Chapter 2
Security and Dependability Engineering

Jan Jirjens

Abstract The current state of the art in security-critical ambient systems is far from
satisfactory: New security vulnerabilities are discovered on an almost daily basis. To
improve this situation, there has recently been a lot of work on techniques and tools
supporting the development of trustworthy security-critical software, in particular
for dynamic systems in an ambient environment. This chapter gives an overview
over the field of security and dependability engineering, with an emphasis on am-
bient system security, and on current advances based on model-based development
using UML and providing strong assurance results. We give examples for security
flaws found in industrial software using such tools and shortly discuss some open
research issues.

2.1 Ambient System Security

As computing devices become smaller and cheaper, their use increasingly pervades
all aspects of everyday life, at work and at home [20]. Ubiquitous devices such as
smart-cards, RFID tags, networked sensors, and personal digital assistants fulfill
many useful and convenient functions. The increasing use of such ambient technol-
ogy however can also raise security and privacy concerns for their direct users and
owners, as well as other people indirectly affected by their use. Ambient technol-
ogy can help realise and enforce security and privacy requirements; for example,
one can label important devices (such as a laptop) with RFID tags to allow owners
with suitable sensors to track such devices. On the other hand, ambient technol-
ogy’s pervasiveness may also pose threats to security and privacy concerns of other
individuals in the surrounding environment. One therefore needs to investigate rela-
tionships and trade-offs between usability and security/privacy, in order to maximise
usage opportunities and minimise the security and privacy risks.

Jan Jurjens
The Open University, Milton Keynes, GB, http://www.jurjens.de/jan

G. Spanoudakis et al. (eds.), Security and Dependability for Ambient Intelligence, 21
Advances in Information Security 45, DOI: 10.1007/978-0-387-88775-3 2,
© Springer Science + Business Media, LLC 2009

22 Jan Jurjens

Security External Static Penetration
requirements review analysis testing
| | Rick.bas (tools) |
ABEE | |\ PipRed | Risk |\ Securiy
cases: | analysis | ELriyiess analysis | breaks

|\ ! /I\ 4 l |*" 1 ¢

r T 1 1 1 1
Requirements Design Test Code Test Field
andgse cases plans results feedback

Mg 2 S g i
Model-based Security Engiréering e

Fig. 2.1 Secure system lifecycle [66]

Specifically, one needs to develop techniques and tools that ensure continuing
compliance to security requirements for pervasive systems, to investigate security
issues that may arise in such environments, and how these might be dealt with us-
ing available security technology. In particular, one needs to investigate a notion
of adaptive security in this context, which includes for example questions such as
whether security mechanisms may have to adapt to the exact location of an indi-
vidual in an office building (in the sense of context-dependent or location-based
security). Another aspect of this topic is the pervasive interfaces between the human
users and the computers, and on how to integrate these with the adaptive security
mechanisms in a secure way.

Security requirements elicitation for ambient devices like smart cards or RFID
tags is difficult since they are characterized by limited resources, high mobility and
(desired) high security level in spite of untrusted environment. Also, such a device
has to adapt itself to application requirements or modification of its environment. In
other words they must withstand longevity. In order to cope with change one needs
to define a system that is essentially autonomic and self-adjusting. For example, one
can design a system that is self-aware in order to realize that the environment is
changing, and self-adjusting, to be able to account for it. It should have mechanisms
to ensure that the program functions correctly during and after adaptations. Because
of the inherent higher complexity, this is particularly difficult to achieve for adaptive
software. There is an additional challenge: requirements themselves might change.

Problems: Attacks against computer networks, which the infrastructures of mod-
ern society and modern economies rely on, cause substantial financial damage. Due
to the increasing interconnection of systems, such attacks can be waged anony-
mously and from a safe distance. Thus networked computers need to be secure. The
high-quality development of security-critical systems is difficult. Still, many sys-
tems are developed, deployed, and used over years that contain significant security
weaknesses.

Causes: While tracing requirements during software development is difficult
enough, enforcing security requirements is intrinsically subtle, because one has to
take into account the interaction of the system with motivated adversaries that act
independently. Thus security mechanisms, such as security protocols, are notori-
ously hard to design correctly, even for experts. Also, a system is only as secure
as its weakest part or aspect. Security is compromised most often not by breaking
dedicated mechanisms such as encryption or security protocols, but by exploiting

Chapter 2 Security and Dependability Engineering 23

010..Data..0011

Crypta Data
(Ernw;r irD
Security s
el s
Archit. Applications| Developer x
vl et
System a A
8 -
Bk | Re—F.ngn.nee/A\
Theoretical Foundations Laws and Regulations

Fig. 2.2 Secure system layers

weaknesses in the way they are being used [4]. Thus it is not enough to ensure cor-
rect functioning of security mechanisms used. They cannot be “blindly” inserted
into a security-critical system, but the overall system development must take secu-
rity aspects into account in a coherent way [75]. In fact, according to [78], 85% of
Computer Emergency Response Team (CERT) security advisories could not have
been prevented just by making use of cryptography. Building trustworthy compo-
nents does not suffice, since the interconnections and interactions of components
play a significant role in trustworthiness [78].

State of the Art in Practice: In practice, the traditional strategy for security as-
surance has been penetrate and patch: It has been accepted that deployed systems
contain vulnerabilities. Whenever a penetration of the system is noticed and the ex-
ploited weakness can be identified, the vulnerability is removed. Sometimes this is
supported by employing friendly teams trained in penetrating computer systems, the
so-called “tiger teams”. However, this approach is not ideal: Each penetration using
a new vulnerability may already have caused significant damage, before the vulner-
ability can be removed. It would thus be preferable to consider security aspects more
seriously in earlier phases of the system life-cycle, before a system is deployed, or
even implemented, because late correction of requirements errors costs up to 200
times as much as early correction [16]. Also, security concerns must inform every
phase of software development, from requirements engineering to design, imple-
mentation, testing, and deployment, and academic approaches trying to improve the
security during development should be tightly integrated with software development
approaches already used in industry [22].

Some other challenges for using sound engineering methods for secure systems
development exist. For example, the boundaries of the specified components with
the rest of the system need to be carefully examined, for example with respect to
implicit assumptions on the system context [34]. Lastly, a more technical issue is
that formalized security properties are not in all approaches preserved by refinement,
which is the so-called refinement problem. Since an implementation is necessarily a

24 Jan Jurjens

refinement of its specification, an implementation of a secure specification may, in
such a situation, not be secure, which is clearly undesirable.

A truly secure software engineering approach thus needs to take both dimensions
of the problem into account:

e it needs to integrate the different system lifecycle phases (cf. Fig. 2.1),

e it also needs to take into account the different architectural levels of abstraction
of a security-critical system (cf. Fig. 2.2) in a demonstrably sound, trustworthy,
and cohesive way.

This is certainly a very challenging task that will still pose some highly interesting
scientific challenges until it may be finally achieved.

2.2 Current Advances

In this section, we give an overview on some approaches for secure software en-
gineering, with an emphasis on model-based development using UML. Since the
area of secure software engineering has grown quickly over the last few years, we
cannot hope to give a complete overview but just present some examples which we
believe to be representative (although this is necessarily a personal judgement). We
will in particular explain how the research developed within the SERENITY project
fits within the wider context (cf. [63]).

Of course, there are also approaches for secure software engineering outside of or
predating model-based development with UML (cf. for example [75, 24, 61, 78, 22,
4] for some examples and overviews), but because of space restrictions, we cannot
consider those in detail here.

2.2.1 Model-based Development

Generally, when using model-based development (Fig. 2.3a), the idea is that one
first constructs a model of the system. Then, the implementation is derived from the
model: either automatically using code generation, or manually, in which case one
can generate test sequences from the model to establish conformance of the code
regarding the model. The goal is to increase the quality of the software while keep-
ing the implementation cost and the time-to-market bounded. For security-critical
systems, this approach allows one to consider security requirements from early on
in the development process, within the development context, and in a seamless way
through the development cycle: One can first check that the system fulfills the rele-
vant security requirements on the design level by analyzing the model and secondly
that the code is in fact secure by generating test sequences from the model. How-
ever, one can also use the security analysis techniques and tools within a traditional
software engineering context, or where one has to incorporate legacy systems that
were not developed in a model-based way. Here, one starts out with the source code.
One then extracts models from the source code, which can then again be analyzed

Chapter 2 Security and Dependability Engineering 25

_Java editor|«—— % data flow
i T

UML editor N "
uses
1 V.
|| Text | | Attack
[|Report| | Trace

Analyze
against

Weave in

[
f’éﬂtionﬂest
Generate Reverse > Generator
code, tests engineer

Automated
— s | Mot e
Checker Prover ||9

“:
; FO Prolo
Securi 9
‘P Analyzteyr g fmla prog.

Fig. 2.3 a) Model-based Security Engineering; b) Model-based Security Tool Suite

against the security requirements. Using model-based development, one can also
incorporate the configuration data (such as user permissions) in the analysis, which
is very important for security but often neglected.

For example, in the Model-based Security Engineering (MBSE) approach based
on the UML extension UMLsec, [47, 50, 51], recurring security requirements (such
as secrecy, integrity, authenticity and others) and security assumptions on the sys-
tem environment, can be specified either within a UML specification, or within the
source code (Java or C) as annotations (Fig. 2.3b). This way we encapsulate knowl-
edge on prudent security engineering as annotations in models or code and make
it available to developers who may not be security experts. The UMLsec extension
is given in form of a UML profile using the standard UML extension mechanisms.
Stereotypes are used together with tags to formulate the security requirements and
assumptions. Constraints give criteria that determine whether the requirements are
met by the system design, by referring to a precise semantics of the used fragment of
UML. The security-relevant information added using stereotypes includes security
assumptions on the physical level of the system, security requirements related to the
secure handling and communication of data, and security policies that system parts
are supposed to obey. The semantics for the fragment of UML used for UMLsec
is defined in [50] using so-called UML Machines, which is a kind of state machine
with input/output interfaces similar to Broy’s Focus model, whose behavior can be
specified in a notation similar to that of Abstract State Machines (ASMs), and which
is equipped with UML-type communication mechanisms. On this basis, important
security requirements such as secrecy, integrity, authenticity, and secure information
flow are defined.

After an early paper on the UML extension UMLsec for secure software devel-
opment [46], a number of approaches have been developed each targeted at certain
facets of model-based development of security-critical systems using UML, sev-
eral of them initially presented at the workshop series CSDUML (Critical Systems
Development using Modeling Languages).

Security requirements modeling: [26] proposes a method determining role-based
access rights. Use cases are extended with rights specifications and the rights of a

26 Jan Jurjens

role are derived from the use cases. The method thus enforces the design princi-
ple of least privilege. [19, 37] formulates a vision for the requirements engineering
community towards providing a “bridge between the well-ordered world of the soft-
ware project informed by conventional requirements and the unexpected world of
anti-requirements associated with the malicious user”. [32, 33, 64] proposes an ex-
tension of the i*/Tropos requirements engineering framework to deal with security
requirements. The Tropos Requirements Engineering methodology is also extended
to cover security aspects in [69]. [80] presents an approach to eliciting security re-
quirements using use cases which extends traditional use cases to also cover misuse.
[70] uses a combination of UMLsec and Tropos to get a transition from the security
requirements to the design phase. [85] presents an executable misuse case modeling
language which allows modelers to specify misuse case scenarios in a formal yet
intuitive way and to execute the misuse case model in tandem with a corresponding
use case model. [91] presents an approach for the transformation of security require-
ments to software architectures. [6] discuss the use of requirements-engineering
techniques in capturing security requirements for a Grid-based operating system.
[25] examines how conceptual modeling can provide support for analyzing security
trade-offs, using an extension to the i* framework. [29] presents an approach which
integrates security and usability into the requirements and design process, based on
a development process and a UML meta-model of the definition and the reasoning
over the system’s assets.

Security patterns: [90] proposes a UML based method that enables developers to
specify several candidate system behaviors that satisfy the security requirements, us-
ing patterns, and shows an application of the method to a real implemented system,
the Environmentally Conscious Product (ECP) design support system. A methodol-
ogy to build secure systems using patterns is presented in [27]. A main idea in the
proposed methodology is that security principles should be applied at every stage of
the software lifecycle and that each stage can be tested for compliance with those
principles. Another basic idea is the use of patterns at each stage. A pattern is an
encapsulated solution to a recurrent problem and their use can improve the reusabil-
ity and quality of software. [74] compares several security patterns to be used when
dealing with application security.

SERENITY: The SERENITY approach is based on the notion of Security and
Dependability Patterns [63]. They include a functional description of the proposed
security solution, a semantic description of the security requirements addressed by
it, and descriptions of the assumptions on the context in which the pattern can be
used.

Automated security verification: So far only few of the UML based approaches
for secure software development come with automated tools to formally verify
the UML design for the relevant security requirements. One of these is again the
UMLsec approach. The UMLsec tool-support (cf. Fig. 2.3a) can be used to check
the constraints associated with UMLsec stereotypes mechanically, based on XMl
output of the diagrams from the UML drawing tool in use [49, 84, 51, 55]. They
generate logical formulas formalizing the execution semantics and the annotated se-
curity requirements. Automated theorem provers and model checkers automatically
establish whether the security requirements hold. If not, a Prolog-based tool auto-

Chapter 2 Security and Dependability Engineering 27

matically generates an attack sequence violating the security requirement, which
can be examined to determine and remove the weakness. Since the analysis that
is performed is too sophisticated to be done manually, it is also valuable to secu-
rity experts. There is also a framework for implementing verification routines for
the constraints associated with the UMLsec stereotypes. Thus advanced users of the
UMLsec approach can use this framework to implement verification routines for the
constraints of self-defined stereotypes.

Other approaches for verifying UML models for security properties emerge. For
example, [7] explains an approach in which queries about properties of an RBAC
policy model are expressed as formulas in UML’s Object Constraint Language and
evaluated over the metamodel of the security-design language, based on the rewrit-
ing logic Maude. Also, [81] presents a tool for verifying UML class and state ma-
chine diagrams against linear temporal logic formulas using Spin, which is planned
to be applied to security properties.

Model construction and development: Having a formally based design notation
allows one to precisely formulate and investigate non-trivial questions that need
to be solved to enable trustworthy secure software development. For example, to
support stepwise development, it has been shown that within UMLsec, secrecy, in-
tegrity, authenticity, and secure information flow are preserved under refinement
and the composition of system components (under suitable assumptions) [50]. Sim-
ilarly, it has been shown that layering of security services (such as layered security
protocols) is sound, again only under certain assumptions. The same applies to the
application of security design patterns, or the use of aspect-oriented modeling tech-
niques. Related approaches have been reported in [77, 76].

SERENITY: To support the Security and Dependability Patterns used in the
project, the SERENITY approach also provides Security and Dependability Schemes
which allow the users to combine existing security solutions to more complex ones
[63]. This is supported by automated tools for classification, selection, and compo-
sition of security patterns.

Aspect-Oriented Security Modeling: [72, 41] propose to use aspect-oriented
modeling for addressing access control concerns. Functionality that addresses a per-
vasive access control concern is defined in an aspect. The remaining functionality
is specified in a so-called primary model. Composing access control aspects with a
primary model then gives a system model that addresses access control concerns.

Model-based Security Risk Assessment: [23] uses UML for the risk assessment
of an e-commerce system within the CORAS framework for model-based risk as-
sessment. This framework is characterized by an integration of aspects from partly
complementary risk assessment methods. It incorporates guidelines and methodol-
ogy for the use of UML to support and direct the risk assessment methodology as
well as a risk management process based on standards such as AS/NZS 4360 and
ISO/IEC 17799. It uses a risk documentation framework based on RM-ODP to-
gether with an integrated risk management and system development process based
on UP and offers a platform for tool inclusion based on XML. In another approach
[9, 58] use UML for risk-driven security analysis which focusses on the assessment
of risk and analysis of requirements for operational risk management.

28 Jan Jurjens

Secure business processes and Service-oriented architectures: A business process-
driven approach to security engineering using UML is presented in [62]. The idea
is to use UML models in an approach centered on business processes to develop se-
cure systems. A model-based security engineering approach for developing service-
oriented architectures is proposed in [21]. The approach is applied on a standard for
service-oriented architectures from the Automotive domain (OSGi).

Access control policies: [10, 17] show how UML can be used to specify access
control in an application and how one can then generate access control mechanisms
from the specifications. The approach is based on role-based access control and
gives additional support for specifying authorization constraints. [60, 59] demon-
strate how to deal with access control policies in UML. The specification of access
control policies is integrated into UML. A graph-based formal semantics for the
UML access control specification permits one to reason about the coherence of the
access control specification. An aspect-oriented approach to specifying access con-
trol in UML is presented in [93]. [67] presents an approach for the specification and
refinement of access control rules, including proof rules for verifying that an ac-
cess control policy is correctly implemented in a system, and preservation of access
control by refinement of event systems.

SECTET: [3] presents usage scenarios for access control in contemporary health-
care scenarios and shows how to unify them in a single security policy model. Based
on this model, the SECTET [2] framework for Model Driven Security is then spe-
cialized towards a domain-specific approach for healthcare scenarios, including the
modelling of access control policies, a target architecture for their enforcement, and
model-to-code transformations. [1] extends the SECTET approach to take into ac-
count operating system level and application level security mechanisms to realize
security-critical application and services for healthcare scenarios.

Health information systems: There have been several approaches using UML for
security aspects in developing health-care systems. [14] presents an approach based
on formal models where security services can be integrated into advanced systems
architectures enabling semantic interoperability in the context of trustworthiness of
communication and co-operation to support application security challenges such as
privilege management and access control. The approach covers domains, service
delegation, claims control, policies, roles, authorisations, and access control. [65]
presents an approach based on model-based design techniques and high-level mod-
eling abstractions which provides a framework to rapidly develop, simulate, and
deploy clinical information system (CIS) prototypes. It includes a graphical design
environment for developing formal system models and generating executable code
for deployment.

Secure database design: An approach to designing the content of a security-
critical database uses the Object Constraint Language (OCL) which is an optional
part of the Unified Modeling Language (UML). More specifically, [28] presents the
Object Security Constraint Language V.2. (OSCL2), which is based in OCL. This
OCL extension can be used to incorporate security information and constraints in a
Platform Independent Model (P1M) given as a UML class model. The information
from the PIM is then translated into a Platform Specific Model (PSM) given as a
multilevel relational model. This can then be implemented in a particular Database

Chapter 2 Security and Dependability Engineering 29

Management System (DBMS), such as Oracle9i Label Security. These transforma-
tions can be done automatically or semi-automatically using OSCL2 compilers.

Smart-card based applications: [38, 68] present a method for the development
of secure smartcard applications which includes UML models enriched by alge-
braic specifications, and dynamic logic for JavaCard verification. The approach is
implemented in the KIV specification and verification system.

Secure information flow: [39] provides support for the use of UML with secrecy
annotations so that the code produced from the UML models can be be validated by
the Java information flow (Jif) language-based checker. [79] provides an approach
which can analyze secure information properties in UML sequence diagrams.

2.2.2 Code-level Assurance against High-level Security
Requirements

Even if specifications exist for the implemented system, and even if these are for-
mally analyzed, there is usually no guarantee that the implementation actually con-
forms to the specification. To deal with this problem, we can use the following
approach: After specifying the system in the given notation (such as UMLsec) and
verifying the model against the given security goals, we make sure that the im-
plementation correctly implements the specification with techniques such as those
explained below. Note that in addition it is often necessary to use dedicated tools
to detect specialized weaknesses (such as buffer overflows), although this is not in
scope of the current overview.

Run-time Security Monitoring: A simple and effective alternative is to insert se-
curity checks generated from the specification that remain in the code while in use,
for example using the assertion statement that is part of the Java language [11].
These assertions then throw security exceptions when violated at run-time. In a sim-
ilar way, this can also be done for C code.

SERENITY: The SERENITY approach provides dynamic runtime verification
mechanisms that can monitor various security properties dynamically based on
event calculus [63]. For example, they can monitor whether the assumptions made
by a given security pattern is satisfied at the execution of the system. To achieve
this, [82] proposes to use formal patterns that formalize frequently recurring system
requirements as security monitoring patterns. Also, evolution tools record the oper-
ational data relevant for the Security and Dependability Patterns to obtain feed-back
that can help improving the patterns.

Model-based Test Generation: For performance-intensive applications, it may be
preferable not to leave the assertions active in the code. This can be done by making
sure by extensive testing that the assertions are always satisfied, for example by
generating the test sequences automatically from the specifications. Since complete
test coverage is often infeasible, an approach that automatically selects those test
cases that are particularly sensitive to the specified security requirements is sketched
in [87, 53] (with respect to the formal semantics underlying UMLsec). Other work
on testing crypto-protocols includes [36].

30 Jan Jurjens

Formally verifying cryptoprotocol implementations: For highly non-determi-
nistic systems such as those using cryptography, testing can only provide assurance
up to a certain degree. For higher levels of trustworthiness, it may therefore be de-
sirable to establish that the code does enforce the security properties by a formal
verification of the source code. There have recently been some approaches towards
formally verifying implementations of crypto-protocols against high-level security
requirements such as secrecy, for example [57, 35, 52, 13]. These works so far have
aimed to verify implementations which were constructed with verification in mind
(and in particular fulfill significant expectations on the way they are programmed)
[35, 13], or deal only with simplified versions of legacy implementations [57, 52].
In related work, [71] investigates under which conditions it is sound to abstract from
marshalling and unmarshalling operations on transmitted messages when verifying
protocol specifications.

2.2.3 Analyzing Security Configurations

There have also been some first steps towards linking model-based security engi-
neering approaches with the automated analysis of security-critical configuration
data. For example, a tool that automatically check SAP R/3 user permissions for se-
curity policy rules formulated as UML specifications are presented in [40]. Because
of its modular architecture and its standardized interfaces, the tool can be adapted to
check security constraints in other kinds of application software, such as firewalls
or other access control configurations.

2.2.4 Industrial Applications

An overview on industrial applications of model-based security engineering in prac-
tice can be found in [5]. We list some examples below.

German Health Card architecture: Ongoing work for the German health telem-
atics platform using a model-driven architectural framework and a security infras-
tructure based on Electronic Health Records and multifunctional Electronic Health
Cards is presented in [15]. A security analysis of the German Health Card Architec-
ture using UMLsec is reported in [54].

Electronic purses: UMLsec was applied to a security analysis of the Com-
mon Electronic Purse Specifications (CEPS), a candidate for a globally interop-
erable electronic purse standard supported by organizations representing 90 % of
the world’s electronic purse cards (including Visa International). Three significant
security weaknesses were found in the purchase and load transaction protocols, im-
provements to the specifications were proposed, and it was shown that these are
secure [56]. There was also a security analysis of a prototypical Java Card imple-
mentation of CEPS. A method for the development of secure smartcard applications
which includes UML models and is implemented in the KIV specification and ver-

Chapter 2 Security and Dependability Engineering 31

ification system [38, 68] was applied to the specification of the Mondex electronic
purse.

Intranet information systems: An application of UMLsec to information systems
in an intranet at BMW is reported in [12]. There the use of single-sign-on mecha-
nisms was central, so the application of UMLsec was targeted to demonstrating that
it was used correctly within the system context.

Biometric authentication: For a project with an industrial partner, UMLsec was
chosen to support the development of a biometric authentication system at the spec-
ification level, where three significant security flaws were found [51]. It was also
applied to the source-code level for a prototypical implementation constructed from
the specification.

Web-based banking application: In a project with a German bank, model-based
security engineering was applied to a web-based banking application to be used by
customers to fill out and sign digital order forms [50]. The personal data in the forms
must be kept confidential, and orders securely authenticated. The system uses a
proprietary client authentication protocol layered over an SSL connection supposed
to provide confidentiality and server authentication. Using the MBSE approach, the
system architecture and the protocol were specified and verified with regard to the
relevant security requirements.

2.3 Outlook

Given the current insatisfactory state of computer security in practice, model-based
security engineering seems a promising approach, since it enables developers who
are not experts in security to make use of security engineering knowledge encapsu-
lated in a widely used design notation. Since there are many highly subtle security
requirements which can hardly be verified with the “naked eye”, even security ex-
perts may profit from this approach. Thus one can avoid mistakes that are difficult
to find by testing alone, such as breaches of subtle security requirements, as well
as the disadvantages of the “penetrate-and-patch” approach. Since preventing secu-
rity flaws early in the system life-cycle can significantly reduce costs, this gives a
potential for developing securer systems in a cost-efficient way. Model-based se-
curity engineering has been successfully applied in various industrial projects. The
approach has been generalized to other application domains such as real-time and
dependability. Experiences show that the approach is adequate for use in practice,
after relatively little training. As a consequence, model-based security engineering
is now also considered an important emerging technology by industrial think-tanks
(cf. e.g. [30]).

Due to space restriction, the current overview can only provide very limited de-
tail or completeness. More comprehensive overviews on model-based security en-
gineering and secure software engineering include [43, 73].

Some examples for open problems that remain:

Tracing security requirements: ~ From a practical point of view, the construction
of trustworthy security-critical systems would be significantly facilitated if one

32 Jan Jurjens

would have a practically feasible approach for tracing security requirements
through the system lifecycle phases (cf. Fig. 3.1). A first step in that direction
is presented in [92].

Preservation of security properties: Despite some early advances into this ques-
tion [44, 45] there is so far relatively little known about the preservation of se-
curity properties when using design and analysis techniques such as the modular
composition or decomposition, refinement or abstraction, or horizontal resp. ver-
tical layering of system parts (cf. Fig. 3.2).

Security verification of legacy systems: A major open problem is to verify com-
plex legacy implementations against high-level security properties in a practi-
cally feasible way. Again, some steps in that direction were reported in Sect.
2.2.2.

Security vs. other non-functional requirements / feature interaction: ~ Another open
problem is how to reconcile security requirements with other non-functional re-
quirements, which may be orthogonal or even in conflict. First examples regard-
ing performance properties can be found in [18, 31, 89].

Further recommendations for future research, and for improvements of secure
software engineering in practice, can be found e.g. in [88, 86].

References

1. Agreiter B, Alam M, Hafner M, Seifert J-P , and Zhang X (2007). Model driven configuration
of secure operating systems for mobile applications in healthcare. In Sztipanovits et al. [83].

2. Alam M, Hafner M, and Breu R (2007). Model-driven security engineering for trust manage-
ment in SECTET. Journal of Software, 2(1).

3. Alam M, Hafner M, Memon M, and Hung P (2007). Modeling and enforcing advanced access
control policies in healthcare systems with SECTET. In Sztipanovits et al. [83].

4. Anderson R (2001). Security Engineering: A Guide to Building Dependable Distributed
Systems. John Wiley & Sons, New York.

5. Apvrille A and Pourzandi M (2005). Secure software development by example. IEEE Security
& Privacy, 3(4):10-17.

6. Arenas A, Aziz B, Bicarregui J, Matthews B, and Yang EY (2008). Modelling security prop-
erties in a grid-based operating system with anti-goals. In ARES [42]: 1429-1436.

7. Basin DA, Clavel M, Doser J, Egea M (2007). A Metamodel-Based Approach for Analyzing
Security-Design Models. MoDELS 2007: 420-435.

8. Breu R, Burger K, Hafner M, Jirjens J, Popp G, Wimmel G, Lotz V (2003). Key Issues of a
Formally Based Process Model for Security Engineering. In Sixteenth Intern. Conference on
Software & Systems Engineering & their Applications (ICSSEA 2003).

9. Baldwin A, Beres Y, Shiu S, and Kearney P (2006). A model based approach to trust, security
and assurance. BT Technology Journal, 24(4):53-68.

10. Basin DA, Doser J, and Lodderstedt T (2006). Model driven security: From UML models to
access control infrastructures. ACM Trans. Softw. Eng. Methodol., 15(1): 39-91.

11. Bauer A and Jiirjens J (2008). Security protocols, properties, and their monitoring. In Bart De
Win, Seok-Won Lee, and Mattia Monga, editors, SESS: 33-40. ACM.

12. Best B, Jiirjens J, and Nuseibeh B (2007). Model-based security engineering of distributed
information systems using UMLsec. In ICSE. ACM.

13. Bhargavan K, Fournet C, Gordon AD, and Tse S (2006). Verified interoperable implementa-
tions of security protocols. In CSFW: 139-152. IEEE Computer Society.

Chapter 2 Security and Dependability Engineering 33

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

3L

32.

33.

34.

35.

Blobel B, Nordberg R, Davis JM, and Pharow P (2006). Modelling privilege management and
access control. International Journal of Medical Informatics, 75(8): 597-623.

Blobel B and Pharow P (2007). A model-driven approach for the german health telematics
architectural framework and security infrastructure. International Journal of Medical Infor-
matics, 76(2-3): 169-175.

Boehm BW (1981). Software Engineering Economics. Prentice Hall, Englewood Cliffs, NJ.
Brucker AD, Doser J, and Wolff B (2006). A model transformation semantics and analysis
methodology for SecureUML. In MoDELS 2006, volume 4199 of LNCS: 306-320. Springer.
Buchholtz M, Gilmore S, Haenel V, and Montangero C (2005). End-to-end integrated security
and performance analysis on the DEGAS Choreographer Platform. In FM 2005, volume 3582
of LNCS: 286-301. Springer.

Crook R, Ince DC, Lin L, and Nuseibeh B (2002). Security requirements engineering: When
anti-requirements hit the fan. In RE 2002: 203-205. IEEE.

Daskala B and Maghiros | (2007). D1gital TerritOries — Towards the protection of public
and private space in a digital and Ambient Intelligence environment. Institute for Prospective
Technological Studies (IPTS).

Deubler M, Griinbauer J, Jirjens J, and Wimmel G (2004). Sound development of secure
service-based systems. In ICSOC 2004: 115-124. ACM.

Devanbu P and Stubblebine S (2000). Software engineering for security: a roadmap. In The
Future of Software Engineering (ICSE 2000): 227-239.

Dimitrakos T, Ritchie B, Raptis D, Aagedal J& , den Braber F, Stglen K, and Houmb SH
(2002). Integrating model-based security risk management into ebusiness systems develop-
ment: The CORAS approach. In Second IFIP Conference on E-Commerce, E-Business,
E-Government (I3E 2002): 159-175. Kluwer.

Eckert C and Marek D (1997). Developing secure applications: A systematic approach. In
13th International Conference on Information Security (SEC 1998): 267-279.

Elahi G and Yu E (2007). A goal oriented approach for modeling and analyzing security
trade-offs. In ER 2007, volume 4801 of LNCS: 375-390. Springer.

Fernandez EB and Hawkins JC (1997). Determining role rights from use cases. In Workshop
on Role-Based Access Control: 121-125. ACM.

Fernandez EB, Larrondo-Petrie MM, Sorgente T, and VanHilst M (2006). A methodology to
develop secure systems using patterns. In H Mouratidis and P Giorgini, editors, Integrating
security and software engineering: Advances and future vision, chapter 5: 107-126. IDEA
Press.

Fernandez-Medina E and Piattini M (2004). Extending OCL for secure database development.
In UML 2004, LNCS: 380-394. Springer.

Flechais I, Mascolo C, and Sasse MA (2007). Integrating security and usability into the
requirements and design process. International Journal of Electronic Security and Digital
Forensics, 1(1):12-26.

Model-driven security: Enabling a real-time, adaptive security infrastructure. Gartner Briefing
G00151498, 21 Sep. 2007.

Gilmore S, Haenel V, Kloul L, and Maidl M (2005). Choreographing security and perfor-
mance analysis for web services. In EPEW/WS-FM 2005, volume 3670 of LNCS: 200-214.
Springer.

Giorgini P, Massacci F, and Mylopoulos J (2003). Requirement engineering meets security:
A case study on modelling secure electronic transactions by VISA and Mastercard. In I.-Y.
Song, S.W. Liddle, T.W. Ling, and P Scheuermann, editors, 22nd International Conference
on Conceptual Modeling (ER 2003), volume 2813 of LNCS: 263-276. Springer.

Giorgini P, Massacci F, Mylopoulos J, and Zannone N (2005). Modeling security requirements
through ownership, permission and delegation. In RE: 167-176. IEEE Computer Society.
Gollmann D (2000). On the verification of cryptographic protocols — a tale of two committees.
In S Schneider and P Ryan, editors, Workshop on Security Architectures and Information
Flow, volume 32 of ENTCS. Elsevier.

Goubault-Larrecq J and Parrennes F (2005). Cryptographic protocol analysis on real ¢ code.
In VMCAI’05, LNCS. Springer.

34

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

Jan Jurjens

Gurgens S and Peralta R (2000). Validation of cryptographic protocols by efficient automated
testing. In James N. Etheredge and Bill Z. Manaris, editors, FLAIRS Conference: 7-12.
AAAI Press.

Haley CB, Laney RC, Moffett JD, and Nuseibeh B (2008). Security requirements engineering:
A framework for representation and analysis. IEEE Trans. Software Eng., 34(1):133-153.
Haneberg D, Reif W, and Stenzel K (2002). A method for secure smartcard applications.
In Héléne Kirchner and Christophe Ringeissen, editors, AMAST, volume 2422 of Lecture
Notes in Computer Science: 319-333. Springer.

Heldal R and Hultin F (2003). Bridging model-based and language-based security. In
E Snekkenes and D Gollmann, editors, 8th European Symposium on Research in Computer
Security (ESORICS 2003), volume 2808 of LNCS: 235-252. Springer.

Hohn S and Jirjens J (2008). Rubacon: automated support for model-based compliance engi-
neering. In Robby, editor, ICSE: 875-878. ACM.

Houmb SH, Georg G, France RB, Bieman JM, and Jiirjens J (2005). Cost-benefit trade-off
analysis using BBN for aspect-oriented risk-driven development. In ICECCS: 195-204. IEEE
Computer Society.

IEEE. 3rd Int Conference on Availability, Reliability and Security (ARES 2008), 2008.
Jayaram KR and Mathur A (2005). Software engineering for secure software — state of the
art: A survey. Technical Report CERIAS-TR-2005-67, SERC-TR-279, CERIAS, Purdue.
Jirjens J (2000). Secure information flow for concurrent processes. In C Palamidessi, editor,
CONCUR 2000 (11th International Conference on Concurrency Theory), volume 1877 of
LNCS: 395-409. Springer.

Jurjens J (2001). Secrecy-preserving refinement. In International Symposium on Formal
Methods Europe (FME), volume 2021 of LNCS: 135-152. Springer.

Jurjens J (2001). Towards development of secure systems using UMLsec. In H HufRmann,
editor, 4th International Conference on Fundamental Approaches to Software Engineering
(FASE), volume 2029 of LNCS: 187-200. Springer. Also Oxford University Computing
Laboratory TR-9-00 (November 2000), http://web.comlab.ox.ac.uk/oucl/publications/tr/tr-
9-00.html.

Jirjens J (2002). UMLsec: Extending UML for secure systems development. In 5th
Int Conf on the Unified Modeling Language (UML), LNCS. Springer.

Jirjens J (2002). Formal Semantics for Interacting UML subsystems. In Formal Methods for
Open Object-Based Distributed Systems (FMOODS 2002), IFIP, Kluwer: 29-43.

Jirjens J, Shabalin P (2004). Automated Verification of UMLsec Models for Security Re-
quirements. In 7th Intern. Conference on The Unified Modeling Language (UML 2004),
Lecture Notes in Computer Science: 142-155. Springer.

Jurjens J (2005). Secure Systems Development with UML. Springer.

Jirjens J (2005). Sound methods and effective tools for model-based security engineering
with UML. In 27th Int Conf on Softw Engineering. IEEE.

Jirjens J (2006). Security analysis of crypto-based Java programs using automated theorem
provers. In S Easterbrook and S Uchitel, editors, 21st IEEE/ACM International Conference
on Automated Software Engineering (ASE 2006). ACM.

Jurjens J (2009). A domain-specific language for cryptographic protocols based on streams.
To appear, Journal of Logic and Algebraic Programming (JLAP): 54-73.

Jurjens J and Rumm R (2008). Model-based security analysis of the German Health Card
architecture. Methods of Information in Medicine, vol. 47, 5: 409-416. Special section on
Model-based Development of Trustworthy Health Information Systems.

Jurjens J and Shabalin P (2007). Tools for secure systems development with UML. Intern.
Journal on Software Tools for Technology Transfer, 9(5-6):527-544. Invited submission to
the special issue for FASE 2004/05.

Jirjens J, Wimmel G (2001). Security Modelling for Electronic Commerce: The Common
Electronic Purse Specifications. In Towards the E-Society: E-Commerce, E-Business, and
E-Government. Intern. Federation for Information Processing (IFIP), Kluwer Academic Pub-
lishers: 489-506. First IFIP Conference on E-Commerce, E-Business, and E-Government
(I3E 2001).

Chapter 2 Security and Dependability Engineering 35

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

Jurjens J and Yampolskiy M (2005). Code security analysis with assertions. In D.F. Redmiles,
T Ellman, and A Zisman, editors, 20th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2005): 392-395. ACM.

Kearney P and Briigger L (2007). A risk-driven security analysis method and modelling
language. BT Technology Journal, 25(1).

Koch M and Parisi-Presicce F (2006). UML specification of access control policies and their
formal verification. Software and System Modeling, 5(4):429-447.

Kolarczyk S, Koch M, Léhr K-P , and Pauls K (2006). SecTOOL - supporting requirements
engineering for access control. In Gunter Miiller, editor, ETRICS, volume 3995 of Lecture
Notes in Computer Science: 254-267. Springer.

Lotz V (1997). Threat scenarios as a means to formally develop secure systems. Journal of
Computer Security, 5(1):31-68.

Mafa A, Montenegro JA, Rudolph C, and Vivas JL (2003). A business process-driven ap-
proach to security engineering. In DEXA Workshops: 477-481. IEEE Computer Society.
Mafa A, Rudolph C, Spanoudakis G, Lotz V, Massacci F, Melideo M, and Lopez-Cobo J-M
(2006). Security engineering for Ambient Intelligence: A manifesto. In H Mouratidis, editor,
Integrating Security and Software Engineering: Advances and Future Vision. ldea Group.
Massacci F, Mylopoulos J, and Zannone N (2007). Computer-aided support for secure tropos.
Autom. Softw. Eng., 14(3):341-364.

Mathe J, Duncavage S, Werner J, Malin B, Ledeczi A, and Sztipanovits J (2007). Implement-
ing a model-based design environment for clinical information systems. In Sztipanovits et al.
[83].

McGraw G (2006). Software Security: Building Security In. Addison Wesley.

Méry D and Merz S (2007). Specification and refinement of access control. J. UCS,
13(8):1073-1093.

Moebius N, Haneberg D, Reif W, and Schellhorn G (2007). A modeling framework for the
development of provably secure e-commerce applications. In ICSEA: 8. IEEE Computer
Society.

Mouratidis H, Giorgini P, and Manson GA (2003). Integrating security and systems engineer-
ing: Towards the modelling of secure information systems. In J Eder and M Missikoff, editors,
15th International Conference on Advanced Information Systems Engineering (CAISE 2003),
volume 2681 of LNCS: 63-78. Springer.

Mouratidis H, Jiirjens J, and Fox J (2006). Towards a comprehensive framework for secure
systems development. In 18th International Conference on Advanced Information Systems
Engineering (CAISE 2006), LNCS. Springer.

Pironti A, Sisto R (2008). Soundness Conditions for Message Encoding Abstractions in For-
mal Security Protocol Models. In ARES 2008: 72-79.

Ray I, France RB, Li N, and Georg G (2004). An aspect-based approach to modeling access
control concerns. Information & Software Technology, 46(9):575-587.

Redwine S (2007). Introduction to modeling tools for software security. In: Build
Security In — Setting a Higher Standard for Software Assurance. Software Engineer-
ing Institute (SEI), Carnegie Mellon University. Available at https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/tools/modeling/698-BSI.html.

Rosado DG, Fernandez-Medina E, Piattini M, and Gutiérrez C (2006). A study of security
architectural patterns. In ARES: 358-365. IEEE Computer Society.

Saltzer J and Schroeder M (1975). The protection of information in computer systems. Pro-
ceedings of the IEEE, 63(9):1278-1308.

Santen T (2006). Stepwise development of secure systems. In Janusz Gorski, editor, SAFE-
COMP, volume 4166 of Lecture Notes in Computer Science: 142-155. Springer.

Santen T, Heisel M, and Pfitzmann A (2002). Confidentiality-preserving refinement is com-
positional — sometimes. In Dieter Gollmann, Giinter Karjoth, and Michael Waidner, editors,
ESORICS, volume 2502 of Lecture Notes in Computer Science: 194-211. Springer.
Schneider F, editor (1999). Trust in Cyberspace. National Academy Press, Washington, DC.
Available at http://www.nap.edu/readingroom/books/trust.

Seehusen F and Stglen K (2006). Information flow property preserving transformation of
UML interaction diagrams. In David F. Ferraiolo and Indrakshi Ray, editors, SACMAT:
150-159. ACM.

36

80.

8L

82.

83.

84.

85.

86.

87.

88.

89.

90.

9L

92.

93.

Jan Jurjens

Sindre G and Opdahl AL (2005). Eliciting security requirements with misuse cases. Requir.
Eng., 10(1):34-44.

Siveroni I, Zisman A, and Spanoudakis G (2008). Property specification and static verification
of UML models. In 3rd International Conference on Availability, Reliability, and Security
(ARES’08).

Spanoudakis G, Kloukinas C, and Androutsopoulos K (2007). Towards security monitoring
patterns. In SAC: 1518-1525. ACM.

Sztipanovits J, Breu R, Ammenwerth E, Bajcsy R, Mitchell JC, and Pretschner A, ed-
itors (2007). Workshop on Model-based Trustworthy Health Information Systems
(MOTHIS@Models).

UMLsec group. Security analysis tool, 2004. http://www.umlsec.org.

Whittle J, Wijesekera D, and Hartong M (2008). Executable misuse cases for modeling secu-
rity concerns. In ICSE 2008.

Whyte B and Harrison J (2008). Secure software development — a white paper. Knowl-
edge Transfer Network on Cyber Security, UK. Available at http://www.ktn.qginetig-
tim.net/content/files/groups/securesoft/SSDSIG softwareSecurityFailures.pdf.

Wimmel G and Jurjens J (2002). Specification-based test generation for security-critical sys-
tems using mutations. In International Conference on Formal Engineering Methods (ICFEM),
volume 2495 of LNCS: 471-482. Springer.

Wirsing M (2008). Software engineering for secure software-intensive systems.
Consultation meeting on “Engineering Secure Software Systems” in the context of
the preparation of the EU FP7 ICT work programme 2009-2010, Brussels. Pre-
sentation available at ftp://ftp.cordis.europa.eu/pub/fp7/ict/docs/security/20080423-martin-
wirsing-lImu-munich en.pdf.

Woodside M, Petriu DC, Petriu DB, Xu J, Israr T, Georg G, France R, Bieman JM, Houmb
SH, and Jiirjens J (2008). Performance analysis of security aspects by weaving scenarios from
UML models. Journal of Systems and Software, vol. 82, 1: 56-74.

Yoshioka N, Honiden S, and Finkelstein A (2004). Security patterns: A method for construct-
ing secure and efficient inter-company coordination systems. In EDOC: 84-97.

Yskout K, Scandariato R, De Win B, and Joosen W (2008). Transforming security require-
ments into architecture. In ARES [42]: 1421-1428.

Yu 'Y, Jirjens J, and Mylopoulos J (2008). Traceability for the maintenance of secure software.
In 24th International Conference on Software Maintenance (ICSM). IEEE.

Zhang G, Baumeister H, Koch N, and Knapp A (2005). Aspect-oriented modeling of access
control in web applications. In 6th International Workshop on Aspect-Oriented Modeling.

2 Springer
http://www.springer.com/978-0-387-88774-6

Security and Dependability for Aambient Intelligence
Spanoudakis, G.; Kokolakis, S. (Eds.)

2009, ¥, 392 p. 80 illus., 30 illus. in color., Hardcover
ISBN: @78-0-387-BB774-6

