
Chapter 2
Simple Low Level Features for Image Analysis

Paolo Falcoz

Summary. As human beings, we perceive the world around us mainly through our
eyes, and give what we see the status of “reality”; as such we historically tried to
create ways of recording this reality so we could augment or extend our memory.
From early attempts in photography like the image produced in 1826 by the French
inventor Nicéphore Niépce (Figure 2.1) to the latest high definition camcorders, the
number of recorded pieces of reality increased exponentially, posing the problem
of managing all that information. Most of the raw video material produced today
has lost its memory augmentation function, as it will hardly ever be viewed by any
human; pervasive CCTVs are an example. They generate an enormous amount of
data each day, but there is not enough “human processing power” to view them.
Therefore the need for effective automatic image analysis tools is great, and a lot
effort has been put in it, both from the academia and the industry. In this chapter, a
review of some of the most important image analysis tools are presented.
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2.1 Introduction

As human beings, we perceive the world around us mainly through our eyes, and
give what we see the status of “reality”; as such we historically tried to create ways
of recording this reality so we could augment or extend our memory. From early
attempts in photography like the image produced in 1826 by the French inventor
Nicéphore Niépce (Figure 2.1) to the latest high definition camcorders, the number
of recorded pieces of reality increased exponentially, posing the problem of man-
aging all that information. Most of the raw video material produced today has lost
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its memory augmentation function, as it will hardly ever be viewed by any human;
pervasive CCTVs are an example. They generate an enormous amount of data each
day, but there is not enough “human processing power” to view them.

Therefore the need for effective automatic image analysis tools is great, and a lot
effort has been put in it, both from the academia and the industry. Results from dif-
ferent research groups are impressive, and the DARPA1 Grand and Urban Challenge
[9] can be considered the showcase for the state-of-the-art in image processing. It
may be useful to recall that the DARPA Grand Challenge is a prize competition
for driverless cars, sponsored by the DARPA with the goal of developing technolo-
gies needed to create the first fully autonomous ground vehicle. The third event,
The DARPA Urban Challenge, which took place on November 3, 2007, further
advanced vehicle requirements to include autonomous operation in a mock urban
environment. Robotics also has many meaningful examples of deep achievements
in image processing, from the well known humanoid robot Asimo[14] to the less
friendly machine-gun equipped sentry robot developed in South Korea by Korea
University and Samsung [33]. More and more examples of complex image analy-
sis tools embedded in consumer electronic equipments are available today, and the
face detection feature built in some Canon cameras2, and Sony camcorders3 are an
example.

Image processing algorithms can be extremely complex, but there are some basic
operations and features that – whatever the complexity – are almost always consid-
ered. Among them we can mention:

• color analysis;
• edge extraction;
• shape matching;
• texture analysis.

For each of those features there exist many different algorithms with different
goals and complexity, but taken alone most of them perform well only under specific
conditions, and are lacking in the general case. Note that by “specific conditions”
we include the need of having a dedicated training database, so that after training
the algorithm works well only for the class of object for which it has been trained.
A simple solution is to combine two or more different features together, so that the
strengths of a feature can overcome the weaknesses of another, and vice versa. A
similar problem has been faced by the MPEG-7 standard [21], which decided to
make use of shape, region, and color descriptors altogether [2].

In the following sections we will discuss the meaning of “color” (section 2.2)
and “color space” (sections 2.2.2 and 2.2.3); then we will use color to extract blobs
(section 2.3). Different edge detectors will be presented in section 2.4, while in

1 The Defense Advanced Research Projects Agency (DARPA) is an agency of the United States
Department of Defense responsible for the development of new technology for use by the military.
DARPA has been responsible for funding the development of many technologies which have had
a major impact on the world, including ARPANET, the ancestor of the modern Internet.
2 Canon Powershot S5 IS
3 Sony HDR-CX12 HD AVCHD
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Fig. 2.1 Nicéphore Niépce’s earliest surviving photograph, c. 1826 (View from the window of Le
Gras). This image required an eight-hour exposure, which resulted in sunlight being visible on both
sides of the buildings.

section 2.5.1 and 2.5.2 we will introduce Procrustes Analysis and Iterative Closest
Point algorithm for shape registration (alignment).

Section 2.5.3 will deal with Curvature Scale Space Descriptors (CSSD), an
effective way of describing shapes using scale, position, and rotation invariants;
CSSD can be encoded for fast shape matching [28].

Section 2.6 presents some simple ideas for combining different features so that
valuable knowledge can be extracted.

2.2 The Role of Color

From an anatomical point of view, all human interaction with “color” is mediated by
the retina, the light-sensitive layer at the back of the eye that covers about 65 percent
of its interior surface. Photosensitive cells called rods and cones in the retina convert
incident light energy into signals that are carried to the brain by the optic nerve. Rods
are attributed night vision, motion detection, and peripheral vision, while cones are
attributed both color vision and the highest visual acuity [12]. In the middle of the
retina is a small dimple called the fovea or fovea centralis. It is the center of the
eye’s sharpest vision and the location of most color perception. In fact, while cones
are concentrated in the fovea, rods are absent there but dense elsewhere. Measured
density curves for the rods and cones on the retina show an enormous density of
cones in the fovea (Figure 2.2 (a)).
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Considering for humans a global field of view of about 180◦ and a color field of
view of about 15◦, and translating the ratio between them into a 640× 480 image,
we find that actual color vision happens only within a 53×40 region. In Figure 2.2
(b) the inner rectangle is where color vision happens. If fact the rectangle should be
blurred, because a small amount of cones is present also at bigger separation angles.
Note that we used a rectangle only for simplicity, but a circle or an ellipse can be
used as well.

From a perceptual point of view, “color” is the visual perceptual property corre-
sponding in humans to the categories called red, yellow, blue, black, etc. Color cate-
gories and physical perception of color are obviously related with objects, materials,
light sources, etc., and their physical properties of light absorption, reflection, and
emission.

Color is therefore a very complex feature whose description depends on light
characteristics, environment conditions, and sensor quality; the same “physical” red
color with a wavelength of 780nm has different descriptions when perceived by a
normal person, by a color-blind person, or by a webcam sensor (Figure 2.3).4

Despite its complexity and drawbacks, color is still a very important feature, used
in many image processing tasks (ex. skin detector) with some clear advantages:

• it is very easy to compute;
• it is independent of image size and orientation.

However, in order to formalize the concept of color, we need to introduce the
concept of color space.

2.2.1 Color Spaces

A color model is an abstract mathematical model describing the way colors can be
represented as tuples of numbers, typically as three or four values or color compo-
nents. When this model is associated with a precise description of how the compo-
nents are to be interpreted (viewing conditions, etc.), the resulting set of colors is
called a color space.

Adding a certain mapping function between the color model and a certain ref-
erence color space results in a definite “footprint” within the reference color space.
This ”footprint” is known as a gamut, and, in combination with the color model,
defines a new color space. For example, Adobe RGB and sRGB are two different
color spaces, both based on the RGB model.

The RGB color model is an additive color model in which red, green, and blue
light are added together in various ways to reproduce a broad array of colors. It is
additive in the sense that the three light beam are added together, and their light
spectra add, wavelength for wavelength, to make the final color’s spectrum. Zero
intensity for each component gives the darkest color (no light, considered the black),

4 Image taken from http://en.wikipedia.org/wiki/Color_blindness
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a

b

Fig. 2.2 Original image (a), and proportion of the image actually seen in full color at any instant
(b).
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Fig. 2.3 An 1895 illustration of normal vision and various kinds of color blindness.

and full intensity of each gives a white. The name of the model comes from the
initials of the three additive primary colors, red, green, and blue.

Oddly enough, the first known permanent color photo was taken by James
Clerk Maxwell using the RGB color model developed by Thomas Young, Hermann
Helmholtz and Maxwell himself. Figure 2.4 shows the photo, taken in 18615. Those
first experiments color photography involved the process of three color-filtered sep-
arate takes [13]. To reproduce the color photograph, three matching projections over
a screen in a dark room were necessary.

Note that subtractive color models exist too; they work by partially or entirely
masking certain colors on a typically white background (that is, absorbing particular
wavelengths of light). Such models are called subtractive because colors “subtract”

5 Image taken from Wikipedia, http://en.wikipedia.org/wiki/RGB_color_model



2 Simple Low Level Features for Image Analysis 23

Fig. 2.4 The first permanent color photograph, taken by J. C. Maxwell in 1861 using three red,
green, and violet-blue filters.

brightness from white. In the case of CMY those colors are cyan, magenta, and
yellow.

There are many different color spaces, however when dealing wit human per-
ception of color, only a few should be considered: those defined to be perceptually-
uniform.

A perceptually-uniform color space is a color space in which any two colors that
are perceived as “close” are “close” also in their numerical representation, and vice
versa. For example, CIE-Lab is perceptually uniform, while Adobe RGB and sRGB
are not.

In the next two subsections we will focus on three different color spaces, the first
two – HSL and HSV – represent an attempt to derive a more perceptually uniform
color space from RGB, while the third – CIE-Lab – was conceived to be perceptually
uniform.

2.2.2 HSL and HSV

HSL and HSV are two related representations of points in an RGB color space,
which attempt to describe perceptual color relationships more accurately than RGB,
while remaining computationally simple. HSL stands for hue, saturation, lightness,
while HSV stands for hue, saturation, value.
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Both HSL and HSV describe colors as points in a cylinder (Figure 2.5) whose
central axis ranges from black at the bottom to white at the top with neutral colors
between them, where angle around the axis corresponds to “hue”, distance from
the axis corresponds to “saturation”, and distance along the axis corresponds to
“lightness”, “value”, or “brightness”.

Fig. 2.5 Graphical representation of HSV cylinder

The two representations are similar in purpose, but differ somewhat in approach.
Both are mathematically cylindrical, but while HSV (hue, saturation, value) can
be thought of conceptually as an inverted cone of colors (with a black point at the
bottom, and fully-saturated colors around a circle at the top), HSL conceptually rep-
resents a double-cone or sphere (with white at the top, black at the bottom, and the
fully-saturated colors around the edge of a horizontal cross-section with middle gray
at its center). Note that while “hue” in HSL and HSV refers to the same attribute,
their definitions of “saturation” differ dramatically (Figure 2.6)6.

Because HSL and HSV are simple transformations of RGB, the color defined
by a (h,s, l) or (h,s,v) tuple depends on the particular color of red, green, and blue
“primaries” used. Note that in practice those primaries are strictly related to the
technology used to generate them; the actual “blue” color generated by the blue
electron gun used in cathode ray devices is different from the blue generated by
the blue LEDs of LED devices, and is different from the blue detectors of a CCD
camera. Each unique RGB device therefore has unique HSL and HSV spaces to
accompany it. An (h,s, l) or (h,s,v) tuple can however become definite when it is
tied to a particular RGB color space, such as sRGB.

6 Image taken from http://en.wikipedia.org/wiki/HSL_and_HSV



2 Simple Low Level Features for Image Analysis 25

Fig. 2.6 Comparison of the HSL and HSV color spaces.

Both models were first formally described in 1978 by Alvy Ray Smith [30],
though the concept of describing colors by these three dimensions, or equivalents
such as hue, chroma, and tint, was introduced much earlier [27].

2.2.3 CIE-Lab

CIELAB is the second of two systems adopted by CIE7 in 1976 as models that better
showed uniform color spacing in their values. CIELAB is an opponent color system
based on the earlier (1942) system of Richard Hunter [17][18] called L, a, b. Color
opposition correlates with discoveries in the mid-1960s that somewhere between
the optical nerve and the brain, retinal color stimuli are translated into distinctions
between light and dark, red and green, and blue and yellow. CIELAB indicates these
values with three axes: L*, a*, and b* (Figure 2.7)8.

The central vertical axis represents lightness (signified as L*) whose values run
from 0 (black) to 100 (white). This scale is closely related to Munsell’s [25][26]
value axis except that the value of each step is much greater. This is the same light-
ness valuation used in CIELUV.

The color axes are based on the fact that a color can’t be both red and green, or
both blue and yellow, because these colors oppose each other. On each axis the val-
ues run from positive to negative. On the a-a’ axis, positive values indicate amounts
of red while negative values indicate amounts of green. On the b-b’ axis, yellow is
positive and blue is negative. For both axes, zero is neutral gray.

Therefore, values are only needed for two color axes and for the lightness or
grayscale axis (L*), which is separate (unlike in RGB, CMY or XYZ where light-
ness depends on relative amounts of the three color channels).

7 Comission Internationale de l’Eclairage
8 The full nomenclature is 1976 CIE L*a*b* Space.
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Fig. 2.7 Graphical representation of CIE-Lab color space

2.2.4 Color Flattening

Now that we know what color is from an abstract point of view, we are ready to
work with actual colors from digital images and videos. The problem is that they
are mostly shot with low cost, low quality equipment, meaning non uniform colors
and evident noise.

One method to cope with this is to flatten colors: a very common filter used for
this purpose is the blur filter.

The problem with this approach is that not only noise but also edges are flattened,
causing lost of potentially important information. A better solution is to perform
several steps of bilateral filtering [34] (Figure 2.8).

The effectiveness of this approach is to combine a low-pass filter with a range
filter

h(x) = k−1(x)
∫ inf

− inf

∫ inf

− inf
f (ξ )c(ξ ,x)s( f (ξ ), f (x))dξ

where

k(x) =
∫ inf

− inf

∫ inf

− inf
c(ξ ,x)s( f (ξ ), f (x))dξ

c(ξ ,x) measures the geometric closeness between the neighborhood center x and
a nearby point ξ , s( f (ξ ), f (x)) measures the photometric similarity between the
pixel at the neighborhood center x and that of a nearby point ξ , and f () represents
the image function. The low-pass filter is defined by c(ξ ,x), while the range filter
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is defined by s( f (ξ ), f (x)). Since this technique combines two different filters, it is
called bilateral filtering.

The actual implementation of low-pass and range filters can be based on sim-
ple Gaussian filtering, where both the closeness function c(ξ ,x) and the similarity
function s( f (ξ ), f (x)) are Gaussian functions of the Euclidean distance between
their arguments. Closeness then becomes

c(ξ ,x) = e−
1
2

(
d(ξ ,x)

σd

)2

where

d(ξ ,x) = d(ξ − x) = |ξ − x|

while similarity becomes

s(ξ ,x) = e−
1
2

(
δ ( f (ξ ), f (x))

σr

)2

where

δ (φ , f ) = δ (φ − f ) = |φ − f |

The meaning of bilateral filtering is to replace the pixel value at x with an average
of similar (photometric similarity) and nearby (geometric closeness) pixel values. In
smooth regions, pixel values in a small neighborhood are similar to each other, and
the normalized similarity function is close to one. As a consequence, the bilateral fil-
ter acts essentially as a standard domain filter, and averages away the small, weakly
correlated differences between pixel values caused by noise. Consider now a sharp
boundary between a dark and a bright region. Suppose on the other hand that the
bilateral filter is centered, on a pixel on the bright side of the boundary, then the
similarity function assumes values close to one for pixels on the same side, and
close to zero for pixels on the dark side. The normalization term x ensures that the
weights for all the pixels add up to one. As a result, the filter replaces the bright pixel
at the center by an average of the bright pixels in its vicinity, and essentially ignores
the dark pixels. Conversely, when the filter is centered on a dark pixel, the bright
pixels are ignored instead. Thus, good filtering behavior is achieved at the bound-
aries, thanks to the domain component of the filter, and crisp edges are preserved at
the same time, thanks to the range component.

2.3 Blob Detection

Blob detection and extraction proves to be a useful tool in many areas; one main
application is to provide complementary information about regions, which is not
obtained from edge detectors or corner detectors. In early work in the area, blob
detection was used to obtain regions of interest for further processing. These re-
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(a)

(b)

Fig. 2.8 Original (a) and corresponding flattened (b) image (4 steps)

gions could signal the presence of objects or parts of objects in the image domain
with application to object recognition and/or object tracking. In other domains, such
as histogram analysis, blob descriptors can also be used for peak detection with
application to segmentation. Another common use of blob descriptors is as main
primitives for texture analysis and texture recognition. In more recent work, blob
descriptors have found increasingly popular use as interest points for wide baseline
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(a) (b)

(c) (d)

Fig. 2.9 Original image (a), mask (white) of lilac blob (b), mask after morphological closing (c),
mask after noise removal (d).

stereo matching [22] and to signal the presence of informative image features for
appearance-based object recognition based on local image statistics.

Simple blob extraction and refinement based on color ranges can be achieved
using the following idea:

1. given the color input image I, create a binary matrix M with the same width and
height of I, and set all the elements to 0;

2. scan the input image element by element and check if the value of each color
plane falls within the specified range. If yes, then put the corresponding mask’s
element to 1 (Figure 2.9 (b));

3. apply a morphological “closing” (dilation followed by erosion) to M in order to
fill holes and to smooth blobs (Figure 2.9 (c));

4. remove isolated group of pixels smaller than a given threshold (Figure 2.9 (d));
5. scan M and label all 8-connected blobs. Labeling can be done using the te-

chinique outlined in [10]. Each blob’s mass is then calculated, along with color
statistics.

Note that the previous procedure can be applied to blob detection based on char-
acteristics other than color, the only changing part is the one that assigns an element
to the blob or to the background (the non-blob area)[15]. Since there can be many
blobs of the same color (with the same characteristic), a selection criterion can be
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used in order to take only the n best ones; foe example, if “best” means “biggest”,
then only the biggest n blobs are considered.

2.4 Edge Detection

From an algorithmic point of view, edge detection translates into detecting sharp
changes in image brightness; the underlying assumption is that such brightness
changes are strongly correlated with important events and properties changes of the
world (represented by the image). In general, discontinuities in image brightness are
likely to correspond to:

• discontinuities in depth;
• discontinuities in surface orientation;
• changes in material properties;
• variations in scene illumination.

In the ideal case, the result of applying an edge detector to an image may lead
to a set of connected curves that indicate the boundaries of objects, the boundaries
of surface markings as well curves that correspond to discontinuities in surface ori-
entation. Thus, applying an edge detector to an image may significantly reduce the
amount of data to be processed and may therefore filter out information that may
be regarded as less relevant, while preserving the important structural properties of
an image. If the edge detection step is successful, the subsequent task of interpret-
ing the information contents in the original image may therefore be substantially
simplified. Unfortunately, however, it is not always possible to obtain such ideal
edges from real life images of moderate complexity. Edges extracted from non-
trivial images are often hampered by fragmentation, meaning that the edge curves
are not connected, missing edge segments as well as false edges not corresponding
to interesting phenomena in the image – thus complicating the subsequent task of
interpreting the image data.

There are many different algorithms for computing edges [32][29][11][35], but
three must be cited:

• Prewitt operator [31];
• Sobel operator;
• Canny filter [3].

The best of the three is the Canny filter, the other two are interesting because they
are simple and fast (Figure 2.10).

Mathematically, both the Sobel and Prewitt operators use two 3x3 kernels which
are convolved with the original image to calculate approximations of the derivatives
– one for horizontal changes, and one for vertical. Given the input image I, the
output images Gx and Gy which at each point contain the horizontal and vertical
derivative approximations, are calculated as follows
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GS
x = Sv⊗ I GS

y = Sh⊗ I

GP
x = Pv⊗ I GP

y = Ph⊗ I

where ⊗ denotes the bidimensional convolution operator, and

Sv =

1 0 −1
2 0 −2
1 0 −1

 Sh =

 1 2 1
0 0 0
−1 −2 −1


Pv =

−1 0 1
−1 0 1
−1 0 1

 Ph =

−1 −1 −1
0 0 0
1 1 1


denotes the kernels for vertical and horizontal changes of the Sobel and Prewitt

operators.

(a) (b)

(c) (d)

Fig. 2.10 Original image (a), Sobel (b), Prewitt (c), and Canny (d) edge detectors.

Canny builds on top of Sobel/Prewitt operators, considering the mathematical
problem of deriving an optimal smoothing filter given the criteria of detection, lo-
calization and minimizing multiple responses to a single edge. He showed that the
optimal filter given these assumptions is a sum of four exponential terms. He also
showed that this filter can be well approximated by first-order derivatives of Gaus-
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sians. Canny also introduced the notion of non-maximum suppression, which means
that the image is scanned along the image gradient direction, and if pixels are not
part of the local maxima they are set to zero. This has the effect of supressing all
image information that is not part of local maxima.

Because the Canny edge detector uses a filter based on the first derivative of a
Gaussian, it is susceptible to noise present on raw unprocessed image data, so the
first step is to convolve the raw image with a Gaussian filter. The result is as a
slightly blurred version of the original which is not affected by a single noisy pixel
to any significant degree.

An edge in an image may point in a variety of directions, so the Canny algorithm
uses four filters to detect horizontal, vertical and diagonal edges in the blurred im-
age. The edge detection operator (Prewitt, Sobel for example) returns a value for the
first derivative in the horizontal direction (Gy) and the vertical direction (Gx). From
this the edge gradient and direction can be determined:

G =
√

Gx
2 +Gy

2

Θ = arctan
(

Gy

Gx

)
The edge direction angle is rounded to one of four angles representing vertical,

horizontal and the two diagonals (0, 45, 90 and 135 degrees for example).
Given estimates of the image gradients, a search is then carried out to determine

if the gradient magnitude assumes a local maximum in the gradient direction (non
maximum suppression). So, for example, if the rounded angle is zero degrees the
point will be considered to be on the edge if its intensity is greater than the intensities
in the north and south directions, if the rounded angle is 90 degrees the point will be
considered to be on the edge if its intensity is greater than the intensities in the east
and west directions, if the rounded angle is 135 degrees the point will be considered
to be on the edge if its intensity is greater than the intensities in the north east and
south west directions, if the rounded angle is 45 degrees the point will be considered
to be on the edge if its intensity is greater than the intensities in the south east and
north west directions. This is worked out by passing a 3x3 grid over the intensity
map.

From this stage a set of edge points, in the form of a binary image, is obtained.
Intensity gradients which are large are more likely to correspond to edges than

if they are small. It is in most cases impossible to specify a threshold at which a
given intensity gradient switches from corresponding to an edge into not doing so.
Therefore Canny uses thresholding with hysteresis.

Thresholding with hysteresis requires two thresholds – high and low. Making the
assumption that important edges should be along continuous curves in the image
allows us to follow a faint section of a given line and to discard a few noisy pixels
that do not constitute a line but have produced large gradients. Therefore we be-
gin by applying a high threshold. This marks out the edges we can be fairly sure
are genuine. Starting from these, using the directional information derived earlier,
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edges can be traced through the image. While tracing an edge, we apply the lower
threshold, allowing us to trace faint sections of edges as long as we find a starting
point.

Once this process is complete we have a binary image where each pixel is marked
as either an edge pixel or a non-edge pixel.

2.5 Simple Shapes

Edge detectors are a fundamental step in shape analysis, as well as algorithms for
shape comparison and matching. Shape matching usuallly requires the evaluation of
a distance between the shape themselves or their projection in some other feature
space; n-dimensional (or vector) euclidean distance is a good candidate.

2.5.1 Scale and Position Invariants: Procrustes Analysis

In order to compare two shapes we need to make them independent of position and
size.

Procrustes analysis is a form of statistical shape analysis used to analyse the
distribution of a set of shapes. The name Procrustes refers to a bandit from Greek
mythology who made his victims fit his bed either by stretching their limbs or cut-
ting them off.

Here we just consider objects made up from a finite number k of points in n
dimensions; these points are called landmark points.

The shape of object can be considered as a member of an equivalence class
formed by removing the translational, rotational and scaling components.

For example, translational components can be removed from an object by trans-
lating the object so that the mean of all the points lies at the origin. Likewise the
scale component can be removed by scaling the object so that the sum of the squared
distances from the points to the origin is 1.

Mathematically: take k points in two dimensions,

((x1,y1),(x2,y2), . . . ,(xk,yk))

The mean of these points is (x̄, ȳ), where

x̄ =
1
k

k

∑
i=1

xi ȳ =
1
k

k

∑
i=1

yi

Now translate these points so that the mean is translated to the origin (x,y)→
(x− x̄,y− ȳ), giving the point (x1− x̄,y1− ȳ), . . . . Likewise scale can be removed by
finding the size of the object
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s =
√

(x1− x̄)2 +(y1− ȳ)2 + · · ·

and dividing the points by the scale giving points ((x1− x̄)/s,(y1− ȳ)/s). Other
methods for removing the scale can also be used.

2.5.2 Shape Alignment: Iterative Closest Point

Iterative Closest Point (ICP) was introduced by Besl and McKay in 1992 [1] and
solves the general problem of matching two clouds of points.

This matching technique can be used from simple 2D shape alignment to com-
plex 3D surfaces reconstruction. The algorithm is very simple and is commonly
used in real-time.

The goal of ICP is to find the rigid transformation T that best aligns a cloud of
scene points S with a geometric model M. The alignment process works to minimize
the mean squared distance between scene points and their closest model point. ICP
is efficient, with average case complexity of O(n logn) for n point images and it con-
verges monotonically to a local minimum. At each iteration, the algorithm computes
correspondences by finding closest points and, then, minimizes the mean square er-
ror in position between the correspondences [6] [16]. A good initial estimate of the
transformation is required and all scene points are assumed to have correspondences
in the model9.

Algorithm 1: Iterative Closest Point
Initial situation: Let S be a set of Ns points {s1, . . . ,sNs}, and let M be the
model. Let ‖s−m‖ be the distance between points s ∈ S and m ∈M, and let
CP(si,M) be the closest point in M to the scene point si;
Phase 1: Let T0 be an initial estimate of the transformation;
Phase 2: Repeat for k = 1, . . . ,kmax or until ternination criteria is met

1. Build the set of corrispondences

C =
Ns⋃

i=1

{(Tk−1(si),CP(Tk−1(si),M))}

k
point pairs in C [6] [16]

The result will be the refined transformation Tkmax (translation, rotation).
For rigid deformation, the distance used in ICP is only the Euclidean distance.

Point in rigid deformation is 3D point with components (x,y,z) [1][36].

9 If the model shape can be parameterized, this limitation can be overcome by generating a model
with a number of points equal to that of the scene.

2. Compute the new transformation T that minimizes mean square error between
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For non-rigid deformation, it is not correct anymore to say that corresponding
points have the closest Euclidean distance. The distance should be redefined to de-
scribe the similarity between corresponding points. Feldmar [7] defines a 3D Eu-
clidean point in 8D with normal (nx,ny,nz) and principal (k1,k2) curvatures in ad-
dition to the (x,y,z) components. Given two surfaces S1 and S2, his definition is:

d(M,N) = (α1(x− x′)2 +α2(y− y′)2 +α3(z− z′)2+
α4(nx−n′x)

2 +α5(ny−n′y)
2 +α6(nz−n′z)

2+
α7(k1− k′1)

2 +α8(k2− k′2)
2)1/2

where M is a point on surface S1, N is a point on surface S2, (nx,ny,nz) is the
normal on S1 at point M, k1,k2 are the principal curvatures, and αi is the difference
between the maximal and minimal value of the ith coordinate of points in S2.

In his definition both global and local affine are implemented.

2.5.3 Shape Encoding and Matching: Curvature Space Scale

The curvature scale space (CSS) was introduced by Mokhtarian and Mackworth
[23] [24] as a shape representation for planar curves.

The representation is computed by convolving a path-based representation of
the curve with a Gaussian function, as the standard deviation of the Gaussian varies
from a small to a large value, and extracting the curvature zero-crossing points of the
resulting curves. The representation is essentially invariant under rotation, uniform
scaling, and translation of the curve. This and a number of other properties makes it
suitable for recognizing a noisy curve of arbitrary shape at any scale or orientation.
After substantial and comprehensive testing, the CSS technique was selected as a
contour shape descriptor for MPEG-7 [21].

To create a CSS description of a contour shape, N equi-distant points are selected
on the contour, starting from an arbitrary point on the contour and following the
contour clockwise. The x and ycoordinates of the selected N points are grouped to-
gether into two series X and Y . The contour is then gradually smoothed by repetitive
application of a Gaussian kernel10 to X and Y coordinates of the selected contour
points. As a result of the smoothing, the contour evolves and its concave parts grad-
ually flatten-out, until the contour becomes convex. A so-called CSS image can be
associated with the contour evolution process11.

The CSS image horizontal coordinates correspond to the indices of the contour
points selected to represent the contour (1, . . . ,N), and CSS image vertical coordi-
nates correspond to the amount of filtering applied, defined as the number of passes
of the filter. Each horizontal line in the CSS image corresponds to the smoothed con-
tour resulting from k passes of the filter (Figure 2.11). For each smoothed contour,

10 The MPEG-7 standard uses a low-pass filter with the kernel (0.25, 0.5, 0.25)
11 the CSS image does not have to be explicitly extracted, but is useful to illustrate the CSS repre-
sentation.
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the zero-crossings of its curvature function are computed. Curvature zero-crossing
points separate concave and convex parts of the contour. The CSS image has char-
acteristic peaks. The coordinate values of the prominent peaks (xcss,ycss) in the CSS
image are extracted; in addition, the eccentricity and circularity of the contour can
also be calculated.

(a) (b)

(c) (d)

(e) (f)

Fig. 2.11 Original image (a), outer contour (b), after 15 filtering steps (c), 30 filtering steps (d),
after 45 filtering steps (e), after 60 filtering steps (f).

Once the css descriptors have been extracted, the shape is ready for matching.
The canonical CSS (CCSS) based shape retrieval algorithm [5] is to compare a CSS
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descriptor of query image with a set of CSS descriptor of database images, and
to return the n best match as its output. In order to find the minimum cost of the
match between a query image and a database image, the algorithm must consider all
possible ways of aligning the contour maxima from both CSS images, and compute
the associated cost by shifting the query CSS image or a database CSS image.

Unfortunately, in general the computation of a CSS image can take a long time,
making it difficult to apply the method to real-time object recognition.

To overcome this limitation, several variations and hybridizations of the original
algorithm have been proposed [19] [28] [37].

2.6 Combination of simple features

We will now use some of the features presented in the previous sections to build a
sky detector; there exist many good sky detectors, but our aim is to show that with
the combination of a few simple generic features, interesting results can be obtained.
This is just an example and from the point of view of pure performance it cannot be
compared to dedicated algorithms [20] [8].

The idea behind our sky detector is the following:

1. extract blue blobs B from input image I;
2. use a simple texture analysis to discriminate between sky blobs and non-sky

blobs;
3. extract edges E from I using Canny edge detector;
4. perform binary and between B and E to generate the combination mask C;
5. perform morphological closing over C;
6. run again texture analysis to discriminate between sky blobs and non-sky blobs.

The first step is to define what is the meaning of “sky” from the point of view
of the color “blue”: after a manual sampling over some twenty images with sky, we
define “blue” to be the color in the following HSV range140 ≤ x≤ 300 x ∈ H, H = {h ∈R,0≤ h≤ 360}

0 ≤ y≤ 0.45 y ∈ S, S = {s ∈R,0≤ s≤ 1}
76 ≤ z≤ 255 z ∈V, V = {v ∈N ,0≤ v≤ 255}

The result of blob extraction using this definition can be seen in Figure 2.13
(b). There are many non-sky blobs, so we use a simple consideration made by Luo
[20] to discriminate good blobs from bad blobs: as a result of the physics of light
scattering by small particles in the air, clear sky often appears in the shade of deep,
saturated blue at the top of the image and gradually desaturates to almost white
towards a distant horizon line in the image.

What we need is then a gradient detector to measure this desaturation effect. The
simplest way we can think of, is to measure the difference in saturation between the
top and the bottom pixels of each blobs; if the difference is bigger than a threshold,
then we mark the blob as sky, otherwise as non-sky. Many improvements can be



38 Paolo Falcoz

done, but even in its naive simplicity this approach works well enouh for our purpose
(Figure 2.13 (c)).

The effect of texture analysis is to delete many but not all non-sky blobs, so the
next step is to take advantage of edge detection to better partition sky blobs. It is
evident from Figure 2.13 (c) that the big sky blob is the sum of a little “true” sky
blob at the top plus a portion of a hill at the bottom. From Figure 2.12 (a) we can
see that the edge detector detects the border line between the sky and the hill, so
we superimpose the edges to the blob and check if there are edges that partition
the blob (Figure 2.12 (d)). To make those “fractures” more evident we perform a
morphological closing (Figure 2.12 (e)).

The new blobs created are visible in Figure 2.13 (d).
The last step is to re-run texture analysis and discriminate again good from bad

blobs (Figure 2.13 (e), (f)). The result is that only the true sky blob is marked as
good.

In many cases this simple algorithm works well, however it depends much on the
quality of the edges found, and tends to over-fragment the blobs.

The same ideas can be used to find vegetation, skin, and so on by changing the
color definition and the texture discrimination function; constraints on blobs shape
can be added using the algorithms presented in Section 2.5.

2.7 Conclusions

The goal of this chapter was to introduce some basic ideas on image features extrac-
tion, particularly from the point of view of color, edges, and shapes. The algorithms
presented are well-known and widely used, and even if some of them were con-
ceived many years ago, they still can be considered state-of-the-art.

In the last section we used an example to introduce some simple yet useful hy-
bridization ideas, showing how to combine different techniques to extract the sky
blobs from an image. This a the first step in image understanding: knowing if there
is sky or not can lead to considerations on the environment (indoor/outdoor), and
the weather (color of the sky, fragmentation of the blobs due to clouds). Even if we
are not interested in the presence of sky, this first step can be used to delete from the
image useless blobs, and therefore reduce the search space.

The combination of two or more of such simple detectors, can generate not triv-
ial context information which can be used in turn to make higher order logical rea-
soning; those higher order informations then will be the new features, ready to be
combined again and generate deeper image comprehension.
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(a)

(b) (c)

(d) (e)

Fig. 2.12 Superimposition of original image and Canny edge detector (a), original blob (b), edges
within the blob (c), blob partition according to edges (d), partition after morphological closing (e).
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