA(1, 1) model fitted to the
exchange rate data.

6.6.3 Electricity production series

Consider the Australian electricity production series introduced in §1.4.3. The
data exhibit a clear positive trend and a regular seasonal cycle. Furthermore,
the variance increases with time, which suggests a log-transformation may be
appropriate (Fig. 1.5). A regression model is fitted to the logarithms of the
original series in the code below.
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> www <- "http://www.massey.ac.nz/~pscowper/ts/cbe.dat"

> CBE <- read.table(www, header = T)

> Elec.ts <- ts(CBE[, 3], start = 1958, freq = 12)

> Time <- 1:length(Elec.ts)

> Imth <- cycle(Elec.ts)

> Elec.lm <- lm(log(Elec.ts) ~ Time + I(Time^2) + factor(Imth))

> acf(resid(Elec.lm))

The correlogram of the residuals appears to cycle with a period of 12 months
suggesting that the monthly indicator variables are not sufficient to account
for the seasonality in the series (Fig. 6.5). In the next chapter, we find that this
can be accounted for using a non-stationary model with a stochastic seasonal
component. In the meantime, we note that the best fitting ARMA(p, q) model
can be chosen using the smallest AIC either by trying a range of combinations
of p and q in the arima function or using a for loop with upper bounds on
p and q – taken as 2 in the code shown below. In each step of the for loop,
the AIC of the fitted model is compared with the currently stored smallest
value. If the model is found to be an improvement (i.e., has a smaller AIC
value), then the new value and model are stored. To start with, best.aic is
initialised to infinity (Inf). After the loop is complete, the best model can
be found in best.order, and in this case the best model turns out to be an
AR(2) model.
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Fig. 6.5. Electricity production series: correlogram of the residual series of the fitted
regression model.

> best.order <- c(0, 0, 0)

> best.aic <- Inf

> for (i in 0:2) for (j in 0:2) {

fit.aic <- AIC(arima(resid(Elec.lm), order = c(i, 0,

j)))

if (fit.aic < best.aic) {

best.order <- c(i, 0, j)

best.arma <- arima(resid(Elec.lm), order = best.order)

best.aic <- fit.aic

}
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}

> best.order

[1] 2 0 0

> acf(resid(best.arma))

The predict function can be used both to forecast future values from
the fitted regression model and forecast the future errors associated with the
regression model using the ARMA model fitted to the residuals from the
regression. These two forecasts can then be summed to give a forecasted value
of the logarithm for electricity production, which would then need to be anti-
logged and perhaps adjusted using a bias correction factor. As predict is
a generic R function, it works in different ways for different input objects
and classes. For a fitted regression model of class lm, the predict function
requires the new set of data to be in the form of a data frame (object class
data.frame). For a fitted ARMA model of class arima, the predict function
requires just the number of time steps ahead for the desired forecast. In the
latter case, predict produces an object that has both the predicted values and
their standard errors, which can be extracted using pred and se, respectively.
In the code below, the electricity production for each month of the next three
years is predicted.

> new.time <- seq(length(Elec.ts), length = 36)

> new.data <- data.frame(Time = new.time, Imth = rep(1:12,

3))

> predict.lm <- predict(Elec.lm, new.data)

> predict.arma <- predict(best.arma, n.ahead = 36)

> elec.pred <- ts(exp(predict.lm + predict.arma$pred), start = 1991,

freq = 12)

> ts.plot(cbind(Elec.ts, elec.pred), lty = 1:2)
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Fig. 6.6. Electricity production series: correlogram of the residual series of the
best-fitting ARMA model.
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The plot of the forecasted values suggests that the predicted values for
winter may be underestimated by the fitted model (Fig. 6.7), which may be
due to the remaining seasonal autocorrelation in the residuals (see Fig. 6.6).
This problem will be addressed in the next chapter.
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Fig. 6.7. Electricity production series: observed (solid line) and forecasted values
(dotted line). The forecasted values are not likely to be accurate because of the
seasonal autocorrelation present in the residuals for the fitted model.

6.6.4 Wave tank data

The data in the file wave.dat are the surface height of water (mm), relative
to the still water level, measured using a capacitance probe positioned at the
centre of a wave tank. The continuous voltage signal from this capacitance
probe was sampled every 0.1 second over a 39.6-second period. The objective
is to fit a suitable ARMA(p, q) model that can be used to generate a realistic
wave input to a mathematical model for an ocean-going tugboat in a computer
simulation. The results of the computer simulation will be compared with tests
using a physical model of the tugboat in the wave tank.

The pacf suggests that p should be at least 2 (Fig. 6.8). The best-fitting
ARMA(p, q) model, based on a minimum variance of residuals, was obtained
with both p and q equal to 4. The acf and pacf of the residuals from this model
are consistent with the residuals being a realisation of white noise (Fig. 6.9).

> www <- "http://www.massey.ac.nz/~pscowper/ts/wave.dat"

> wave.dat <- read.table(www, header = T)

> attach (wave.dat)

> layout(1:3)

> plot (as.ts(waveht), ylab = 'Wave height')
> acf (waveht)

> pacf (waveht)

> wave.arma <- arima(waveht, order = c(4,0,4))

> acf (wave.arma$res[-(1:4)])

> pacf (wave.arma$res[-(1:4)])

> hist(wave.arma$res[-(1:4)], xlab='height / mm', main='')
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Fig. 6.8. Wave heights: time plot, acf, and pacf.
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Fig. 6.9. Residuals after fitting an ARMA(4, 4) model to wave heights: acf, pacf,
and histogram.
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6.7 Summary of R commands

arima.sim simulates data from an ARMA (or ARIMA) process
arima fits an ARMA (or ARIMA) model to data
seq generates a sequence
expression used to plot maths symbol

6.8 Exercises

1. Using the relation Cov(
∑
xt,
∑
yt) =

∑∑
Cov(xt, yt) (Equation (2.15))

for time series {xt} and {yt}, prove Equation (6.3).

2. The series {wt} is white noise with zero mean and variance σ2
w. For the

following moving average models, find the autocorrelation function and
determine whether they are invertible. In addition, simulate 100 observa-
tions for each model in R, compare the time plots of the simulated series,
and comment on how the two series might be distinguished.
a) xt = wt + 1

2wt−1

b) xt = wt + 2wt−1

3. Write the following models in ARMA(p, q) notation and determine whether
they are stationary and/or invertible (wt is white noise). In each case,
check for parameter redundancy and ensure that the ARMA(p, q) nota-
tion is expressed in the simplest form.
a) xt = xt−1 − 1

4xt−2 + wt + 1
2wt−1

b) xt = 2xt−1 − xt−2 + wt

c) xt = 3
2xt−1 − 1

2xt−2 + wt − 1
2wt−1 + 1

4wt−2

d) xt = 3
2xt−1 − 1

2xt−2 + 1
2wt − wt−1

e) xt = 7
10xt−1 − 1

10xt−2 + wt − 3
2wt−1

f) xt = 3
2xt−1 − 1

2xt−2 + wt − 1
3wt−1 + 1

6wt−2

4. a) Fit a suitable regression model to the air passenger series. Comment
on the correlogram of the residuals from the fitted regression model.

b) Fit an ARMA(p, q) model for values of p and q no greater than 2
to the residual series of the fitted regression model. Choose the best
fitting model based on the AIC and comment on its correlogram.

c) Forecast the number of passengers travelling on the airline in 1961.

5. a) Write an R function that calculates the autocorrelation function (Equa-
tion (6.13)) for an ARMA(1, 1) process. Your function should take
parameters representing α and β for the AR and MA components.
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b) Plot the autocorrelation function above for the case with α = 0.7 and
β = −0.5 for lags 0 to 20.

c) Simulate n = 100 values of the ARMA(1, 1) model with α = 0.7
and β = −0.5, and compare the sample correlogram to the theoretical
correlogram plotted in part (b). Repeat for n = 1000.

6. Let {xt : t = 1, . . . , n} be a stationary time series with E(xt) = µ,
Var(xt) = σ2, and Cor(xt, xt+k) = ρk. Using Equation (5.5) from Chapter
5:

a) Calculate Var(x̄) when {xt} is the MA(1) process xt = wt + 1
2wt−1.

b) Calculate Var(x̄) when {xt} is the MA(1) process xt = wt − 1
2wt−1.

c) Compare each of the above with the variance of the sample mean
obtained for the white noise case ρk = 0 (k > 0). Of the three mod-
els, which would have the most accurate estimate of µ based on the
variances of their sample means?

d) A simulated example that extracts the variance of the sample mean
for 100 Gaussian white noise series each of length 20 is given by
> set.seed(1)

> m <- rep(0, 100)

> for (i in 1:100) m[i] <- mean(rnorm(20))

> var(m)

[1] 0.0539

For each of the two MA(1) processes, write R code that extracts the
variance of the sample mean of 100 realisations of length 20. Compare
them with the variances calculated in parts (a) and (b).

7. If the sample autocorrelation function of a time series appears to cut off
after lag q (i.e., autocorrelations at lags higher than q are not significantly
different from 0 and do not follow any clear patterns), then an MA(q)
model might be suitable. An AR(p) model is indicated when the partial
autocorrelation function cuts off after lag p. If there are no convincing
cutoff points for either function, an ARMA model may provide the best
fit. Plot the autocorrelation and partial autocorrelation functions for the
simulated ARMA(1, 1) series given in §6.6.1. Using the AIC, choose a
best-fitting AR model and a best-fitting MA model. Which best-fitting
model (AR or MA) has the smallest number of parameters? Compare this
model with the fitted ARMA(1, 1) model of §6.6.1, and comment.
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