
Chapter 2
Introduction to Engineering Risk Analysis

Overview of Risk Analysis for Engineered Systems

Can contemporary organizations and societies design, build, and operate complex
engineering systems safely and reliably for long periods? Being able to do so is
crucial if nuclear power is to be a viable option, if infrastructure such as advanced
transportation systems and energy distribution networks is to be trustworthy, if min-
erals and petroleum are to be discovered and extracted safely, and if hazardous man-
ufacturing and chemical storage facilities are to be located in convenient proximity
to transportation hubs and population centers. This chapter, which is an update and
extension of Bier and Cox (2007), discusses methods for quantifying the extent to
which complex engineering systems can be designed and operated safely.

Opinions about the answer are divided. One school of thought, sometimes called
Normal Accident Theory after the book that articulated it (Perrow, 1984), holds that
engineered systems with high “interactive complexity” (presenting unexpected and
surprising sequences of events that are difficult to detect or comprehend at first)
and “tight coupling” of interdependent components or subsystems (so that changes
propagate quickly among them) are inherently unpredictable and uncontrollable
by human operators. Resulting accidents and catastrophic failures in such high-
risk technological systems are seen as inevitable and unavoidable: in this sense,
they are “normal.” In this pessimistic view, adding redundancy to complex systems
to reduce accidents makes them even more complex and prone to unpredictable
failures. Case studies of accidents and near-accidents at chemical plants, nuclear
reactors, airports, and other complex industrial facilities well illustrate Normal
Accident Theory.

A different view, popularized in the catchphrase “Failure is not an option” (made
famous by Oscar-nominated actor Ed Harris playing NASA Flight Director Gene
Kranz in the movie Apollo 13), is that complex engineering systems can be built
and operated safety by sufficiently disciplined, creative, well-organized, and well-
trained teams and organizations. Sociologists, psychologists, and other researchers
have sought common features of “high-reliability organizations” (HROs), mean-
ing organizations with significantly fewer accidents and failures than normally
expected. They have proposed lists such as preoccupation with failure, reluctance
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to (over-)simplify interpretations or to prematurely reject unexpected interpreta-
tions of observations, sensitivity to operations, commitment to resilience, and appro-
priate deference to expertise (as opposed to rank, seniority, or power) (Weick and
Sutcliffe, 2001). Such habits can help to create the vigilant “mindfulness” needed to
operate safely and to catch and correct potential problems before they cascade out
of control. Routinely safe operations on aircraft carriers and in other high-stress,
risky, and complex environments vividly illustrate that well-trained teams in well-
designed organizations and environments can manage risks successfully. Similar
principles might be applied in different settings, such as operating rooms and inten-
sive care units. Eliminating “mindlessness” (e.g., blind rule following or deference)
in the implementation of federally and locally funded programs to reduce infant
mortality and preterm birth has been proposed as a way to reduce the frequency and
severity of poor outcomes (Issel and Narasimha, 2007).

Probabilistic risk assessment (PRA) of engineered systems gives engineers and
risk managers practical tools to understand, predict, and manage risks for a variety of
complex engineered systems. It identifies how systems might fail, the likely (and not-
so-likely) potential adverse consequences of failures, and how best to prevent failures
and mitigate adverse consequences while meeting other goals, such as the continued
productive operation of a hazardous facility. PRA methods include probability model-
ing techniques (both analytic and simulation-based) for quantifying engineering risks,
typically expressed as the probabilities of adverse events and as the frequencies and
severitiesof theiradverseconsequencesoverastatedperiodof time.PRAalso includes
optimization methods from operations research and safety and reliability engineering
that can identify cost-effective ways to improve safety and reliability while satisfying
other constraints (e.g., on system cost, weight, or performance).

Examples of complex engineering systems to which PRA has been successfully
applied include nuclear power plants (beginning with the Reactor Safety Study in
1975, and continuing to the present day); the space shuttle (both before and espe-
cially after the Challenger disaster); dam and reservoir planning and operations;
highway, bridge, and transportation infrastructure; emergency planning; liquefied
natural gas (LNG) terminals and storage facilities; other hazardous chemical plants
and operations; and electric power generation and distribution planning. The com-
mon elements in such systems is that they all involve (1) a designed system intended
to withstand different levels of stress, with the option of incorporating different lev-
els of backup and fail-safe design, (2) a system operator/risk manager faced with
decisions about how to inspect, maintain, and use the system (e.g., when to launch,
when to shut down, and generally what level of precaution to adopt), and (3) an
uncertain environment that generates stresses and adverse conditions that the sys-
tem should ideally be able to withstand. Uncertainties from the environment may
involve random events, such as equipment failures or unexpectedly high or stressful
transient loads (as in the case of the Tacoma Narrows bridge collapse); natural dis-
asters such as earthquakes, floods, or hurricanes; terrorist attacks; or operator errors,
perhaps arising from miscommunication, miscoordination, or misunderstanding of
systems behavior among those running it. Unexpected behaviors of interacting
software modules or other subsystems may also cause a system to fail, even if each
component performs as it was designed to (Leveson, 2004).
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Example: Unreliable Communication with Reliable Components

Setting: Suppose that two people call each other on their cell phones at the same
time, so that each receives a busy signal. If each caller can reattempt a call at the
beginning of each new time period (say, every 20 seconds), then what retry strategy
minimizes the average time to connect?

Solution: If each caller tries to call with probability p at the start of a period,
then the probability that they conflict again is p2, the probability that neither calls is
(1 – p)2, and the probability that they connect is 2p(1 – p), which is maximized for
p = 0.5. Thus, each should call with probability 0.5 at the start of each period, until
they connect. The probability of connecting at the start of a period is then 2∗(0.5)∗

(1 – 0.5) = 0.5 and the expected number of periods until connection is established
is therefore 1/0.5 = 2. Thus, even if all parts of the system work perfectly and the
two callers behave optimally (given what they know), the effective availability of a
connection to the callers is less than 100%. This illustrates a coordination failure
in the use of the system. Of course, such coordination failures are usually only
minor annoyances. . . unless the safety of a system depends on being able to establish
contact promptly when something goes wrong!

A system’s designer and its operator/risk manager usually both want to make
decisions so that the system operates as planned, given engineering and cost con-
straints and the uncertain environment. Of course, the decisions and trade-offs faced
by the operator/risk manager typically reflect the decisions made by the system
designer. PRA can help to quantify the trade-offs between cost and safety at the
design stage and can help to identify policies and schedules for cost-effective inspec-
tion and testing, preventive maintenance, spare parts provisioning, redundancy allo-
cation, and replacement of working parts to keep complex systems operating as
intended throughout their design lives.

Example: Optimal Number of Redundant Components

Setting: Suppose that an airplane can have one, two, or four engines. Each engine
independently has a probability 1 – p of failing during the course of a mission.
(Equivalently, it has probability p of surviving). A plane fails (crashes) if more than
half of its engines fail.

Problem: What number of engines should a plane have, to maximize the proba-
bility of completing its mission?

Solution: A plane with one engine has success probability p. A plane with two
engines has success probability 1 – (1 – p)2, the probability that both engines do not
fail. Since 1 – (1 – p)2 = 1 – (1 – 2p + p2) = p(2 – p), this success probability is
greater than p if and only if 2 – p > 1 and p > 0; in other words, for 0 < p < 1. Thus,
a twin-engine plane is at least as likely to survive as a single-engine plane, with
equality only if p= 1 or p= 0. For a four-engine plane, the probability of success is
one minus the probability of losing more than two engines: 1 – [Pr(lose 4 engines)
+ Pr(lose 3 engines)] = 1 – [(1 – p)4 + 3p(1 – p)3] = 1 – (1 – p)3 [(1 – p) + 3p].
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This is greater than the success probability for two engines if and only if the follow-
ing inequalities hold:

1− (1− p)3[(1− p)+ 3p] > 1− (1− p)2,

(1− p)2 > (1− p)3[(1− p)+ 3p],

1 > (1− p)[(1− p)+ 3p],

1 > (1− p)(1+ 2p),

1 > 1+ p − 2p2,

2p2 > p,

2p > 1,

p > 0.5.

Thus, a four-engine plane is more likely to survive than a two-engine plane if
and only if the individual engines are more likely than not to survive the mission
(p > 0.5).

Example: Optimal Scheduling of Risky Inspections

Setting: Suppose that, in the absence of intervention, a component (perhaps an
engine in the previous example) of age t has probability 1 – e–ht of a defect that
will increase the risk of failure when the component is next used. h is called the
hazard rate for occurrence of the defect, and ht is the cumulative hazard accumu-
lated by age t in the absence of intervention. At any time, an expensive inspection
may be performed, and, if a defect is present, it will be found and repaired, effec-
tively setting the age of the component back to 0. However, careless inspection may
itself introduce an uncorrected defect that would not otherwise have occurred. The
probability of this is p ≥ 0 for each inspection.

Problem: What time between inspections minimizes the expected number of
uncorrected defects per unit time?

Solution: If inspections take place every T time units, then each inspection
removes hT expected defects and adds p expected defects. The optimal time between
inspections makes the marginal “cost” (here meaning loss of reliability) from an
inspection – that is, the expected new defects created, p – equal to its marginal
benefit (that is, the expected effects removed, hT). Thus, the optimal time between
inspections, denoted by T∗, satisfies hT∗ = p, and so T∗ = p/h (for h > 0). More
frequent inspections than this, with T < T∗, are expected to create more problems
than they solve (p > hT). Less frequent inspections, with T > T∗, let the expected
costs of not intervening sooner exceed the costs of doing so (hT > p).

PRA is usually applied to rare and catastrophic events for which it may be dif-
ficult to estimate risks directly due to the lack of empirical data, the possibility
of unobserved changes (e.g., deterioration) in the system, and changes in the sys-
tem’s environment or use. Risk assessment can also be applied to predict routine
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(e.g., occupational accident) risks, although in such cases it may be possible to rely
primarily on empirical data, reducing the need for modeling. In general, PRA is used
to estimate, predict, and find ways to reduce the risks to facility or system own-
ers, employees, and the public. This chapter focuses on methodological advances
in engineering risk analysis, with selected applications (including some applica-
tions of PRA methods and insights to fields other than engineering) to illustrate the
methodology.

Using Risk Analysis to Improve Decisions

Risk analysis can help to inform design decisions (e.g., trade-offs among safety and
performance, cost, etc.) as well as operational decisions (e.g., when to shut down a
facility). It can be useful regardless of who makes the decisions – for example, facil-
ity owners and operators, regulators, or multiple stakeholders interacting through a
participatory risk management and conflict-resolution process. Key technical chal-
lenges that PRA must address include: how to predict the probable performance
and quantify the behaviors – both probable and improbable – of a complex system,
given a design and the operator’s decisions, in the face of inadequate data; how
to optimize the joint decisions faced by the system designer and owner/operator
(which can involve NP-hard combinatorial optimization problems, as well as prob-
lems of coordination and communication between different organizations); how to
most effectively model interdependencies and uncertainties about the system’s cur-
rent state; the development of cost-effective “screening”-type methods for address-
ing the myriad possible risks in “open” systems (such as the risk of terrorist attack);
and scale-up problems for extremely complex systems, such as infrastructure net-
works. Also, there is still room to benefit more fully from adaptation of methods
developed in other fields, including decision analysis and related fields (such as
Bayesian statistics).

Hazard Identification: What Should We Worry About?

Probabilistic risk assessment typically begins by defining a system to be analyzed
and identifying undesired outcomes that might occur when it is operated. Hazard
identification methods have been developed to identify the potential adverse conse-
quences of system operation. Structured qualitative techniques include hazard and
operability (HAZOP) studies and failure modes and effects analysis (FMEA), which
describes potential failure modes, causes, effects, safeguards, and recommendations
for reducing risks.

Fault trees and event trees can be used in a qualitative mode for hazard iden-
tification but can also be quantified to estimate the likelihood of adverse events.
Fault tree analysis (Barlow, 1998) begins with an undesired outcome, called the “top
event,” and reasons backward to identify which combinations of more basic events



40 2 Introduction to Engineering Risk Analysis

(e.g., component failures) could bring about the top event (e.g., failure of the sys-
tem). The result is a tree that represents those sets of basic events that would be
sufficient to cause the top event using “AND” and “OR” logic (and possibly more
complicated logic gates as well). The tree generally goes down to the level of basic
events whose probabilities can be reliably estimated from experience, judgment,
and.or data.

Example: Fault Tree Calculations for Car Accidents
at an Intersection

Setting: Suppose that a car accident (the top event) occurs at an intersection if and
only if (two cars approach the intersection at the same time from different directions)
AND (both cars proceed). The event “both cars proceed” can be further decomposed
into a logical subtree, as follows: (both cars proceed) if and only if [(the signal is
broken AND both cars proceed) OR (the signal is not broken AND both cars pro-
ceed)]. Reliable statistics show that the first event (sometimes called the imitating
event), namely, “Two cars approach the intersection at the same time from different
directions,” occurs with an average annual frequency of 100 times per year. The
signal is broken on 0.1% of these occasions (independently of traffic) and the con-
ditional probability that both cars will proceed, following the initiating event, is 0.1
if the signal is broken and 0.01 if it is not broken.

Problem: (a) What is the average annual frequency of accidents at the intersec-
tion, given these numbers? (b) What fraction of accidents would be prevented if the
signal never failed?

Solution: (a) The conditional probability of an accident, given the initiating
event, is Pr(signal is broken)∗Pr(both cars proceed | signal is broken) + Pr(signal
is not broken)∗Pr(both cars proceed | signal is not broken) = (0.1%)∗(0.1) + (1 –
0.1%)∗(0.01) = 0.0001 + 0.9999∗0.01 = 0.0101 (to four significant digits). (Here
“|” is read as “given” or “conditioned on.”) The average annual frequency of acci-
dents is this conditional probability times the average annual frequency of initi-
ating events: 0.0101∗100 = 1.01 accidents per year. (b) The contribution of acci-
dents with a broken signal to the total average annual frequency of accidents is only
(0.1%)∗(0.1)∗100 = 0.01 accidents per year. If the signal were never broken, then
the average frequency of accidents per year would still be 100∗0.01 = 1 accident
per year.

Comments: (a) Dominant contributors. In this example, accidents with the traf-
fic signal working constitute a dominant contributor to the average annual accident
frequency. This means that ignoring other, rarer events (namely, accidents with the
signal broken) yields the same calculated risk number (about one expected acci-
dent per year), to one significant digit. One way to simplify fault tree calcula-
tions is to focus on dominant contributors, neglecting events that are rare enough
that they do not change the numerical answer (within some desired level of pre-
cision, such as one or two significant digits). (b) Poisson probabilities. The calcu-
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lated risk of about one accident per year can be viewed as the mean of a rare-event
(approximately Poisson) process. This allows the probabilities for any number of
accidents per year (under current conditions) to be estimated: It is Pr(x accidents in
a year) = λexp(–λ)/x! for x = 0, 1, 2, . . . , where λ is the mean number of accidents
per year (approximately 1, in this example). For example, the probability of zero
accidents at this intersection in a year, if the accident process is Poisson with mean
1 accident per year, is e–1 = 1/2.718 = 0.368. (c) Obtaining probabilities for basic
events. If reliable statistics were not available for the probabilities that both cars
proceed when the signal is working and when it is broken, they might be estimated
from experiments (e.g., using driving simulator results), models of driver behavior,
or expert judgment. Uncertainty and sensitivity analyses would then typically be
used to determine by how much the calculated risk might change if different plausi-
ble estimates or better future information about these inputs were to be used in the
analysis. (d) Recursive deepening of a tree. Each event in a model, such as “both
cars proceed,” can potentially be expressed as a subtree consisting of a logical com-
bination of more refined event descriptions, e.g., “(both cars proceed and weather
is good) or (both cars proceed and weather is not good).” Infinite recursion is pre-
vented by stopping further decomposition when the current description allows basic
event probabilities to be quantified accurately enough to support risk management
decisions.

Event tree analysis begins with an “initiating event” and works forward to iden-
tify its potential consequences. In essence, an event tree is a decision tree without
decision nodes. It shows potential sequences of events, with the probability of each
branch leaving an event node (representing the possible resolution of an uncertainty,
often modeled as a possible value of a random variable) being conditionally inde-
pendent of earlier information, given that the branch point (i.e., that event node)
has been reached. The frequency of a given event sequence is then just the product
of the conditional branch probabilities along that path multiplied by the frequency
of the initiating event. Both fault trees and event trees can be represented as logi-
cally equivalent influence diagrams. They can be solved by more general-purpose
influence diagram algorithms (Barlow, 1998; Bobbio et al., 2001).

Structuring Risk Quantification and Displaying Results: Models
for Accident Probabilities and Consequences

A quantitative risk model typically consists of a formal mathematical and or sim-
ulation model of the system of interest, together with one or more consequence
attributes of interest and one or more alternative risk management decisions to be
evaluated or decision variables to be optimized. The model is used to predict the
probable consequences of alternative decisions. Preferred decisions are those that
yield preferred probability distributions (or, more generally, preferred stochastic
processes) for the consequences of interest.
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Risk modeling typically involves some or all of the following components.

• System representation (Barlow, 1998; Smith, 2005). An engineered system is
often represented mathematically in one of the following forms: (a) A “black-
box” statistical model (e.g., a lifetime hazard function quantifying the condi-
tional failure rate of a system for different ages or elapsed times, given that it
has not failed so far): (b) component failure rates combined via a coherent struc-
ture function (such as a fault tree or an event tree) mapping the states of system
components to the states of the system. (A coherent structure function must be
monotonically increasing, going from a system failure probability of zero if all
components work to a system failure probability of one if all components fail.);
(c) a stochastic state-transition model (e.g., a Markov or semi-Markov model
for transitions among working and failed components, representing component
failure and repair rates); (d) a discrete-event simulation model (Smith, 2005).

• Environment representation. Like a system model, a model of the environment
may be a statistical black-box model (e.g., a function describing the frequency
and intensity of stresses to the system’s components), a stochastic process, or a
simulation model. Plausible worst-case or bounding scenario analyses are some-
times used when probabilistic descriptions of uncertainty are unavailable or are
difficult to obtain. The model of the environment is often incorporated directly
into the system model, as with traffic levels and weather conditions in a traffic
accident model.

• Decision-rule representation. A decision rule for managing an engineered sys-
tem maps observed information about the system into a resulting action or
intervention. For example, a component may be replaced based on the observed
history of failures and repairs for its components. Optimization methods, includ-
ing recently developed simulation-optimization techniques (see, for example,
Ólafsson and Kim, 2002), can help to identify “good” or “best” decision rules,
given a system model, an objective function (e.g., a multiattribute utility func-
tion), and a model of the environment. Of course, many decisions in the real
world (even when informed by PRA) are made without a formal decision rule,
either because the PRA results themselves make the best decision clear or
because of the need to address the concerns of multiple stakeholders.

Example: Bug-Counting Models of Software Reliability

An example of a simple black-box risk model for software reliability is a “bug-
counting” model in which the (unknown) initial number of bugs in a piece of code
is represented by a random variable N with a prior distribution. As the code is tested
and debugged, the remaining number of bugs presumably decreases, and the ran-
dom times between successive bug discoveries stochastically increase. (Relatively
sophisticated models also allow for the possibilities that detection and repair are
imperfect processes and that debugging activities may introduce new bugs.) The
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empirical record of bug discoveries can be used to trigger a decision rule such as
“If no bugs have been discovered within M tester-hours, then release the software.”
Simulation optimization can then be used to numerically optimize the parameter
M. For analytic alternatives, see Singpurwalla and Wilson (1999) and Wilson and
Samaniego (2002).

Example: Risk Management Decision Rules for Dams
and Reservoirs

Wurbs (2005) describes the use of decision rules to manage water releases for dams
and reservoirs as follows:

Release decisions depend upon whether or not the flood control storage capacity is exceeded
. . . federal reservoirs are typically sized to contain at least a 50-year recurrence interval . . .

flood and, for many projects, design floods greater than the 100-year flood . . . , perhaps
much greater. A specified set of rules, based on downstream flow rates, are followed as long
as sufficient storage capacity is available to handle the flood without having to deal with the
water surface rising above the top of the flood control pool. . . . For extreme flood events
which would exceed the reservoir storage capacity, moderately high damaging discharge
rates beginning before the flood control pool is full are considered preferable to waiting
until a full reservoir necessitates much higher release rates.

The outputs from quantitative risk models are often summarized as F–N curves
(also sometimes called exceedance probability curves, or complementary cumula-
tive frequency distributions), showing the expected annual frequency F of fatalities
or damages exceeding any given level, N, for N > 0. (Technically, as discussed in
Chapter 5, such diagrams make sense only for compound Poisson processes, not for
more general renewal processes. However, F–N curves are often used to summarize
the results of PRA calculations, which typically use compound-Poisson approxima-
tions to risk in any case.) F–N curves are not perfect summaries of the distribution of
risk within a population, however – largely because they do not describe individual
risks, which may differ substantially. Other risk displays show how risk varies by
location, over time, and with other covariates. For example, it is common practice
to plot “risk contours” showing risks to individuals at different locations around a
potentially hazardous installation or transportation route.

Example: Different Individual Risks for the Same Exceedance
Probability Curve

Suppose that three people, 1, 2, and 3, live near two hazardous facilities, A and B.
Facility A can have any of three accidents: A small accident that kills individual 1
only; a medium-sized accident that kills individuals 1 and 2; or a large accident that
kills individuals 1, 2, and 3. If an accident occurs at facility A, it is equally likely to
be small, medium, or large. By contrast, an accident at facility B is equally likely to
kill individual 3 only, kill individuals 1 and 2, or kill all three. Accidents at facilities
A and B are equally frequent. Then A and B have identical F-N curves, since each
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accident (at either facility) has probability 1/3 of causing one fatality, 1/3 of causing
two fatalities, and 1/3 of causing three fatalities. But the individual risks from the
two facilities are very different. An accident at facility A has a 100% probability of
killing individual 1, a 2/3 probability of killing individual 2, and only a 1/3 probabil-
ity of killing individual 3; but an accident at facility B has a 2/3 probability of killing
each individual. This difference in the distribution of individual risks is not captured
in an F-N curve, but could be shown in a risk contour plot if the three individuals
are positioned at different locations.

Major technical challenges for developing PRA results include

1. Constructing and validating models of the system and its environment. Statistical
analysis of accident precursors uses data on “near-misses” to validate and refine
model-based predictions (Yi and Bier, 1998; Borgonovo et al., 2000; Phimister
et al., 2004). Powerful model-building and model-checking methods have also
been developed in the areas of system identification, which attempts to identify
dynamic system descriptions of input-output relations from observed time course
data (see Chapter 11), and data mining and machine learning, which seek to
learn correct models (or at least subsets of especially plausible models) directly
from data (see Chapters 6 and 7).

2. Calculating, simulating, or estimating probabilities of rare events. Methods for
addressing this challenge, such as importance sampling, adaptive importance
sampling, cross-entropy, and Markov chain Monte Carlo (MCMC) methods with
carefully designed transition kernels, have advanced significantly in recent years
(e.g., Bucklew, 2004; Rubinstein et al., 2004).

3. Treatment of dependencies among failure events and system components. Meth-
ods for treatment of dependencies presently include common-cause failure anal-
ysis (to show dependence in the failure rates of similar components due to a
common underlying cause), dependency matrices and event trees (to show the
dependence of some systems on “support” systems such as electric power), and
external-events analysis (to capture the fact that events such as earthquakes, fires,
and floods can affect multiple components of a system).

Quantifying Model Components and Inputs

A model typically expresses risk (e.g., the probability of failure by a certain time)
as a function of the performance of model components and or input parameters.
These must be quantified from available data, perhaps using a combination of expert
judgment and Bayesian statistics (due to the sparseness of directly relevant data). In
Bayesian statistics, a prior distribution is updated by conditioning on observed data
to yield a posterior probability distribution for the quantities of interest (Lee, 2004).
Such methods include hierarchical Bayesian methods (in which partially relevant
data are used to help construct the prior distribution) as well as empirical Bayesian
methods (in which the actual data for the problem at hand are used to help construct
the prior distribution); see Carlin and Louis (2000).
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Although Bayesian approaches to quantifying risk models are frequently applied
in practice, advances are still being made in numerous areas. These include design-
ing more flexible and tractable models for treating probabilistic dependence in risk
models, alternatives to relying on subjective prior distributions (which can be prob-
lematic if plausible differences in subjective priors significantly affect risk results),
and treatment of model uncertainty.

Modeling Interdependent Inputs and Events

If the state of a system is described by a coherent structure function, and each com-
ponent independently undergoes stochastic transitions over time (e.g., from “work-
ing” to “failed” to “repaired” or “replaced”), then the probability distribution for
the system’s state (i.e., the probability that it will be working rather than failed at
any time) can be obtained relatively easily. Stochastic simulation of the behaviors
of the components, or the routine application of combinatorial reliability models
and algorithms, such as fault tree analysis or event tree analysis, is practical even
for large systems. However, if component behaviors are interdependent (e.g., if each
component failure increases the stress on those components that have not yet failed),
then it becomes more complex to calculate the risk that the system will have failed
by any given time. Simulating interdependent behaviors may be straightforward in
principle, but, in practice, it requires specifying how events depend on each other –
a potential combinatorial nightmare.

Dependence can also be a problem for uncertainty analysis. In particular, the fail-
ure rates (or probabilities) of the various components can be uncertain and statisti-
cally dependent on each other, even if their behaviors are conditionally independent
given their failure rates. For example, learning that one component had a higher
failure rate than expected may cause one to increase estimates of the failure rates
of other similar components. The failure to take such dependence into account can
result in substantial underestimation of the uncertainty about the overall system fail-
ure rate (or probability), and in some cases also underestimation of the mean failure
probability of the system (e.g., if the components whose failure probabilities are
dependent are functionally in parallel with each other); see Apostolakis and Kaplan
(1981), Burmaster and Anderson (1994), and Kraan and Cooke (1997).

Historically, for reasons of computational tractability (among others), depen-
dencies among random variables have often been either ignored, or else treated
using unrealistic and simplistic assumptions such as perfect correlation. Fortu-
nately, substantial progress is being made in modeling dependencies among com-
ponents (and/or in the information about components). Two techniques, copulas
and Bayesian networks, have become popular for specifying dependency relations.
Bayesian networks are directed acyclic graphs (influence diagrams without deci-
sion nodes) in which nodes represent events and directed arcs (“arrows”) between
nodes show probabilistic dependencies. Each node’s value has a conditional prob-
ability distribution that depends only on the values of the variables that point into
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it. (Equally important, absent arrows indicate the conditional independence of each
variable from those that do not point into it, given the values of those that do.) Sam-
pling from the conditional distribution of each variable in turn, given the sampled
values of its predecessors (after sorting the variables so that each appears only after
those that point into it, if any), and repeating many times provides a way to sample
from the joint distribution of the variables without having to explicitly specify it.
[Such “Gibbs sampling” is a simple form of Markov chain Monte Carlo (MCMC)
sampling that is well suited for Bayesian networks. In effect, the joint distribution
is factored as a product of marginal distributions (for the input variables, mean-
ing those with no predecessors) and conditional distributions (for all other nodes),
thus allowing the potentially large size of a full joint distribution to be tamed by
the relative sparseness of significant dependencies among variables in most real-
world systems.] Free Windows software for Bayesian inference using Gibbs sam-
pling (“WinBUGS”), called from the free statistical computing environment R, can
be obtained by Googling on R2WinBUGS.

The use of copulas (functions that link a multivariate cumulative distribution to
its one-dimensional cumulative marginal distributions; see, for example, Nelsen,
1999) has also become increasingly common in both financial and engineering
risk analysis. Copulas have been applied, for example, to model dependencies
between opinions from different experts (Jouini and Clemen, 1996; Lacke, 1998)
and between system failure rates during normal and accident conditions (Yi and
Bier, 1998). They are used extensively in financial risk analysis (e.g., in the Gaus-
sian CreditMetrics or Basel II model) to describe correlated credit portfolio risks
and interdependent risks of default (Frey et al., 2001).

Of course, copulas are not always the most convenient way to represent depen-
dencies; see Joe (1997) for a compendium of multivariate distributions. Recently,
Merrick et al. (2005) used an inverted Wishart distribution to model uncertainty
about the dependencies among experts in assessing risks to the Washington State
Ferries system while allowing the analyst to “learn about the dependencies between
the experts from their responses.” This is achieved by asking the experts to provide
multiple different assessments of maritime risk under differing circumstances.

Cooke and colleagues (Bedford and Cooke, 2001; Kurowicka and Cooke, 2004)
developed a practical method for specifying a joint distribution over n contin-
uous random variables with specified rank correlations, using only n(n – 1))2
assessments of conditional correlations. Kurowicka and Cooke (2004) point out that
use of continuous multivariate distributions for a Bayesian belief net (a Bayesian
network) allows for more tractable Bayesian updating than the commonly used dis-
crete distributions (Lauritzen and Spiegelhalter, 1998).

Example: Analysis of Accident Precursors

Consider a risk analyst attempting to estimate the failure probabilities of critical
safety systems in a nuclear power plant in the event of an accident. Fortunately,
few if any accidents will have been observed on plants of that type, suggesting the



Quantifying Model Components and Inputs 47

analyst may use data regarding failure probabilities of those systems during routine
testing. However, this data will clearly be only partially relevant to the probabilities
to be assessed; for example, one might expect that many systems will have higher
failure probabilities under accident conditions than during routine testing.

Yi and Bier (1998) show how copulas can be used to represent dependency
between the system failure probabilities under normal versus accident conditions.
This makes it possible to perform a Bayesian update showing the effect of data col-
lected under normal conditions on the system failure probabilities under accident
conditions. Thus, for example, if routine testing showed a particular system to be
much less reliable than was previously believed, this information could be used to
update the expected failure probability of the system in the event of an accident.
However, Yi and Bier’s model is not sufficiently general to account for all relevant
prior assumptions about dependencies. Thus, further work is needed to enhance
ability to model dependencies.

Example: Flight-Crew Alertness

A challenge in modeling flight-crew alertness (Roelen et al., 2003) is that various
predictive variables are correlated not only with crew alertness, but also with each
other. For example, the crew’s workload on a given flight is likely to be a function
of both the length of the flight (with longer flights having higher total workload) and
how much the crew members rest during the flight (with more rest being associated
with a lower workload). However, assessing the combined impact of these variables
on crew alertness may be difficult if longer flights also allow more rest time during
flight.

Kurowicka and Cooke (2004) develop a continuous Bayesian belief net for this
situation to allow airline managers to identify ways to compensate for known causes
of poor alertness (such as long flights, or insufficient sleep prior to flight time).
By allowing the variables in their model to have continuous distributions (rather
than discrete distributions, which are more common in applications of Bayesian
belief nets), they were able to achieve a highly parsimonious model requiring the
assessment of only eight conditional rank correlations, compared to the many more
assessments that would have been required for a discrete model.

Some Alternatives to Subjective Prior Distributions

Unlike classical statistical procedures, Bayesian analysis can be used in situations
of sparse data, because subjective judgments and other nonstatistical types of evi-
dence can be used in Bayesian estimation, inference, and decision processes. How-
ever, with sparse data, the results of Bayesian analyses are often sensitive to the
analyst’s choice of prior probabilities for models and parameters. Hence, Bayesian
methods can be more subjective and less readily accepted when data are sparse.
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Maximum-entropy distributions have sometimes been proposed to help solve this
problem. They use whatever information is available about the uncertain quantity
of interest (e.g., mean, median, or mean and variance) to constrain the assumed
distribution for that quantity but presuppose as little additional information as pos-
sible beyond that, to avoid inadvertently assuming more than is actually known. A
maximum-entropy distribution is defined to be the least informative distribution (in
a precise technical sense) that satisfies the specified constraints (Jaynes, 2003). The
resulting distribution can then be used either as a prior distribution for Bayesian
analysis (if additional data become available) or as a partially informative distribu-
tion without updating. For example, Meeuwissen and Bedford (1997) use maximum
entropy to identify the minimally informative distribution with a given set of rank
correlation coefficients, using a piecewise constant numerical approximation (a so-
called chessboard distribution).

However, maximum entropy and related approaches (such as “noninformative
prior” distributions) lead to significant problems even in some relatively simple
examples. For example, if all we know about a random variable X is that it is
bounded by 0 and 1, then a maximum-entropy distribution for it would be uniform
between these limits. Of course, exactly the same reasoning presumably applies to
X2, but X and X2 cannot both be uniformly distributed between 0 and 1. Such lack of
invariance to transformations of variables (e.g., from half-life to decay rate) means
that maximum-entropy distributions may depend on essentially arbitrary choices of
scale, or of how to represent the same physical situation. In addition, the maximum-
entropy distribution can be difficult to compute in some cases (especially when quite
a bit is known about the quantity of interest, so that the maximum-entropy distribu-
tion must satisfy numerous constraints).

Such limitations have raised interest in “robust” Bayesian methods and other
bounding approaches. Robust Bayesian methods (Rios Insua and Ruggeri, 2000)
update an entire class, family, or set (usually convex) of prior distributions with
observed data, rather than just a single prior distribution. If the class is chosen
carefully, the computational effort required to update all distributions in the class
need not be substantially greater than for a single distribution. If all (or most) prior
distributions in a suitably broad class give similar results, this can lead to greatly
improved confidence in the results of the analysis.

In a similar spirit, probability bounds analysis (Ferson and Donald, 1998) propa-
gates uncertainties (rather than choosing a prior distribution for Bayesian updating).
The analyst specifies bounds on the cumulative distribution functions of the various
input parameters to a model, rather than selecting specific cumulative distributions.
These bounds are then propagated through the model. The uncertainty propagation
process, which again can be quite computationally efficient, yields valid bounds on
the cumulative distribution function for the final result of the model (e.g., a risk
level). This approach can take into account not only uncertainty about the proba-
bility distributions of the model inputs, but also uncertainty about their correlations
and dependence structure. This is valuable, because correlations will often be more
difficult to assess accurately than marginal distributions, and correlations of 1 or –1
among the input variables do not necessarily produce the most extreme possible
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distributions for the output variable(s) of interest; see, for example, Ferson and
Hajagos (2006).

Example: Effects of Exposure to Contaminated Soil

Ecological and environmental risk models frequently involve a high degree of uncer-
tainty, because some important parameters in the model may not be readily measur-
able.Consider theproblemofattempting toestimate theeffectof soil contaminationon
predator species (Hope, 1999), which may be exposed to contamination both directly
(through ingestion of soil) and indirectly (by ingestion of a variety of prey species).
Estimating the exposure to the predator species requires estimating the concentration
of the contaminant in the flesh of all prey species, some of which may themselves be
predators. This requires estimating the overall food and water intake and diet compo-
sition for each relevant species, as well as the uptake of the contaminant. Good data
or expert opinion may be available for some parameters, but for others (such as the
fraction of a particular predator’s diet made up of a particular prey species), experts
may feel uncomfortable assessing an informative probability distribution and may
prefer simply to state, for example, that the fraction must be between 0 and 1. Stan-
dard practice would either press the experts to provide informative distributions, or
simply assume a uniform distribution between 0 and 1, but this may not always con-
form to the experts’ judgments. Correlations between the fractions of the diet made
up of differing foods can also obviously be difficult to estimate reliably.

Regan et al. (2002) compare a traditional two-dimensional Monte Carlo anal-
ysis of this problem to the results obtained using probability bounds. Even using
bounds of 0 and 1 for some parameters, the qualitative conclusions of the analysis
(e.g., that the predator species of interest was “potentially at risk” from exposure to
soil contamination) remained essentially unchanged between the two-dimensional
Monte Carlo analysis and the probability bounds analysis. Thus, bounding analy-
sis can help support a particular decision if it shows that the qualitative results and
recommendations resulting from the analysis are not highly sensitive to the specific
choices of probability distributions used in the simulation.

The use of subjective prior probabilities and judgment-based probability models
can also be simplified or avoided in many situations where probability theory pro-
vides the required forms of distributions and/or useful bounds on the probable values
of uncertain quantities. Table 2.1 summarizes some important classes of situations
where probability theory prescribes distributions and bounds. [Table 2.1 assumes
familiarity with the various distributions mentioned, such as Poisson, Weibull, expo-
nential, gamma, Gumbel, normal, and lognormal. See Ross (1996) and the hyper-
links in the table for technical details of these distributions and topics. Googling
on the distribution names and italicized topics in Table 2.1 will provide a host
of web resources and authoritative references, even if these specific links become
obsolete.]

Many of these results can be applied even when the correct probability distribu-
tions are unknown or are only partly known, perhaps from statistical sampling or
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simulation modeling that provides estimates of means and variances. For example,
the sums, maxima, and minima of repeated random samples from most distribu-
tions encountered in practice have asymptotic distributions (as the number of sam-
ples becomes large) that do not depend on the specific distribution being sampled.
Thus, it is unnecessary to know the underlying “parent distribution” to quantify the
distribution of these statistics, all of which are of interest in various risk analysis
applications. Similarly, a variety of inequalities quantify how unlikely it is that a
value sampled from a distribution will fall far from its expected value. Again, these
bounds do not require detailed knowledge of the parent distribution. As a result,
empirical data that give only limited information about a risky process may still be
adequate to obtain useful quantitative bounds on risks of interest.

Example: The “Rule of Three” for Negative Evidence

Setting: People sometimes worry about events that might happen in theory, even
though they have not (yet) happened in practice. How reassuring should one con-
sider such “negative evidence” (i.e., the absence of occurrences of a feared event,
despite past opportunities for occurrence), bearing in mind the adage that “Absence
of proof [of a hazard] is not proof of absence”? This can be an important topic
when new technologies or poorly understood systems are involved, ranging from
the Large Hadron Collider particle accelerator at CERN, which some feared might
destroy the world by producing micro black holes, to the systems of interlocking
safeguards that countries establish to try to protect against diseases such as bovine
spongiform encephalitis (BSE, or “mad cow” disease). We will use the latter exam-
ple to illustrate how negative evidence (i.e., the observation that a feared event has
not yet been observed) can be used to bound risk.

Problem: Supposed that a country concerned about the possibility that its domes-
tic cattle might be infected with BSE tests 1,000,000 randomly selected cattle and
finds no cases. How confident can one be, based on this data, that the true preva-
lence proportion of BSE in the sampled population is not large? Assume that how
BSE originates and spreads among cattle is not understood well enough to simulate
or model with high confidence and that the effectiveness of any safeguards against
BSE is not yet known. Thus, we want an upper-bound risk estimate based on the
empirical “negative evidence” of no observed cases among a million animals tested,
since calculations based on a well-validated understanding of the BSE disease pro-
cess are not available.

Solution: A useful nonparametric confidence bound is based on the following
“rule of 3” (Chen and McGee, 2008): If an event that has the same probability p
(which may be unknown) of occurring on each trial has not occurred in any of N
independent trials (e.g., in a simple random sample of size N), then, with at least
95% confidence, its occurrence probability on each trial satisfies p ≤ 3/N. Thus,
the unknown prevalence proportion of detectable BSE in this example would satisfy
p ≤ 3/1,000,000 = 0.000003. This bound does not require or assume any specific
prior distribution for p, or any knowledge of the (probably complex) processes by
which BSE might enter the country and spread domestically.
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Example: A Sharp Transition in a Symmetric Multistage
Model of Carcinogenesis

Setting: This example illustrates how probability laws can be used to model complex
processes such as cancer, even if the molecular-level details of causal pathways are
unknown. As a simplified illustration, consider the following symmetric multistage
model of carcinogenesis. A cell line gradually accumulates transformations (e.g.,
somatically heritable mutations) from a set of K possible transformations. Transfor-
mations occur randomly and independently over time. The K transformations arrive
according to independent Poisson processes, with (at least approximately) equal
intensities, given by λ average occurrences per unit time. (Transformations with
occurrence rates much less than this common value are not rate-limiting and thus
may be disregarded.) Once any of the K transformations has occurred, we assume
that it is permanent and irreversible. If a specific transformation occurs more than
once, the occurrences after the first one are wasted, i.e., the cell genotype has already
acquired that transformation and does not reach malignancy any faster if it occurs
again. The cell line survives for a finite lifetime of duration T. If all K distinct trans-
formations occur before time T, then the cell line becomes malignant.

Problem: Under these conditions, what is the probability that the cell line will
become malignant before death at time T? If it does become malignant before time
T, then what can be said about the (random) time at which the first malignant cell is
formed?

Solution: The somewhat surprising answer is that, for sufficiently large K, there
is a “sharp transition” time such that the first malignant cell is very unlikely to be
formed much sooner or much later than that time. In other words, a nearly determin-
istic occurrence time for the first malignant cell emerges simply as a consequence
of there being many stages in this simple stochastic transition model.

Result: In this completely symmetric multistage model, there is a “sharp tran-
sition” time T∗ ≈ (1/λ)[(ln(K) + γ], where λ is the expected number of transfor-
mations events per unit time, i.e., their average occurrence rate, and γ = Euler’s
constant = 0.57721. . . . In particular, the expected time until the first malignant cell
is formed is T∗; moreover, the coefficient of variation of the actual (random) time
of formation of the first malignant cell (i.e., the ratio of its standard deviation to T∗)
approaches 0 for large K.

Proof: The expected number of transformation occurrences, including wasted
(i.e., repeated) ones, until a malignant cell is formed (i.e., until all K transformations
have occurred at least once) is given by the harmonic sum: E(n∗) = K(1 + 1/2 +
1/3+ . . .+ 1/K)≈ K[(ln(K)+ γ], where n∗ denotes the random number of the trans-
formation occurrence event at which all K transformations are first completed and γ

is Euler’s constant, γ= 0.57721. . . . This follows from previously known results for
the “Coupon Collector’s Problem” with equal probabilities (e.g., Ross, 1996, p. 414;
Motwani and Raghavan, 1995) or for the maximum of K independent exponential
random variables (e.g., Nelson, 1995, p. 173). [Intuitively, this result is motivated
by the fact that any of the K transformations can occur first and be nonredundant,
after which the probability that the next transformation is nonredundant drops to
(K – 1)/K, then to (K – 2)/K, . . . , and finally, for the last transformation, to 1/K.] The
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expected time until a malignant cell is formed is therefore T∗ = E(t∗) = E(n∗)/(Kλ)
≈ (1/λ)[(ln(K) + γ], where T∗ denotes the random time at which all K transforma-
tions are first completed, and Kλ is the rate at which transformation events arrive
(since each of the K types independently arrives at rate λ). This proves part (a) of
the theorem. The fact that the probability distribution of n∗ has a sharp concentra-
tion around E(n∗) is proved in Motwani and Raghavan (1995). Given this key result,
hold n∗ fixed. The time until n∗ transformations (including redundant ones) have
occurred has a gamma distribution with mean n∗/(Kλ) and variance n∗/(K2λ2), by
standard results for waiting times in Poisson arrival processes and for the mean and
variance of the gamma distribution (e.g., Ross, 1996, p. 18). The ratio of the stan-

dard deviation to the mean of this waiting time is therefore (n∗)–1/2 ≈ [K((ln(K) +
γ)]–1/2, which goes to 0 as K increases.

Discussion: An interesting, and perhaps unexpected, aspect of this result is that
it establishes a form of nearly deterministic behavior for a stochastic system: If
the sharp transition time T∗ is smaller than the death time T, then formation of
a malignant cell by time T is almost certain; otherwise, it is very unlikely. (This
qualitative behavior is typical of what is sometimes called a 0–1 law in stochastic
processes.)

If K is not large enough to guarantee a sharp transition at time T∗, then the qual-
itative behavior can be generalized as follows: For any ε > 0, no matter how small,
there is an interval of times [T–, T+] such that the probability of a malignant cell
being formed before T– or after T+ is less than ε. The cumulative probability distri-
bution for the occurrence time of the first malignant cell increases from almost 0 to
almost 1 over this interval. As K increases, the width of this interval shrinks toward
zero, with T– and T+ approaching a common value, T∗.

Realistic models of carcinogenesis are more complex than this example (see, for
example, Chapters 11 and 12), but this simplified illustration shows that sometimes
the behaviors of complex stochastic systems can be described well by phase tran-
sitions and probability laws, even if the details of the systems (such as which spe-
cific events occur along different causal pathways leading to cancer) are unknown.
(Chapter 16 describes a similar phase-transition result for the ability of telecom-
munications networks to recover from deliberate coordinated attacks at multiple
locations.)

Dealing with Model Uncertainty: Bayesian Model Averaging
(BMA) and Alternatives

Copulas and maximum-entropy methods are mainly used to deal with uncertain-
ties about the parameters and input distributions for particular models. However,
model uncertainties about (a) which variables to include in a model when many
potential predictors (including some possibly irrelevant ones) have been measured
and (b) the most appropriate functional form for a model – or, more generally, how
to calculate or predict a model’s outputs from its inputs – are even more impor-
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tant in practice than input and parameter uncertainties, in applications ranging from
dose-response models in toxicology to the reliability modeling of complex systems.
Some researchers have suggested assessing a probability distribution over multi-
ple plausible models by evaluating the consistency of the various models with the
observed data (in much the same way as the likelihood function in Bayesian updat-
ing evaluates the consistency of various parameter values with observed data) and
determining how much weight to put on each model based on its consistency with
the data. Failing to consider model uncertainties can lead to spuriously narrow statis-
tical confidence intervals for parameter estimates and to spuriously high confidence
in model-based predictions (Hoeting et al., 1999).

However, it is frequently not reasonable to attempt to estimate the probability
that a given model is “correct,” because, as Box (1979) pointed out, “All mod-
els are wrong, some models are useful.” For example, it seems highly implausi-
ble that any of the current models for estimating the probability of human error
on a given task is close to being “correct” (because all are gross oversimplifica-
tions of the real world), nor can the current models be considered a collectively
exhaustive set of possible models of human error. Bayesian updating of probabil-
ity distributions over such partial subspaces of possible models may not always
work well in practice. Some models may be intentionally conservative (e.g., for
regulatory and/or screening purposes) or intentionally simplified (e.g., for computa-
tional tractability, or to yield qualitative insights). That such models may be incon-
sistent with observed data does not necessarily invalidate their use for their intended
purposes.

Finally, of course, more complex models, with larger numbers of parameters,
will often fit the observed data well in many situations (subject to the possible lim-
itations of overfitting), but may not always be preferable, if only for reasons of
parsimony and/or generalizability. Thus, standard approaches for dealing with
uncertainty probabilistically are often not well suited for handling model uncer-
tainty. Bayesian model averaging (BMA) (see Chapter 7) was motivated largely by
these challenges. BMA avoids basing all of one’s conclusions on any single model
if multiple models are about equally plausible. It avoids giving high weight to mod-
els that are excessively complex if simpler ones give comparably good (or better)
descriptions of the data, as measured by the likelihood of the data given a model.
BMA generally performs reasonably well in practice, e.g., as evaluated by its abil-
ity to give well-calibrated uncertainty interval estimates for uncertain outputs, taking
into account model uncertainty (Hoeting et al., 1999; Raftery and Zheng, 2003).

An alternative that avoids assigning probabilities to individual models, “compre-
hensive uncertainty evaluation” (Brown, 1999), involves subjectively adjusting the
probability distributions resulting from a particular model to try to take into account
known weaknesses of the model (such as conservatisms, or risks that are not ade-
quately modeled). This is consistent with subjective utility theory and avoids some
of the theoretical conundrums associated with assigning probabilities to models.
Brown has applied this method (for example, to support regulatory decision making
for nuclear power plants), but it has not yet seen widespread application by other
analysts in practice.
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In many applications of Bayesian analysis to situations involving model uncer-
tainties, the input parameters are assumed to be known, and the model results are
used to update the prior distribution over model outputs (see, for example, Chick,
1997). However, observing the output of a model could also cause one to revise the
prior distribution over model inputs if the true values of the model outputs were
known reasonably well (e.g., from empirical data). Thus, for example, Bayesian
analysis could be used to estimate which values for the rate of disease progres-
sion are most consistent with the observed data on disease prevalence and severity
(Andradóttir and Bier, 2000).

Risk Characterization

The output of a PRA to support risk management decision making is a characteriza-
tion of the risk for each decision option being evaluated. Occasionally, the decision
task is to identify an optimal risk management policy from a large set of possi-
bilities, rather than to explicitly characterize the risks for each of a small number
of alternatives. Then, simulation-optimization algorithms or special-purpose tech-
niques such as Markov decision processes or stochastic optimal control theory may
be required (see Tables 2.2 and 2.3). However, explicit comparison of risks from a
few options is more usual, and is the main focus of this section.

“Risk” is usually defined in engineering risk assessments and PRA as the fre-
quency and severity of losses arising from operation of the designed system in its
uncertain environment, including a specification of losses (i.e., which adverse conse-
quences matter, and to whom). An effective display of risk shows how it is affected
by different actions (e.g., different risk management decisions) and allows “drill-
down” to view the risks to particular subpopulations, as well as the contributions of
various different causes to the overall level of risk. For example, seeing how risk
curves shift when risk-reducing measures are implemented would help managers
identify the most effective measures. Uncertainty and sensitivity analysis are also
essential to risk characterization, because they support estimates of the value of
information.

Engineering vs. Financial Characterizations of “Risk”: Why Risk
Is Not Variance

The variance (or standard deviation) of the return on investment is widely used as a
measure of risk in financial risk analysis, where mean-variance analysis is applied
to calculate “efficient” frontiers and undominated portfolios, defined as those hav-
ing maximum expected return for a given variance. Why, then, do health, safety,
environmental, and reliability risk analysts insist on defining risk more flexibly, as
being determined by probabilities and consequences, rather than simply by vari-
ances (or, for that matter, semivariances, value-at-risk, or modern coherent risk mea-
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Table 2.3 Selected literature on decision optimization frameworks and algorithms

• Decision trees:
◦ Game Trees for Decision Analysis – Shenoy (1996),

http://citeseer.ist.psu.edu/shenoy96game.html
• Influence diagrams and Bayesian networks:

◦ Sampling Methods for Action Selection in Influence Diagrams – Ortiz, Kaelbling
(2000), http://citeseer.ist.psu.edu/ortiz00sampling.html

◦ A Forward Monte Carlo Method for Solving Influence Diagrams. – Charnes, Shenoy
(2000), http://citeseer.ist.psu.edu/charnes00forward.html

◦ A Simple Method to Evaluate Influence Diagrams – Xiang, Ye (2001),
http://citeseer.ist.psu.edu/ye01simple.html

◦ Learning Bayesian Networks with R, http://www.ci.tuwien.ac.at/Conferences/DSC-
2003/Proceedings/BottcherDethlefsen.pdf;
see also http://www.cs.ubc.ca/∼murphyk/Software/bnsoft.html

• Markov decision processes (MDPs) and partially observable MDPs (POMDPs):
◦ Reinforcement Learning for Factored Markov Decision Processes – Sallans (2002),

http://citeseer.ist.psu.edu/sallans02reinforcement.html
◦ Symbolic Dynamic Programming for First-Order MDPs – Boutilier, Reiter, Price

(2001), http://citeseer.ist.psu.edu/boutilier01symbolic.html
◦ Speeding Up the Convergence of Value Iteration in POMDPs – Zhang, Zhang (2001),

http://citeseer.ist.psu.edu/zhang01speeding.html
◦ Solving POMDP by On-Policy Linear Approximate Learning Algorithm – He (1999),

http://citeseer.ist.psu.edu/335710.html
• Optimal and robust control and reinforcement learning for uncertain and nonlinear systems:

◦ Feedback Control Methodologies for Nonlinear Systems – Beeler, Tran, Banks (2000),
http://citeseer.ist.psu.edu/Beeler 00feedback.html (for deterministic nonlinear systems)

◦ An Overview of Industrial Model Predictive Control Technology – Qin,
Badgwell (1997), http://citeseer.ist.psu.edu/qin97overview.html

◦ http://citeseer.ist.psu.edu/kaelbling96reinforcement.html
◦ http://citeseer.ist.psu.edu/sutton98reinforcement.html
◦ http://www.princeton.edu/∼noahw/palgrave2.pdf (introduces robust control)

• Simulation-optimization:
◦ A Survey of Simulation Optimization Techniques and Procedures – Swisher, Jacobson

et al. (2000), http://citeseer.ist.psu.edu/517471.html
◦ Simulation Optimization of Stochastic Systems with Integer Variables by Sequential

Linearization – Abspoel et al. (2000), http://citeseer.ist.psu.edu/516176.html
◦ Simulation Optimization: Methods and Applications – Carson, Maria (1997),

http://citeseer.ist.psu.edu/carson97simulation.html
◦ http://opttek.com/simulation.html (overview and link to commercial software)

• Minimal-regret, online, and adaptive learning algorithms:
◦Minimizing Regret: The General Case – Rustichini (1999),

http://citeseer.ist.psu.edu/rustichini98minimizing.html
◦ Adaptive Strategies and Regret Minimization in Arbitrarily Varying Markov

Environments – Mannor, Shimkin (2001), http://citeseer.ist.psu.edu/467490.html
◦ Nearly Optimal Exploration-Exploitation Decision Thresholds – Dimitrakakis (2006),

http://citeseer.ist.psu.edu/dimitrakakis06nearly.html
◦ Combinatorial Online Optimization in Real Time – Grötschel, Krumke,

Rambau (2001), http://citeseer.ist.psu.edu/448491.html; see also
http://citeseer.ist.psu.edu/foster97regret.html
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sures developed in financial risk theory)? This section suggests a partial answer by
providing a simple proof that mean-variance decision making violates the princi-
ple that a rational decision maker should prefer higher to lower probabilities of
receiving a fixed gain, all else being equal. Indeed, simply hypothesizing a contin-
uous increasing indifference curve for mean-variance combinations at the origin is
enough to imply that a decision maker must find unacceptable some prospects that
offer a positive probability of gain and zero probability of loss. Unlike some pre-
vious analyses of the limitations of variance as a risk metric, this section does not
require the additional framework of von Neumann-Morgenstern utility theory.

Incompatibility of Two Suggested Principles for Financial Risk
Analysis

Two plausible principles for managing financial investment risks are the following:

1. Rule 1: Make dominating choices. Other things being equal, given a choice
between a smaller probability of gain and a larger probability of gain, a deci-
sion maker should always choose the larger probability of gain. For example,
given a choice between winning $100 with probability 0.1 and winning $100
with probability 0.2, rational decision makers who prefer more dollars to fewer
should choose the option that gives a 0.2 probability of winning the $100.

2. Rule 2: Seek mean-variance efficiency (higher variance requires higher mean
return). Given a choice among risky prospects, an investor should require more
expected return to accept a prospect with more variance than to accept a prospect
with less variance. For example, a 0.2 chance of winning $100 (else nothing) has
a higher variance than a 0.1 chance of winning $100, but it also has a higher
mean.

Rule 1 is implied by the decision-analytic principle of first-order stochastic dom-
inance (Sheldon and Sproule, 1997): Prospects that give higher probabilities of
preferred outcomes (and lower probabilities of less preferred outcomes) should
be preferred. Rule 2 provides the basis for many current efficient portfolio
and mathematical optimization (e.g., quadratic programming) approaches to opti-
mal investment (http://en.wikipedia.org/wiki/Modern portfolio theory). Although
theorists have noted that some risk-averse decision makers may prefer some
mean-preserving increases in variance (ibid.), the idea that volatility in returns, as
measured by variance or standard deviation, is generally undesirable to risk-averse
investors, and that it should be avoided or compensated by higher expected returns,
is still widely taught and practiced.

However, Rules 1 and 2 are incompatible in general. Simply hypothesizing that
a decision maker has continuous upward-sloping indifference curves for mean-
variance combinations (so that increasing the variance in the random return from
an investment prospect or portfolio requires increasing its mean return in order to
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leave the investor equally well off) violates Rule 1 for some simple prospects, as
demonstrated next.

Following the literature on mean-variance decision making, suppose that a deci-
sion maker has positively sloped continuous indifference curves in mean-variance
space (e.g., Wong, 2006). To any mean-variance pair (m, v) (a point in the mean-
variance space) there corresponds a certainty equivalent: namely, the point at which
the indifference curve through (m, v) reaches the horizontal (mean) axis. The indif-
ference curve through the origin (0, 0) separates acceptable risks (those with pos-
itive certainty equivalents, lying below and to the right of the curve, if return is
desirable) from unacceptable risks (those with negative certainty equivalents, lying
above and to the left of it). To make an unacceptable risk acceptable in this frame-
work, one must either increase its mean return or reduce its variance. (A risk-neutral
decision maker who cares only about means and not about variances would have
vertical indifference curves, but we will focus on the case, implied by Rule 2, of
positively sloped indifference curves.)

The hypothesis that upward-sloping mean-variance indifference curves exist has
some surprising consequences.

Theorem 1 If the indifference curve through the origin slopes upward, then the
decision maker finds unacceptable some prospects with positive expected values
and no possibility of loss.

Proof The proof is constructive. Let the slope of the indifference curve through
the origin be s at the origin. By hypothesis, 0 < s ∞. Now, consider a Bernoulli
random variable X(p) that gives a positive return of 2s with probability p (the “win
probability”) and no return ($0) with probability (1 – p). For a given value of p
between 0 and 1, inclusive, X(p) has mean 2ps and variance 4s2p(1 – p) (since it is a
scaled version of a Bernoulli random variable). Therefore, as p ranges from 0 to 1,
X(p) traces out a parabola in mean-variance space, with variance = 0 at p = 0 and
at p = 1, and with a positive maximum variance of s2 at p = 0.5 (see Fig. 2.1). A
line from (0, 0) to the point on this parabola corresponding to a particular value of p
has slope 4s2p(1 – p)/2ps = 2s(1 – p). As p approaches 0, this slope approaches 2s.
Hence, the parabola traced out by X(p) as p ranges from 0 to 1 starts above and to the
left of the indifference curve through the origin (since it is constructed in such a way
as to have twice the slope of the indifference curve at the origin), but it ends below
and to the right of the indifference curve [since it is constructed to pass through the
point (2s, 0) when p = 1]. Therefore, the parabola must intersect the indifference
curve somewhere above and to the right of the origin (since it starts above it and ends
below it). Let p∗ denote the value of the win probability for this intersection point.
Then the decision maker prefers (0, 0) to all prospects X(p) with p < p∗ since, by
construction, these are unacceptable (i.e., above and to the left of the indifference
curve through the origin). Hence, the decision maker finds unacceptable all such
prospects giving probability p of 2s (else $0) for p < p∗ even though he or she has
positive win probabilities and even though none of them offers the possibility of a
loss.



64 2 Introduction to Engineering Risk Analysis

Variance σ2

Mean 
μ

upward-sloping 
indifference curve 
through origin (0, 0) 

p = 0,
mean = 0,
variance = 0

p = 0.5,
mean = s,
variance = s2

p = 1,
mean = 2s,
variance = 0

Curve of mean-variance combinations, 
 (2ps, 4s2p(1 – p)), for X(p), 0 ≤ p ≤ 1.  (All  
should be preferred to (0, 0) based on Rule 1.) 

s2
“acceptable” risks 
(preferred to (0, 0) based 
on mean-variance, Rule 2) 

“unacceptable” risks 
(dispreferred to (0, 0) 
based on Rule 2) 

Points with 
positive win 
probability but in 
“unacceptable” 
region 

slope at origin = s

slope at origin = 2s

Fig. 2.1 Geometry of inconsistency between Rules 1 and 2

The proof of Theorem 1 implies that if the indifference curve through the origin
has positive slope, then the decision maker prefers some prospects that give zero
probability of winning a positive amount (namely, 2s) to other prospects that give a
positive probability of winning the positive amount (and otherwise nothing). Such
a decision maker prefers the status quo or “nothing ventured, nothing gained” point
(0, 0) to the possibility of winning a positive amount without any possibility of a
loss, violating Rule 1. In this sense, Rules 1 and 2 are incompatible.

More generally, other parabolas can easily be constructed that intersect indif-
ference curves twice, once for the ascending (positively sloped) portion of the
parabola and once for its descending (negatively sloped) portion (Borch, 1969). In
any such construction, the rightmost intersection represents a stochastically dom-
inant prospect (which should be preferred, by Rule 1) compared to the leftmost
intersection. That both points lie on the same indifference curve violates Rule 1.

In summary, although students of elementary finance are often taught that “risk”
should be characterized by the variance or standard deviation of returns around an
expected value, students of health, safety, environmental, and reliability risk analysis
are usually taught instead that “risk” is determined by the probabilities of different
consequences. Theorem 1 shows why the second approach (considering different
specific consequences, such as $0 and $2s, and their probabilities) can be preferable
to considering only means and variances.

The finding that variance is problematic as a measure of risk has a history at least
several decades old in the financial and decision sciences literatures. A common cri-
tique in the theoretical decision analysis and financial economics literatures is that
mean-variance analysis is compatible with von Neumann-Morgenstern expected
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utility theory only under restrictive conditions (e.g., if all risky prospects have
normal or location-scale distributions and utility functions are quadratic, implying
that less money is preferred to more, for some amounts) (Markowitz, 1959; Baron,
1977). Mean-variance dominance and stochastic dominance relations for location-
scale distributions do not coincide in general (Wong, 2006). Indeed, expected utility
theory is inconsistent with all possible moment-based preference models (in which
preferences are determined by mean, variance, skewness, kurtosis, etc.) for many
utility functions (Brockett and Kahane, 1992). Variance is also inconsistent with
proposed normative axioms for “coherent” financial risk measures (nonnegativity;
homogeneity and subadditivity, which together imply that deterministic outcomes
have zero risk; and shift-invariance, which implies that adding a constant to a ran-
dom variable does not change its risk) (Pedersen and Satchell, 1999). Empirical
studies since the 1960s have demonstrated that real decision makers pay attention
to more than mean and variance in their choices among risky prospects (Jia et al.,
1999).

Thus, Theorem 1 is consistent with a long line of previous research. However, in
contrast to much previous work, it demonstrates a conflict between Rules 1 and 2
making only minimal assumptions (in particular, not requiring the framework of von
Neumann-Morgenstern expected utility theory or other sets of normative axioms for
risk measures) and using only elementary mathematics. It may therefore be useful
for understanding why specifying the variances and expected returns from alterna-
tive investment choices (or other actions) does not adequately characterize risk or
identify the choice with the most desirable probability distribution of consequences.

In fairness, it should be noted that financial risk analysts have developed much
more sophisticated and satisfactory measures of risk than variance and that charac-
terizing risk by frequency and severity is not problem-free (see Chapter 5). A recent
triumph of financial risk theory has been the definition and analysis of coherent
risk measures (Artzner et al., 1999). These provide formulas for assigning numbers
to risky prospects so that normative axioms are satisfied, such as that risk remains
unchanged if the same predictable constant is added to or subtracted from all pos-
sible consequences of a prospect; and that comparisons of risk should be logically
consistent with each other over time. Financial risk theorists have shown that vari-
ous sets of normative axioms imply intuitively pleasing quantitative representations
of risk, such as that the “risk” of a financial prospect is its minimum (worst-case)
expected net present value (ENPV), when ENPVs are calculated for each of a set of
mutually consistent probability measures (Riedel, 2004). Older proposed measures
of financial risk, including variance and Value-at-Risk (VaR), which reflects the
probability of losing at least a specified amount, do not satisfy these axioms (Artzner
et al., 1999; Pedersen and Satchell, 1999). Although coherent risk measures provide
a substantial advance in methodologies for characterizing financial risks, they do not
apply to other risks that cannot be traded, valued, or diversified away via financial
markets. The characterization of health, safety, environmental, and reliability risks
in terms of probabilities or frequencies of different consequences, having different
magnitudes or severities, is still the norm. Chapter 5 discusses further the use and
limitations of frequency in risk characterization.
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Challenges in Communicating the Results of PRAs

Risk communication (including both presenting the results of risk analyses to stake-
holders, decision makers, and other audiences, and listening to and actively eliciting
their concerns so that they can be addressed in the risk analyses in the first place)
facilitates the effective participation and interaction of technical experts, stakehold-
ers, and decision makers in risk management decisions and deliberations. There is
an extensive body of literature on risk communication (including guidelines, survey
results, experiments, and web resources on risk communication).

Even more than PRA, risk communication is still an art rather than a science, but
one that can be informed and improved by theory, experience, and experiments. Cur-
rent challenges in risk communication include dealing with framing effects, com-
municating highly technical results to decision makers who may not be intimately
familiar with some of the methods used in the risk analysis, and building trust among
affected stakeholders and members of the public more generally. Adding to the dif-
ficulty is the fact that the communication and presentation styles that are most effec-
tive in accurately expressing the technical content of risk assessment findings may
not always be those that invite and elicit public understanding, participation, and
interaction.

Cullen and Frey (1999) discuss the distinctions between state-of-knowledge
uncertainty and population variability (sometimes referred to simply as uncertainty
and variability, respectively). State-of-knowledge uncertainty typically reflects
uncertainties that affect all of the units being studied (e.g., can certain standardized
industrial systems fail in a particular way? Can a certain chemical cause particu-
lar health effects?). These uncertainties could be reduced through further research.
Variability refers to variations among the elements being studied (often assumed to
be due to randomness in production processes, phenotypes, etc.). For example, dif-
ferences in how different individuals in the population would respond to a chemical
being studied, or strengths of different samples of a material, would reflect variabil-
ity. Variability is often taken to be essentially irreducible through further study.

With the development and increased popularity of so-called second-order Monte
Carlo analysis for quantifying uncertainty about risks, it is now common practice
to distinguish between uncertainty and variability. This increases the value of the
risk analysis for decision making, because different policy options may be appropri-
ate for dealing with uncertainty rather than variability. For example, in situations of
high population variability but low state-of-knowledge uncertainty, such as airbag
effectiveness (Thompson, 2002), it may make sense to target risk-reducing efforts
at those facilities or members of the population with the highest estimated risks (in
this case, children and small adults). By contrast, situations of low variability but
high uncertainty would tend to suggest that further research may be desirable before
undertaking costly risk reduction actions. However, the widespread use of second-
order Monte Carlo simulation does increase the challenges of effectively commu-
nicating ever more sophisticated and sometimes abstruse risk analysis methods and
results to decision makers and members of the public in a way that clearly supports
improved decision making (Bier, 2001a).
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Of course, technically accurate risk communication by itself is not sufficient to
achieve other key goals of risk communication, such as changing people’s behavior
(Blaine and Powell, 2001), gaining their trust in the results of the analysis, or even
giving them the information they need to make improved decisions. Rather, effec-
tive and persuasive communication about risks generally requires a concerted effort
to build trust, gain and maintain credibility and legitimacy, and summarize relevant
information simply and clearly (Bier, 2001b). Brevity, clarity, focus, candor, the use
of cogent examples, and avoiding negative stereotypes of risk communicators may
be crucial for communicating technical risks to nonspecialist audiences in a way that
ensures the message is heard and absorbed rather than tuned out or dismissed (e.g.,
Byrd and Cothern, 2000). As discussed in Chapter 1, audience members generally
respond not only (and sometimes not primarily) to technical information about risks,
but also to message framing, the source of the information, and the emotional style
and assumed motives of the presenter in assessing the credibility of risk communi-
cation messages (Chartier and Gabler, 2001).

Methods for Risk Management Decision Making

Formal methods of decision analysis and optimization for uncertain systems have
been extensively developed in operations research and systems engineering and
applied to both the design and the operation of complex engineering and indus-
trial systems. Table 2.2 sketches some of the best-known frameworks for decision
making when a decision maker’s choice of act is related only probabilistically to
resulting consequences.

Although some of the methods and algorithms mentioned in Table 2.1 are quite
sophisticated, most share a simple common structure. The risk manager must choose
from a set of feasible controllable inputs that influence a system’s behavior. There
are other facts and inputs (sometimes thought of as being selected by “Nature” or
“Chance,” and referred to as the state of the world) that cannot be directly selected
by the risk manager but that also influence the system’s behavior. The risk man-
ager’s acts and the state of the world together determine probabilities for different
consequences (and for the system’s next state, in systems dynamics and optimal con-
trol formulations of decision problems). Finally, a utility function represents pref-
erences for different consequences (or time streams of consequences) produced by
the system.

Various optimization algorithms and heuristics can be used to identify optimal
(i.e., expected utility-maximizing) or approximately optimal acts (i.e., values of
controllable inputs), given available information, or to identify optimal or approxi-
mately optimal decision rules (also called policies) that prescribe what acts to take
based on the information available when decisions are made. Optimization algo-
rithms for solving decision problems are constantly being refined and improved
by ongoing research. Thus, it is worth Googling the topics and solution meth-
ods in Table 2.2 (leftmost and rightmost columns, respectively) before selecting a
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framework and solution methods for a particular problem. As of this writing (in
2008), the links in Table 2.3 provide points of entry to the technical literature and
solution algorithms.

An important principle that cuts across many solution techniques for complex
decision models is that adaptive random sampling of potential solutions is compu-
tationally tractable and finds “good” (optimal or nearly optimal) solutions to many
problems that are too hard (e.g., too computationally complex) to solve using exact
methods. Monte Carlo methods and related meta-heuristics (such as genetic algo-
rithms, simulated annealing, Tabu Search, or particle swarm optimization) can esti-
mate and optimize the expected utility of different acts or decision rules even for
large and complex stochastic systems. Much as the mean value of a variable in a
population can be estimated accurately from a random sample, regardless of the
uncertainties and complexities of processes that created the population distribution
of the variable, so the expected utility of a decision rule, policy, or act (followed by
future optimized acts, in dynamic settings) can often be estimated accurately using
optimization algorithms that incorporate random sampling and adaptive improve-
ment components.

Example: A Bounded-Regret Strategy for Replacing
Unreliable Equipment

Setting: Suppose that a piece of machinery (such as a crane) that is being used in
a major construction project breaks down frequently. The construction project must
continue for 1,000 more days in order to meet a key deadline; after 1,000 more days,
all activity (and further costs) on this effort will stop. Use of the current unreliable
equipment costs $1,000 per day in maintenance, repair, insurance, and overtime
costs. The unreliable equipment will eventually break down completely; if this hap-
pens before the end of the project, it must then be replaced. The cost of replacement
is $1,200,000, and a new machine is highly reliable, costing $0 per day, after it has
been purchased, for the remaining duration of the project. Suppose that the current
machine will last for an unknown number, T, of additional days before breaking
down completely, where T is an unknown integer. Assume that not enough is known
about the machine’s remaining lifetime (e.g., from historical experience, accelerated
life testing, reliability modeling, etc.) to assess a credible, well-calibrated probabil-
ity distribution for T.

Problem: Assuming that the probability distribution for the remaining lifetime T
is unknown, devise a decision rule for when to replace the machine (if at all) that
is guaranteed to cost no more than twice as much as the least cost that could be
achieved if T were known. (For simplicity, ignore discounting.)

Solution: If the lifetime T of the current machine were known, then the total
cost of replacing the machine after t < T days would be $1,000t + $1,200,000 if
T < 1,000 days, in which case the optimal decision would be to replace the current
machine immediately (set t = 0) and the minimized cost would be $1,200,000;
otherwise, if T > 1,000 days, then the unreliable machine should be used for the rest
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of the project’s duration, for a total cost of $1,000,000. Now consider the following
myopic decision rule: Wait until the machine fails completely, and then replace it.
The worst (most expensive) case is that the machine fails on day T = 999, in which
case the total cost is $999,000 + $1,200,000 = $2,199,000. This is less than twice
the optimal cost if T were known, $1,200,000 (for immediate replacement). If T ≥
1,000 days, then the myopic decision rule yields the same optimal decision as if T
were known. If T < 1,000 days, then the myopic rule has less than twice the cost of
the optimal decision if T were known.

Discussion: Although this example is trivial, it illustrates that analysis of decision
rules is possible for some problems, even if uncertain quantities cannot be character-
ized by probability distributions. A number of nontrivial results on “online” decision
and optimization procedures show that, in many sequential decision problems, it is
possible to do almost as well on average, over the long run, using cleverly designed
decision rules, as if the uncertain quantities (such as T in this example) were known.

Despite these advances in methods for decision analysis and optimization under
uncertainty, in practice, formal decision analysis is seldom applied directly to make
important risk management decisions. In part, this is because different participants
may have different utility functions (which may be their own private information),
different trade-offs among goals (e.g., minimizing average risk versus reducing
inequities in the distribution of risks), and different tolerances for risk. In such cases,
consensus utilities may not exist, and risk management decision making requires not
only analysis and deliberation (Stern and Fineberg, 1996), but also negotiation and
compromise.

Even when decision analysis is not directly applied, however, its conceptual
framework is still useful for organizing analysis and deliberation (Apostolakis and
Pickett, 1998), separating beliefs from preferences, and identifying and resolving
relevant conflicts and/or uncertainties about facts and values. Byrd and Cothern
(2000) and Cox (2001) further discuss individual and group decision-making pro-
cesses and frameworks for risk management decision making.

Methods of Risk Management to Avoid

Well-informed and effective risk management (i.e., risk management that is likely
to produce the desired consequences) requires considering all of the most impor-
tant impacts – good and bad – that an intervention is likely to create. Unfortunately,
many risk assessments exhibit a form of tunnel vision, focusing on one or a few nar-
rowly defined issues (such as quantifying the reduction in risk that would be caused
by contemplated actions) while ignoring other, possibly more important, ones, such
as the risks that proposed risk management interventions might inadvertently create
(Dowell and Hendershot, 1997; Bier, 1997). This represents a breakdown in sound
risk assessment and risk management. Rational risk management requires consider-
ing and comparing the total consequences of the risk management decision options
being evaluated. Risk characterization should therefore provide risk managers with
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a balanced accounting of the adverse effects that a risk management intervention
might cause, as well as of those that it might prevent.

Risk management recommendations that are based primarily on protecting the sta-
tus quo or on beliefs about what might constitute “precautionary” actions should also
be avoided if they do not explicitly identify and compare the probable consequences of
alternative decision options. Decision analysis teaches that it is more effective to use
quantitative information about the probable consequences of alternative interventions
to eliminate dominated options, and to choose the best among those that remain. Heal
and Kriström (2002) have argued on theoretical grounds that precautionary measures
might make sense in situations where harm is irreversible, but their argument is based
on, and consistent with, utility theory and real options theory.

Game-Theory Models for Risk Management Decision Making

Game theory has long been viewed by risk analysts as being of little relevance
for practical risk management decision making. Several recent developments have
started to change that view. These include not only increased interest in terrorism,
homeland security, and critical infrastructure protection (which can be viewed as
games between an attacker and a defender), but also increased interest in risk-
informed regulation (which can be viewed as a game between a regulator and a regu-
lated firm). As a result of such developments, game theory is becoming an important
research tool in a variety of application areas related to risk.

Hausken (2002) has applied game theory to study the allocation of resources
to ensuring component (and hence system) reliability in situations where different
agents are responsible for the reliability of different components. In this situation,
system reliability is viewed as a “public good.” For example, agents responsible for
the reliability of a component in a parallel system or subsystem might “free-ride” on
investments in the reliability of other components in that system – e.g., postponing
needed reliability enhancements in the hopes that some other agent will implement
such improvements instead.

Recent work on reliability optimization (e.g., Levitin et al., 2001; Levitin and
Lisnianski, 2003) attempts to identify cost-effective risk reduction strategies; for
example, by optimizing physical separation of components that are functionally in
parallel with each other, or by allocating physical protection to various hierarchies of
a system (e.g., whether to harden the system as a whole, or individual components).
However, the “threat” against which systems are to be hardened is generally taken
to be static in this work.

Game-Theory Models for Security and Infrastructure Protection

Following September 11, 2001, there has been increasing interest in security, includ-
ing the protection of public and commercial buildings, water supply systems, and
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computer systems and software. Numerous researchers and practitioners have pro-
posed the use of risk analysis in one form or another for homeland security (e.g.,
Paté-Cornell and Guikema, 2002; Garrick et al., 2004), especially for critical infras-
tructure (Haimes et al., 1998; Ezell et al., 2001; Apostolakis and Lemon, 2005).
Most of this work is not formally game-theoretic. For instance, Paté-Cornell and
Guikema discuss the need for periodic updating of the model and its input to account
for the dynamic nature of counterterrorism but do not attempt to anticipate the
effects of defensive investments on attacker strategies. Protection from intentional
sabotage or terrorism differs from many other areas of risk management, because
sabotage protection involves an intelligent adversary that can adapt in response to
protective measures. Thus, reducing the vulnerability of some systems may cause
adversaries to shift their attacks to other systems that have not yet been “hardened”
to the same degree. Risk management in this context can be modeled as a game
against an adversary or, conversely, as a game between defenders, because security
investment by one defender can have either positive or negative externalities on the
threats faced by other defenders (Kunreuther and Heal, 2003).

There is a large body of work on applications of game theory to security, much
of it by economists (e.g., Frey and Luechinger, 2003; Arce et al., 2001; Enders
and Sandler, 2004; Keohane and Zeckhauser, 2003; Lakdawalla and Zanjani, 2005).
Much of this work is intended to inform policy-level decisions, e.g., by clarify-
ing the relative merits of public versus private funding of defensive investments, or
deterrence versus other protective measures. Recently, efforts have begun to focus
more on operational risk management decisions, such as deciding how much defen-
sive investment to allocate to particular assets (e.g., O’Hanlon et al., 2002), and
have more of a risk analysis flavor (e.g., taking the success probabilities of potential
attacks into account); see, for example, Bier et al. (2005) and Woo (2002).

Game-Theory Models of Risk-Informed Regulation

In health, safety, and environmental regulation, regulated parties often know more
than regulators about the operations and risks of facilities. As a result, regulators
may wish to provide incentives to encourage regulated parties to accurately dis-
close unfavorable information about their risks. Such situations can be modeled as
games of asymmetric information between regulators and regulated parties. More
widespread use of risk analysis results in regulatory decision making has the poten-
tial to both reduce risk and decrease compliance cost, by increasing management
flexibility in determining how to achieve acceptable levels of safety (Bier and
Jang, 1999). However, this approach has been slow to be adopted in practice, in
part because of the inability of regulators to directly and accurately measure risk
(Chinander et al., 1998) and because companies may have incentives not to disclose
unfavorable risk information to regulators and or not to collect such information in
the first place (Wagner, 1997).

Game-theoretic work in environmental economics to date (e.g., Heyes, 2000;
Livernois and McKenna, 1999) has emphasized applications such as pollution
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monitoring, in which a regulator can (with some effort) determine a firm’s level
of performance essentially with certainty, and firm performance can reasonably be
modeled as binary (e.g., compliant with pollution-control regulations or not). Lin
(2004) considers risk-informed regulation, in which regulators may not be certain
to detect high risk levels even with substantial effort, and continuous risk levels may
be more relevant than binary compliance status. Lin shows conditions under which
it is still optimal (more efficient than traditional direct-monitoring regulation) for
regulators to offer a loosened standard to firms that voluntarily disclose their risk
levels.

Conclusions

This chapter has surveyed methods and concepts for PRA and decision making in
engineered systems. Although the modeling of uncertain systems has been tremen-
dously enabled by recent advances (such as Bayesian belief networks, with depen-
dencies among inputs expressed via copulas), PRA still poses many challenges.
Technical challenges remain in how best to construct useful (and at least approxi-
mately valid) models of systems and their environments from engineering knowl-
edge and data, and in identifying optimal or near-optimal risk management policies.
Communicating the results effectively and using them to guide improved decision
making by multiple parties (e.g., teams of stakeholders) also poses practical ques-
tions that go beyond the framework of single-person decision theory. If the environ-
ment in which a system operates includes intelligent adversaries, then insights from
novel methods (e.g., game-theoretic principles) may be needed to ensure that risk
reduction strategies are effective and cost-effective (see Chapters 14 and 16). These
challenges are likely to stimulate further advances in both the theory and practice of
decision sciences for engineering risk analysis.
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