Chapter 2
The Block Cipher Keeloq and Algebraic Attacks

The purpose of this chapter is to supply a (relatively) new, feasible, and econom-
ically relevant example of algebraic cryptanalysis. The block cipher “Keeloq”! has
been used in the remote keyless-entry system of many automobiles. It has a secret
key consisting of 64 bits, takes a plaintext of 32 bits, and outputs a ciphertext of 32
bits. The cipher consists of 528 rounds. In this chapter, we define the cipher. We also
show some “frontal assaults” that are not effective. In the next chapter, we describe
a successful attack from the author’s dissertation [31, Ch. 2]. Our attack is faster
than brute force by a factor of around 2'#77 as shown in Section 3.5 on Page 24. A
summary of the attack is given in Section 3.6 on Page 24.

Many other attacks on Keeloq are known, discovered since this attack of mine
was first written back in January of 2007. In fact, it seems clear from the dates
of publication of other attacks, that work on Keeloq was simultaneous among the
several research teams involved (see Section 3.8.1 on Page 27). The purpose here
is not to describe all or even some of the attacks on Keeloq but to give the reader a
non-trivial but straight-forward example of algebraic cryptanalysis succeeding on a
real-world cipher.

Notational Convention

For any /-bit sequence, the least significant bit is numbered 0 and the most sig-
nificant bit is numbered ¢ — 1.

! This is to be pronounced “key lock.” Some authors typeset it “KeeLoq” but we find the presence
of a capital letter in the middle of a word to be offensive to the eye.

G.V. Bard, Algebraic Cryptanalysis, DOI: 10.1007/978-0-387-88757-9_2 9
© Springer Science + Business Media, LLC 2009

10 2 The Block Cipher Keeloq and Algebraic Attacks

2.1 What is Algebraic Cryptanalysis?

Given a particular cipher, algebraic cryptanalysis consists of two steps. First,
one must convert the cipher and possibly some supplemental information (e.g. file
formats) into a system of polynomial equations, usually over GIF(2), but sometimes
over other rings. Second, one must solve the system of equations and obtain from the
solution the secret key of the cipher. This chapter deals with the first step only. The
systems of equations were solved with SINGULAR [9], MAGMA [2], and with the
SAT-solver techniques of Chapter 13, as well as ElimLin, an algorithm by Nicolas
Courtois described in Section 12.5 on Page 219.

2.1.1 The CSP Model

In any constraint satisfaction problem, there are several constraints in several
variables. A solution must satisfy all constraints, and there might be zero, one, or
more than one solution. The constraints are models of a cipher’s operation, rep-
resenting known facts as equations. Most commonly, this includes p plaintext-
ciphertext pairs, P,...,P, and Cj,...,Cy, and the p facts: E(F;) = C; for all
i €{1,...,u}. The key is represented by one unknown for each bit. Almost always
there are additional constraints and variables besides these.

If no false assumptions are made, then because these messages were indeed sent,
we know there must be some key that was used, and so at least one key satisfies
all the constraints. And so it is either the case that there are one, or more than one
solution. Generally, algebraic cryptanalysis consists of writing enough constraints
to reduce the number of possible keys to one, and few enough constraints that the
system is solvable in a reasonable amount of time. In particular, the entire process
should be faster than brute force by some margin.

2.2 The Keeloq Specification

In Figure 2.1 on Page 11, the diagram for Keeloq is given. The top rectangle is a
32-bit shift-register. It initially is filled with the plaintext. At each round, it is shifted
one bit to the right, and a new bit is introduced. The computation of this new bit is
the heart of the cipher.

Five particular bits of the top shift-register are tapped and are interpreted as a
5-bit integer, between 0 and 31. Then a non-linear function is applied, which will be
described shortly (denoted NLF).

Meanwhile the key is placed initially in a 64-bit shift-register, which is also
shifted one bit to the right at each iteration. The new bit introduced at the left is
the bit formerly at the right, and so the key is merely rotating.

2.3 Modeling the Non-linear Function 11

32—-bit non-linear shift register
[

N
N/

IQ 64 bit rotating key register

Fig. 2.1 The Keeloq Circuit Diagram

The least significant bit of the key, the output of the non-linear function, and two
particular bits of the 32 bit shift-register are XORed together (added in GF(2)). The
32-bit shift-register is shifted right and the sum is now the new bit to be inserted into
the leftmost spot in the 32-bit shift-register.

After 528 rounds, the contents of the 32 bit shift-register form the ciphertext.
Observe that only one bit of the key is used per round.

2.3 Modeling the Non-linear Function

The non-linear function NLF (a,b,c,d,e) is denoted NLFspsc742g. This means
that if (a,b,c,d,e) is viewed as an integer i between 0 and 31, i.e. as a 5-bit number,
then the value of NLF(a,b,c,d,e) is the ith bit of the 32-bit hexadecimal value
3A5CT742E. Recall, the least significant bit is numbered as 0.

The following formula is a cubic polynomial and gives equivalent output to the
NLF for all input values, and was obtained by a Karnaugh map. In this case, the
Karnaugh map is a grid with (for five dimensions) two variables in rows (i.e. 4 rows),
and three variables in columns (i.e. 8 columns). The rows and columns are arranged
via the Gray Code. This is a simple technique to rapidly arrive at the algebraic
normal form (i.e. polynomial), listed below, by first trying to draw boxes around

12 2 The Block Cipher Keeloq and Algebraic Attacks

regions of ones of size 32, 16, 8, 4, 2, and finally 1. See a text such as [38, Ch. 3]
for details.

NLF(a,b,c,d,e) =d+e+ac+ae+bc+be+ cd+de+ ade+ ace + abd + abc

2.3.1 I/0 Relations and the NLF

Also note that while the degree of this function is 3, there is an I/O relation of
degree 2, below. An I/O relation is a polynomial in the input variables and output
variables of a function, such that no matter what values are given for input to the
function, the I/O relation always evaluates to zero. Note y signifies the output of the
non-linear function.

(e+b+aty)c+d+y)=0

This can be thought of as a constraint that the function must always satisfy. If there
are enough of these, then the function is uniquely defined. What makes them crypt-
analyticly interesting is that the degree of the I/O relations can be much lower than
the degree of the function itself. Since the degree dramatically impacts the difficulty
of solving the polynomial system, this is very useful. The I/O degree of a function
is the lowest degree of any of its I/O relations, other than the zero polynomial.

Generally, I/O-relations of low degree can be used for generating attacks but that
is not the case here, because we have only one relation. Heuristically, relations that
are valid with low probability for a random function and random input produce
a more rapid narrowing of the keyspace in the sense of a Constraint Satisfaction
Problem or CSP. We are unaware of any attack on Keeloq that uses this I/O-relation.

An example of the possibility of using I/O degree to cryptanalytic advantage is
the attack from the author’s joint paper on DES (the Data Encryption Standard),
with Nicolas T. Courtois, where the S-Boxes have I/O degree 2 but their actual
closed-form formulas are of higher degree [76].

2.4 Describing the Shift-Registers

The shift-registers that appear in Keeloq are an example of a very common, al-
most ubiquitous circuit design block in both stream ciphers (see Section 5.1.1.1 on
Page 55) and block ciphers.

2.5 The Polynomial System of Equations 13

2.4.1 Disposing of the Secret Key Shift-Register

The 64-bit shift-register containing the secret key rotates by one bit per round.
Only one bit per round (the rightmost) is used during the encryption process. Fur-
thermore, the key is not modified as it rotates. Therefore, the key bit being used is
the same in round 7,7 4+ 64,74+ 128,14+ 192,...

Therefore we can dispose of the key shift-register entirely. Denote kg3, . . . , ko the
original secret key. The key bit used during round 7 is merely k,_; 1,04 ¢4-

2.4.2 Disposing of the Plaintext Shift-Register

Denote the initial condition of this shift-register as L31,...,Ly. This corresponds
to the plaintext P31,...,Fy. Then in round 1, the values will move one place to the
right, and a new value will enter in the first bit. Call this new bit L3>. Thus the
bit generated in the ith round will be L3;4;, and in the 528th and thus last round
will be Lssg. The ciphertext is the final condition of this shift-register, which is
L559,...,L528 = C3] gous 7C(), likewise L31,...,L0 =P31,...,P0.

Change of Indexing

A change of indexing is useful here. The computation of L;, for 32 <i < 559,
occurs during the round numbered r = i — 31. Thus the key bit used during the
computation of L; iS k;_3» mod 64-

2.5 The Polynomial System of Equations

This now gives rise to the following system of equations.
Li=P vi € [0,31]

L = ki732 mod 64 +Li—3+Li—16 Vie [32, 559}
+NLF(Li1,Li—6,Li-12,Li—23,Li30)

Ci_sos = L; Vi € [528,559]

Note, some descriptions of the cipher omit the +L;_ 6. This should have no im-
pact on the attack at all. Most research papers and the specification given by the
company [94] includes the +L; ¢, as does our diagram; some early papers omitted

1t.
Since the NLF is actually a cubic function this is a cubic system of equations.
Substituting, we obtain

14 2 The Block Cipher Keeloq and Algebraic Attacks
L =P Vi€ [0,31]

Li = k;_3, mod ¢4 T Li—32 + Li—16 + Li—23 + Li—30
+Li 1Li—1p+Li 1Li_s0+Li_¢Li—1o+Li_¢Li—30 Vi€ [32, 559]
+Li—12Li—23+ Li—23Li—30 + Li—1Li—23Li—30
+Li—1Li—12Li—30 + Li—1Li—¢Li—23 + Li—1Li—6Li—12

Ci_sos = L; Vie [5287559}

In other words, the above equations are to be repeated for each i in the stated
intervals, and for each of u total plaintext-ciphertext message pairs. In practice,
W > 2 was both necessary and sufficient.

2.6 Variable and Equation Count

Consider a plaintext-ciphertext pair P, C. There are 560 equations, one for each
L;, with i € [0,559], plus another 32 for the C;, with i € [0,32]. However, the first 32
of these are of the form L; = P for i € [0,32], and the last 32 of these are of the form
L; = C;_spg for i € [528,559]. Thus we can use string substitution and drop down to
528 equations. This is precisely one equation for each round, which defines the new
bit introduced into the shift register.

The 64 bits of the key are unknown. Also, of the 560 L;, the first and last 32
are known, but the inner 496 are not. This yields 560 unknowns. If there are
plaintext-ciphertext message pairs, then there are 5281 equations. However, there
are only 496 + 64 variables, because the key does not change from pair to pair.

2.7 Dropping the Degree to Quadratic

The following is a specific application of the more general technique found in
Section 11.4 on Page 192. We will change the system from cubic to quadratic by
introducing a few variables. Instead of the previously derived

NLF(a,b,c,d,e) =d+e+ac+ae+bc+be+cd+ de+ ade + ace + abd + abc
one can write

NLF(a,b,c,d,e) =d+e+ac+ B +bc+be+cd+de+df+ch+od+ ac
a =ab
B = ae

Since the non-linear function was the sole source of non-linear terms, this gives
rise to a quadratic rather than cubic system of equations.

2.8 Fixing or Guessing Bits in Advance 15

This introduces two new variables per original equation, and two new equations
as well. Thus m equations and n variables becomes 3m equations and n + 2m vari-
ables. Therefore with y plaintext-ciphertext message pairs, we have 1584 equa-
tions and 1552 + 64 variables. Thus, it must be the case that 1 > 1 for the system
to be expected to have at most one solution. As always with algebraic cryptanalysis,
unless we make an assumption that is false, we always know the system of equa-
tions has at least one solution, because a message was indeed sent. And thus we very
strongly expect to have a unique solution when u > 1.

Li=P Vi€ [0,31]

Li = k;_35 mod 61 + Li-32 + Li—16 + Li—23 + Li—30
+Li1Li12+Bi+Li—¢Li—12 + Li—6Li—30 + Li—12L;i 23
+Li—03Li—30+ BiLi—23 + BiLi—12 + 04 Li—23 + o4Li—1» Vi € [32,559]

o =Li1Li_¢ Vie [32,559}
ﬁ,‘ =L, 1Li_3 Vie [32,559}
Ci_sos = L; Vie [5287559}

Even with u = 2 this comes to 3168 equations and 3168 unknowns, well beyond
the threshold of size for feasible polynomial system solving at the time this book
was written, in late 2007.

2.8 Fixing or Guessing Bits in Advance

This is a specific application of the guess-and-determine methodology which is
very common in many forms of cryptanalysis. For a general discussion, see Sec-
tion 11.7 on Page 206, Section 12.4.4 on Page 217, or Section 11.7.2 on Page 207.

Sometimes in Grobner basis algorithms or the XL algorithm, one fixes bits in
advance [71, et al]. For example, in GF(2), there are only two possible values. Thus
if one designates g particular variables, there are 28 possible settings for them, but
one needs to try 28 /2 on average (if we know exactly one solution exists). Naturally,
fewer guesses would be needed if we merely search for one of many solutions. For
each guess, one rewrites the system of equations either by substituting the guessed
values, or if not, then by adding additional equations of the form: k; = 1,k, =0,....
If the resulting Grobner Bases method or XL method running time is more than
28 /2 times faster as a result of this change, this is a profitable change.

In academic cryptanalysis however, one generates a key, encrypts [messages,
and writes equations based off of the plaintext-ciphertext pairs and various other
constraints and facts. Therefore, one knows the key. Instead of guessing all 28 pos-
sible values, we simply guess correctly. However, two additional steps must be re-
quired. First, we must adjust the final running time by a factor of 28 in the worse-
case, or 28 /2 in the average case. Second, we must ensure that the system identifies
a wrong guess as fast, or faster, than solving the system in the event of a correct
guess. See Section 11.7.1 on Page 206 for more details on this point.

16 2 The Block Cipher Keeloq and Algebraic Attacks

2.9 The Failure of a Frontal Assault

First we tried a simple CSP. With u plaintext messages under one key, for various
values of i we encrypted and obtained ciphertexts, and wrote equations as described
already, in Section 2.7 on Page 15. We also used fewer rounds than 528, to see the
impact of the number of rounds, as is standard. The experiments were an obvious
failure, and so we began to look for a more efficient attack, presented in the next
chapter. Note, the computer involved was a 1 GHz Intel PC with 1 gigabyte of
RAM.

* With 64 rounds, and u = 4, and 10 key bits guessed, SINGULAR required 70
seconds, and ElimLin in 10 seconds.

* With 64 rounds, and y = 2 but the two plaintexts differing only in one bit (the
least significant), SINGULAR required 5 seconds, and ElimLin 20 seconds. MIN-
ISAT[6] [104], using the techniques of Chapter 13, required 0.19 seconds. Note,
it is natural that these attacks are faster, because many internal variables during
the encryption will be identically-valued for the first and second message.

e With 96 rounds, p =4, and 20 key bits guessed, MINISAT and the techniques
of Chapter 13, required 0.3 seconds.

e With 128 rounds, and p = 128, with a random initial plaintext and each other
plaintext being an increment of the previous, and 30 key bits guessed, ElimLin
required 3 hours.

* With 128 rounds, and pt = 2, with the plaintexts differing only in the least signif-
icant bit, and 30 key bits guessed, MINISAT requires 2 hours.

These results on 128 rounds are slower than brute-force. Therefore we did not
try any larger number of rounds or finish trying each possible combination of soft-
ware and trial parameters. Needless to say the 528 round versions did not terminate.
Therefore, we needed a new attack, and this is the topic of the next chapter.

2 Springer
http://www.springer.com/978-0-387-88756-2

Algebraic Cryptanalysis

Bard, G.

2009, XX, 356 p., Hardcover
ISBN: @78-0-387-BB756-2

	The Block Cipher Keeloq and Algebraic Attacks
	Notational Convention
	2.1 What is Algebraic Cryptanalysis?
	2.1.1 The CSP Model

	2.2 The Keeloq Specification
	2.3 Modeling the Non-linear Function
	2.3.1 I/O Relations and the NLF

	2.4 Describing the Shift-Registers
	2.4.1 Disposing of the Secret Key Shift-Register
	2.4.2 Disposing of the Plaintext Shift-Register
	Change of Indexing

	2.5 The Polynomial System of Equations
	2.6 Variable and Equation Count
	2.7 Dropping the Degree to Quadratic
	2.8 Fixing or Guessing Bits in Advance
	2.9 The Failure of a Frontal Assault

