Chapter 2
Mirror Design For Optical Telescopes

The reflector mirror is the most important component of an astronomical optical
telescope. This chapter provides discussions on the requirements for astronom-
ical optical mirrors; the ways to reduce mirror weight, mirror cost, and mirror
materials; the methods of mirror figuring, polishing, and surface coating; the
design of mirror support mechanism; the concept of mirror seeing; and the stray
light control. Emphasis is placed on various mirror designs for modern large
optical telescopes. These include the thin mirror, honeycomb mirror, segmented
mirror, and multi-mirror telescope concepts. When discussing all these concepts,
important formulas and their restrictions are provided for the reader’s reference
so that they may use them in their mirror design practice. The discussion on the
mirror support system is thorough and comprehensive, including both the
positional and flotation support systems. A new mirror support system using a
hexapod platform is also introduced. In the stray light control section, a new
scattering theory based on the bidirectional reflectance distribution function is
also introduced.

2.1 Specifications for Optical Mirror Design
2.1.1 Fundamental Requirements for Optical Mirrors

An optical astronomical telescope, as a very sensitive light collector, comprises a
number of important components. Among these, the reflecting primary mirror is
the most important. The telescope efficiency is directly related to its area, its
reflectivity, and its surface accuracy. The mirror area and reflectivity have been
discussed in Section 1.2.2. The mirror surface accuracy is related to wavefront
errors which affect the image Strehl ratio. The image Strehl ratio and the
wavefront error were briefly introduced in Section 1.4.3.

To obtain sharp star images, a rigorous tolerance is used for the mirror
surface precision. The ideal primary mirror shape is determined through optical
design, ray tracing, and system optimization. In geometrical optics, this ideal
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surface shape ensures a small acute star image spot in the focal plane. This
corresponds to a perfect planar Gaussian wavefront on the aperture plane.
However, mirror surface shape imperfection always exists due to the mirror
manufacture, mirror support, thermal variation, and other reasons. The wave-
front error is twice the mirror surface error due to the double reflection.

Generally, the characteristic mirror surface or wavefront error is expressed
by the root mean square (rms) of the distance errors to an ideal mirror or
wavefront surface. Statistically, the average value of the errors can be made
equal to zero by choosing a best fit reference surface, and the rms then is the
standard deviation of the error. The square of the rms error is the variance. The
ratio between the rms and the peak error depends on the error distributions. For
a uniform error distribution, the peak error is twice the rms value. For a
triangular error distribution, the peak error is 3.46 times the rms. For a sine
error distribution, the peak error is 2.83 times the rms. The peak of a finite
sample from a Gaussian distribution is not fixed; being typically 6 to 8 times the
rms. When more than one independent factor (in mathematics, independent
error terms are orthogonal to each other) exists, the combined rms error is the
root sum square (rss) of the rms errors of individual factors.

According to electromagnetic wave theory, if the wavefront deviates from an
ideal one, the radiation energy of the image will be redistributed resulting in: (a)
a decrease in image sharpness; (b) an increase in image size; and (c) a decrease in
image central energy, and the Strehl ratio of the image decreases.

For an axial symmetrical aperture, the diffraction radiation energy distribu-
tion at a position P is:
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where A is the radiation amplitude on the aperture plane, ¢ the wavefront phase
error, a the aperture radius, p and 0 polar angles in the aperture plane, r and
polar angles in the image plane, z the axial distance between the aperture and
the image, R the distance between image position P and the point to be
integrated on the aperture plane, u = (2/4)(a/R)’z, and v = (21t/2)(a/R)r.
Without wavefront aberrations, the maximum on-axis intensity is:
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This image intensity is [a?/(AR)]” times stronger than the radiation intensity
on the aperture plane. This amplification is named the Fresnel coefficient. The
Fresnel coefficient indicates that larger aperture, shorter wavelength, and small,
fast focal ratio produce a higher intensity image. The Strehl ratio of a practical
system is given by the ratio of Equations (2.1) and (2.2).
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After the first (piston) and second (tilt) aberration terms in a Taylor expres-
sion have been removed, the wavefront error becomes the difference between the
practical wavefront and its best fit Gaussian one. The Strehl ratio is:
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where ¢ p is wavefront deviation away from its best fit Gaussian wavefront. If ®”
represents the ensemble average of the n-th power of wavefront error ¢:
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If the rms wavefront error is A¢p <1/27m and there is no correlation between
errors in Nsub-apertures (Nis a large number), the corresponding Strehl ratio is:

S=1- @)zmw ~ exp [— (2) (9s) ] 2.6)

This equation is the same as Equation (1.119). The wavefront error discussed
is a small and randomly distributed one with very small correlation lengths, it
has no repeatable pattern, and has a continuous first derivative (slope). In this
case, the image intensity loss is independent upon the wavefront error details.
However, if the wavefront error is large, the formula has error. The reader may
reference Section 7.1.2 for a better understanding of this formula.

Since the mirror surface error is half of the wavefront error, Equation (2.6)
provides an important criterion for the mirror surface requirement of an optical
telescope system. Table 2.1 lists relative image intensities for different wavefront
errors. Usually, a relative image intensity of 67% is acceptable; the correspond-
ing rms mirror surface error allowed is, therefore, 1/20th of the wavelength.

The image size of a ground-based astronomical optical telescope without
adaptive optics is limited by the site atmospheric seeing. To achieve maximum
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Table 2.1. The relationship between wavefront rms error and relative image intensity

Ap 210 /12 iJ14 aJ16 AJ18  ij20 /22 )24

S 0.674 0.760 0.817 0.857 0.885 0.906 0.921 0.933

telescope efficiency, 90% of image energy should be within the best seeing disk
and 80% of the received energy should fall within a diameter of 0.15" to 0.30";
for telescopes without adaptive optics. For telescopes in space or with adaptive
optics, details of the Airy disk can be resolved. The mirror surface rms error
should be smaller than 1/40th of the wavelength. A target image accuracy of
0.02"" may be required. These tolerances are very stringent, so that the mirror
manufacture and support are demanding for space optical telescopes. In some
publications, the Fried parameter, which is related to FWHM of image size, is
used as the error tolerance specification. A Fried number of 60 cm is equivalent
to a FWHM of 0.17 arcsec (Hill, 1995).

2.1.2 Mirror Surface Error and Mirror Support Systems

Mirror surface error comes from three major sources: mirror manufacture,
mirror support, and other influences. Mirror manufacture produces a fixed sur-
face error from polishing and testing, the mirror support system produces an
elevation dependent surface error, and other influences include actuator error
and wind and thermal induced errors. The elevation dependent errors are from
the gravity force which varies with the telescope pointing. Two typical gravity
directions relative to the mirror are the axial and radial ones. To balance these
gravity components, mirror supports on both directions are necessary. The
design of these mirror supports are discussed in this section.

2.1.2.1 Axial Support for Optical Mirrors

Mirror diameter-to-thickness ratio (d/?), also known as aspect ratio, is very
important in mirror support design. The smaller the aspect ratio is, the heavier
the mirror and the higher the costs are. Classical mirrors have their aspect ratios
between six and eight. These thick mirrors are easy to support. However, their
thermal and gravitational inertias bring trouble to telescope designers. The first
large thin mirror used is in the UK Infrared Telescope (UKIRT) built in 1973,
with an aspect ratio of 16. Afterwards, thin mirrors with larger and larger aspect
ratios were used in astronomy. As the mirror aspect ratio becomes large, the
mirror support system design becomes critical. The surface deformation is also
more sensitive to the support conditions.

Surface deformation of thin mirrors under an axial support system can be
predicted by using classical thin plate theory. Under the thin plate assumption,
the deformation of a plate is approximately a function of plate diameter and
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thickness, being called the scaling law in the telescope mirror support design.
The scaling law states that the rms surface deformation of a mirror is propor-
tional to the fourth power of the diameter and is inversely proportional to the
square of the thickness when the support conditions are not changed. With this
scaling law, if the deformation of one mirror is known, then the deformations of
other mirrors under a similar support condition can be accurately predicted.
From the scaling law, wavefront rms error curves are drawn in Figure 2.1 for
mirrors of different diameter and aspect ratio under different support ring
conditions (Cheng and Humphries, 1982). Four sets of wavefront rms error
curves represent one-ring, two-ring, three-ring, and four-ring axial support
systems, respectively. The figure shows that mirrors with an aspect ratio of 15
can be reasonably well supported by a one-ring axial support system up to a
diameter of 1.25 m; by a two-ring support system up to 2.25 m; by a three-ring
support system up to 4.5 m; and by a four-ring support system up to ~6 m. The
proportionality constants in these curves are derived from the data produced by
the ESO CAT telescope, the 4 m KPNO telescope, the 3.8 m UKIRT, and from
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Fig. 2. 1. RMS wavefront errors for mirrors with different diameter and different aspect
ratio on different rings of support system.
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the finite element analysis (FEA). These curves can be used to estimate the
surface rms errors for mirrors of different size and different aspect ratio. If the
specification of a mirror is provided, the number of support rings required can be
roughly predicted.

More accurately, the mechanical surface rms error, not wavefront rms error,
of a thin plate under an axial support system is (Nelson et al., 1982):
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where A is the plate area, ¢ the areal density, and D the bending stiffness of the
plate. The value of ¢ reflects the support condition and is called the support
efficiency. If there are N support points on a thin plate, then the average support
efficiency of each point 7, can be used in the expression of the rms surface error.
The average support efficiency is:

7N = EN? (2.8)

For a practical mirror support system, each support point may have its own
support efficiency, resulting in a larger edge deformation as the edge support
points may have lower support efficiency. The support efficiency of any point
may be close to, but never reach an ideal value. This ideal value is the support
efficiency when A—oc and N—oo.

When A—oc and N—oo, the plate deformation is determined by only two
factors: the arrangement of the support points and the plate area related to each
support point (A/N). Under this assumption, the ideal support efficiency of each
support point can be found for three basic support point arrangements, i.e.,
triangular grid, square grid, and hexagonal grid (Figure 2.2). The deformation of
these three grid supports can be found analytically through linear superposition.
Therefore, the average support efficiency of each point y_ for these three cases
can be derived. In terms of the rms surface error, these average support efficien-
cies are (Nelson et al., 1982):
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Fig. 2.2. Three basic grid arrangements: triangular, square, and hexagonal ones.
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Vtriangu/ar =1.19 x 1073
Vsquare = 1.33 x 1073
Vhexagonal = 2.36 x 1077 (2.9)
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The above efficiencies are independent of the Poisson ratio of the plate
material. If the maximum, or the peak surface deformation, is considered, the
average support efficiencies of these three cases are respectively 4.95-107%,
5.80-107%, and 9.70- 10 ®. The triangular grid has the highest support efficiency
(or the lowest support efficiency number). This efficiency number can be set as a
standard in the discussion of a thin mirror support system.

For circular thin plates on a multi-ring support system, the support points
within a ring are at the same radius. The deformation of the plate is a super-
position of deformations introduced by each support point. If the number of the
support ringsisn (i = 1,2, - - -, n), the number of the support points of each ring is
k;, the weighting factor of each support ring is €;, and the angle between adjacent
points in a ring is ¢;, then the surface rms deformation can be expressed as:

s, 0) = > ki Bor 0 — ) 2.10)

where f; is relative support radius of ring 7. By providing d; in Equation (2.10),
all the terms are added after the weighting factor ¢; being considered. In the
calculation, J; can be expressed in Zernike polynomial forms. If n is large, the
calculation of d,,,; and the optimization of the support radius f§; are generally
difficult.

The simplest case involves one support ring with only two variables: the
relative radius of the support and the number of support points. Figure 2.3
shows the relationship between the relative support radius and the rms surface
error for a one-ring support system.

If one support point is used, optimization of the radius is not necessary. The
support efficiency is ¢ = 7, = 2.62-10>. If two support points are used, optimi-
zation of the radius is necessary. At the optimum radius of about 0.35, the
support efficiency is ¢ =2.16-10"° and the average support efficiency of each
point is y, = 22 - ¢. The rms surface error decreases slightly. However, the
support efficiency of each point decreases greatly. Figure 2.3 also shows the
efficiencies for three, six, and more support points within one ring. When a
continuous support ring is used, the optimum support radius is 0.683. The rms
surface error is only 4% of that using an outer edge support. This efficiency
increase demonstrates the importance of the mirror support system
optimization.
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Fig. 2.3. RMS errors of the mirror surface as a function of relative support ring radius for
different one ring support conditions and the figure on the right shows enlarged details
(Nelson et al., 1982).

For two- or more-ring support systems, the plate surface deformation is also a
function of Poisson ratio of the mirror material. Assuming the Poisson ratio is
0.25, by adding an additional point on the plate center in a six-point one-ring
system, a seven-point two-ring support system is formed. After the radius opti-
mization, the optimum arrangement has a support efficiency of ¢ = 0.045-10°
and the average support efficiency of each point of y, =2.40-10"%. An eight-point
two-ring system does not produce a satisfactory result and, thus, has never been
used in practice. A nine-point two-ring system is the best among two-ring support
systems. However, nine support points still can not form an integrated triangular
arrangement. Under this support condition, the reduction of the rms surface error
is still limited even compared with a seven-point two-ring support system. The
average support efficiency of each point decreases greatly (Figure 2.4). A 12-point
two-ring support system forms a real integrated triangular grid. Under this
condition, both the rms surface error and the average support efficiency of each
point are improved. The support efficiency is ¢ = 0.013-10~ and the average
support efficiency of each point is 7, =1.88-10~%. It is worth noting that y,, is
merely 1.6 times worse than y e
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Fig. 2.4. The support efficiency as a function of the number of support points for
different support systems (left) and the normalized efficiency of each point as a function
of the number of support points (right) (Nelson et al., 1982).

By adding more points, a 15-point two-ring system has an even better
average support efficiency, y,5. When an 18-point two-ring system is used, the
support efficiency increases again. If an additional support point, the 19th, is
added at the center of this system, the support efficiency £ and the average
support efficiency of each point 7,9 decreases rapidly. As the support point
number further increases, the support efficiency ¢ goes down gradually and
the efficiency of each point 7y approaches ), meuiqr- For example, the support
efficiency of each point for an optimized 36-point system is y35 =1.47 ianuiar-
However, too many support points produce many more variables in the system
optimization. Therefore, careful calculation is necessary as a minute change of
parameters can result in large variation of the surface rms error.

Figure 2.4 gives the ratio between the support efficiency of each point y, and
the triangular grid efficiency 7,mguer- The overall support efficiency ¢ is also
included. All the data points in the figure are for optimum support systems.

For a large thin mirror, the support point number N is usually inversely
proportional to the average support area. If the mirror thickness is ¢, then the
following relationship exists:

1

oy @.11)

rms ™

For improving the surface accuracy, adding more support points or using a
thick mirror are necessary. For the same surface accuracy, a thinner mirror
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Fig. 2.5. The relationship between mirror thickness, support distance and the surface
Ims error.

requires more support points than a thicker one. More support points reduces
the distance between each support point. If the most efficient triangle grid
support is used and the mirror is of Cer-Vit material with £ = 9.2 x 10! Nm2,
v =0.25, and p =2,500 kg m®, the relationship between the mirror thickness,
the distance between support points, and the surface rms error is shown in
Figure 2.5.

2.1.2.2 Radial Support for Optical Mirrors

The maximum mirror deformation caused by a radial (lateral) mirror support
system occurs when the telescope points to horizon. At this position, the gravity
and support forces are both perpendicular to the mirror surface (Figure 2.6).
The major mirror deformation at this position is still along the axial direction z.
The strain . produced in the z direction is due to the Poisson effect of the
support forces:

v
€, = _E’(Gx +a,) (2.12)

where Fis the Young modulus, vthe Poisson ratio, and o and oy the stresses in
z and y directions, respectively. If the z direction is along the vertical line, the
stress in this direction is caused by gravity and the radial supporting forces.
The stress in the y direction is not related to gravity and is determined by the
mirror support conditions.
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Fig. 2.6. Mirror stress distribution under the radial mirror support system (Cheng and
Humphries, 1982).

Three radial mirror support systems exist and their force conditions are
illustrated in Figure 2.7. Figure 2.7(a) shows the force condition when a mercury
belt is used (a rubber torus filled with mercury and with a fixed inner contact
area). Figure 2.7(b) shows the force condition for a cosine radial support system
(counterweight and cantilever system in the radial direction). And Figure 2.7(c)
shows the force condition of a vertical push-pull support system of which all
supporting forces are parallel to the vertical axis (counterweight and cantilever

Fig. 2.7. Force conditions of (a) mercury belt radial support, (b) the cosine lateral force
radial support, and (c) the vertical push-pull radial support (Cheng and Humphries,
1982).
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system in the vertical direction). The stresses along the y direction of these three
radial support systems are:

0ya = — kq(1 —cos0)sin0
oy = kpcosOsind (2.13)
oye =10

where 0 is the polar angle in the mirror plane and k, and k;, are positive
constants. From the formulas, it is found that the stresses along the y direction
in System (a) and in the bottom part of System (b) are of the same sign as
stresses in the vertical direction. The contributions from these stresses to the
surface error in the z direction are added to that from stresses in the vertical
direction. Therefore, the minimum mirror surface deformation along the z axis
happens only in System (c) where stresses in the y direction vanish.

If a paraboloidal mirror has a flat-back surface and is supported as in
configuration (c), a small section of the mirror on the vertical symmetrical
plane is shown as in Figure 2.8. Since the mirror thickness in the z direction is
expressed as z = (x?/(4F)) + to, where f, is the thickness at the vertex and F the
focal length, then the deformation caused by the Poisson effect is w =z - €.,
where ¢. is the strain in the z direction. The deformation of the mirror surface is:

vpg [ Ro vpglo g 3
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where p is the material density, g the gravitational acceleration, R, the radius of
the central hole, ¢, the thickness at the central hole, fthe focal ratio, and d the
mirror diameter. The first and second terms in this expression are constant and
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Fig. 2.8. Mirror stress under a vertical push-pull lateral support system.
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linear terms, respectively. Neither of these have an influence on the surface rms
error. Only the third term will cause astigmatism of the wavefront. This unde-
sirable deformation has its maximum at a position of x = d/2 and its value is:

_ g
WlﬂaX - 96Ef d

(2.15)

If Cer-Vit material is used with the Young modulus of E=9.2 x 10''N - m~2,
the Poisson ratio of v = 0.25, and the density of p =2,500 kg m ™, then the
relationship between the maximum surface error, the mirror diameter, and the
f-ratio for a flat-back mirror under radial support system is shown in Figure 2.9.
The maximum of the undesirable deformation caused by the Poisson effect is
proportional to the diameter squared and is inversely proportional to the focal
ratio. In general, this deformation is small in comparison with errors of the axial
support case and will not produce serious effects on the telescope image. This is
why the radial mirror support is less important than the axial one.

The depth of a curve is called sagitta. For a large parabolic mirror, the
sagitta is S = d/(16f"). A large sagitta value of a flat-back mirror produces
different thermal inertia along the radius, resulting in thermal-induced surface
error. A meniscus mirror with uniform thickness avoids this thermal problem.
The lateral support system for a meniscus mirror is slightly more complicated
than that of a flat-back one. The main concern is that the lateral support forces
have to pass through the mirror section center of gravity they support. The
distance between combined support force and center of gravity produces a

0 5 dim

Fig. 2.9. Maximum flat-back mirror deformation under a push-pull lateral support
system (Cheng and Humphries, 1982).
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harmful bending moment which may produce large mirror surface deformations.
The deformation caused by the Poisson effect is generally small and most of it
varies linearly with the distance to the support point. However, deformations
caused by bending moments are large and vary in a high power nonlinear fashion
with the distance to the support point.

To reduce the deformation caused by the bending moment, the lateral
support forces can be distributed inside small holes over the mirror back surface.
In this way, the distance between the lateral support point and the local center
of gravity of the mirror section is reduced. The combined lateral support force is
on the same plane as the center of gravity of the mirror.

The bending moment caused by the lateral support of a meniscus mirror is
proportional to both the diameter and thickness but inversely to the focal ratio.
The deformation caused by this bending moment is proportional to the mirror
area but inversely to the focal ratio and the square of the mirror thickness.
Therefore, when the mirror aspect ratio increases, the mirror lateral support
design becomes more important to the mirror surface deformation.

2.1.3 Surface Error Fitting and Slope Error Expression

An ideal Gaussian wavefront on an aperture plane is flat in shape. For any
deformed wavefront, there exist many Gaussian reference wavefronts. However,
only one among these has the minimum deviation from the deformed wavefront.
This particular reference wavefront is the best fit wavefront. Relative to the
original coordinate system, the best fit wavefront may have coordinate rotation,
coordinate shift, and focal length change. The difference between the deformed
and the best fit wavefronts is the wavefront error or the path length error.
The wavefront error produced by a mirror is twice the mirror surface error.
Wavefront error relative to the wavelength is called wavefront phase error. A
wavefront error of half wavelength is equal to a wavefront phase error of 180°.

When an ideal telescope mirror, either paraboloid or hyperboloid in shape, is
under gravity loading, the surface shape will change. For a deformed mirror
surface, there is a best-fit reference surface. Detailed formulation of the best fit
surface is provided in Section 7.1.4.

The best fit process for optical mirrors, where the f-ratio is large (comparing
with a radio dish), is much easier. This is especially true when a multi-ring axial
mirror support system is used. One convenient solution in the mirror support
optimization is to consider only the axial coordinate shift. The principle is
named equal softness. The ideal best fit surface of a mirror is a surface with an
axial displacement from the original one. This simplification will reduce the
workload in the mirror support optimization. The wavefront rms errors men-
tioned in the previous section were also obtained by using this simplified best fit
method.

Apart from wavefront error, slope error is also used to describe the mirror
deformation. The slope error is a measure of surface long-range modulations or
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zones with ripple wavelengths (not optical wavelength) typically in the centi-
meter to tens of centimeter range. Because of the mirror slope error, the wave-
front distortion is produced. The wavefront slope error is twice the mirror slope
error. The slope error produces image blur size increase and resolution decrease.
The resulting image blur size and resolution can be computed using geometrical
optics. The slope angle is proportional to the image blur angle. The wavefront
slope can be directly detected by a number of wavefront sensors, such as the
Hartmann one. Maximum image diameter is about four-times the maximum
mirror slope error, or twice the maximum wavefront slope error. However,
limitation exists when the slope error instead of wavefront error is used for
optical systems. If the wavefront or mirror surface ripple amplitude becomes
so small relative to the wavelength (as may occur, for example, in going from
visible to infrared) that the geometrical optics will be no longer valid then the
effects of slope error may be greatly reduced.

Usually, the mirror slope error (S) is proportional to the rms surface error
and is inversely proportional to the effective mirror support distance (u). The
effective support distance is defined by the formula Nmu? = A, where A is the
mirror area and N the number of support points. Therefore, the mirror slope
error can be expressed as (Nelson et al., 1982):

3/2 3/2
q (A 1 /4
— R kel ~— (= 2.1

where ¢is the areal density, D the diameter, and ¢ the thickness. In this equation,
the constant g can be obtained from the calculation and, in most cases, it can be
expressed as a function of mirror support efficiency y -

gv =9y 2.17)

2.2 Lightweight Primary Mirror Design
2.2.1 Significance of Lightweight Mirrors for Telescopes

The primary mirror is the most important component of an optical telescope. Its
surface should maintain high accuracy under the telescope operating conditions.
The weight and cost of the mirror are determining factors for the telescope total
weight and total cost.

The mirror cell supports the primary mirror through a support system. Most
support systems involve floating counterweight cantilever devices or air pads so
that small changes in support position produce little effect on the mirror surface
shape. However, any support system has a limited dynamic range. Therefore,
the mirror cell has to be stiff enough so that its deformation does not exceed this
dynamic range. The dimension and material density of traditional mirror cells
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are usually larger than that of the mirror. Therefore, the weight of the cell is in
the same magnitude of the mirror.

The telescope tube supports the primary mirror at one side and the
secondary assembly at the other side. Therefore, the tube weight, including the
center section, is related to the weight of both the mirror and cell. The weight of
the mount structure is also related to the mirror weight directly or indirectly.
Table 2.2 lists relative weights of all telescope components in a classical telescope
relative to the primary mirror weight. From the table, one would find how
important the mirror weight reduction is to the telescope weight.

The cost of any engineering project is always proportional to the structural
weight. The cost—weight ratio is an indicator of the structure precision and
complexity. As the mirror weight is a deciding factor on the overall telescope
weight, therefore, the reduction of the mirror weight is very important in
telescope design. To build an extremely large telescope with a nonstop increase
of the aperture, the mirror weight reduction is a necessary first step.

In the past few decades, mirror weight reduction had been a major research
topic for telescope scientists and engineers. A number of techniques developed in
this aspect include: (a) using a thin mirror; (b) using a honeycomb mirror;
(¢) building a multiple-mirror telescope; (d) building a segmented mirror tele-
scope (SMT); and (e) using mirrors made of metal, or carbon fiber reinforced
plastic (CFRP) composite, or other special materials. These techniques are
discussed in the following sections.

2.2.2 Thin Mirror Design

Cheng and Humphries (1982) and Nelson et al. (1982) pointed out that the
surface error of any thin mirror may be reduced by an increase of the mirror
support points and, in theory, a mirror can have a very large aspect ratio.
Traditional telescope mirrors had their aspect ratios smaller than 10. Newly
designed monolithic mirror telescopes have their mirror aspect ratios much
larger than 20 and newly built segmented mirror telescopes have aspect ratios
as large as 110. In an extreme case, the thin adaptive secondary mirror has an
aspect ratio of 320.

Table 2.2. Weight ratios of major components for an optical telescope.

Name of component Relative weight
Primary mirror 1.0

Primary mirror cell 1.5-3.3

Tube 3.5-10.0

Yoke 6.0-16.5
Mounting structure 6.0-20.0

Total 18.0-50.0
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A key issue in the use of thin mirrors is the mirror support system. The
factors which limit the increase of mirror aspect ratio are assembly and disas-
sembly methods of the mirror, the maximum stresses during installation, the
wind disturbances, and the resonant vibration.

The stresses of a primary mirror, except an extremely thin one, in normal
working conditions are negligible. However, high stresses are induced during
assembly and disassembly. The maximum stress ¢, of a circular mirror during
assembly is:

d2
Omax = KqT (2.18)

where K is a constant determined by the mirror lifting condition, ¢ the thickness,
d the diameter, and ¢ the density of the material. The condition of using this
simplified formula is that the lifting force applied is on the middle plane of the
mirror. When the lifting force is on the bottom of the mirror, this formula is still
correct for the maximum stress estimation.

Traditional thick mirrors were lifted on the central holes. The lifting forces
are applied on the bottom surface around the hole. If the mirror material has a
density of ¢ = 2,500 kg/ m® and a Poisson ratio of v = 0.3, the relationship
between the maximum stress, the diameter, and the aspect ratio during a central
hole lifting is shown in Figure 2.10. In the figure, the maximum permissible stress
for Cer-Vit material of about 3 x 10° N m~? is also plotted. From this figure,

o
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Fig. 2.10. The relationship between maximum stress, diameter, and aspect ratios.
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mirrors of large aspect ratios using a central hole lifting may have unacceptable
maximum stresses. The maximum stress in this case is in the tangential
direction.

To reduce the stresses, the lifting position may move to the outer edge of a
mirror. When the mirror is lifted on its outer edge, the maximum stress is still in
the tangential direction. However, the maximum stress reduces to half of the
numbers shown in Figure 2.11.

To further reduce the maximum stress during assembly, the lifting position
should move to the middle radius of a mirror. If the lifting force is applied on a
continuous circle with a radius of 0.67 R (R is the radius of the mirror), the
maximum stress is only one tenth of that when the lifting force is applied on the
central hole. The maximum stress in this case changes from the tangential to the
radial direction at the lifting radius. In Figure 2.11, stress distributions for
different radius lifting are listed, where g represents the gravitational accelera-
tion, p the density, g, the radial stress, and o; the tangential stress.

Normally, telescope mirrors use a single ring lifting. However, difficulties
arise when the lifting radius is in the middle of sophisticated mirror support
mechanisms. To solve the problem, a combination of the mirror cell and lifting

C.
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Fig. 2.11. Stress distribution under (a) a central ring support, (b) a 0.67-radius ring
support, and (c) outer ring support (Cheng and Humphries, 1982).
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mechanism is made during the assembly and disassembly processes. The mirror
is lifted with its mirror cell, so the safety of the mirror is insured.

Another lifting method involves multiple vacuum lifting points on top of a
mirror, which is often used in the mirror polishing process. Extremely thin
mirrors can only be lifted with distributed multiple support point floating
devices.

The wind disturbance on a mirror becomes serious as the mirror becomes
very thin and is exposed to outside air flow. Mirror supports include floating
ones, which do not take any additional loads, and positioning ones (hard points),
which do take additional loads. Usually at least three positioning supports are
used. If these positioning supports are evenly located on the outer radius of the
mirror, the maximum deformation caused by a pressure load P is:

nPd*

Winax = 1.9 x 107 =

(2.19)

This formula shows that the maximum deformation caused by wind is
proportional to the cubic power of the aspect ratio. To increase the wind
resistance of a mirror, the positioning support radius should be optimized. An
optimized radius of the positioning supports has a normalized radius of 0.67. The
maximum deformation in this case will reduce to a quarter of the above value.
Further improvement in the wind resistance can be achieved by increasing the
number of load bearing support (positioning) points or by using an adaptive
optics mirror support system.

The natural frequency of a thin mirror can be expressed as:

2¢-t E
R TR \/ 12(1 —v)p (2.20)

where ¢ is a constant determined by the mode shape. If the hard points are
arranged on the outer radius with a free edge, the value of ¢ is 9.1. When Cer-Vit
material is used, the natural frequency of a mirror is:

t
vg = 1.14 x 104E(Hz) (2.21)

where the unit of d and ¢is in meters. This formula shows that a 5 m mirror with
an aspect ratio of d/t = 20 has a natural frequency of about vg =100 Hz. If the
aspect ratio increases to 50, then the natural frequency would be reduced to
27 Hz. If three hard points are moved to 0.7 radius, the natural frequency will
reduce by another factor of 4.

If the stiffness of the hard points is considered, the relationship with the
frequency of the piston mode of a rigid mirror is approximately (Hill, 1995):
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K; = (2nv)*m/3000 (2.22)

where mis the mirror mass in kg, v the frequency, and K; the stiffness of one hard
point in N/mm. A small frequency number of the piston mode is undesirable.
High stiffness of the hard points will minimize the wind and actuator error
induced displacements and vibration amplitudes. To increase the natural fre-
quency of the mirror system, it may be necessary to add more hard support
points.

The friction of a mirror support system is another consideration when an
aspect ratio is selected. The friction produces support force errors. A classical
counterweight cantilever system usually has a friction coefficient of 0.1~0.3%.
To ensure its optical performance, the aspect ratio of a mirror with this system
should satisfy the following relationship:

d?/t < 2500(cm) (2.23)

For an air bag support system, the friction coefficient is about 0.01%. The
corresponding number in the right hand side is 25,000 cm. Other factors, which
restrict the use of very thin mirrors, include the mirror casting, mirror polishing,
and mirror transportation. If we want to use an even larger aspect ratio,
technology improvements in these fields are required.

2.2.3 Honeycomb Mirror Design

A honeycomb mirror is a sandwiched structure including face plate, honeycomb
core, and base plate. The base plate may have holes for mirror supporting and
ventilation. Honeycomb mirrors are light in weight, high in stiffness, and rigid in
bending. The earlier applications of this type of mirror are the 4.5 m old Multi-
Mirror Telescope (MMT) which was made of six 1.8 m honeycomb mirrors (note:
The old MMT telescope was converted to a single mirror 6.5 m telescope in 1998)
and the 2.4 m Hubble Space Telescope (HST). The largest honeycomb mirror
has a diameter of 8.4 m.

Honeycomb mirrors are made by removing materials in the honeycomb holes
or by fusing glass plates and core together at high temperatures. A rotational
honeycomb mirror casting method was developed by the mirror laboratory
of the University of Arizona for large honeycomb mirrors with a paraboloidal
surface shape. The principle to form a paraboloidal shape when the glass is in a
liquid form is the same as that of a rotational mercury mirror as discussed in
Section 2.2.6. During the mirror casting process, the furnace is heated to 1,178 C
and is rotating at a constant speed, few revolutions per minute, to shape the
front mirror surface.

The rigidity of a honeycomb mirror is nearly equivalent to a solid one of a
similar thickness, but with only a small fraction of the weight. The bending
stiffness of a honeycomb mirror is approximately:
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E(h+1)7?
D= 20— ) (2.24)
where ¢ is the thickness of the upper or bottom plates and h the thickness of the
honeycomb core in the middle. The weight of a honeycomb mirror is
(2t + ah)/(2t + h)-times that of a solid one, where a(a<<1) is the relative
density of the core compared with the face plate.

A honeycomb mirror also has lower thermal inertia than that of a solid one.
The low thermal inertia reduces the temperature gradient within the mirror. If
air ventilation is applied to the honeycomb cells, then normal borosilicate glass
with a relatively larger coefficient of thermal expansion (CTE) can be used for
large optical telescopes. The thermal time constant 7 of a plate is:

(2.25)

For borosilicate glass, the density is p = 2,230 kg/m3, the specific heat
¢ = 1,047 J/Kg °C, the thermal conductivity 2 = 1.13 W/m °C, and ¢ the
thickness of the wall. The thermal time constant of a honeycomb mirror can
be derived from its wall thickness. To further reduce its thermal time constant,
ventilation may be added. Under air ventilation, the energy is conserved and the
following formula exists (Hill, 1995):

mngcg = 114Ca( Texit — Tinpur) (2.26)

where subscripts g and a are for glass and air, T is the temperature, T,;; and
Tinput the exit and input air temperature. The specific heat of the air ¢,is 711 J/
Kg °C and the thermal time constant is related to air flow rate as:
iy = 5 (2.27)
T-Cal
where 7 = 0.7 is the heat transfer coefficient (heat coupling coefficient) of the
forced convection and t the thermal time constant.

The size of the honeycomb hexagonal cells is determined from the
maximum deformation of the mirror face plate during polishing. For a
given pressure loading, the deformation of the center point of a honeycomb
structure is:

4
W= 0.00111% (2.28)

where ¢ is pressure loading, b the distance between two opposite sides of the cell,
and D the bending stiffness of the face plate. If the average pressure during the
polishing is ¢ = 0.084 N/cm?, the top plate thickness is 2 cm, and the maximum
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deformation allowed is 1/20th of the visible wavelength, then the size b of the cell
can be calculated. The thickness of honeycomb side wall is determined by the
mirror’s global surface deformation and is usually a quarter of the top plate
thickness. With ventilation holes on the mirror back, the installation of the
mirror support system is easy. A honeycomb mirror requires no special designed
support devices. Figure 2.12 shows the axial and lateral support systems of a
honeycomb mirror.

Earthquake Stop and
Lifting Fixture ?4)

Lateral Supports (18}
Axial Supports (38)

Hardpoints (3)

Invar Edge Connectors (32)

S
Return
Lateral Air Plenum Air Nozzle
Support
ofofio[oflo tOfi0 40
Fan

Pneumatic Support
Heat Exchanger

Lateral weight / Derdtator

Ambient (input) Air Plenum

Fig. 2.12. An 8 m honeycomb mirror and its support system (West et al., 1997).
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2.2.4 Multi-Mirror Telescopes

The name multi-mirror telescope comes from the old Multi-Mirror Telescope
(MMT) which was built in 1979 with an equivalent aperture size of 4.5 m. This
telescope had six independent tubes (or sub-telescopes) each with an aperture
size of 1.8 m but firmly connected together by a large elevation (or tube)
structure as shown in Figure 2.13. This design provided a new way to reduce
the weight of a primary mirror.

Since the aperture area of an individual telescope tube accounts for only 1 /nof
that of the whole telescope, where n is the number of sub-tubes used, so the aspect
ratio of the mirror is equivalent to n'/? of that of a monolithic primary mirror.
Other advantages for a MMT telescope design are short tube length and large
lateral tube dimension, so that the tube is stiff and the required dome is small.

For spectroscopic observation, when the co-focusing condition is met, the six
sub-telescope foci are so arranged that they form a straight line on the entrance
slit of the spectroscope. This avoids energy loss which happens in single aperture
telescopes used in spectroscopic mode without an image slicer. Therefore, in this
mode, the MMT works as one telescope.

Another intentional operation of this old MMT telescope was that the
radiation collected by each sub-telescope was directed to a common focus in
co-phasing condition, thus forming a Fizeau interferometer with a much larger
baseline. However, the tube structure made of steel to support both the primary
and secondary mirrors had serious uncorrectable thermal distortions and the
telescope was lacking in optical path length equalization devices or optical delay
lines to compensate these random phase differences. The wavefront co-phasing
was nearly impossible. The field of view on its common focus was also limited due
to a small angle between beams from all sub-telescopes in the common image
plane. All these are reasons leading to the failure in this interferometer mode
although some fringes were obtained occasionally. After 19 years of continuous
struggle with the spectroscopic and independent small telescope observations, a
conversion of the old MMT into a new 6.5 m single mirror telescope was finally
made in 1998.

The old MMT was gone, but the idea to build a MMT-type Fizeau inter-
ferometer (Section 4.2.3) remains. For a coherent diffraction limited common
focus image, all the sub-telescopes are required both co-phasing each other
through sophisticated optical delay lines and free from atmospheric turbulence
through adaptive optics. In the past, the technologies required to fulfill these
two tasks were not ready, but now they are within reach.

A newly built MMT-type telescope is the Large Binocular Telescope (LBT)
with two 8.4 m mirrors completed in 2008. With a separation between two
mirror centers of 14.4 m, its common massive elevation structure is on hydro-
static pads to reduce the structural deformation. Now both sub-telescopes are in
perfect working condition and used as an independent telescope, but the final
target of this telescope as a Fizeau interferometer instrument has still not been
realized.
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2.2.5 Segmented Mirror Telescopes

The Segmented Mirror Telescope (SMT) represents a new approach to obtain a
light weight primary mirror for extremely large optical telescopes. The extre-
mely large optical telescopes are telescopes with their diameter far beyond
10 meters. Compared with the MMT design, the SMT, with all segments of
the primary mirror reflecting light to a common secondary mirror can have both
a large field of view and co-phase interferences between individual segments.
The advantages of the SMT design include great mirror weight reduction, large
cost savings, easy mirror handing and transportation, and small dome size.

A SMT telescope consists of many mirror segments, making up a larger light
collecting area. Each of the 10 m Keck I and II telescopes has 36 1.8 m hexagonal
mirror segments with a thickness of only 8.7 cm (Figure 2.14). Since the defor-
mation of a thin mirror is proportional to the fourth power of diameter, the
mirror support systems for smaller segments are much simpler in comparison
with that for a monolithic larger primary mirror. The smaller segment diameter
and repeatable segment patterns also lower the mirror manufacture, mirror
polishing, and mirror transportation cost.

Two surface shapes are used for the SMT telescopes: a spherical one as used
in the HHT and SALT telescopes and paraboloidal one as used in the Keck and
Gran Telescopio Canarias (GTC). The GTC was built by Spain, Mexico, and
University of Florida. The proposed TMT, GMT, and E-ELT will have a
paraboloidal surface shape and the OWL a spherical surface shape.

Fig. 2.14. The primary mirror of the 10 m Keck telescope.
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With a spherical surface shape, the mirror segments are all identical, so that
the mirror manufacture is easy and the cost is low. However, a complicated field
corrector is needed to correct the spherical aberration although the field of view
is wider. In general, the spherical primary mirror shape limits the usage of the
telescope, so most telescopes use a paraboloidal surface shape.

With a paraboloidal surface shape, the system optical design is easier, but
with a relatively smaller field of view. However, the mirror segments are different
between rings. All these segments have off-axis paraboloidal surface shape,
bringing difficulties in segment manufacture and polishing. The SMT telescopes
require an accurate position control of each mirror segment to achieve a smooth
coherent mirror surface. The strategy of the mirror segment position control is
discussed in Section 4.1.4. In this section, the off-axis paraboloidal mirror seg-
ment manufacture is discussed.

The formulae for an axial symmetrical, conic surface are (Nelson et al., 1985):

_ 1 2 2 241172
Z(0Y) = k= 1 = (K DX+ 7))
L »n 1+ K 5 2,2
E— Y 2.29
Z(X,Y) 2k()( +Y)+8k3 (X*+Y?) (2.29)
(1+K)’ 2 s, (1 +K)’ 2 204
+716k5 (X“+7Y9) +7128k7 (X°+Y9)

where k is the radius of curvature at the vertex, K the conic constant, Z the
coordinate along the axis, and O the vertex of the surface. When the global
coordinate system is replaced by a local one of p(z,y,2) (Figure 2.15), the conic
surface can be expressed as a trigonometric series:

2= agp'cosjl (i>j>0,i—j=even) (2.30)
ij

In this expression, the first few coefficients are listed as:

Y

X

Fig. 2.15. The global and local coordinate systems for an off-axis, conic segment surface
(Nelson et al., 1985).
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where a is the projected radius of a hexagonal mirror segment,
p = (x? +y2)1/2/a, 0 = tan~!(y/x), and € = R/k. The other coefficients are
expressed in a generalized form as:

o~ de k! (2.32)

When i>4, these coefficients are very small for a hexagonal mirror segment
and can be neglected. The off-axis conic surface described in the above expres-
sion can be transformed into a symmetrical spherical surface by applying elastic
deformations.

For a spherical surface, K equals zero and it leaves only two coefficients of g and
a4 in the segment surface expression. The values of these two coefficients
are a*/(2k) and a*/(8 k3), respectively. By comparing the above off-axis conic
shape with a best-fit spherical shape, the required elastic deformations for the surface
shape transformation can be derived. The required deformations, which equal the
differences between these two surface expressions, are (Lubliner and Nelson 1980):

w =" a;p'cosjo
ij

w= 0420;02 + a22p2 cos20 + Oz3lp3 cos 0+ (2.33)

azzp’ cos 30 + agp* + agp? cos 20



114 2 Mirror Design For Optical Telescopes

With classical thin plate theory, the required deformations are obtained by
applying forces, moments, and distributed surface loads on the segment. These
forces, moments, and distributed loads are also expressed in sine and cosine
series as:

M(0) = Mo+ _ (M, cosnf + M, cos n)
V(0) =Vo+ Z (V, cosnd + V, cos n)

q(r,0) = qo + qircosnf + grrsin 6 (2.34)
Vo=—q0/2
M, +aV, = —qd’/4
M +aV, = —qxd’ /4

The coefficients used in the above expressions derived from the plate defor-
mation formulae are:

D
Mo :E [(2 + V)OZZO + 4(3 + V)Oé40]
D
Vo = — E (320440)

D
M, :E [2(3 + V)OZ31 + 4(5 + V>a51]

D
Vi=— p 23+ v)as +4(17 + v)as)]

D (2.35)
My =—[(1=v)a(n = Do + (n+ 1l +2 = v(n = 2)]on;2,]
Va :g (1 =) (n = D, + (4 1)(n — 4 — vi) i 2]

qo = 64Dayg/a*
q1 = 192Das /a®
g2 = 192Dfs, /a°

where D is the plate bending stiffness and v the Poisson ratio. If a sine compo-
nent exists in the deformation formula, then a sine term in shearing force, or
moment, or distributed load expression is necessary. After applying these
required loads, the problem of off-axis paraboloidal surface manufacture turns
into simple spherical surface manufacture. The only difference is that shearing
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Fig. 2.16. The methods for applying shear force and bending moment during the off-axis
mirror segment manufacture.
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forces, or moments, or distributed loads have to be applied on the mirror
segment during the segment polishing process.

Figure 2.16 shows a method of applying shearing forces and moments around
a segment edge. The distributed loads can be provided in the axial mirror
support system. Since the mirror segment is polished under internal stresses,
this mirror manufacturing method is called “stressed polishing.” If a mirror
segment under stress has been fabricated into a spherical shape, an off-axis
paraboloidal shape can be obtained by releasing all the applied loads. Using
this stressed polishing method, an ideal off-axis paraboloidal shape can be
achieved step-by-step.

2.2.6 Metal and Lightweight Mirrors

Traditional mirror materials include glass ceramic materials, fused quartz, and
other glasses. Nontraditional mirror materials include metals, metal alloys, SiC,
and CFRP composites. The main motivation of using nontraditional materials
is to reduce the weight and cost. Mirror material properties are discussed in next
section. Liquid mirrors can also be formed by rotating liquid mercury inside flat
dishes.

Metals or their alloys were used as optical mirror materials in the early days
of mirror manufacture. They were replaced by glasses at the beginning of the
20th century because glasses have high surface smoothness and lower thermal
expansion coefficients. Recent attempts at using metal mirrors include two
Italian test optical telescopes: one is a 1.5 m one and the other is a 1.4 m one.
The thermal sensitivity of a metal mirror is lower than that of a borosilicate
(BSC) glass one as metals have high thermal conductivities. High thermal
conductivity reduces temperature gradient inside a mirror. However, large
metal thermal expansion produces large surface deformation.

Suitable metal mirror materials are aluminum, steel, titanium, beryllium
and their alloys. The hardness of aluminum is low, so a coating of phosphor
nickel alloy is used. The coated surface can be polished to required smoothness as
used in a number of test optical telescopes. Steel and stainless steel are good
metal mirror materials. Stainless steel with a hard alloy surface coating can be
polished to optical surface quality. Beryllium and titanium mirrors have both
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been used in space infrared telescopes. Beryllium is the mirror material of
the James Webb Space Telescope (JWST) primary mirror as discussed in
Section 5.3.2.

In general, metal mirrors are built by casting. However, a promising techni-
que for large diameter mirrors is through micro-welding. The main obstacle of
using metal mirrors in optical telescopes is the long-term shape warping. Many
reasons produce warping of a metal mirror. Among these, the mirror’s shape and
thermal treatment are major ones. Asymmetrical mirror shape can produce
larger warping, so that a feasible metal mirror shape is a meniscus of uniform
thickness. The Italian 1.4 m aluminum mirror had a warping of one wavelength
per ten years. Metal mirrors are easiest to build and the lowest in cost. If active
optics is applied, metal mirrors may be used as candidates for future extremely
large telescope mirrors.

Carbon Fiber Reinforced Plastics (CFRP) composite is another material for
optical mirrors. The CFRP replica technique is a new achievement in the mirror
manufacturing field. After 20-years practice, the CFRP replicated mirrors have
been used in millimeter wavelength, infrared, optical, and X-ray telescopes. The
great advantages of a CFRP mirror are light weight, high surface accuracy, high
thermal stability, high surface smoothness, and low manufacture cost. The areal
density of a CFRP mirror can be only a few kilograms per square meter.

To achieve a highly accurate mirror surface, a high precision mold is essen-
tial. A major problem in CFRP replication is the volume contraction of the resin
material during the solidification process. The resin contraction is large and it
produces mirror surface deformations. Therefore, it is necessary to reduce the
resin contents in the CFRP mirror body. Other problems of the replication are
air bubbles and the print-through of the ribs or fibers which overlap each other
in the mirror surface. Air and water exist inside the resin in liquid form. During
the solidification, water and air can turn into bubbles as temperature increases.
Surface print-through is caused by the residual stress during the solidification
process. The stress caused by overlapping of fibers in the mirror body may
release and the fine print-through will appear on the mirror surface. All these
reduce the smoothness and accuracy of the mirror. Without internal stresses, the
surface smoothness of a CFRP replication mirror can be better than that of the
mold surface used in the replication.

If a CFRP mirror’s diameter is small, the mirror could be made by several
symmetric layers of uni-directional fibers to form a meniscus shape. If the
diameter mirror is large, a sandwiched structure should be used to guarantee
the shape’s stability. The sandwiched structure includes a top and bottom layer,
both are curved in shape and a middle spacing part which can be formed from a
number of CFRP short tubes with strictly the same length. The curing of CFRP
parts should be done at a relatively low temperature. High temperature pro-
duces higher residual stresses. After the replication, the sandwich mirror is
removed from the mold. The symmetry of fiber layers of each CFRP part should
also be maintained to assure the mirror’s long term stability.
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Different carbon fibers have different thermal expansion coefficients
(Section 8.3.1). For optical mirrors, low thermal expansion carbon fibers are
preferred. Replication technology for a CFRP mirror depends largely on the
mold’s precision, workmanship, and proficiency of the technique. There are no
unconquerable difficulties in the process. The replication technology can also
be used in the manufacturing of deformable mirrors used in active or adaptive
optics (Section 4.1.3).

Another CFRP replication method is to build a carbon fiber mirror blank
and metal film on a mold surface first. The metal film is produced through
electrical forming. The next step is to glue the metal film to the CFRP mirror
blank using a thin layer of epoxy resin. This method is mainly used for mirrors of
smaller aperture size.

Recently, silicon carbide (SiC) has been used as one optical or infrared mirror
material (Section 9.1.3). A silicon carbide molecule is like diamond with half of
the carbon atoms replaced by silicon atoms. SiC is an abrasive material. How-
ever, sintering (hot pressing), chemical vapor deposition (CVD), and reaction
bonding lead to silicon carbide mirror blanks. One of these approaches is to
obtain a soft blank through iso-static pressing of pure silicone carbide powder.
The soft blank called “green-body” is workable to produce shape change. After
milling the blank into its final geometry, the substrate is sintered at 2,000°C.
The hardened segment is finally grounded and polished.

In CVD approach, gaseous chemicals react on a heated surface (often gra-
phite) to form solid crystalline material. The process is slow, but it will produce a
100% dense, pure compound. This method can also produce a mirror surface
with an integrated rib structure. However, the hardness of the compound makes
mirror figuring and polishing time-consuming and difficult. In silicone carbide
mirror polishing, diamond powder is the only abrasive used.

The reaction bonding is a cast and chemical process. First, high-grade
silicone carbide is manufactured by chemical leaching to purify the base SiC
abrasive. Leaching is a process of extracting a substance from a solid by dissol-
ving it in a liquid. Then the powder is molded as the SiC is suspended in a silica-
based gel. The substrate is heated to 950°C to remove the inert materials
through evaporation. Small mirror blanks can be assembled to form a large
mirror blank in this stage. Next, the substrate is heated again to 1,550°C in the
presence of methane gas in vacuum. The carbonized substrate is immersed in
molten silicon which fills the voids. This process produces a substrate of 83% SiC
and it can be polished to a smoothness of 10 A.

In this section, it is worth mentioning the rotational mercury mirror experi-
ment. One project is the 6 m diameter Large Zenith Telescope (LZT) east of
Vancouver, Canada. The project was developed from a 2.7 m one. This telescope
mirror is a large plate filled with mercury, rotating at a constant rate over a
precision air bearing. The plate container has a roughly parabolic shape to
reduce the mass of mercury. The thickness of the mercury is only 1 mm.

The mercury has a relatively high reflectivity (~80% ). The rotating speed of
the plate o is directly related to the focal length F = g/(2w?), where g is the
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acceleration of gravity (for a 6 m mirror, the speed of rotation is 8.5 s/revolu-
tion). However, this type of mirror also has drawbacks: (a) its location has to be
far away from any vibration source. (b) The rotating speed has to be smooth and
uniform. (¢) The mirror can only be used in zenith position. If star tracking is
required, the optical device at the focus is complicated. (d) Because of the low
viscosity of mercury, the aperture size is limited. And (e) there is vaporization of
mercury, contamination from sulfur and phosphate in air, and surface ripples
caused by a gentle breeze. The last issue may be solved by clamping a thin
stretched film of Malar over the top of the mirror surface.

At present, a Large Aperture Mirror Array (LAMA) with 66 individual
6.15 m mercury mirror telescopes is planned and another large mercury mirror
on the pole area of the moon is proposed for astronomy.

Table 2.3 lists thermal and mechanical properties of some common mirror
materials. Some special details of the mirror materials will be discussed in the
next section.

2.3 Mirror Polishing and Mirror Supporting
2.3.1 Material Properties of Optical Mirrors

Mirror materials should have special properties in order to maintain a stable,
high-precision surface shape. Ceramic materials, such as Cer-Vit, Zerodur, and
fused quartz are major optical mirror materials. New mirror materials include
CFRP, SiC, metals, and alloys.

What are the basic requirements of optical mirror materials? First, the
material should have excellent shape stability so that the mirror can maintain
its high precision shape over a very long period. Second, the CTE of the material
should be close to zero so that the shape of the mirror will not change when
temperature changes. Third, the material should have enough rigidity and
hardness to sustain stresses induced during fabrication and transportation.
And fourth, the material surface should be smooth after polishing and capable
of being coated with a thin reflective metal film in a vacuum condition. Some soft
materials, which cannot be polished, can also be used by coating a layer of hard
material on their surfaces.

Mirror material selection is a tradeoff process. Many factors influence the
material selection. These include mechanical and thermal properties, material
availability, cost, weight, transportation, fabrication, and others. Space optical
telescopes require light weight materials.

Surface smoothness, or roughness, is one important mechanical property for
mirror material. Surface roughness is defined as surface height rms error in an
extremely high spatial frequency (small scale) range. The roughness measure-
ment of the optical surface requires an extremely high spatial frequency of 100—
200 pm~'. The surface roughness directly influences light scattering on the
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surface. In the optical region, the total integrated scattering (TIS) is a function
of surface roughness:

2
TIS = (4”7“> (2.36)

where ¢ is the roughness and A the wavelength. Since the TIS is inversely
proportional to the square of the wavelength, mirrors used in optical and
ultraviolet regimes require a very small surface roughness number (Figure 2.17).

Surface roughness is related to mirror material and mirror fabrication. Glass
materials of fused silica or borosilicate glass have a surface roughness of 8 A
(Angstroms = 10 'Y m) after fine polishing. After normal polishing the rough-
ness achieved is of 25 A. Stainless steel can reach a roughness of 40 A, Invar of
47 A, and aluminum of 53 A. The roughness of a silicon carbide mirror can be
8-12 A. These values are after fine polishing. Research indicates that the
resulting surface roughness in fine polishing is related to the lubricant used.
When using special lubricants, aluminum material can also be polished for
optical telescopes. Table 9.1 of Section 9.2.1 lists the surface roughness number
of some mirror materials. The requirement for the TIS of an optical mirror
surface is around 1073,

Before the invention of glass ceramics and fused silica, the only material for
optical telescope mirrors was borosilicate (BSC) glass. BSC has a relatively high
thermal expansion coefficient and is still used for building large honeycomb
mirrors. However, borosilicate glass has a very low thermal expansion coefficient
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Fig. 2.17. Surface roughness and total integrated scattering.
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(about 0.8x10™ k') at a low temperature of 40 Kelvins (Section 5.3.2). There-
fore, it is a candidate mirror material for modern space infrared telescopes.

Glass ceramic material is made by adding chemical additives (crystal seeds)
into liquid glass to germinate fine crystals through thermal treatment. The
crystals form a polycrystalline structure with an ultra-low thermal expansion
coefficient. However, it is difficult to produce very large, thin, or special shaped
glass ceramic mirror blanks due to residual crystallization stresses. It is also not
possible to form a honeycomb mirror shape through this casting process.

Another mirror material is fused silica (or fused quartz made form quartz
crystals). Fused silica is made by melting naturally high purity silica sand at
around 2,000°C using either an electrically heated furnace (electrically fused) or
a gas/oxygen-fuelled furnace (flame fused). Fused silica is translucent or opa-
que. A large mirror blank can be made by fusing small pieces of blanks together
at about 1,500°C. It is the material for the honeycomb primary mirror of the
Hubble Space Telescope. This primary mirror was made of five small pieces: top
plate, bottom plate, inner annulus ring, outer annulus ring, and egg-crate core
(Figure 2.18).

FRONT
FACESHEET

o INNER
__—EDGEBAND

. LIGHTWEIGHT
CORE

OUTER
EDGEBAND

l FACESHEET

Fig. 2.18. Five components of the HST primary mirror.
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Large and very thin primary mirrors of the SUBARU and GEMINI tele-
scopes are also made by fusing hexagonal-shaped fused silica segments. Two
steps are used in their manufacture: first to fuse all segments into a flat blank
and, second, to soften the blanks into an ideal meniscus shape on a convex mold.
Since the mirror is made of several segments, special attention has to be paid in
the optimization of thermal distortion. There are small CTE differences between
all segments. Different segment arrangement produces different surface rms
errors for the same thermal loading. The loading includes absolute temperature
change (range about 25°C) and axial temperature gradient (typically 3°C) both
in production and in telescope operation. The optimization is through the finite
element analysis.

2.3.2 Optical Mirror Polishing

Single point diamond turning (SPDT) is an efficient method for the manufac-
ture of metal mirrors. The achievable surface accuracy and roughness using this
technique are about 3 and 1 pm, respectively. These mirrors can only be used in
the infrared region. They usually do not meet the requirements for large optical
mirrors.

To produce glass-type optical mirrors, grinding and polishing are necessary.
Four variables affect the removal of mirror surface material in the grinding and
polishing process. These are the pressure, the relative speed, the contacting area
between the mirror surface and lapping tool, and the abrasive used in the
process. Improvement in any of these variables leads to an improvement in the
grinding and polishing efficiency. A simplified model assumes linear relation-
ships between the efficiency and any of the first three variables.

Polishing a parabolic surface is much more difficult than polishing a sphe-
rical surface because a good surface contact between the tool and the mirror
blank is difficult to maintain for a paraboloid shape. The maximum deviation of
a paraboloidal surface from a spherical one can be expressed as 0.00032D*/F?
(where D is the mirror diameter in meters and F'is the focal length in meters).
This expression indicates that the larger the mirror diameter or the smaller the
focal length is, the more difficult the mirror polishing will be.

At present, three methods exist in aspherical mirror grinding and polishing.
The first one uses traditional grinding tools, the second one uses deformable
grinding tools, and the third one involves a pre-stressed mirror blank.

According to the size of the lapping tools used, the first method can be
further divided into three sub-classes: one using a full size tool, one using a
medium size tool, and one using a small size tool. Using a full size tool to polish a
spherical surface is easy. Large-size grinding tools have a large contact area with
the blank resulting in high polishing efficiency. However, when the mirror shape
departs from a sphere, the contact area required between the tool and the blank
at each radius should be different as different amounts of mirror material need to
be removed. This requires special contacting patterns on the lapping tool. The
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tool pattern is related to the material removed from the mirror and the moving
range of the lapping tool.

In general, a full size tool is difficult in polishing an aspherical surface of a
small focal ratio. Therefore, a medium size tool is necessary. The medium size
tool can remove material of a specific mirror radius. However, one major pro-
blem is that the surface under a medium size tool is usually asymmetrical. To
correct this, the abrasives can be added only from desirable directions so that the
mirror grinding is done in a particular part under the tool, but not in the other
parts. This, unfortunately, provides only limited improvement. A small size tool
can be easily used to modify the surface shape within a small radius range. Small
tools are often used by experienced opticians when polishing large aspherical
mirrors. However, care has to be taken as a small size tool introduces high spatial
frequency ripples on the mirror surface. These ripples are difficult to remove and
to be corrected. Now a small tool with computer control plays a very important
role in the modern aspherical mirror fabrication.

A deformable tool can keep a good contact between the tool and the mirror
blank when an aspherical surface shape is involved. Two types of deformable
tools are used in optical manufacture, passive and active ones. The deformation
of a passive tool is from the tool design. There are no external forces or moments
applied on the tool except the gravity. When the 4.2 m William Hershel Tele-
scope (WHT) mirror was polished, Brown designed a large full-size polishing
tool with a number of deep ring ribs on the tool back. There was no radial rib
connection between these rings. The bottom plate of the tool was very thin.
With this structural arrangement, the tool was “soft” in the radial direction but
“stiff” in the circumferential direction. During the mirror polishing, sandbags
are placed on top of the tool to insure a good surface contact between the tool
and the blank. Therefore, the contacting area increased and the aspherical
surface shape was manufactured.

The active deformable tools involve force and/or moment actuators. The
deformation is controlled in real-time through some positional and orientational
encoders. R. Angel used an active deformable tool with force actuators for the
manufacture of the Vatican {/1.0 primary mirror.

The third polishing method is called stressed polishing where a pre-stressed
mirror blank is used instead of an unstressed mirror blank. The mirror shape
required under a pre-stressed condition is only a simple spherical shape. How-
ever, after the surface has been polished, the desired complex mirror or lens
shape can be obtained by releasing the preloaded stresses. The simple surface
shape can be a plane or a sphere which is easy to make. The pre-stresses are from
either vacuum or force actuators. The method has been used in the manufacture
of the off-axis paraboloidal mirror segments of a SMT and the Schmidt corrector
plates. Applying this method, iterations and additional corrections using plasma
or ion polishing may be needed.

The formulation of pre-stressed polishing of an off-axis conic surface is in
Section 2.2.5. For extremely large aperture segmented mirror telescopes, a study
shows that the astigmatism is the only important term on the off-axis mirror
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segments (TMT design report). Other terms are very small. The astigmatism
can be easily eliminated by applying a moment across one mirror diameter. This
approach simplifies the stressed mirror blank design for the stressed polishing.
After a bending moment has been applied to the mirror blank, the polishing of
mirror segments can be done on a planet-type polishing machine. This increases
the efficiency and lowers the cost for the mirror segment polishing of an extremely
large telescope. A planet-type polishing machine involves a large rotating flat
lapping tool and a number of mirror blanks which are floating on top of the tool.
Retaining rings (frames) are used to limit the mirror blank’s motion so that the
blank rotates about both the machine axis and the mirror axis. These two
rotational movements produce a uniform material polishing of the mirror surface.
If the flat surface tool is replaced by a spherical one, this planet polishing machine
can be used for spherical mirror polishing. By putting a stressed mirror blank on
top of the spherical tool, the machine can be used for the mass production of off-
axis mirror segments for large segmented mirror telescopes. Stressed polishing is a
trial and error method for achieving an accurate mirror surface. To avoid itera-
tions, final ion beam polishing or plasma figuring are required.

One problem in mirror polishing is caused by the mirror deformation under the
weight of the polishing tool and the mirror itself. To solve this problem, air cushions
are used as the mirror support system. In this way, the mirror is floating on the top
of the cushions so that the weight of the tool will not produce any local mirror
deformation. An air cushion support usually has three axial symmetrical groups of
pads arranged in rings. Air valves are used between groups to control the damping
of the system. The mirror supported is in the same condition as if it were floating
inside a fluid of the same density. This mirror support is called an astatic support.

By using an air-cushion support system the local surface deformation will be
very small and it will not influence the surface precision. During the polishing of
the UK 1.2 m Schmidt objective prism, a special viscous syrup bag was used for
the very thin corrector support. The back side of this Schmidt corrector was
glued to the syrup bag and its radial edge was constrained by roller bearings to
avoid radial movement. This support arrangement produced a high quality,
very-thin Schmidt object prism of 1.2 m size.

Cell print-through is a problem when a honeycomb mirror is under polishing.
Honeycomb mirrors have a thin top surface and elastic deformation occurs when
the polishing force is applied. This degrades the surface accuracy. To overcome
the cell print-through, a special vacuum polishing tool can be used (Figure 2.19).
The tool draws air out from the contacting surface between the tool and the
mirror to eliminate the force applied on the mirror surface while the removal of
mirror material is not affected. Polishing non-spherical surface with magneto-
rheological fluid or ferro-fluid is a new technique. The viscosity of these fluids
can be changed when magnetic field is applied. Therefore, the rate of material
removal can be easily controlled.

The ion beam and plasma figurings are also important manufacture methods
for astronomical optics. These two methods are mainly used in the final finishing
stage of a mirror to achieve precise surface shape modification. The ion beam
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Fig. 2.19. A vacuum polishing tool used for honeycomb mirror manufacture.

figuring is a physical process of bombarding the mirror surface with high speed
ions. The mirror should have a low surface roughness before the ion figuring is
applied. The whole ion beam process is carried out in a vacuum chamber. The
removal of mirror material by ions can be expressed by a beam removal function
(BMF). One characteristic of this method is its noncontacting property. So the
material removal speed has no relationship with the mirror surface shape.
Usually the optical surface is facing down during the ion figuring. This method
can achieve a surface precision of about 0.02 visible wavelengths. The main
restriction of this method is the dimension of the vacuum chamber.

Plasma polishing is different from ion beam figuring because it is a process of
chemical erosion using plasma gas. Some special gas in a plasma state is added in
the polishing process, it reacts with the material on the mirror surface. Then the
reaction produces active compounds, which detach from the mirror surface. For
a fused silica mirror, the reaction is:

CFy + SiO> — SiFs + CO, 2.37)

The plasma itself has moment in the polishing which will further accelerate
the chemical reaction. Plasma polishing can be carried out in a low vacuum
condition and it can also produce a high surface precision. It is also a noncon-
tacting polishing method. The efficiency of plasma polishing is higher than that
of ion beam figuring.

The discussion in this section was mainly focused on the polishing of astro-
nomical optical surfaces. Other manufacturing methods such as optical surface
replications are discussed in Section 2.2.6.

2.3.3 Vacuum Coating

Vacuum coating is used to increase the reflectivity of a mirror surface. A metal
material is evaporated onto the surface and becomes a thin layer of deposition.
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Before the coating, the old film should be removed from the mirror surface. Then
the surface is cleaned. The cleaning of the surface is a process of chemical and
mechanical reaction. Usually a detergent or a mixture of mild sulfuric and
chromic acids is used. After cleaning with acid, the mirror surface should be
washed with water. Then the mirror dries in air. Some observatories also use dry
ice for the mirror surface cleaning though this process is usually used between
coatings to remove dust from the mirror surface.

The coating is done inside a vacuum chamber. The chamber is a large barrel-
like container. If the mirror to be coated has a larger dimension, it is usually
placed vertically in the chamber. In this position, no metal fuses or other objects
will fall on the mirror surface. Metal fuses are arranged at equal distances around
the mirror. Then the chamber is evacuated. When the air pressure reaches 10~
to 1073 mmHg (1 mmHg = 1.33x 1072 Pa) and can be maintained at this level,
the coating process can be started. If a single layer of aluminum film is needed,
the coating material, usually aluminum filaments, is placed above a few tung-
sten heating coils. When the temperature of the filaments is over 600°C, the
aluminum melts and attaches to the heating coils. When the temperature
reaches 1,200°C, the aluminum evaporates. The evaporating aluminum mole-
cules radiate to the mirror and deposit on the surface. In the visible wavelength
range, aluminum coating is widely used. For infrared wavelengths, gold or silver
has a higher reflectivity. The obvious drawbacks of the silver coating are a low
adhesive force and the tendency to oxidize. These can be solved by an additional
coating of 4,05 or SiO,. Gold, or silver, or platinum are also used for mirrors in
X-ray imaging systems.

2.3.4 Mirror Supporting Mechanisms

The basic goal of a mirror support is to hold the mirror in the telescope so that
the forces of gravity, wind, and telescope acceleration do not significantly
change the surface and the position of the mirror. The mirror support includes
positioning ones and floating ones. The position of a mirror is defined by a few
positioning support points (hard points). The positioning support and its
related displacement actuator carry a very small portion of the mirror weight.
Most of the mirror weight is carried by “floating” supports to avoid the mirror
surface deformation. The floating support is known as astatic flotation which
mimics the buoyant force felt if the mirror were floating in a liquid of its own
density. The direction of the gravity load of a mirror changes as the elevation
changes, so that both axial and radial positioning and floating support systems
are used in the mirror support system.

2.3.4.1 Positioning Support Systems for Optical Mirrors

Any rigid body has six degrees of freedom. Therefore, the best mirror support is
the so-called “kinematic” mounting, which fixes just six rigid body degrees of
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freedom of a mirror. These six degrees of freedom can be applied on a single point,
but stresses will be produced around it, or on three or more points. In some cases,
the axial and radial positioning points are separately grouped, each with three
support points. In some cases, there is no constraint in the mirror axial rotational
direction, resulting only five constraints of the mirror positioning system.

Positioning support points can be chosen near the outer edge, or the middle
radius, or the inner radius (at the central hole of a primary mirror) of a mirror. In
general, the mirror and its cell are made of different materials so that differential
thermal expansion may happen when temperature changes. This thermal effect is
small when the mirror uses the central hole as its positioning location. The effect
will be serious when support radius increases. However, there are two cases where
the thermal effect is not a problem even for outer edge positioning. One is when
both the mirror and its cell have low CTEs and another is where the positioning
constraint degrees of freedom are not affected by the differential thermal expansion.

The HST primary mirror has its positioning device at its outer edge. Above
the mirror, the constraint is from a zero-expansion CFRP tube truss. Below the
mirror, the constraint is from a low-expansion titanium alloy mirror cell so that
the relative movement between the mirror and its positioning device is very
small as temperature changes. The advantage of placing the positioning support
points on the outer edge is that the mirror will have a higher resonant frequency.
For space telescopes, since there is no gravity, the weight of the tube truss would
not produce deformation of the mirror when the telescope is in orbit.

For many ground-based telescopes, the mirror cells are made of steel. Radial
shear forces may be produced due to differential thermal expansion between the
mirror and cell. Therefore, most mirrors use the central hole for positioning
location. The position defining points bear little of the mirror’s weight. To avoid
mirror surface deformation caused by small friction force, the axial and radial
contact areas in the central hole positioning system are very small. In the radial
direction, the mirror positioning is through a thin tube extended from the mirror
bottom support plane. The contacting part is a spherical surface inside the inner
mirror hole. To further reduce the contact stress, several vertical slots are made
on the sphere surface to absorb any possible stresses.

For mirrors with a small aperture size, the mirror positioning points may be
located at the middle radius. These points are on the back of the mirror. This
arrangement can be found in a number of secondary mirror support systems.
However, if the mirror diameter is not so small, then the force caused by
differential thermal expansion remains a problem. An improvement can be
made by adding radial flexible springs at the positioning support points. These
springs absorb thermal stress between the mirror and its cell.

The three-point mirror support can evolve into a six-point, or nine-point, or
more point mirror support through a whiffle-tree design. A whiffle-tree is a
beam, or plate, structure, which distributes the support force from one point
to two, or three, ends of a beam, or a plate. This force redistribution can be
cascaded as a tree structure. However, the degrees of freedom involved are kept
the same as a single point support. Differential thermal expansion also exists in a
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whiffle-tree support system. To overcome this, the beams which transfer the
mirror load to the positioning points should have the same thermal expansion
coefficient as the mirror material. Invar is a favorable material used for whiffle-
tree beams.

The mirror middle radius positioning is mostly used for mirror axial position-
ing. The radial mirror positioning is usually at the outer edge of the mirror.
Generally three clockwise or anti-clockwise linkage bars in the tangential direction
can be used. One end of these linkage bars attaches to the mirror and the other end
attaches to the cell. These three tangential linkage bars will fix the mirror in the
radial direction. It allows dimensional variation between the mirror and the cell. If
the mirror is in zenith position, these linkage bars are free from any loading. When
the mirror tilts, the linkage bars will generate a lifting force to counteract the
component of the mirror weight along the radial direction. Temperature change
and differential thermal expansion have no influence on this type of design. The
link bar positioning system allow rotation in axial direction. It constrains only two
degrees of freedom.

For very thin mirrors, more positioning support points are required. These
support points can also take additional loads, increasing the mirror stiffness, but
they will not produce deformation of the mirror surface. These support points
are usually equipped with sensors for active or adaptive mirror support force or
position control.

A new style of mirror positioning has been developed from the Stewart
platform (Parks and Honeycutt, 1998). The basic principle of the six-beam
Stewart platform will be discussed in Section 3.1.3. In this hexapod platform,

Fig. 2.20. Hexapod axial support system for optical mirrors (Parks and Honeycutt, 1998).
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each rod has universal joints on both ends. The six rods provide six degrees of
freedom for a stable mirror positioning support. Figure 2.20 illustrates a hex-
apod mirror supporting structure. In this support, the length of each supporting
rod is relatively long so that an axial movement of the mirror will be produced
when temperature changes. To reduce this temperature effect, the supporting
rod can be bent into an ‘L’ shape so that the distance between the mirror and the
cell reduces. If there is a radial force component, a hexapod platform may
produce astigmatism of the mirror. Therefore, the hexapod platform support
is not an ideal solution for the mirror’s radial support.

Parks and Shao extended this hexapod support system to a more compli-
cated 18-point mirror support system. The 18 support points are arranged in
two rings. These rings have radii of 0.408 and 0.817 of the mirror radius.
Three groups of six points are formed with 12 points at the outer ring and six
at the inner ring. One hexapod support device is used for each support group
so that the weight of the mirror is evenly distributed to all 18 points. To avoid
over-constraint of the mirror, every hexapod platform is connected to a
Y-shaped cell with a wire rope in tension. These wire ropes and the connected

Fig. 2.21. An 18-point supporting device and its six-beam linkage subsystem (Parks and
Honeycutt, 1998) (Note: Pre-stressed steel wires are used for radial supporting).
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hexapods provide a positioning of just six degrees of freedom for the whole
mirror and it turns out a very stable mirror support system.

To reduce the support system weight, the lower platforms are made of a triangle
truss. In this design, any two of all six rods should not align through one common
point for maintaining its stability. Figure 2.21 shows the arrangement of this 18-point
hexapod support device. In the radial direction, pre-stressed steel wire ropes are used.

2.3.4.2 Flotation Support Systems for Optical Mirrors

In general, most of the mirror weight is taken up by floating support mechanisms.
There are two types of flotation support systems: mechanical and pneumatic
ones. A mechanical mirror support system usually involves a counter-weight and
cantilever mechanism. The support force generated by this counter-weight and
cantilever system follows a sine law of the mirror’s elevation angle. This is the
same law governing the axial force component change of the mirror weight.
Therefore, no force adjustment is necessary in a normal passive support system.
The cantilever length ratio produces a magnification of the load applied to the
mirror, therefore, the counter-weight required is smaller. The mechanical flota-
tion support system can be used on both axial and radial support. For radial
support of a thin mirror, a thin membrane can be used to transfer the support
forces from the cantilever system to the support point in radial direction as shown
in Figure 2.22. This avoids the effect on the mirror from the bending moment of
the system. The main problem of a mechanical flotation support system is the
friction involved. It affects thin mirrors.

Fig. 2.22. Axial and radial counter-weight and cantilever support systems (Keck).
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Air cushions or air cylinders are pneumatic flotation mirror support systems.
They are mainly used in axial direction. The support force of these systems is
proportional to the mirror contacting area, therefore, the contacting area should
remain constant during the telescope operation. The air pressure is adjusted by a
pressure regulator so that the required supporting force can be obtained. The
regulator follows the motion of the tube to produce sine-law governed air
pressure. Force sensors used in the support points may also provide signals to
control the air pressure. The air cushions are soft allowing height and tilt
adjustments, producing smaller friction forces. When the pneumatic system is
not pressurized, the mirror rests on a set of spring-loaded rest pads.

For radial mirror support, a mercury bag is often used. In this system, the
mirror is surrounded by a ring-shaped bag filled with mercury. The bag is held
by the mirror cell while the mirror floats inside the bag. The force applied on the
mirror is proportional to a constant contacting width of the mercury bag.

Another flotation support is a vacuum secondary mirror support system.
The principle of a vacuum support is the same as an air cushion system but with
a negative air pressure.

In the mirror support system, force sensors can be used to measure the
supporting forces. One type of force sensor is the strain gauge. The usage of
force sensors is essential for active mirror surface control as discussed in Section

4.1.3.

2.4 Mirror Seeing and Stray Light Control
2.4.1 Mirror Seeing Effect

Generally, seeing effect is produced by the density inhomogeneities in air along
the optical path. Thermal nonuniformities are the main reason behind the air
density and air refractive index variation. When a mirror surface has a different
temperature from the surrounding air, convection will dissipate these heat
nonuniformities. Two types of convection occur over a horizontally placed sur-
face, a natural one and a forced one. Natural convection produces large-scale air
bubbles, while forced convection has a thin boundary layer, small scale eddies,
and fast time scales (Figure 2.23). The type of air convection can be described by
Froude number, which is the ratio of Reynolds number squared to Grashof
number, both are introduced in Section 8.1.3 (Dalrymple, 2002):

Re2 N2 . 2 2
proRe_ (VLN p-v™ _ pV~ (2.38)
Gr v ) ApgLl?® ApgL

where Vis the wind velocity, L a length scale, v the kinematic viscosity, p the air
density, g the gravity, and Ap the magnitude of the density fluctuation of the air.

For Fr>>1, the forced convection dominates; for Fr<<1 the natural
convection dominates; and for Fr = 1 the convection is mixed. For a heated
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(a) Natural Convection

(c) Forced Convection
Fig. 2.23. Natural and forced convection air flow over the mirror surface (Dalrymple,
2002).

mirror, the length scale is the same as the diameter of the mirror, L= D. If the
air pressure remains constant, then Ap/p = AT/ T, where Tis the temperature
and AT the temperature difference. One can map the convection regimes for
particular mirror length scale in wind velocity and temperature difference
space base on the Froude number. The Froude numbers between 0.1 and
10 correspond roughly to mixed convection, and higher and lower Froude
numbers correspond to forced and natural convection respectively. It is sug-
gested the natural convection produces the most aberration and the forced
convection the least.

Air density fluctuation affects optical beams in different ways. For small-
scale turbulence, image energy scatters widely and Strehl ratio reduces; for
intermediate-scale turbulence, it will produce beam spread and image blurring,
resulting in loss of both resolution and contrast; for large-scale turbulence, it will
produce tilt-induced image shift, as jitter. A general pattern is a composition of
all these three effects. Fast tip/tilt correction can remove jitter (Section 4.1.5).
The mirror convection is better kept in the forced convention region, so that the
boundaries are smooth and flat.
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For a precise expression, the wavefront variance due to the air density
change is:

Lop:
e :2G2/ " <> Ld- (2.39)
0

where G is the Gladstone-Dale parameter (G = 0.22 cm®/g over the optical
wavelength), p’ the fluctuating density, which is roughly 10% of the total
density variation Ap in the air flow, p’ = 0.1pAT/T, I, the correlation length
along the optical axis, and L,,, the total path length through the disturbance. In
many cases, [ = 0.1 ~ 0.2L,,;. The total path length through the disturbance is
related to the disturbance layer thickness above the mirror; for natural convec-
tion, it is of the scale of the mirror’s diameter or larger. The formula of the
disturbance layer thickness is:

LI'SAT%S LO.S

Lop = 0.184 +0.0392 755 (2.40)

where L is the upstream heated length (m), AT¢ the average temperature
difference over the length (°C'), and V the wind velocity (m/s). For a 4 m
diameter mirror in the natural convection case and the wavelength of 4 =
550 nm, the phase error is about:

2 AT ZIZL()
p :$mo.2np~c;7@zo.4snﬂ (2.41)

In the forced convection case, the turbulent flow thickness is much smaller
than that of the natural convection. The boundary layer thickness over a flat
plate is:

6 =0.37Re "*x; Re,>10° (2.42)

and for a velocity of 1 m/s at x = 4 m, this is 12 cm. Higher wind velocity reduces
this even further. In general, L,,, = d, and /. = 0.16. We see that the wavefront
error is down from a natural convection case by one to two orders of magnitude.

When the temperature variation is AT = 1K for a natural convection case,
the wavefront error is small (6 <A/m) and the mirror seeing or the blur angle is:

Op
VS

where 0p is the diffraction limit image angle, 0p = 2.4A/D, and S the Strehl
ratio. The Strehl ratio for this weak aberration case is:

Oy = (2.43)
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[ 2 \?2 e
S=exp|— (7 o) =e (2.44)

Therefore, the mirror seeing is 0, =2 0.2arc sec.

In a strong aberration regime, the central core of the point spread function is
obscured and the signal is made up of scattered energy and system noise. The
blur full angle containing p percent of the encircled energy is:

4
On, p5 = T —In(1 —p) (2.45)

Z

For p = 50%, Oy50% = 3.330/L.. If the temperature variation is AT = 2 K,
the wavefront error is strong (¢ > 1/7) and the mirror seeing is:

0509, = 0.45arc sec (2.46)

Racine’s experimental formula of the mirror seeing is: 0 = 0.4(Ty — T,)'?,
where T is the mirror temperature and T, is the air temperature (Dalrymple,
2002). Figure 2.24 shows the mirror seeing as a function of temperature differ-
ence between the mirror and surrounding air.

FWHM (arcsec)

s o
i :
L) 3.[: ": c!:;:
0.3 - -
0! " B 4 3 1
-2 ] 2
AT, (°C)

Fig. 2.24. Relation between mirror seeing and difference between mirror and air
temperatures (Mountain et al., 1994).



2.4 Mirror Seeing and Stray Light Control 135
2.4.2 Stray Light Control

Stray light is any light which does not come from the celestial target sources
and yet illuminates the detector. Stray light creates an unwanted background
and lowers the sensitivity. For optical telescopes, the source of stray light is
the light from celestial objects outside the field of view and the light inside the
field of view which does not go to the right position on the focal plane. Both
lights are called “off-axis” sources. To overcome stray light, proper design of
baffles and stops is necessary. Ray tracing is a way to predict the unwanted
stray light. However, for infrared and millimeter wavelength telescopes, ther-
mal emission of the telescope and the surrounding surfaces, including baffles
and stops, is a major source of stray light. To overcome these thermal emis-
sions, infrared telescopes may require a design with no baffles in their optical
system.

Ray tracing starting from the focal detector is the most effective way of
finding and eliminating the stray light in telescopes. In optical system design,
ray tracing usually starts from the object space. However, this is not effective in
finding stray light in a system. Ray tracing from the detector is like positioning
oneself at the detector and looking outward. The first step is to determine the
sources which are out of the field of view and still can be seen directly. To block
these sources, baffles and stops are required. The next step is to find any object,
optical or structural, visible to the detector directly or by the reflection of the
optical surfaces. These objects are called “critical objects.” The last step is to
find any object, which is seen by the detector and illuminated by stray light
sources. These are called “illuminated objects.” If an object is on both the
critical and illuminated list, it is on a first-order stray light path. For these
objects it is necessary to move them away or to block them. In this way stray
light can be reduced by factors of 100 or more. For objects not on the first-order
path, the paths with most power must be blocked or removed. However,
second-order stray light paths are much more numerous and further ray
tracing is necessary.

Stray light ray tracing programs usually use a Monte Carlo approach. A
random number generator is used over a selected area, to select only a few
random rays to represent all the possible rays in the area, both in position and
in direction. In the ray tracing process, each time a ray intersects an object;
additional reflected, refracted, and scattered rays are generated. If the second-
ary rays are shot towards a light source, then the brightness of the surface where
the primary ray intersects should be calculated. The power of the primary rays
is weighted by the surface scattering rate. This stray light ray tracing is almost
the same as the ray tracing in the computer graphical render program. The
process is time-consuming because of the intersection calculations. Several
approaches can be used to speed up the computations. These are: (a) Use faster
computers; (b) Use specialized hardware, especially parallel processors; (c)
Speed up computations by using more efficient algorithms; and (d) Reduce the
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number of ray-object computations. The ray-object computation reduction
includes adaptive depth control, bounding volume, and first-hit speedup.

2.4.2.1 Baffle and Stop Design

There are different stops in an optical system. The aperture stop, or the entrance
pupil, limits the size of the incoming beam. Objects in the space outside the
desired beam are not seen by the detector. The aperture stop is usually the edge
of a primary mirror. However, in infrared telescopes, the aperture may be
located at the secondary mirror. The field stop limits the field of view. The
field stop is located at the focal plane.

Baffles are usually conic or cylindrical tubes designed to block unwanted
light paths. To further suppress scattered light, the baffle sides facing the
detector may have a series of concentric rings, called “vanes.” For a Casse-
grain system, two sets of baffles are required. One is around the secondary
mirror, and the other is above the primary mirror as shown in Figure 2.25.
The dimensions of the baffles can be found from the following formulae
(Bely, 2003):

b — VB —dac
2a
re =x,(0 — 09) + Oof
_ —c1by + by (2.47)
B a1b2 - Clzb]

Xy =

X1

, —ci1ap + ¢a
) =
b]dz — b2a1

where f] is the primary mirror focal length and 6 is the semi-angle one wishes to
protect. The other parameters are:
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Direction TR T T T T
not seen by r
detector _——)p~ U oaaemT

_______ A i

Direction
not seen by
detector /

Fig. 2.25. Baffle design for Cassegrain systems (Bely, 2003).
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0o =D/2f;
a =03(fi +¢)*(m+ 1)+ 000(f1 + e)(mfi (m — 1) — e(m + 1))
b= —(fi +)*05((2m+ 1)fi — e) — 00(/i + €)((mf1)* + )
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where D is the diameter of the primary mirror and m is the magnification of the
secondary mirror. Baffle surfaces usually have a diffuse black coating to absorb
the incoming light. However, none of these coatings will absorb all of the light. At
normal incidence, the absorption is a constant. At other angles, surface scattering
occurs. When the incident angle is near 90°, the scattering increases to values
larger than unity at the specular direction. This scattering can be controlled by
placing zigzag vanes to make all the light strike the baffle at a normal incidence.

o

(2.48)

2.4.2.2 Stray Light Analysis

Specular reflection and scattering are two different but related surface properties
in optics. Specular reflection occurs on an ideal reflecting surface or mirror
(Figure 2.26). It follows the law of reflection. The optical design is based on specular
reflection. The scattering of a surface is described by a bidirectional reflective
distribution function (BRDF). BRDF is a ratio between radiation scattered of a
unit angular area and surface irradiation weighted with the cosine of the projected

Specular Lambertian Diffusely
reflection scattering reflecting surface

Fig. 2.26. Reflecting and scattering from surfaces (Bely, 2003).



138 2 Mirror Design For Optical Telescopes

solid angle. For an observer viewing from a different polar angle, the projected solid
angle of a surface irradiance area is the solid angle of the area multiplied by a cosine
of the polar angle. The expression of BRDF is (Bennett and Mattsson, 1999):

dE;/(AdQcos ;)  Ey/Q

BRDF = ~
E:/A E;cos 0,

(2.49)

where Fj is the radiation over an angular area Q, with a reflecting angle of 6,, A
the illuminated area on the surface, and E; the surface total irradiation at a point.

If the surface is a perfectly diffuse reflector, light is scattered uniformly, the
intensity of the scattered beam varies as the cosine of the angle from the normal
of a surface. This is called “Lambertian scattering.” The intensity (the photons
per second) is the same for Lambertian scattering which has a constant of BRDF
= (1/n) sr7t.

An important property of the BRDF is that the half sphere surface integral
of the product of BRDF and cosine of the polar angle must be less than or equal
to unity. The integration is the reflectance ratio or total integrated scattering of
a surface:

/BRDFcos9~dQ = // DRDFcos0Osin0-do-dp <1 (2.50)
Q

Another less well-defined parameter is bidirectional scattering distribution
function (BSDF) which is the scattered power per unit solid angle divided by the
incident power:

dE,/dQ, _E,/Q,

BSDF =
L; E;

(2.51)

The BSDF simply uses the cosine-corrected scattered radiance rather than
solely the surface irradiance (which has the effect of removing the factor of cos 0
from the projected solid angle) to yield scatter per unit illuminated surface area
per unit solid angle.

All surfaces used in telescopes are in between these two types of scattering.
The scattered light is concentrated in the specular direction, but a significant
portion of it is around this direction. The flux transferred from a small scattering
surface of area dA into an elementary solid angle dQ can be expressed as:

d® = BRDF - E;dA cos 0; cos 0,dQ (2.52)

where 0; is the incident angle and F; the incident flux density. The BRDF
depends on polarization and wavelength. A perfect surface produces specular
reflection and has a BRDF infinite in the reflection direction. For lenses and
windows, a bidirectional transmission distribution function, BTDF, is used.
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When the BRDF of a surface is known, one can calculate the amount of power
that is scattered from one surface to another. It is:

P. =m- Py(BRDF)(GCF)

GCF = 4, cos O cos 0, (2.53)

7 Rse
where Py is the incident power on the scattering surface area, Ry the distance
between the scattering and scattered surface area, Othe scattering angle, and 6,
the scattered angle. GCF is the geometry configuration factor.

The BRDF of a mirror surface is related to the roughness of the surface.
However, at infrared wavelengths, dust becomes dominant in scattering.
The dust percentage is related to the cleanliness level. It is not practical to
have a cleanliness level higher than 500 for large optics. The dust coverage of
this level is 1%.
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