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Divisibility

1 Greatest Common Divisors

In the set N of all positive integers we can perform two basic operations: addition and
multiplication. In this chapter we will be primarily concerned with the second opera-
tion.

Multiplication has the following properties:

(M1) if ab = ac, then b = c; (cancellation law)
(M2) ab = ba for all a, b; (commutative law)
(M3) (ab)c = a(bc) for all a, b, c; (associative law)
(M4) 1a = a for all a. (identity element)

For any a, b ∈ N we say that b divides a, or that b is a factor of a, or that a is a
multiple of b if a = ba′ for some a′ ∈ N. We write b|a if b divides a and b � a if b does
not divide a. For example, 2|6, since 6 = 2×3, but 4 � 6. (We sometimes use× instead
of · for the product of positive integers.) The following properties of divisibility follow
at once from the definition:

(i) a|a and 1|a for every a;
(ii) if b|a and c|b, then c|a;

(iii) if b|a, then b|ac for every c;
(iv) bc|ac if and only if b|a;
(v) if b|a and a|b, then b = a.

For any a, b ∈ N we say that d is a common divisor of a and b if d|a and d|b. We
say that a common divisor d of a and b is a greatest common divisor if every com-
mon divisor of a and b divides d . The greatest common divisor of a and b is uniquely
determined, if it exists, and will be denoted by (a, b).

The greatest common divisor of a and b is indeed the numerically greatest com-
mon divisor. However, it is preferable not to define greatest common divisors in this
way, since the concept is then available for algebraic structures in which there is no
relation of magnitude and only the operation of multiplication is defined.
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84 II Divisibility

Proposition 1 Any a, b ∈ N have a greatest common divisor (a, b).

Proof Without loss of generality we may suppose a ≥ b. If b divides a, then
(a, b) = b. Assume that there exists a pair a, b without greatest common divisor and
choose one for which a is a minimum. Then 1 < b < a, since b does not divide a.
Since also 1 ≤ a − b < a, the pair a − b, b has a greatest common divisor d . Since
any common divisor of a and b divides a − b, and since d divides (a − b)+ b = a, it
follows that d is a greatest common divisor of a and b. But this is a contradiction. �

The proof of Proposition 1 uses not only the multiplicative structure of the set N,
but also its ordering and additive structure. To see that there is a reason for this, con-
sider the set S of all positive integers of the form 4k + 1. The set S is closed under
multiplication, since

(4 j + 1)(4k + 1) = 4(4 jk + j + k)+ 1,

and we can define divisibility and greatest common divisors in S by simply replacing
N by S in our previous definitions. However, although the elements 693 and 189 of S
have the common divisors 9 and 21, they have no greatest common divisor according
to this definition.

In the following discussion we use the result of Proposition 1, but make no further
appeal to either addition or order.

For any a, b ∈ N we say that h is a common multiple of a and b if a|h and b|h.
We say that a common multiple h of a and b is a least common multiple if h divides
every common multiple of a and b. The least common multiple of a and b is uniquely
determined, if it exists, and will be denoted by [a, b].

It is evident that, for every a,

(a, 1) = 1, [a, 1] = a,

(a, a) = a = [a, a].

Proposition 2 Any a, b ∈ N have a least common multiple [a, b]. Moreover,

(a, b)[a, b] = ab.

Furthermore, for all a, b, c ∈ N,

(ac, bc) = (a, b)c, [ac, bc] = [a, b]c,

([a, b], [a, c]) = [a, (b, c)], [(a, b), (a, c)] = (a, [b, c]).

Proof We show first that (ac, bc) = (a, b)c. Put d = (a, b). Clearly cd is a common
divisor of ac and bc, and so (ac, bc) = qcd for some q ∈ N. Thus ac = qcda′,
bc = qcdb′ for some a′, b′ ∈ N. It follows that a = qda′, b = qdb′. Thus qd is a
common divisor of a and b. Hence qd divides d , which implies q = 1.

If g is any common multiple of a and b, then ab divides ga and gb, and hence ab
also divides (ga, gb). But, by what we have just proved,

(ga, gb) = (a, b)g = dg.

Hence h := ab/d divides g. Since h is clearly a common multiple of a and b, it follows
that h = [a, b]. Replacing a, b by ac, bc, we now obtain

[ac, bc] = acbc/(ac, bc)= abc/(a, b) = hc.
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If we put

A = ([a, b], [a, c]), B = [a, (b, c)],

then by what we have already proved,

A = (ab/(a, b), ac/(a, c)),

B = a(b, c)/(a, (b, c)) = (ab/(a, (b, c)), ac/(a, (b, c))).

Since any common divisor of ab/(a, b) and ac/(a, c) is also a common divisor of
ab/(a, (b, c)) and ac/(a, (b, c)), it follows that A divides B . On the other hand, a
divides A, since a divides [a, b] and [a, c], and similarly (b, c) divides A. Hence B
divides A. Thus B = A.

The remaining statement of the proposition is proved in the same way, with greatest
common divisors and least common multiples interchanged. �

The last two statements of Proposition 2 are referred to as the distributive laws,
since if the greatest common divisor and least common multiple of a and b are
denoted by a ∧ b and a ∨ b respectively, they take the form

(a ∨ b)∧ (a ∨ c) = a ∨ (b ∧ c), (a ∧ b)∨ (a ∧ c) = a ∧ (b ∨ c).

Properties (i), (ii) and (v) at the beginning of the section say that divisibility is a
partial ordering of the set N with 1 as least element. The existence of greatest common
divisors and least common multiples says that N is a lattice with respect to this partial
ordering. The distributive laws say that N is actually a distributive lattice.

We say that a, b ∈ N are relatively prime, or coprime, if (a, b) = 1. Divisibility
properties in this case are much simpler:

Proposition 3 For any a, b, c ∈ N with (a, b) = 1,

(i) if a|c and b|c, then ab|c;
(ii) if a|bc, then a|c;

(iii) (a, bc) = (a, c);
(iv) if also (a, c) = 1, then (a, bc) = 1;
(v) (am, bn) = 1 for all m, n ≥ 1.

Proof To prove (i), note that [a, b] divides c and [a, b] = ab. To prove (ii), note that
a divides (ac, bc) = (a, b)c = c. To prove (iii), note that any common divisor of a
and bc divides c, by (ii). Obviously (iii) implies (iv), and (v) follows by induction. �

Proposition 4 If a, b ∈ N and (a, b) = 1, then any divisor of ab can be uniquely
expressed in the form de, where d|a and e|b. Conversely, any product of this form is a
divisor of ab.

Proof The proof is based on Proposition 3. Suppose c divides ab and put d = (a, c),
e = (b, c). Then (d, e) = 1 and hence de divides c. If a = da′ and c = dc′, then
(a′, c′) = 1 and e|c′. On the other hand, c′|a′b and hence c′|b. Since e = (b, c), it
follows that c′ = e and c = de.

Suppose de = d ′e′, where d, d ′ divide a and e, e′ divide b. Then d|d ′, since
(d, e′) = 1, and similarly d ′|d , since (d ′, e) = 1. Hence d ′ = d and e′ = e.

The final statement of the proposition is obvious. �
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It follows from Proposition 4 that if cn = ab, where (a, b) = 1, then a = dn and
b = en for some d, e ∈ N.

The greatest common divisor and least common multiple of any finite set of ele-
ments of N may be defined in the same way as for sets of two elements. By induction
we easily obtain:

Proposition 5 Any a1, . . . , an ∈ N have a greatest common divisor (a1, . . . , an) and
a least common multiple [a1, . . . , an]. Moreover,

(i) (a1, a2, . . . , an) = (a1, (a2, . . . , an)), [a1, a2, . . . , an] = [a1, [a2, . . . , an]];
(ii) (a1c, . . . , anc) = (a1, . . . , an)c, [a1c, . . . , anc] = [a1, . . . , an]c;

(iii) (a1, . . . , an) = a/[a/a1, . . . , a/an], [a1, . . . , an] = a/(a/a1, . . . , a/an), where
a = a1 · · · an.

We can use the distributive laws to show that

([a, b], [a, c], [b, c])= [(a, b), (a, c), (b, c)].

In fact the left side is equal to {a∨ (b∧ c)} ∧ (b∨ c), whereas the right side is equal to

(b ∧ c) ∨ {a ∧ (b ∨ c)} = {(b ∧ c)∨ a} ∧ {(b ∧ c) ∨ (b ∨ c)}
= {a ∨ (b ∧ c)} ∧ (b ∨ c).

If

a = (a1, . . . , am), b = (b1, . . . , bn),

then ab is the greatest common divisor of all products a j bk , since (a j b1, . . . , a j bn) =
a j b and (a1b, . . . , amb) = ab.

Similarly, if

a = [a1, . . . , am ], b = [b1, . . . , bn],

then ab is the least common multiple of all products a j bk .
It is easily shown by induction that if (ai , a j ) = 1 for 1 ≤ i < j ≤ m, then

(a1 · · · am, c) = (a1, c) · · · (am, c), [a1 · · · am, c] = [a1, . . . , am , c].

Proposition 6 If a ∈ N has two factorizations

a = b1 · · · bm = c1 · · · cn,

then these factorizations have a common refinement, i.e. there exist d jk ∈ N (1 ≤ j ≤
m, 1 ≤ k ≤ n) such that

b j =
n∏

k=1

d jk, ck =
m∏

j=1

d jk .
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Proof We show first that if a = a1 · · · an and d|a, then d = d1 · · · dn , where di |ai

(1 ≤ i ≤ n). We may suppose that n > 1 and that the assertion holds for prod-
ucts of less than n elements of N. Put a′ = a1 · · · an−1 and d ′ = (a′, d). Then
d ′ = d1 · · · dn−1, where di |ai(1 ≤ i < n). Moreover a′′ = a′/d ′ and d ′′ = d/d ′
are coprime. Since d ′′ = d/d ′ divides a′′an = a/d ′, the greatest common divisor
an = (ana′′, and ′′) is divisible by d ′′. Thus we can take dn = d ′′.

We return now to the proposition. Since c1|∏ j b j , we can write c1 = ∏
j d j1,

where d j1|b j . Put b′j = b j/d j1. Then∏
j

b′j = a/c1 = c2 · · · cn.

Hence we can write c2 = ∏
j d j2, where d j2|b′j . Proceeding in this way, we obtain

factorizations ck =∏
j d jk such that

∏
k d jk divides b j . In fact, since∏

j,k

d jk = a =
∏

j

b j ,

we must have b j =∏
k d jk. �

Instead of defining divisibility and greatest common divisors in the set N of all
positive integers, we can define them in the set Z of all integers by simply replacing
N by Z in the previous definitions. The properties (i)–(v) at the beginning of this sec-
tion continue to hold, provided that in (iv) we require c �= 0 and in (v) we alter the
conclusion to b = ±a. We now list some additional properties:

(i)′ a|0 for every a;
(ii)′ if 0|a, then a = 0;

(iii)′ if c|a and c|b, then c|ax + by for all x, y.

Greatest common divisors and least common multiples still exist, but uniqueness
holds only up to sign. With this understanding, Propositions 2–4 continue to hold, and
so also do Propositions 5 and 6 if we require a �= 0. It is evident that, for every a,

(a, 0) = a, [a, 0] = 0.

More generally, we can define divisibility in any integral domain, i.e. a commuta-
tive ring in which a �= 0 and b �= 0 together imply ab �= 0. The properties (i)–(v) at
the beginning of the section continue to hold, provided that in (iv) we require c �= 0
and in (v) we alter the conclusion to b = ua, where u is a unit, i.e. u|1. The properties
(i)′–(iii)′ above also remain valid.

We define a GCD domain to be an integral domain in which any pair of elements
has a greatest common divisor. This implies that any pair of elements also has a least
common multiple. Uniqueness now holds only up to unit multiples. With this under-
standing Propositions 2–6 continue to hold in any GCD domain in the same way as
for Z.

An important example, which we will consider in Section 3, of a GCD domain
other than Z is the polynomial ring K [t], consisting of all polynomials in t with coef-
ficients from an arbitrary field K . The units in this case are the nonzero elements of K .
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Another example, which we will meet in §4 of Chapter VI, is the valuation ring R
of a non-archimedean valued field. In this case, for any a, b ∈ R, either a|b or b|a and
so (a, b) is either a or b.

In the same way that the ring Z of integers may be embedded in the field Q of
rational numbers, any integral domain R may be embedded in a field K , its field of
fractions, so that any nonzero c ∈ K has the form c = ab−1, where a, b ∈ R and
b �= 0. If R is a GCD domain we can further require (a, b) = 1, and a, b are then
uniquely determined apart from a common unit multiple. The field of fractions of the
polynomial ring K [t] is the field K (t) of rational functions.

In our discussion of divisibility so far we have avoided all mention of prime num-
bers. A positive integer a �= 1 is said to be prime if 1 and a are its only positive
divisors, and otherwise is said to be composite.

For example, 2, 3 and 5 are primes, but 4 = 2 × 2 and 6 = 2 × 3 are composite.
The significance of the primes is that, as far as multiplication is concerned, they are
the ‘atoms’ and the composite integers are the ‘molecules’. This is made precise in the
following so-called fundamental theorem of arithmetic:

Proposition 7 If a ∈ N and a �= 1, then a can be represented as a product of
finitely many primes. Moreover, the representation is unique, except for the order of
the factors.

Proof Assume, on the contrary, that some composite a1 ∈ N is not a product of
finitely many primes. Since a1 is composite, it has a factorization a1 = a2b2, where
a2, b2 ∈ N and a2, b2 �= 1. At least one of a2, b2 must be composite and not a product
of finitely many primes, and we may choose the notation so that a2 has these proper-
ties. The preceding argument can now be repeated with a2 in place of a1. Proceeding in
this way, we obtain an infinite sequence (ak) of positive integers such that ak+1 divides
ak and ak+1 �= ak for each k ≥ 1. But then the sequence (ak) has no least element,
which contradicts Proposition I.3.

Suppose now that

a = p1 · · · pm = q1 · · · qn

are two representations of a as a product of primes. Then, by Proposition 6, there exist
d jk ∈ N (1 ≤ j ≤ m, 1 ≤ k ≤ n) such that

p j =
n∏

k=1

d jk, qk =
m∏

j=1

d jk .

Since p1 is a prime, we must have d1k1 = p1 for some k1 ∈ {1, . . . , n}, and since qk1

is a prime, we must have qk1 = d1k1 = p1. The same argument can now be applied to

a′ =
∏
j �=1

p j =
∏

k �=k1

qk .

It follows that m = n and q1, . . . , qn is a permutation of p1, . . . , pm . �
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It should be noted that factorization into primes would not be unique if we admit-
ted 1 as a prime. The fundamental theorem of arithmetic may be reformulated in the
following way: any a ∈ N can be uniquely represented in the form

a =
∏

p

pαp ,

where p runs through the primes and the αp are non-negative integers, only finitely
many of which are nonzero. It is easily seen that if b ∈ N has the analogous represen-
tation

b =
∏

p

pβp,

then b|a if and only if βp ≤ αp for all p. It follows that the greatest common divisor
and least common multiple of a and b have the representations

(a, b) =
∏

p

pγp, [a, b] =
∏

p

pδp ,

where

γp = min{αp, βp}, δp = max{αp, βp}.
The fundamental theorem of arithmetic extends at once from N to Q: any nonzero

rational number a can be uniquely represented in the form

a = u
∏

p

pαp ,

where u = ±1 is a unit, p runs through the primes and the αp are integers (not neces-
sarily non-negative), only finitely many of which are nonzero.

The following property of primes was already established in Euclid’s Elements
(Book VII, Proposition 30):

Proposition 8 If p is a prime and p|bc, then p|b or p|c.

Proof If p does not divide b, we must have (p, b) = 1. But then p divides c, by
Proposition 3(ii). �

The property in Proposition 8 actually characterizes primes. For if a is composite,
then a = bc, where b, c �= 1. Thus a|bc, but a�b and a�c.

We consider finally the extension of these notions to an arbitrary integral domain R.
For any nonzero a, b ∈ R, we say that a divisor b of a is a proper divisor if a does
not divide b (i.e., if a and b do not differ only by a unit factor). We say that p ∈ R is
irreducible if p is neither zero nor a unit and if every proper divisor of p is a unit. We
say that p ∈ R is prime if p is neither zero nor a unit and if p|bc implies p|b or p|c.

By what we have just said, the notions of ‘prime’ and ‘irreducible’ coincide if
R = Z, and the same argument applies if R is any GCD domain. However, in an
arbitrary integral domain R, although any prime element is irreducible, an irreducible
element need not be prime. (For example, in the integral domain R consisting of all
complex numbers of the form a + b

√−5, where a, b ∈ Z, it may be seen that
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6 = 2 × 3 = (1 + √−5)(1 − √−5) has two essentially distinct factorizations into
irreducibles, and thus none of these irreducibles is prime.)

The proof of Proposition 7 shows that, in an arbitrary integral domain R, every
element which is neither zero nor a unit can be represented as a product of finitely
many irreducible elements if and only if the following chain condition is satisfied:

(#) there exists no infinite sequence (an) of elements of R such that an+1 is a proper
divisor of an for every n.

Furthermore, the representation is essentially unique (i.e. unique except for the order
of the factors and for multiplying them by units) if and only if R is also a GCD domain.

An integral domain R is said to be factorial (or a ‘unique factorization domain’)
if the ‘fundamental theorem of arithmetic’ holds in R, i.e. if every element which is
neither zero nor a unit has such an essentially unique representation as a product of
finitely many irreducibles. By the above remarks, an integral domain R is factorial if
and only if it is a GCD domain satisfying the chain condition (#).

For future use, we define an element of a factorial domain to be square-free if it
is neither zero nor a unit and if, in its representation as a product of irreducibles, no
factor is repeated. In particular, a positive integer is square-free if and only if it is a
nonempty product of distinct primes.

2 The Bézout Identity

If a, b are arbitrary integers with a �= 0, then there exist unique integers q, r such that

b = qa + r, 0 ≤ r < |a|.
In fact qa is the greatest multiple of a which does not exceed b. The integers q and r
are called the quotient and remainder in the ‘division’ of b by a.

(For a > 0 this was proved in Proposition I.14. It follows that if a and n are positive
integers, any positive integer b less than an has a unique representation ‘to the base a’:

b = b0 + b1a + · · · + bn−1an−1,

where 0 ≤ b j < a for all j . In fact bn−1 is the quotient in the division of b by an−1,
bn−2 is the quotient in the division of the remainder by an−2, and so on.)

If a, b are arbitrary integers with a �= 0, then there exist also integers q, r such that

b = qa + r, |r | ≤ |a|/2.
In fact qa is the nearest multiple of a to b. Thus q and r are not uniquely determined
if b is midway between two consecutive multiples of a.

Both these division algorithms have their uses. We will be impartial and merely
use the fact that

b = qa + r, |r | < |a|.
An ideal in the commutative ring Z of all integers is defined to be a nonempty

subset J such that if a, b ∈ J and x, y ∈ Z, then also ax + by ∈ J .
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For example, if a1, . . . , an are given elements of Z, then the set of all linear com-
binations a1x1 + · · · + anxn with x1, . . . , xn ∈ Z is an ideal, the ideal generated by
a1, . . . , an . An ideal generated by a single element, i.e. the set of all multiples of that
element, is said to be a principal ideal.

Lemma 9 Any ideal J in the ring Z is a principal ideal.

Proof If 0 is the only element of J , then 0 generates J . Otherwise there is a nonzero
a ∈ J with minimum absolute value. For any b ∈ J , we can write b = qa + r , for
some q, r ∈ Z with |r | < |a|. By the definition of an ideal, r ∈ J and so, by the
definition of a, r = 0. Thus a generates J . �

Proposition 10 Any a, b ∈ Z have a greatest common divisor d = (a, b). Moreover,
for any c ∈ Z, there exist x, y ∈ Z such that

ax + by = c

if and only if d divides c.

Proof Let J be the ideal generated by a and b. By Lemma 9, J is generated by a
single element d . Since a, b ∈ J , d is a common divisor of a and b. On the other hand,
since d ∈ J , there exist u, v ∈ Z such that d = au+bv. Hence any common divisor of
a and b also divides d . Thus d = (a, b). The final statement of the proposition follows
immediately since, by definition, c ∈ J if and only if there exist x, y ∈ Z such that
ax + by = c. �

It is readily shown that if the ‘linear Diophantine’ equation ax + by = c has a
solution x0, y0 ∈ Z, then all solutions x, y ∈ Z are given by the formula

x = x0 + kb/d, y = y0 − ka/d,

where d = (a, b) and k is an arbitrary integer.
Proposition 10 provides a new proof for the existence of greatest common divisors

and, in addition, it shows that the greatest common divisor of two integers can be rep-
resented as a linear combination of them. This representation is usually referred to as
the Bézout identity, although it was already known to Bachet (1624) and even earlier
to the Hindu mathematicians Aryabhata (499) and Brahmagupta (628).

In exactly the same way that we proved Proposition 10 – or, alternatively, by
induction from Proposition 10 – we can prove

Proposition 11 Any finite set a1, . . . , an of elements of Z has a greatest common
divisor d = (a1, . . . , an). Moreover, for any c ∈ Z, there exist x1, . . . , xn ∈ Z such that

a1x1 + · · · + anxn = c

if and only if d divides c.

The proof which we gave for Proposition 10 is a pure existence proof – it does
not help us to find the greatest common divisor. The following constructive proof was
already given in Euclid’s Elements (Book VII, Proposition 2). Let a, b be arbitrary
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integers. Since (0, b) = b, we may assume a �= 0. Then there exist integers q, r such
that

b = qa + r, |r | < |a|.
Put a0 = b, a1 = a and repeatedly apply this procedure:

a0 = q1a1 + a2, |a2| < |a1|,
a1 = q2a2 + a3, |a3| < |a2|,

· · ·
aN−2 = qN−1aN−1 + aN , |aN | < |aN−1|,
aN−1 = qN aN .

The process must eventually terminate as shown, because otherwise we would obtain
an infinite sequence of positive integers with no least element. We claim that aN is a
greatest common divisor of a and b. In fact, working forwards from the first equation
we see that any common divisor c of a and b divides each ak and so, in particular, aN .
On the other hand, working backwards from the last equation we see that aN divides
each ak and so, in particular, a and b.

The Bézout identity can also be obtained in this way, although Euclid himself
lacked the necessary algebraic notation. Define sequences (xk), (yk) by the recurrence
relations

xk+1 = xk−1 − qkxk, yk+1 = yk−1 − qk yk (1 ≤ k < N),

with the starting values

x0 = 0, x1 = 1, resp. y0 = 1, y1 = 0.

It is easily shown by induction that ak = axk + byk and so, in particular, aN =
axN + byN .

The Euclidean algorithm is quite practical. For example, the reader may use it to
verify that 13 is the greatest common divisor of 2171 and 5317, and that

49× 5317− 120× 2171 = 13.

However, the first proof given for Proposition 10 also has its uses: there is some
advantage in separating the conceptual from the computational and the proof actually
rests on more general principles, since there are quadratic number fields whose ring of
integers is a ‘principal ideal domain’ that does not possess any Euclidean algorithm.

It is not visibly obvious that the binomial coefficients

m+nCn = (m + 1) · · · (m + n)/1 · 2 · · · · · n
are integers for all positive integers m, n, although it is apparent from their combina-
torial interpretation. However, the property is readily proved by induction, using the
relation

m+nCn = m+n−1Cn + m+n−1Cn−1.
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Binomial coefficients have other arithmetic properties. Hermite observed that m+nCn

is divisible by the integers (m + n)/(m, n) and (m + 1)/(m + 1, n). In particular, the
Catalan numbers (n + 1)−1 2nCn are integers. The following proposition is a substan-
tial generalization of these results and illustrates the application of Proposition 10.

Proposition 12 Let (an) be a sequence of nonzero integers such that, for all m, n ≥ 1,
every common divisor of am and an divides am+n, and every common divisor of am

and am+n divides an. Then, for all m, n ≥ 1,

(i) (am, an) = a(m,n);
(ii) Am,n := am+1 · · · am+n/a1 · · · an ∈ Z;

(iii) Am,n is divisible by am+n/(am, an), by am+1/(am+1, an) and by an+1/(am, an+1);
(iv) (Am,n−1, Am+1,n, Am−1,n+1) = (Am−1,n, Am+1,n−1, Am,n+1).

Proof The hypotheses imply that

(am, an) = (am, am+n) for all m, n ≥ 1.

Since am = (am, am), it follows by induction that am |akm for all k ≥ 1. Moreover,

(akm , a(k+1)m) = am,

since every common divisor of akm and a(k+1)m divides am .
Put d = (m, n). Then m = dm′, n = dn′, where (m ′, n′) = 1. Thus there exist

integers u, v such that m′u − n′v = 1. By replacing u, v by u + tn′, v + tm ′ with any
t > max{|u|, |v|}, we may assume that u and v are both positive. Then

(amu, anv ) = (a(n′v+1)d, an′vd) = ad .

Since ad divides (am, an) and (am, an) divides (amu, anv ), this implies (am, an) = ad .
This proves (i).

Since a1|am+1, it is evident that Am,1 ∈ Z for all m ≥ 1. We assume that n > 1 and
Am,n ∈ Z for all smaller values of n and all m ≥ 1. Since it is trivial that A0,n ∈ Z, we
assume also that m ≥ 1 and Am,n ∈ Z for all smaller values of m. By Proposition 10,
there exist x, y ∈ Z such that

am x + an y = am+n,

since (am, an) divides am+n . Since

Am,n = am+1 · · · am+n

a1 · · · an
= amam+1 · · · am+n−1

a1 · · · an
x + am+1 · · · am+n−1

a1 · · · an−1
y,

our induction hypotheses imply that Am,n ∈ Z. This proves (ii).
Since

am+n Am,n−1 = an Am,n,

am+n divides (an, am+n)Am,n and, since (an, am+n) = (am, an), this in turn implies
that am+n/(am, an) divides Am,n .
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Similarly, since

am+1 Am+1,n = am+n+1 Am,n, am+1 Am+1,n−1 = an Am,n,

am+1 divides (an, am+n+1)Am,n and, since (an, am+n+1) = (am+1, an), it follows that
am+1/(am+1, an) divides Am,n . In the same way, since

an+1 Am,n+1 = am+n+1 Am,n, an+1 Am−1,n+1 = am Am,n,

an+1 divides (am, am+n+1)Am,n and hence an+1/(am, an+1) divides Am,n . This
proves (iii).

By multiplying by a1 · · · an+1/am+2 · · · am+n−1, we see that (iv) is equivalent to

(anan+1am+1, an+1am+nam+n+1, amam+1am+n)

= (an+1amam+1, anan+1am+n, am+1am+nam+n+1).

Since here the two sides are interchanged when m and n are interchanged, it is suf-
ficient to show that any common divisor e of the three terms on the right is also a
common divisor of the three terms on the left. We have

(an+1amam+1, anan+1am+1) = an+1am+1(am, an) = an+1am+1(am, am+n)

= (an+1amam+1, am+1an+1am+n),

and similarly

(anan+1am+n, an+1am+nam+n+1) = (anan+1am+n, am+1an+1am+n),

(am+1am+nam+n+1, amam+1am+n) = (am+1am+nam+n+1, am+1an+1am+n).

Hence if we put g = am+1an+1am+n , then

(e, g) = (e, anan+1am+1) = (e, an+1am+nam+n+1) = (e, amam+1am+n)

and if we put f = (e,g), then

1 = (e/ f, anan+1am+1/ f ) = (e/ f, an+1am+nam+n+1/ f ) = (e/ f, amam+1am+n/ f ).

Hence (e/ f, P/ f 3) = 1, where

P = anan+1am+1 · an+1am+nam+n+1 · amam+1am+n.

But P is divisible by e3, since we can also write

P = an+1amam+1 · anan+1am+n · am+1am+nam+n+1.

Hence the previous relation implies e/ f = 1. Thus e = f is a common divisor of
anan+1am+1, an+1am+nam+n+1 and amam+1am+n , as we wished to show. �

For the binomial coefficient case, i.e. an = n, the property (iv) of Proposi-
tion 12 was discovered empirically by Gould (1972) and then proved by Hillman and
Hoggatt (1972). It states that if in the Pascal triangle one picks out the hexagon sur-
rounding a particular element, then the greatest common divisor of three alternately
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chosen vertices is equal to the greatest common divisor of the remaining three vertices.
Hillman and Hoggatt also gave generalizations along the lines of Proposition 12.

The hypotheses of Proposition 12 are also satisfied if an = qn − 1, for some
integer q > 1, since in this case am+n = aman + am + an . The corresponding
q-binomial coefficients were studied by Gauss and, as mentioned in Chapter XIII, they
play a role in the theory of partitions.

We may also take (an) to be the sequence defined recurrently by

a1 = 1, a2 = c, an+2 = can+1 + ban(n ≥ 1),

where b and c are coprime positive integers. Indeed it is easily shown by induction that

(an, an+1) = (b, an+1) = 1 for all n ≥ 1.

By induction on m one may also show that

am+n = am+1an + baman−1 for all m ≥ 1, n > 1.

It follows that the hypotheses of Proposition 12 are satisfied. In particular, for
b = c = 1, they are satisfied by the sequence of Fibonacci numbers.

We consider finally extensions of our results to more general algebraic structures.
An integral domain R is said to be a Bézout domain if any a, b ∈ R have a com-
mon divisor of the form au + bv for some u, v ∈ R. Since such a common divisor
is necessarily a greatest common divisor, any Bézout domain is a GCD domain. It is
easily seen, by induction on the number of generators, that an integral domain is a
Bézout domain if and only if every finitely generated ideal is a principal ideal. Thus
Propositions 10 and 11 continue to hold if Z is replaced by any Bézout domain.

An integral domain R is said to be a principal ideal domain if every ideal is a
principal ideal.

Lemma 13 An integral domain R is a principal ideal domain if and only if it is a
Bézout domain satisfying the chain condition

(#) there exists no infinite sequence (an) of elements of R such that an+1 is a proper
divisor of an for every n.

Proof It is obvious that any principal ideal domain is a Bézout domain. Suppose R is
a Bézout domain, but not a principal ideal domain. Then R contains an ideal J which
is not finitely generated. Hence there exists a sequence (bn) of elements of J such that
bn+1 is not in the ideal Jn generated by b1, . . . , bn . But Jn is a principal ideal. If an

generates Jn , then an+1 is a proper divisor of an for every n. Thus the chain condition
is violated.

Suppose now that R is a Bézout domain containing a sequence (an) such that an+1
is a proper divisor of an for every n. Let J denote the set of all elements of R which
are divisible by at least one term of this sequence. Then J is an ideal. For if a j |b and
ak|c, where j ≤ k, then also ak|b and hence ak|bx + cy for all x, y ∈ R. If J were
generated by a single element a, we would have a|an for every n. On the other hand,
since a ∈ J , aN |a for some N . Hence aN |aN+1. Since aN+1 is a proper divisor of aN ,
this is a contradiction. Thus R is not a principal ideal domain. �
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It follows from the remarks at the end of Section 1 that a principal ideal domain
is factorial, i.e. any element which is neither zero nor a unit can be represented as a
product of finitely many irreducibles and the representation is essentially unique.

In the next section we will show that the ring K [t] of all polynomials in one inde-
terminate t with coefficients from an arbitrary field K is a principal ideal domain.

It may be shown that the ring of all algebraic integers is a Bézout domain, and
likewise the ring of all functions which are holomorphic in a nonempty connected
open subset G of the complex plane C. However, neither is a principal ideal domain.
In the former case there are no irreducibles, since any algebraic integer a has the
factorization a = √a · √a. In the latter case z − ζ is an irreducible for any ζ ∈ G, but
the chain condition is violated. For example, take

an(z) = f (z)/(z − ζ1) · · · (z − ζn),
where f (z) is a non-identically vanishing function which is holomorphic in G and has
infinitely many zeros ζ1, ζ2, . . . in G.

3 Polynomials

In this section we study the most important example of a principal ideal domain other
than Z, namely the ring K [t] of all polynomials in t with coefficients from an arbitrary
field K (e.g., K = Q or C).

The attitude adopted towards polynomials in algebra is different from that adopted
in analysis. In analysis we regard ‘t’ as a variable which can take different values; in
algebra we regard ‘t’ simply as a symbol, an ‘indeterminate’, on which we can perform
various algebraic operations. Since the concept of function is so pervasive, the alge-
braic approach often seems mysterious at first sight and it seems worthwhile taking the
time to give a precise meaning to an ‘indeterminate’.

Let R be an integral domain (e.g., R = Z or Q). A polynomial with coefficients
from R is defined to be a sequence f = (a0, a1, a2, . . .) of elements of R in which at
most finitely many terms are nonzero. The sum and product of two polynomials

f = (a0, a1, a2, . . .), g = (b0, b1, b2, . . .)

are defined by

f + g = (a0 + b0, a1 + b1, a2 + b2, . . .),

f g = (a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, . . .).

It is easily verified that these are again polynomials and that the set R[t] of all polyno-
mials with coefficients from R is a commutative ring with O = (0, 0, 0, . . .) as zero
element. (By dropping the requirement that at most finitely many terms are nonzero,
we obtain the ring R[[t]] of all formal power series with coefficients from R.)

We define the degree ∂( f ) of a polynomial f = (a0, a1, a2, . . .) �= O to be the
greatest integer n for which an �= 0 and we put

| f | = 2∂( f ), |O| = 0.
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It is easily verified that, for all polynomials f, g,

| f + g| ≤ max{| f |, |g|}, | f g| = | f ||g|.
Since | f | ≥ 0, with equality if and only if f = O, the last property implies that R[t] is
an integral domain. Thus we can define divisibility in R[t], as explained in Section 1.

The set of all polynomials of the form (a0, 0, 0, . . .) is a subdomain isomorphic
to R. By identifying this set with R, we may regard R as embedded in R[t]. The only
units in R[t] are the units in R, since 1 = e f implies 1 = |e|| f | and hence |e| = 1.

If we put t = (0, 1, 0, 0, . . .), then

t2 = tt = (0, 0, 1, 0, . . .), t3 = t t2 = (0, 0, 0, 1, . . .), . . . .
Hence if the polynomial f = (a0, a1, a2, . . .) has degree n, then it can be uniquely
expressed in the form

f = a0 + a1t + · · · + antn (an �= 0).

We refer to the elements a0, a1, . . . , an of R as the coefficients of f . In particular, a0
is the constant coefficient and an the highest coefficient. We say that f is monic if its
highest coefficient an = 1.

If also

g = b0 + b1t + · · · + bmtm (bm �= 0),

then the sum and product assume their familiar forms:

f + g = (a0 + b0)+ (a1 + b1)t + (a2 + b2)t
2 + · · · ,

f g = a0b0 + (a0b1 + a1b0)t + (a0b2 + a1b1 + a2b0)t
2 + · · · .

Suppose now that R = K is a field, and let

f = a0 + a1t + · · · + antn (an �= 0),

g = b0 + b1t + · · · + bmtm (bm �= 0)

be any two nonzero elements of K [t]. If |g| < | f |, i.e. if m < n, then g = q f + r ,
with q = O and r = g. Suppose on the other hand that | f | ≤ |g|. Then

g = a−1
n bmtm−n f + g†,

where g† ∈ K [t] and |g†| < |g|. If | f | ≤ |g†|, the process can be repeated with g† in
place of g. Continuing in this way, we obtain q, r ∈ K [t] such that

g = q f + r, |r | < | f |.
Moreover, q and r are uniquely determined, since if also

g = q1 f + r1, |r1| < | f |,
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then

(q − q1) f = r1 − r, |r1 − r | < | f |,
which is only possible if q = q1.

Ideals in K [t] can be defined in the same way as for Z and the proof of Lemma 9
remains valid. Thus K [t] is a principal ideal domain and, a fortiori, a GCD domain.

The Euclidean algorithm can also be applied in K [t] in the same way as for Z and
again, from the sequence of polynomials f0, f1, . . . , fN which it provides to deter-
mine the greatest common divisor fN of f0 and f1 we can obtain polynomials uk, vk

such that

fk = f1uk + f0vk (0 ≤ k ≤ N).

We can actually say more for polynomials than for integers, since if

fk−1 = qk fk + fk+1, | fk+1| < | fk |,
then | fk−1| = |qk|| fk | and hence, by induction,

| fk−1||uk | = | f0|, | fk−1||vk | = | f1| (1 < k ≤ N).

It may be noted in passing that the Euclidean algorithm can also be applied in the
ring K [t, t−1] of Laurent polynomials. A Laurent polynomial f �= O, with coefficients
from the field K , has the form

f = amtm + am+1tm+1 + · · · + antn,

where m, n ∈ Z with m ≤ n and a j ∈ K with aman �= 0. Thus we can write f = tm f0,
where f0 ∈ K [t]. Put

| f | = 2n−m , |O| = 0;
then the division algorithm for ordinary polynomials implies one for Laurent polyno-
mials: for any f, g ∈ K [t, t−1] with f �= O, there exist q, r ∈ K [t, t−1] such that
g = q f + r , |r | < | f |.

We return now to ordinary polynomials. The general definition for integral domains
in Section 1 means, in the present case, that a polynomial p ∈ K [t] is irreducible if it
has positive degree and if every proper divisor has degree zero.

It follows that any polynomial of degree 1 is irreducible. However, there may exist
also irreducible polynomials of higher degree. For example, we will show shortly that
the polynomial t2 − 2 is irreducible in Q[t]. For K = C, however, every irreducible
polynomial has degree 1, by the fundamental theorem of algebra (Theorem I.30) and
Proposition 14 below. It follows that, for K = R, every irreducible polynomial has
degree 1 or 2. (For if a real polynomial f (t) has a root α ∈ C\R, its conjugate ᾱ is
also a root and f (t) has the real irreducible factor (t − α)(t − ᾱ).)

It is obvious that the chain condition (#) of Section 1 holds in the integral domain
K [t], since if g is a proper divisor of f , then |g| < | f |. It follows that any polyno-
mial of positive degree can be represented as a product of finitely many irreducible
polynomials and that the representation is essentially unique.
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We now consider the connection between polynomials in the sense of algebra
(polynomial forms) and polynomials in the sense of analysis (polynomial functions).
Let K be a field and f ∈ K [t]:

f = a0 + a1t + · · · + antn .

If we replace ‘t’ by c ∈ K we obtain an element of K , which we denote by f (c):

f (c) = a0 + a1c + · · · + ancn.

A rapid procedure (‘Horner’s rule’) for calculating f (c) is to use the recurrence rela-
tions

f0 = an, f j = f j−1c + an− j ( j = 1, . . . , n).

It is readily shown by induction that

f j = anc j + an−1c j−1 + · · · + an− j ,

and hence f (c) = fn is obtained with just n multiplications and n additions.
It is easily seen that f = g + h implies f (c) = g(c)+ h(c), and f = gh implies

f (c) = g(c)h(c). Thus the mapping f → f (c) is a ‘homomorphism’ of K [t] into K .
A simple consequence is the so-called remainder theorem:

Proposition 14 Let K be a field and c ∈ K . If f ∈ K [t], then

f = (t − c)g + f (c),

for some g ∈ K [t].
In particular, f is divisible by t − c if and only if f (c) = 0.

Proof We already know that there exist q, r ∈ K [t] such that

f = (t − c)q + r, |r | ≤ 1.

Thus r ∈ K and the homomorphism properties imply that f (c) = r . �

We say that c ∈ K is a root of the polynomial f ∈ K [t] if f (c) = 0.

Proposition 15 Let K be a field. If f ∈ K [t] is a polynomial of degree n ≥ 0, then f
has at most n distinct roots in K .

Proof If f is of degree 0, then f = c is a nonzero element of K and f has no roots.
Suppose now that n ≥ 1 and the result holds for polynomials of degree less than n. If
c is a root of f then, by Proposition 14, f = (t − c)g for some g ∈ K [t]. Since g has
degree n − 1, it has at most n − 1 roots. But every root of f distinct from c is a root
of g. Hence f has at most n roots. �

We consider next properties of the integral domain R[t], when R is an integral
domain rather than a field (e.g., R = Z). The famous Pythagorean proof that

√
2 is

irrational is considerably generalized by the following result:
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Proposition 16 Let R be a GCD domain and K its field of fractions. Let

f = a0 + a1t + · · · + antn

be a polynomial of degree n > 0 with coefficients a j ∈ R (0 ≤ j ≤ n). If c ∈ K is a
root of f and c = ab−1, where a, b ∈ R and (a, b) = 1, then b|an and a|a0.

In particular, if f is monic, then c ∈ R.

Proof We have

a0bn + a1abn−1 + · · · + an−1an−1b + anan = 0.

Hence b|anan and a|a0bn . Since (an, b) = (a, bn) = 1, by Proposition 3(v), the result
follows from Proposition 3(ii). �

The polynomial t2−2 has no integer roots, since 0, 1,−1 are not roots and if c ∈ Z
and c �= 0, 1,−1, then c2 ≥ 4. Consequently, by Proposition 16, the polynomial t2−2
also has no rational roots. It now follows from Proposition 14 that t2 − 2 is irreducible
in Q[t], since it has no divisors of degree 1.

Proposition 16 was known to Euler (1774) for the case R = Z. In this case it shows
that to obtain all rational roots of a polynomial with rational coefficients we need test
only a finite number of possibilities, which can be explicitly enumerated. For exam-
ple, if z ∈ Z, the cubic polynomial t3 + zt + 1 has no rational roots unless z = 0 or
z = −2.

It was shown by Gauss (1801), again for the case R = Z, that Proposition 16
may itself be considerably generalized. His result may be formulated in the following
way:

Proposition 17 Let f, g ∈ R[t], where R is a GCD domain with field of fractions K .
Then g divides f in R[t] if and only if g divides f in K [t] and the greatest common
divisor of the coefficients of g divides the greatest common divisor of the coefficients
of f .

Proof For any polynomial f ∈ R[t], let c( f ) denote the greatest common divisor of
its coefficients. We say that f is primitive if c( f ) = 1. We show first that the product
f = gh of two primitive polynomials g, h is again primitive.

Let

g = b0 + b1t + · · · , h = c0 + c1t + · · · , f = a0 + a1t + · · · ,
and assume on the contrary that the coefficients ai have a common divisor d which
is not a unit. Then d does not divide all the coefficients b j , nor all the coeffi-
cients ck . Let bm , cn be the first coefficients of g, h which are not divisible by d .
Then

am+n =
∑

j+k=m+n

b j ck

and d divides every term on the right, except possibly bmcn . In fact, since d|am+n ,
d must also divide bmcn . Hence we cannot have both (d, bm) = 1 and (d, cn) = 1.



3 Polynomials 101

Consequently we can replace d by a proper divisor d ′, again not a unit, for which
m′ + n′ > m + n. Since there exists a divisor d for which m + n is a maximum, this
yields a contradiction.

Now let f, g be polynomials in R[t] such that g divides f in K [t]. Thus f = gH ,
where H ∈ K [t]. We can write H = ab−1h0, where a, b are coprime elements of R
and h0 is a primitive polynomial in R[t]. Also

f = c( f ) f0, g = c(g)g0,

where f0, g0 are primitive polynomials in R[t]. Hence

bc( f ) f0 = ac(g)g0h0.

Since g0h0 is primitive, it follows that

bc( f ) = ac(g).

If H ∈ R[t], then b = 1 and so c(g)|c( f ). On the other hand, if c(g)|c( f ), then
bc( f )/c(g) = a. Since (a, b) = 1, this implies that b = 1 and H ∈ R[t]. �

Corollary 18 If R is a GCD domain, then R[t] is also a GCD domain. If, moreover,
R is a factorial domain, then R[t] is also a factorial domain.

proof Let K denote the field of fractions of R. Since K [t] is a GCD domain and
R[t] ⊆ K [t], R[t] is certainly an integral domain. If f, g ∈ R[t], then there exists
a primitive polynomial h0 ∈ R[t] which is a greatest common divisor of f and g in
K [t]. It follows from Proposition 17 that

h = (c( f ), c(g))h0

is a greatest common divisor of f and g in R[t].
This proves the first statement of the corollary. It remains to show that if R also

satisfies the chain condition (#), then R[t] does likewise. But if fn ∈ R[t] and
fn+1| fn for every n, then fn must be of constant degree for all large n. The second
statement of the corollary now also follows from Proposition 17 and the chain
condition in R. ��

It follows by induction that in the statement of Corollary 18 we may replace
R[t] by the ring R[t1, . . . , tm ] of all polynomials in finitely many indeterminates
t1, . . . , tm with coefficients from R. In particular, if K is a field, then any polyno-
mial f ∈ K [t1, . . . , tm ] such that f /∈ K can be represented as a product of finitely
many irreducible polynomials and the representation is essentially unique.

It is now easy to give examples of GCD domains which are not Bézout domains.
Let R be a GCD domain which is not a field (e.g., R = Z). Then some a0 ∈ R is
neither zero nor a unit. By Corollary 18, R[t] is a GCD domain and, by Proposition 17,
the greatest common divisor in R[t] of the polynomials a0 and t is 1. If there existed
g, h ∈ R[t] such that

a0g + th = 1,
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where g = b0 + b1t + · · · , then by equating constant coefficients we would obtain
a0b0 = 1, which is a contradiction. Thus R[t] is not a Bézout domain.

As an application of the preceding results we show that if a1, . . . , an are distinct
integers, then the polynomial

f =
n∏

j=1

(t − a j )− 1

is irreducible in Q[t]. Assume, on the contrary, that f = gh, where g, h ∈ Q[t] and
have positive degree. We may suppose without loss of generality that g ∈ Z[t] and
that the greatest common divisor of the coefficients of g is 1. Since f ∈ Z[t], it then
follows from Proposition 17 that also h ∈ Z[t]. Thus g(a j ) and h(a j ) are integers for
every j . Since g(a j )h(a j ) = −1, it follows that g(a j ) = −h(a j ). Thus the polyno-
mial g + h has the distinct roots a1, . . . , an . Since g + h has degree less than n, this is
possible only if g + h = O. Hence f = −g2. But, since the highest coefficient of f
is 1, this is a contradiction.

In general, it is not an easy matter to determine if a polynomial with rational
coefficients is irreducible in Q[t]. However, the following irreducibility criterion, due
to Eisenstein (1850), is sometimes useful:

Proposition 19 If

f (t) = a0 + a1t + · · · + an−1tn−1 + tn

is a monic polynomial of degree n with integer coefficients such that a0, a1, . . . , an−1
are all divisible by some prime p, but a0 is not divisible by p2, then f is irreducible in
Q[t].

Proof Assume on the contrary that f is reducible. Then there exist polynomials
g(t), h(t) of positive degrees l,m with integer coefficients such that f = gh. If

g(t) = b0 + b1t + · · · + blt
l ,

h(t) = c0 + c1t + · · · + cmtm ,

then a0 = b0c0. The hypotheses imply that exactly one of b0, c0 is divisible by p. With-
out loss of generality, assume it to be b0. Since p divides a1 = b0c1 + b1c0, it follows
that p|b1. Since p divides a2 = b0c2+b1c1+b2c0, it now follows that p|b2. Proceeding
in this way, we see that p divides b j for every j ≤ l. But, since blcm = 1, this yields a
contradiction. �

It follows from Proposition 19 that, for any prime p, the p-th cyclotomic polyno-
mial

Φp(x) = x p−1 + x p−2 + · · · + 1

is irreducible in Q[x]. For Φp(x) = (x p − 1)/(x − 1) and, if we put x = 1 + t , the
transformed polynomial



3 Polynomials 103

{(1+ t)p − 1}/t = t p−1 + pCp−1t p−2 + · · · + pC2t + p

satisfies the hypotheses of Proposition 19.
For any field K , we define the formal derivative of a polynomial f ∈ K [t],

f = a0 + a1t + · · · + antn,

to be the polynomial

f ′ = a1 + 2a2t + · · · + nantn−1.

If the field K is of characteristic 0 (see Chapter I, §8), then ∂( f ′) = ∂( f )− 1.
Formal derivatives share the following properties with the derivatives of real

analysis:

(i) ( f + g)′ = f ′ + g′;
(ii) ( c f )′ = c f ′ for any c ∈ K ;

(iii) ( f g)′ = f ′g + f g′;
(iv) ( f k)′ = k f k−1 f ′ for any k ∈ N.

The first two properties are easily established and the last two properties then need
only be verified for monomials f = tm , g = tn .

We can use formal derivatives to determine when a polynomial is square-free:

Proposition 20 Let f be a polynomial of positive degree with coefficients from a
field K . If f is relatively prime to its formal derivative f ′, then f is a product of
irreducible polynomials, no two of which differ by a constant factor. Conversely, if f
is such a product and if K has characteristic 0, then f is relatively prime to f ′.

Proof If f = g2h for some polynomials g, h ∈ K [t] with ∂(g) > 0 then, by the rules
above,

f ′ = 2gg′h + g2h′.

Hence g| f ′ and f, f ′ are not relatively prime.
On the other hand, if f = p1 · · · pm is a product of essentially distinct irreducible

polynomials p j , then

f ′ = p′1 p2 · · · pm + p1 p′2 p3 · · · pm + · · · + p1 · · · pm−1 p′m .

If the field K has characteristic 0, then p′1 is of lower degree than p1 and is not the zero
polynomial. Thus the first term on the right is not divisible by p1, but all the other terms
are. Therefore p1� f ′, and hence ( f ′, p1) = 1. Similarly, ( f ′, p j ) = 1 for 1 < j ≤ m.
Since essentially distinct irreducible polynomials are relatively prime, it follows that
( f ′, f ) = 1. �

For example, it follows from Proposition 20 that the polynomial tn − 1 ∈ K [t] is
square-free if the characteristic of the field K does not divide the positive integer n.
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4 Euclidean Domains

An integral domain R is said to be Euclidean if it possesses a Euclidean algorithm, i.e.
if there exists a map δ : R → N ∪ {0} such that, for any a, b ∈ R with a �= 0, there
exist q, r ∈ R with the properties

b = qa + r, δ(r) < δ(a).

It follows that δ(a) > δ(0) for any a �= 0. For there exist q1, a1 ∈ R such that

0 = q1a + a1, δ(a1) < δ(a),

and if an �= 0 there exist qn+1, an+1 ∈ R such that

0 = qn+1an + an+1, δ(an+1) < δ(an).

Repeatedly applying this process, we must arrive at aN = 0 for some N , since the
sequence {δ(an)} cannot decrease forever, and we then have δ(0) = δ(aN ) < · · · <
δ(a1) < δ(a).

By replacing δ by δ − δ(0) we may, and will, assume that δ(0) = 0, δ(a) > 0 if
a �= 0.

Since the proof of Lemma 9 remains valid if Z is replaced by R and |a| by δ(a),
any Euclidean domain is a principal ideal domain.

The polynomial ring K [t] is a Euclidean domain with δ(a) = |a| = 2∂(a).
Polynomial rings are characterized among all Euclidean domains by the following
result:

Proposition 21 For a Euclidean domain R, the following conditions are equivalent:

(i) for any a, b ∈ R with a �= 0, there exist unique q, r ∈ R such that b = qa + r ,
δ(r) < δ(a);

(ii) for any a, b, c ∈ R with c �= 0,

δ(a + b) ≤ max{δ(a), δ(b)}, δ(a) ≤ δ(ac).

Moreover, if one or other of these two conditions holds, then either R is a field and
δ(a) = δ(1) for every a �= 0, or R = K [t] for some field K and δ is an increasing
function of | |.
Proof Suppose first that (i) holds. If a �= 0, c �= 0, then from 0 = 0a − 0 = ca − ac,
we obtain δ(ac) ≥ δ(a), and this holds also if a = 0. If we take c = −1 and replace a
by −a, we get δ(−a) = δ(a). Since b = 0(a + b)+ b = 1(a + b)+ (−a), it follows
that either δ(b) ≥ δ(a + b) or δ(a) ≥ δ(a + b). Thus (i)⇒ (ii).

Suppose next that (ii) holds. Assume that, for some a, b ∈ R with a �= 0, there
exist pairs q, r and q ′, r ′ such that

b = qa + r = q ′a + r ′, max{δ(r), δ(r ′)} < δ(a).
From (ii) we obtain first δ(−r) = δ(r) and then δ(r ′ − r) ≤ max{δ(r), δ(r ′)} < δ(a).
Since r ′−r = a(q−q ′), this implies q−q ′ = 0 and hence r ′−r = 0. Thus (ii)⇒ (i).
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Suppose now that (i) and (ii) both hold. Then δ(1) ≤ δ(a) for any a �= 0, since
a = 1a. Furthermore, δ(a) = δ(ae) for any unit e, since

δ(a) ≤ δ(ae) ≤ δ(aee−1) = δ(a).
On the other hand, δ(a) = δ(ae) for some a �= 0 implies that e is a unit. For from

a = qae+ r, δ(r) < δ(ae),

we obtain r = (1−qe)a, δ(r) < δ(a), and hence 1−qe = 0. In particular, δ(e) = δ(1)
if and only if e is a unit.

The set K of all a ∈ R such that δ(a) ≤ δ(1) thus consists of 0 and all units of R.
Since a, b ∈ K implies a−b ∈ K , it follows that K is a field. We assume that K �= R,
since otherwise we have the first alternative of the proposition.

Choose x ∈ R\K so that

δ(x) = min
a∈R\K

δ(a).

For any a ∈ R\K , there exist q0, r0 ∈ R such that

a = q0x + r0, δ(r0) < δ(x),

i.e. r0 ∈ K . Then δ(q0) < δ(q0x) = δ(a − r0) ≤ δ(a). If δ(q0) ≥ δ(x), i.e. if
q0 ∈ R\K , then in the same way there exist q1, r1 ∈ R such that

q0 = q1x + r1, r1 ∈ K , δ(q1) < δ(q0).

After finitely many repetitions of this process we must arrive at some qn−1 ∈ K .
Putting rn = qn−1, we obtain

a = rnxn + rn−1xn−1 + · · · + r0,

where r0, . . . , rn ∈ K and rn �= 0. Since δ(r j x j ) = δ(x j ) if r j �= 0 and δ(x j ) <
δ(x j+1) for every j , it follows that δ(a) = δ(xn). Since the representation a = qxn+r
with δ(r) < δ(xn) is unique, it follows that r0, . . . , rn are uniquely determined by a.
Define a map ψ : R → K [t] by

ψ(rn xn + rn−1xn−1 + · · · + r0) = rntn + rn−1tn−1 + · · · + r0.

Then ψ is a bijection and actually an isomorphism, since it preserves sums and prod-
ucts. Furthermore δ(a) >,=, or< δ(b) according as |ψ(a)| >,=, or < |ψ(b)|. �

Some significant examples of principal ideal domains are provided by quadratic
fields, which will be studied in Chapter III. Any quadratic number field has the form
Q(
√

d), where d ∈ Z is square-free and d �= 1. The set Od of all algebraic integers in
Q(
√

d) is an integral domain. In the equivalent language of binary quadratic forms, it
was known to Gauss that Od is a principal ideal domain for nine negative values of d ,
namely

d = −1,−2,−3,−7,−11,−19,−43,−67,−163.
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Heilbronn and Linfoot (1934) showed that there was at most one additional negative
value of d for which Od is a principal ideal domain. Stark (1967) proved that this
additional value does not in fact exist, and soon afterwards it was observed that a gap
in a previous proof by Heegner (1952) could be filled without difficulty. It is conjec-
tured that Od is a principal ideal domain for infinitely many positive values of d , but
this remains unproved.

Much work has been done on determining for which quadratic number fields
Q(
√

d) the ring of integers Od is a Euclidean domain. Although we regard being
Euclidean more as a useful property than as an important concept, we report here the
results which have been obtained for their intrinsic interest.

The ring Od is said to be norm-Euclidean if it is Euclidean when one takes δ(a) to
be the absolute value of the norm of a. It has been shown that Od is norm-Euclidean
for precisely the following values of d:

d = −11,−7,−3,−2,−1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73.

It is known that, for d < 0, Od is Euclidean only if it is norm-Euclidean. Comparing the
two lists, we see that for d = −19,−43,−67,−163,Od is a principal ideal domain,
but not a Euclidean domain. On the other hand it is also known that, for d = 69,Od is
Euclidean but not norm-Euclidean.

5 Congruences

The invention of a new notation often enables one to replace a long, involved argu-
ment by simple and mechanical algebraic operations. This is well illustrated by the
congruence notation.

Two integers a and b are said to be congruent modulo a third integer m if m divides
a − b, and this is denoted by a ≡ b mod m. For example,

13 ≡ 4 mod 3, 13 ≡ −7 mod 5, 19 ≡ 7 mod 4.

The notation is a modification by Gauss of the notation a = b mod m used by
Legendre, as Gauss explicitly acknowledged (D.A., §2). (If a and b are not congruent
modulo m, we write a �≡ b mod m.) Congruence has, in fact, many properties in
common with equality:

(C1) a ≡ a mod m for all a,m; (reflexive law)
(C2) if a ≡ b mod m, then b ≡ a mod m; (symmetric law)
(C3) if a ≡ b and b ≡ c mod m, then a ≡ c mod m; (transitive law)
(C4) if a ≡ a′ and b ≡ b′ mod m, then a+ b ≡ a′ + b′ and

ab ≡ a′b′mod m. (replacement laws)
The proofs of these properties are very simple. For any a,m we have a − a = 0 =

m ·0. If m divides a−b, then it also divides b−a = −(a−b). If m divides both a−b
and b − c, then it also divides (a − b) + (b − c) = a − c. Finally, if m divides both
a − a′ and b − b′, then it also divides (a − a′) + (b − b′) = (a + b)− (a′ + b′) and
(a − a′)b + a′(b − b′) = ab − a′b′.

The properties (C1)–(C3) state that congruence mod m is an equivalence relation.
Since a = b implies a ≡ b mod m, it is a coarsening of the equivalence relation of
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equality (but coincides with it if m = 0). The corresponding equivalence classes are
called residue classes. The set Z with equality replaced by congruence mod m will be
denoted by Z(m). If m > 0, Z(m) has cardinality m, since an arbitrary integer a can be
uniquely represented in the form a = qm+ r , where r ∈ {0, 1, . . . ,m− 1} and q ∈ Z.
The particular r which represents a given a ∈ Z is referred to as the least non-negative
residue of a mod m.

The replacement laws imply that the associative, commutative and distributive laws
for addition and multiplication are inherited from Z by Z(m). Hence Z(m) is a commu-
tative ring, with 0 as an identity element for addition and 1 as an identity element for
multiplication. However, Z(m) is not an integral domain if m is composite, since if
m = m′m′′ with 1 < m′ < m, then

m′m′′ ≡ 0, but m′ �≡ 0,m′′ �≡ 0 mod m.

On the other hand, if ab ≡ ac mod m and (a,m) = 1, then b ≡ c mod m, by Proposi-
tion 3(ii). Thus factors which are relatively prime to the modulus can be cancelled.

In algebraic terms, Z(m) is the quotient ring Z/mZ of Z with respect to the ideal
mZ generated by m, and the elements of Z(m) are the cosets of this ideal. For conve-
nience, rather than necessity, we suppose from now on that m > 1.

Congruences enter implicitly into many everyday problems. For example, the ring
Z(2) contains two distinct elements, 0 and 1, with the addition and multiplication tables

0+ 0 = 1+ 1 = 0, 0+ 1 = 1+ 0 = 1,

0 · 0 = 0 · 1 = 1 · 0 = 0, 1 · 1 = 1.

This is the arithmetic of odds (1) and evens (0), which is used by electronic computers.
Again, to determine the day of the week on which one was born, from the date and

day of the week today, is an easy calculation in the arithmetic of Z(7) (remembering
that 366 ≡ 2 mod 7).

The well-known tests for divisibility of an integer by 3 or 9 are easily derived by
means of congruences. Let the positive integer a have the decimal representation

a = a0 + a110+ · · · + an10n,

where a0, a1, . . . , an ∈ {0, 1, . . . , 9}. Since 10 ≡ 1 mod m, where m = 3 or 9, the
replacement laws imply that 10k ≡ 1 mod m for any positive integer k and hence

a ≡ a0 + a1 + · · · + an mod m.

Thus a is divisible by 3 or 9 if and only if the sum of its digits is so divisible.
This can be used to check the accuracy of arithmetical calculations. Any equa-

tion involving only additions and multiplications must remain valid when equality is
replaced by congruence mod m. For example, suppose we wish to check if

7714× 3036 = 23,419,804.

Taking congruences mod 9, we have on the left side 19× 12 ≡ 1 × 3 ≡ 3 and on the
right side 5 + 14 + 12 ≡ 5 + 5 + 3 ≡ 4. Since 4 �≡ 3 mod 9, the original equation is
incorrect (the 8 should be a 7).
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Since the distinct squares in Z(4) are 0 and 1, it follows that an integer a ≡ 3 mod 4
cannot be represented as the sum of two squares of integers. Similarly, since the distinct
squares in Z(8) are 0,1,4, an integer a ≡ 7 mod 8 cannot be represented as the sum of
three squares of integers.

The oldest known work on number theory is a Babylonian cuneiform text, from at
least as early as 1600 B.C., which contains a list of right-angled triangles whose side
lengths are all exact multiples of the unit length. By Pythagoras’ theorem, the problem
is to find positive integers x, y, z such that

x2 + y2 = z2.

For example, 3, 4, 5 and 5, 12, 13 are solutions. The number of solutions listed sug-
gests that the Babylonians not only knew the theorem of Pythagoras, but also had some
rule for finding such Pythagorean triples. There are in fact infinitely many, and a rule
for finding them all is given by Euclid in his Elements (Book X, Lemma 1 following
Proposition 28). This rule will now be derived.

We may assume that x and y are relatively prime since, if x, y, z is a Pythagorean
triple for which x and y have greatest common divisor d , then d2|z2 and hence d|z,
so that x/d, y/d, z/d is also a Pythagorean triple. If x and y are relatively prime, then
they are not both even and without loss of generality we may assume that x is odd. If
y were also odd, we would have

z2 = x2 + y2 ≡ 1+ 1 ≡ 2 mod 4,

which is impossible. Hence y is even and z is odd. Then 2 is a common divisor of
z+ x and z− x , and is actually their greatest common divisor, since (x, y) = 1 implies
(x, z) = 1. Since

(y/2)2 = (z + x)/2 · (z − x)/2

and the two factors on the right are relatively prime, they are also squares:

(z + x)/2 = a2, (z − x)/2 = b2,

where a > b > 0 and (a, b) = 1. Then

x = a2 − b2, y = 2ab, z = a2 + b2.

Moreover a and b cannot both be odd, since z is odd.
Conversely, if x, y, z are defined by these formulas, where a and b are relatively

prime positive integers with a > b and either a or b even, then x, y, z is a Pythagorean
triple. Moreover x is odd, since z is odd and y even, and it is easily verified that
(x, y) = 1. For given x and z, a2 and b2 are uniquely determined, and hence a and b
are also. Thus different couples a, b give different solutions x, y, z.

To return to congruences, we now consider the structure of the ring Z(m). If
a ≡ a′mod m and (a,m) = 1, then also (a′,m) = 1. Hence we may speak of an
element of Z(m) as being relatively prime to m. The set of all elements of Z(m) which
are relatively prime to m will be denoted by Z×(m). If a is a unit of the ring Z(m), then

clearly a ∈ Z×(m). The following proposition shows that, conversely, if a ∈ Z×(m), then
a is a unit of the ring Z(m).
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Proposition 22 The set Z×(m) is a commutative group under multiplication.

Proof By Proposition 3(iv), Z×(m) is closed under multiplication. Since multiplication

is associative and commutative, it only remains to show that any a ∈ Z×(m) has an

inverse a−1 ∈ Z×(m).
The elements of Z×(m) may be taken to be the positive integers c1, . . . , ch which

are less than m and relatively prime to m, and we may choose the notation so that
c1 = 1. Since ac j ≡ ack mod m implies c j ≡ ck mod m, the elements ac1, . . . , ach

are distinct elements of Z×(m) and hence are a permutation of c1, . . . , ch . In particular,
aci ≡ c1 mod m for one and only one value of i . (The existence of inverses also fol-
lows from the Bézout identity au + mv = 1, since this implies au ≡ 1 mod m. Hence
the Euclidean algorithm provides a way of calculating a−1.) �

Corollary 23 If p is a prime, then Z(p) is a finite field with p elements.

Proof We already know that Z(p) is a commutative ring, whose distinct elements are
represented by the integers 0, 1, . . . , p − 1. Since p is a prime, Z×(p) consists of all

nonzero elements of Z(p). Since Z×(p) is a multiplicative group, by Proposition 22, it
follows that Z(p) is a field. �

The finite field Z(p) will be denoted from now on by the more usual notation Fp .
Corollary 23, in conjunction with Proposition 15, implies that if p is a prime and f a
polynomial of degree n ≥ 1, then the congruence

f (x) ≡ 0 mod p

has at most n mutually incongruent solutions mod p. This is no longer true if the mod-
ulus is not a prime. For example, the congruence x2 − 1 ≡ 0 mod 8 has the distinct
solutions x ≡ 1, 3, 5, 7 mod 8.

The order of the group Z×(m), i.e. the number of positive integers less than m and rel-
atively prime to m, is traditionally denoted by ϕ(m), with the convention that ϕ(1) = 1.
For example, if p is a prime, then ϕ(p) = p − 1. More generally, for any positive
integer k,

ϕ(pk) = pk − pk−1,

since the elements of Z(pk) which are not in Z×
(pk)

are the multiples j p with 0 ≤ j <

pk−1. By Proposition 4, if m = m′m′′, where (m′,m′′) = 1, then ϕ(m) = ϕ(m′)ϕ(m′′).
Together with what we have just proved, this implies that if an arbitrary positive integer
m has the factorization

m = pk1
1 · · · pks

s

as a product of positive powers of distinct primes, then

ϕ(m) = pk1−1
1 (p1 − 1) · · · pks−1

s (ps − 1).
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In other words,

ϕ(m) = m
∏
p|m
(1− 1/p).

The function ϕ(m) was first studied by Euler and is known as Euler’s phi-function
(or ‘totient’ function), although it was Gauss who decided on the letter ϕ. Gauss (D.A.,
§39) also established the following property:

Proposition 24 For any positive integer n,∑
d |n
ϕ(d) = n,

where the summation is over all positive divisors d of n.

Proof Let d be a positive divisor of n and let Sd denote the set of all positive integers
m ≤ n such that (m, n) = d . Since (m, n) = d if and only if (m/d, n/d) = 1, the
cardinality of Sd is ϕ(n/d). Moreover every positive integer m ≤ n belongs to exactly
one such set Sd . Hence

n =
∑
d |n
ϕ(n/d) =

∑
d |n
ϕ(d),

since n/d runs through the positive divisors of n at the same time as d . �

Much of the significance of Euler’s function stems from the following property:

Proposition 25 If m is a positive integer and a an integer relatively prime to m, then

aϕ(m) ≡ 1 mod m.

Proof Let c1, . . . , ch , where h = ϕ(m), be the distinct elements of Z×(m). As we saw

in the proof of Proposition 22, the elements ac1, . . . , ach of Z×(m) are just a permu-

tation of c1, . . . , ch . Forming their product, we obtain ahc1 · · · ch ≡ c1 · · · ch mod m.
Since the c’s are relatively prime to m, they can be cancelled and we are left with
ah ≡ 1 mod m. �

Corollary 26 If p is a prime and a an integer not divisible by p, then a p−1 ≡ 1 mod p.

Corollary 26 was stated without proof by Fermat (1640) and is commonly known
as ‘Fermat’s little theorem’. The first published proof was given by Euler (1736), who
later (1760) proved the general Proposition 25.

Proposition 25 is actually a very special case of Lagrange’s theorem that the order
of a subgroup of a finite group divides the order of the whole group. In the present case
the whole group is Z×(m) and the subgroup is the cyclic group generated by a.

Euler gave also another proof of Corollary 26, which has its own interest. For any
two integers a, b and any prime p we have, by the binomial theorem,
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(a + b)p =
p∑

k=0

pCkakb p−k,

where the binomial coefficients

pCk = (p − k + 1) · · · p/1 · 2 · · · · · k

are integers. Moreover p divides pCk for 0 < k < p, since p divides pCk · k! and is
relatively prime to k! It follows that

(a + b)p ≡ a p + b p mod p.

In particular, (a + 1)p ≡ a p + 1 mod p, from which we obtain by induction a p ≡
a mod p for every integer a. If p does not divide a, the factor a can be cancelled to
give a p−1 ≡ 1 mod p.

The first part of the second proof actually shows that in any commutative ring R,
of prime characteristic p, the map a → a p is a homomorphism:

(a + b)p = a p + b p, (ab)p = a pb p.

(As defined in §8 of Chapter I, R has characteristic k if k is the least positive integer
such that the sum of k 1’s is 0, and has characteristic zero if there is no such positive
integer.) By way of illustration, we give one important application of this result.

We showed in §3 that, for any prime p, the polynomial

Φp(x) = x p−1 + x p−2 + · · · + 1

is irreducible in Q[x]. The roots in C of Φp(x) are the p-th roots of unity, other
than 1. By a quite different argument we now show that, for any positive integer n, the
‘primitive’ n-th roots of unity are the roots of a monic polynomialΦn(x) with integer
coefficients which is irreducible in Q[x]. The uniquely determined polynomial Φn(x)
is called the n-th cyclotomic polynomial.

Let ζ be a primitive n-th root of unity, i.e. ζ n = 1 but ζ k �= 1 for 0 < k < n.
It follows from Corollary 18 that ζ is a root of some monic irreducible polynomial
f (x) ∈ Z[x] which divides xn − 1. If p is a prime which does not divide n, then ζ p is
also a primitive n-th root of unity and, for the same reason, ζ p is a root of some monic
irreducible polynomial g(x) ∈ Z[x] which divides xn − 1.

We show first that g(x) = f (x). Assume on the contrary that g(x) �= f (x). Then

xn − 1 = f (x)g(x)h(x)

for some h(x) ∈ Z[x]. Since ζ is a root of g(x p), we also have

g(x p) = f (x)k(x)

for some k(x) ∈ Z[x]. If f̄ (x), . . . denotes the polynomial in Fp[x] obtained from
f (x), . . . by reducing the coefficients mod p,
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then

xn − 1 = f̄ (x)ḡ(x)h̄(x), ḡ(x p) = f̄ (x)k̄(x).

But ḡ(x p) = ḡ(x)p, since Fp[x] is a ring of characteristic p and a p = a for every
a ∈ Fp. Hence any irreducible factor ē(x) of f̄ (x) in Fp[x] also divides ḡ(x). Con-
sequently ē(x)2 divides xn − 1 in Fp[x]. But xn − 1 is relatively prime to its formal
derivative nxn−1, since p�n, and so is square-free. This is the desired contradiction.

By applying this repeatedly for the same or different primes p, we see that ζm is
a root of f (x) for any positive integer m less than n and relatively prime to n. If ω is
any n-th root of unity, then ω = ζ k for a unique k such that 0 ≤ k < n. If (k, n) �= 1,
then ωd = 1 for some proper divisor d of n (cf. Lemma 31 below). If such an ω were a
root of f (x), then f (x) would divide xd − 1, which is impossible since ζ is not a root
of xd − 1. Hence f (x) does not depend on the original choice of primitive n-th root
of unity, its roots being all the primitive n-th roots of unity. The polynomial f (x) will
now be denoted by Φn(x). Since xn − 1 is square-free, we have

xn − 1 =
∏
d |n
Φd (x).

This yields a new proof of Proposition 24, since Φd (x) has degree ϕ(d).
As an application of Fermat’s little theorem (Corollary 26) we now prove

Proposition 27 If p is a prime, then (p − 1)!+ 1 is divisible by p.

Proof Since 1! + 1 = 2, we may suppose that the prime p is odd. By Corollary 26,
the polynomial f (t) = t p−1 − 1 has the distinct roots 1, 2, . . . , p − 1 in the field Fp .
But the polynomial g(t) = (t − 1)(t − 2) · · · (t − p + 1) has the same roots. Since
f (t) − g(t) is a polynomial of degree less than p − 1, it follows from Proposition 15
that f (t) − g(t) is the zero polynomial. In particular, f (t) and g(t) have the same
constant coefficient. Since (−1)p−1 = 1, this yields the result. �

Proposition 27 is known as Wilson’s theorem, although the first published proof
was given by Lagrange (1773). Lagrange observed also that (n − 1)! + 1 is divisible
by n only if n is prime. For suppose n = n′n′′, where 1 < n′, n′′ < n. If n′ �= n′′, then
both n′ and n′′ occur as factors in (n− 1)! and hence n divides (n− 1)! If n′ = n′′ > 2
then, since n > 2n′, both n′ and 2n′ occur as factors in (n − 1)! and again n divides
(n − 1)! Finally, if n = 4, then n divides (n − 1)!+ 2.

As another application of Fermat’s little theorem, we prove Euler’s criterion for
quadratic residues. If p is a prime and a an integer not divisible by p, we say that a
is a quadratic residue, or quadratic nonresidue, of p according as there exists, or does
not exist, an integer c such that c2 ≡ a mod p. Thus a is a quadratic residue of p if
and only if it is a square in F×p . Euler’s criterion is the first statement of the following
proposition:

Proposition 28 If p is an odd prime and a an integer not divisible by p, then

a(p−1)/2 ≡ 1 or − 1 mod p,

according as a is a quadratic residue or nonresidue of p.
Moreover, exactly half of the integers 1, 2, . . . , p − 1 are quadratic residues of p.
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Proof If a is a quadratic residue of p, then a ≡ c2 mod p for some integer c and
hence, by Fermat’s little theorem,

a(p−1)/2 ≡ c p−1 ≡ 1 mod p.

Since the polynomial t(p−1)/2−1 has at most (p−1)/2 roots in the field Fp, it follows
that there are at most r := (p − 1)/2 distinct quadratic residues of p. On the other
hand, no two of the integers 12, 22, . . . , r2 are congruent mod p, since u2 ≡ v2 mod p
implies u ≡ v or u ≡ −v mod p. Hence there are exactly (p − 1)/2 distinct quadratic
residues of p and, if b is a quadratic nonresidue of p, then b(p−1)/2 �≡ 1 mod p. Since
b p−1 ≡ 1 mod p, and

b p−1 − 1 = (b(p−1)/2 − 1)(b(p−1)/2 + 1),

we must have b(p−1)/2 ≡ −1 mod p. �

Corollary 29 If p is an odd prime, then−1 is a quadratic residue of p if p ≡ 1 mod 4
and a quadratic nonresidue of p if p ≡ 3 mod 4.

Euler’s criterion may also be used to determine for what primes 2 is a quadratic
residue:

Proposition 30 For any odd prime p, 2 is a quadratic residue of p if p ≡ ±1 mod 8
and a quadratic nonresidue if p ≡ ±3 mod 8.

Proof Let A denote the set of all even integers a such that p/2 < a < p, and let B
denote the set of all even integers b such that 0 < b < p/2. Since A ∪ B is the set
of all positive even integers less than p, it has cardinality r := (p − 1)/2. Evidently
a ∈ A if and only if p− a is odd and 0 < p− a < p/2. Hence the integers 1, 2, . . . , r
are just the elements of B , together with the integers p − a(a ∈ A). If we denote the
cardinality of A by #A, it follows that

r ! =
∏
a∈A

(p − a)
∏
b∈B

b

≡ (−1)#A
∏
a∈A

a
∏
b∈B

b mod p

= (−1)#A2rr !

Thus 2r ≡ (−1)#A mod p and hence, by Proposition 28, 2 is a quadratic residue or
nonresidue of p according as #A is even or odd. But #A = k if p = 4k + 1 and
#A = k + 1 if p = 4k + 3. The result follows. �

We now introduce some simple group-theoretical concepts. Let G be a finite group
and a ∈ G. Then there exist j, k ∈ N with j < k such that a j = ak . Thus ak− j = 1,
where 1 is the identity element of G. The order of a is the least positive integer d such
that ad = 1.

Lemma 31 Let G be a finite group of order n and a an element of G of order d. Then

(i) for any k ∈ N, ak = 1 if and only if d divides k;
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(ii) for any k ∈ N, ak has order d/(k, d);
(iii) H = {1, a, . . . , ad−1} is a subgroup of G and d divides n.

Proof Any k ∈ N can be written in the form k = qd+r , where q ≥ 0 and 0 ≤ r < d .
Since aqd = (ad)q = 1, we have ak = 1 if and only if ar = 1, i.e. if and only if r = 0,
by the definition of d .

It follows that if ak has order e, then ke = [k, d]. Since [k, d] = kd/(k, d), this
implies e = d/(k, d). In particular, ak again has order d if and only if (k, d) = 1.

If 0 ≤ j, k < d , put i = j + k if j + k < d and i = j + k − d if j + k ≥ d . Then
a j ak = ai , and so H contains the product of any two of its elements. If 0 < k < d ,
then akad−k = 1, and so H contains also the inverse of any one of its elements. Finally
d divides n, by Lagrange’s theorem that the order of a subgroup divides the order of
the whole group. �

The subgroup H in Lemma 31 is the cyclic subgroup generated by a. For G =
Z×(m), the case which we will be interested in, there is no need to appeal to

Lagrange’s theorem, since Z×(m) has order ϕ(m) and d divides ϕ(m), by Proposition 25
and Lemma 31(i).

A group G is cyclic if it coincides with the cyclic subgroup generated by one of its
elements. For example, the n-th roots of unity in C form a cyclic group generated by
e2π i/n . In fact the generators of this group are just the primitive n-th roots of unity.

Our next result provides a sufficient condition for a finite group to be cyclic.

Lemma 32 A finite group G of order n is cyclic if, for each positive divisor d of n,
there are at most d elements of G whose order divides d.

Proof If H is a cyclic subgroup of G, then its order d divides n. Since all its elements
are of order dividing d , the hypothesis of the lemma implies that any element of G
whose order divides d must be in H . Furthermore, H contains exactly ϕ(d) elements
of order d since, if a generates H , ak has order d if and only if (k, d) = 1.

For each divisor d of n, let ψ(d) denote the number of elements of G of or-
der d . Then, by what we have just proved, either ψ(d) = 0 or ψ(d) = ϕ(d). But∑

d |n ψ(d) = n, since the order of each element is a divisor of n, and
∑

d |n ϕ(d) = n,
by Proposition 24. Hence we must have ψ(d) = ϕ(d) for every d|n. In particular, the
group G has ψ(n) = ϕ(n) elements of order n. �

The condition of Lemma 32 is also necessary. For let G be a finite cyclic group of
order n, generated by the element a, and let d be a divisor of n. An element x ∈ G has
order dividing d if and only if xd = 1. Thus the elements ak of G of order dividing d
are given by k = jn/d , with j = 0, 1, . . . , d − 1.

We now return from group theory to number theory.

Proposition 33 For any prime p, the multiplicative group F×p of the field Fp is cyclic.

Proof Put G = F×p and denote the order of G by n. For any divisor d of n, the

polynomial td − 1 has at most d roots in Fp . Hence there are at most d elements of G
whose order divides d . The result now follows from Lemma 32. �
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The same argument shows that, for an arbitrary field K , any finite subgroup of the
multiplicative group of K is cyclic.

In the terminology of number theory, an integer which generates Z×(m) is said to be
a primitive root of m. Primitive roots may be used to replace multiplications mod m
by additions mod ϕ(m) in the same way that logarithms were once used in analysis. If
g is a primitive root of m, then the elements of Z×(m) are precisely 1, g, g2, . . . , gn−1,

where n = ϕ(m). Thus for each a ∈ Z×(m) we have a ≡ gα mod m for a unique index
α (0 ≤ α < n). We can construct a table of these indices once and for all. If a ≡ gα

and b ≡ gβ , then ab ≡ gα+β . By replacing α + β by its least non-negative residue γ
mod n and going backwards in our table we can determine c such that ab ≡ c mod m.

For any prime p, an essentially complete proof for the existence of primitive roots
of p was given by Euler (1774). Jacobi (1839) constructed tables of indices for all
primes less than 1000.

We now use primitive roots to prove a general property of polynomials with coef-
ficients from a finite field:

Proposition 34 If f (x1, . . . , xn) is a polynomial of degree less than n in n variables
with coefficients from the finite field Fp, then the number of zeros of f in Fn

p is divisible
by the characteristic p. In particular, (0, . . . , 0) is not the only zero of f if f has no
constant term.

Proof Put K = Fp and g = 1 − f p−1. If α = (a1, . . . , an) is a zero of f , then
g(α) = 1. If α is not a zero of f , then f (α)p−1 = 1 and g(α) = 0. Hence the number
N of zeros of f satisfies

N ≡
∑
α∈K n

g(α)mod p.

We will complete the proof by showing that∑
α∈K n

g(α) = 0.

Since g has degree less than n(p − 1), it is a constant linear combination of poly-
nomials of the form xk1

1 · · · xkn
n , where k1 + · · · + kn < n(p− 1). Thus k j < p− 1 for

at least one j . Since

∑
α∈K n

ak1
1 · · · akn

n =
(∑

a1∈K

ak1
1

)
· · ·

(∑
an∈K

akn
n

)
,

it is enough to show that Sk := ∑
a∈K ak is zero for 0 ≤ k < p − 1. If k = 0, then

ak = 1 and S0 = p · 1 = 0. Suppose 1 ≤ k < p − 1 and let b be a generator for the
multiplicative group K× of K . Then c := bk �= 1 and

Sk =
p−1∑
j=1

c j = c(c p−1 − 1)/(c − 1) = 0. �
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The general case of Proposition 34 was first proved by Warning (1936), after
the particular case had been proved by Chevalley (1936). As an illustration, the par-
ticular case implies that, for any integers a, b, c and any prime p, the congruence
ax2 + by2 + cz2 ≡ 0 mod p has a solution in integers x, y, z not all divisible by p.

If m is not a prime, then Z(m) is not a field. However, we now show that the group
Z×(m) is cyclic also if m = p2 is the square of a prime.

Let g be a primitive root of p. It follows from the binomial theorem that

(g + p)p ≡ g p mod p2.

Hence, if g p ≡ g mod p2, then (g + p)p �≡ g + p mod p2. Thus, by replacing g by
g+ p if necessary, we may assume that g p−1 �≡ 1 mod p2. If the order of g in Z×

(p2)
is

d , then d divides ϕ(p2) = p(p−1). But ϕ(p) = p−1 divides d , since gd ≡ 1 mod p2

implies gd ≡ 1 mod p and g is a primitive root of p. Since p is prime and d �= p − 1,
it follows that d = p(p − 1), i.e. Z×

(p2)
is cyclic with g as generator.

We briefly state some further results about primitive roots, although we will not use
them. Gauss (D.A., §89–92) showed that the group Z×(m) is cyclic if and only if

m ∈ {2, 4, pk, 2 pk}, where p is an odd prime and k ∈ N. Evidently 1 is a primi-
tive root of 2 and 3 is a primitive root of 4. If g is a primitive root of p2, where p is an
odd prime, then g is a primitive root of pk for every k ∈ N; and if g′ = g or g + pk ,
according as g is odd or even, then g′ is a primitive root of 2 pk .

By Fermat’s little theorem, if p is prime, then a p−1 ≡ 1 mod p for every a ∈ Z
such that (a, p) = 1. With the aid of primitive roots we will now show that there
exist also composite integers n such that an−1 ≡ 1 mod n for every a ∈ Z such that
(a, n) = 1.

Proposition 35 For any integer n > 1, the following two statements are equivalent:

(i) an−1 ≡ 1 mod n for every integer a such that (a, n) = 1;
(ii) n is a product of distinct primes and, for each prime p|n, p − 1 divides n − 1.

Proof Suppose first that (i) holds and assume that, for some prime p, p2|n. As we
have just proved, there exists a primitive root g of p2. Evidently p � g. It is easily
seen that there exists c ∈ N such that a = g + cp2 is relatively prime to n; in fact we
can take c to be the product of the distinct prime factors of n, other than p, which do
not divide g. Since n divides an−1 − 1, also p2 divides an−1 − 1. But a, like g, is a
primitive root of p2, and so its order in Z×

(p2)
is ϕ(p2) = p(p − 1). Hence p(p − 1)

divides n − 1. But this contradicts p|n.
Now let p be any prime divisor of n and let g be a primitive root of p. In the same

way as before, there exists c ∈ N such that a = g+cp is relatively prime to n. Arguing
as before, we see that ϕ(p) = p − 1 divides n − 1. This proves that (i) implies (ii).

Suppose next that (ii) holds and let a be any integer relatively prime to n. If p is a
prime factor of n, then p � a and hence a p−1 ≡ 1 mod p. Since p − 1 divides n − 1,
it follows that an−1 ≡ 1 mod p. Thus an−1 − 1 is divisible by each prime factor of n
and hence, since n is squarefree, also by n itself. �

Proposition 35 was proved by Carmichael (1910), and a composite integer n with
the equivalent properties stated in the proposition is said to be a Carmichael number.
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Any Carmichael number n must be odd, since it has an odd prime factor p such that
p−1 divides n−1. Furthermore a Carmichael number must have more than two prime
factors. For assume n = pq , where 1 < p < q < n and q − 1 divides n − 1. Since
q ≡ 1 mod(q − 1), it follows that

0 ≡ pq − 1 ≡ p − 1 mod(q − 1),

which contradicts p < q .
The composite integer 561 = 3 × 11 × 17 is a Carmichael number, since 560 is

divisible by 2,10 and 16, and it is in fact the smallest Carmichael number. The taxi-
cab number 1729, which Hardy reckoned to Ramanujan was uninteresting, is also a
Carmichael number, since 1729 = 7 × 13× 19. Indeed it is not difficult to show that
if p, 2 p− 1 and 3 p− 2 are all primes, with p > 3, then their product is a Carmichael
number. Recently Alford, Granville and Pomerance (1994) confirmed a long-standing
conjecture by proving that there are infinitely many Carmichael numbers.

Our next topic is of greater importance. Many arithmetical problems require for
their solution the determination of an integer which is congruent to several given
integers according to various given moduli. We consider first a simple, but important,
special case.

Proposition 36 Let m = m′m′′, where m′ and m′′ are relatively prime integers. Then,
for any integers a′, a′′, there exists an integer a, which is uniquely determined mod m,
such that

a ≡ a′ mod m′, a ≡ a′′mod m′′.

Moreover, a is relatively prime to m if and only if a′ is relatively prime to m ′ and a′′ is
relatively prime to m ′′.

Proof By Proposition 22, there exist integers c′, c′′ such that

c′m′′ ≡ 1 mod m′, c′′m′ ≡ 1 mod m′′.

Thus e′ := c′m′′ is congruent to 1 mod m′ and congruent to 0 mod m′′. Similarly
e′′ := c′′m′ is congruent to 0 mod m′ and congruent to 1 mod m′′. It follows that
a = a′e′ + a′′e′′ is congruent to a′mod m′ and congruent to a′′mod m′′.

It is evident that if b ≡ a mod m, then also b ≡ a′mod m′ and b ≡ a′′mod m′′.
Conversely, if b satisfies these two congruences, then b − a ≡ 0 mod m′ and b − a ≡
0 mod m′′. Hence b − a ≡ 0 mod m, by Proposition 3(i).

Since m′ and m′′ are relatively prime, it follows from Proposition 3(iv) that
(a,m) = 1 if and only if (a,m′) = (a,m ′′) = 1. Since a ≡ a′mod m′ implies
(a,m′) = (a′,m′), and a ≡ a′′ mod m′′ implies (a,m′′) = (a′′,m′′), this proves the
last statement of the proposition. �

In algebraic terms, Proposition 36 says that if m = m′m′′, where m′ and m′′ are rel-
atively prime integers, then the ring Z(m) is (isomorphic to) the direct sum of the rings
Z(m′) and Z(m′′). Furthermore, the group Z×(m) is (isomorphic to) the direct product of

the groups Z×(m′) and Z×(m′′).
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Proposition 36 can be considerably generalized:

Proposition 37 For any integers m1, . . . ,mn and a1, . . . , an, the simultaneous con-
gruences

x ≡ a1 mod m1, . . . , x ≡ an mod mn

have a solution x if and only if

a j ≡ ak mod(m j ,mk) for 1 ≤ j < k ≤ n.

Moreover, y is also a solution if and only if

y ≡ x mod[m1, . . . ,mn].

proof The necessity of the conditions is trivial. For if x is a solution and if d jk =
(m j ,mk) is the greatest common divisor of m j and mk , then a j ≡ x ≡ ak mod d jk .
Also, if y is another solution, then y − x is divisible by m1, . . . ,mn and hence also by
their least common multiple [m1, . . . ,mn].

We prove the sufficiency of the conditions by induction on n. Suppose first that
n = 2 and a1 ≡ a2 mod d , where d = (m1,m2). By the Bézout identity,

d = x1m1 − x2m2

for some x1, x2 ∈ Z. Since a1 − a2 = kd for some k ∈ Z, it follows that

x := a1 − kx1m1 = a2 − kx2m2

is a solution.
Suppose next that n > 2 and the result holds for all smaller values of n. Then there

exists x ′ ∈ Z such that

x ′ ≡ ai mod mi for 1 ≤ i < n,

and x ′ is uniquely determined mod m′, where m′ = [m1, . . . ,mn−1]. Since any solu-
tion of the two congruences

x ≡ x ′ mod m′, x ≡ an mod mn

is a solution of the given congruences, we need only show that x ′ ≡ an mod(m′,mn).
But, by the distributive law connecting greatest common divisors and least common
multiples,

(m ′,mn) = [(m1,mn), . . . , (mn−1,mn)].

Since x ′ ≡ ai ≡ an mod(mi ,mn) for 1 ≤ i < n, it follows that x ′ ≡ an mod(m′,mn).
��

Corollary 38 Let m1, . . . ,mn be integers, any two of which are relatively prime, and
let m = m1 · · ·mn be their product. Then, for any given integers a1, . . . , an, there is a
unique integer x mod m such that

x ≡ a1 mod m1, . . . , x ≡ an mod mn.

Moreover, x is relatively prime to m if and only if ai is relatively prime to mi for
1 ≤ i ≤ n.
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Corollary 38 can also be proved by an extension of the argument used to prove
Proposition 36. Both Proposition 37 and Corollary 38 are referred to as the Chinese
remainder theorem. Sunzi (4th century A.D.) gave a procedure for obtaining the solu-
tion x = 23 of the simultaneous congruences

x ≡ 2 mod 3, x ≡ 3 mod 5, x ≡ 2 mod 7.

Qin Jiushao (1247) gave a general procedure for solving simultaneous congruences,
the moduli of which need not be pairwise relatively prime, although he did not state
the necessary condition for the existence of a solution. The problem appears to have
its origin in the construction of calendars.

6 Sums of Squares

Which positive integers n can be represented as a sum of two squares of integers? The
question is answered completely by the following proposition, which was stated by
Girard (1625). Fermat (1645) claimed to have a proof, but the first published proof
was given by Euler (1754).

Proposition 39 A positive integer n can be represented as a sum of two squares if and
only if for each prime p ≡ 3 mod 4 that divides n, the highest power of p dividing n is
even.

Proof We observe first that, since

(x2 + y2)(u2 + v2) = (xu + yv)2 + (xv − yu)2,

any product of sums of two squares is again a sum of two squares.
Suppose n = x2 + y2 for some integers x, y and that n is divisible by a prime

p ≡ 3 mod 4. Then x2 ≡ −y2 mod p. But −1 is not a square in the field Fp, by
Corollary 29. Consequently we must have y2 ≡ x2 ≡ 0 mod p. Thus p divides both
x and y. Hence p2 divides n and (n/p)2 = (x/p)2 + (y/p)2. It follows by induction
that the highest power of p which divides n is even.

Thus the condition in the statement of the proposition is necessary. Suppose now
that this condition is satisfied. Then n = qm2, where q is square-free and the only
possible prime divisors of q are 2 and primes p ≡ 1 mod 4. Since m2 = m2 + 02 and
2 = 12 + 12, it follows from our initial observation that n is a sum of two squares if
every prime p ≡ 1 mod 4 is a sum of two squares. Following Gauss (1832), we will
prove this with the aid of complex numbers.

A complex number γ = a+bi is said to be a Gaussian integer if a, b ∈ Z. The set
of all Gaussian integers will be denoted by G . Evidently γ ∈ G implies γ̄ ∈ G , where
γ̄ = a − bi is the complex conjugate of γ . Moreover α, β ∈ G implies α ± β ∈ G
and αβ ∈ G . Thus G is a commutative ring. In fact G is an integral domain, since it
is a subset of the field C. We are going to show that G can be given the structure of a
Euclidean domain.

Define the norm of a complex number γ = a + bi to be

N(γ ) = γ γ̄ = a2 + b2.
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Then N(γ ) ≥ 0, with equality if and only if γ = 0, and N(γ1γ2) = N(γ1)N(γ2). If
γ ∈ G , then N(γ ) is an ordinary integer. Furthermore, γ is a unit in G , i.e. γ divides 1
in G , if and only if N(γ ) = 1.

We wish to show that if α, β ∈ G and α �= 0, then there exist κ, ρ ∈ G such that

β = κα + ρ, N(ρ) < N(α).

We have βα−1 = r + si , where r, s ∈ Q. Choose a, b ∈ Z so that

|r − a| ≤ 1/2, |s − b| ≤ 1/2.

If κ = a + bi , then κ ∈ G and

N(βα−1 − κ) ≤ 1/4+ 1/4 = 1/2 < 1.

Hence if ρ = β − κα, then ρ ∈ G and N(ρ) < N(α).
It follows that we can apply to G the whole theory of divisibility in a Euclidean

domain. Now let p be a prime such that p ≡ 1 mod 4. We will show that p is a sum of
two squares by constructing β ∈ G for which N(β) = p.

By Corollary 29, there exists an integer a such that a2 ≡ −1 mod p. Put α = a+ i .
Then N(α) = αᾱ = a2 + 1 is divisible by p in Z and hence also in G . However, nei-
ther α nor ᾱ is divisible by p in G , since αp−1 and ᾱ p−1 are not in G . Thus p is not
a prime in G and consequently, since G is a Euclidean domain, it has a factorization
p = βγ , where neither β nor γ is a unit. Hence N(β) > 1, N(γ ) > 1. Since

N(β)N(γ ) = N(p) = p2,

it follows that N(β) = N(γ ) = p. �

Proposition 39 solves the problem of representing a positive integer as a sum of
two squares. What if we allow more than two squares? When congruences were first
introduced in §5, it was observed that a positive integer a ≡ 7 mod 8 could not be
represented as a sum of three squares. It was first completely proved by Gauss (1801)
that a positive integer can be represented as a sum of three squares if and only if it is
not of the form 4na, where n ≥ 0 and a ≡ 7 mod 8. The proof of this result is more
difficult, and will be given in Chapter VII.

It was conjectured by Bachet (1621) that every positive integer can be represented
as a sum of four squares. Fermat claimed to have a proof, but the first published proof
was given by Lagrange (1770), using earlier ideas of Euler (1751). The proof of the
four-squares theorem we will give is similar to that just given for the two-squares
theorem, with complex numbers replaced by quaternions.

Proposition 40 Every positive integer n can be represented as a sum of four squares.

Proof A quaternion γ = a + bi + cj + dk will be said to be a Hurwitz integer
if a, b, c, d are either all integers or all halves of odd integers. The set of all
Hurwitz integers will be denoted by H . Evidently γ ∈ H implies γ̄ ∈ H , where
γ̄ = a − bi − cj − dk. Moreover α, β ∈ H implies α ± β ∈ H . We will show that
α, β ∈H also implies αβ ∈H .
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Evidently γ ∈ H if and only if it can be written in the form γ = a0h + a1i +
a2 j + a3k, where a0, a1, a2, a3 ∈ Z and h = (1+ i + j + k)/2. It is obvious that the
product of h with i, j or k is again in H and it is easily verified that h2 = h − 1. It
follows that H is closed under multiplication and hence is a ring.

Define the norm of a quaternion γ = a + bi + cj + dk to be

N(γ ) = γ γ̄ = a2 + b2 + c2 + d2.

Then N(γ ) ≥ 0, with equality if and only if γ = 0. Moreover, since γ1γ2 = γ̄2γ̄1,

N(γ1γ2) = γ1γ2γ̄2γ̄1 = γ1γ̄1γ2γ̄2 = N(γ1)N(γ2).

If γ ∈ H , then N(γ ) = γ γ̄ ∈ H and hence N(γ ) is an ordinary integer. Further-
more, γ is a unit in H , i.e. γ divides 1 in H , if and only if N(γ ) = 1.

We now show that a Euclidean algorithm may be defined on H . Suppose α, β ∈
H and α �= 0. Then

βα−1 = r0 + r1i + r2 j + r3k,

where r0, r1, r2, r3 ∈ Q. If κ = a0h + a1i + a2 j + a3k, then

βα−1 − κ = (r0 − a0/2)+ (r1 − a0/2− a1)i + (r2 − a0/2− a2) j

+ (r3 − a0/2− a3)k.

We can choose a0 ∈ Z so that |2r0 − a0| ≤ 1/2 and then choose av ∈ Z so that
|rv − a0/2− av| ≤ 1/2 (v = 1, 2, 3). Then κ ∈ H and

N(βα−1 − κ) ≤ 1/16+ 3/4 = 13/16 < 1.

Thus if we set ρ = β − κα, then ρ ∈H and

N(ρ) = N(βα−1 − κ)N(α) < N(α).

By repeating this division process finitely many times we see that any α, β ∈ H
have a greatest common right divisor δ = (α, β)r . Furthermore, there is a left Bézout
identity: δ = ξα + ηβ for some ξ, η ∈H .

If a positive integer n is a sum of four squares, say n = a2 + b2 + c2 + d2, then
n = γ γ̄ , where γ = a+bi+cj+dk ∈H . Since the norm of a product is the product
of the norms, it follows that any product of sums of four squares is again a sum of four
squares. Hence to prove the proposition we need only show that any prime p is a sum
of four squares.

We show first that there exist integers a, b such that a2 + b2 ≡ −1 mod p. This
follows from the illustration given for Proposition 34, but we will give a direct proof.

If p = 2, we can take a = 1, b = 0. If p ≡ 1 mod 4 then, by Corollary 29, there
exists an integer a such that a2 ≡ −1 mod p and we can take b = 0. Suppose now that
p ≡ 3 mod 4. Let c be the least positive quadratic non-residue of p. Then c ≥ 2 and
c − 1 is a quadratic residue of p. On the other hand, −1 is a quadratic non-residue of
p, by Corollary 29. Hence, by Proposition 28, −c is a quadratic residue. Thus there
exist integers a, b such that

a2 ≡ −c, b2 ≡ c − 1 mod p,

and then a2 + b2 ≡ −1 mod p.
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Put α = 1 + ai + bj . Then p divides N(α) = αᾱ = 1 + a2 + b2 in Z and hence
also in H . However, p does not divide either α or ᾱ in H , since αp−1 and ᾱ p−1 are
not in H .

Let γ = (p, α)r . Then p = βγ for some β ∈ H . If β were a unit, p would be a
right divisor of γ and hence also of α, which is a contradiction. Therefore N(β) > 1.
Evidently γ ᾱ is a common right divisor of pᾱ and αᾱ, and the Bézout representation
for γ implies that γ ᾱ = (pᾱ, αᾱ)r . Since pᾱ = ᾱ p and p divides αᾱ, it follows
that p is a right divisor of γ ᾱ. Since p does not divide ᾱ, γ is not a unit and hence
N(γ ) > 1. Since

N(β)N(γ ) = N(p) = p2,

we must have N(β) = N(γ ) = p.
Thus if γ = c0 + c1i + c2 j + c3k, then c2

0 + c2
1 + c2

2 + c2
3 = p. If c0, . . . , c3 are

all integers, we are finished. Otherwise c0, . . . , c3 are all halves of odd integers. Hence
we can write cv = 2dv + ev, where dv ∈ Z and ev = ±1/2. If we put

δ = d0 + d1i + d2 j + d3k, ε = e0 + e1i + e2 j + e3k,

then γ = 2δ + ε and N(ε) = 1. Hence θ := γ ε̄ = 2δε̄ + 1 has all its coordinates
integers and N(θ) = N(γ ) = p. �

In his Meditationes Algebraicae, which also contains the first statement in print of
Wilson’s theorem, Waring (1770) stated that every positive integer is a sum of at most
4 positive integral squares, of at most 9 positive integral cubes and of at most 19 posi-
tive integral fourth powers. The statement concerning squares was proved by Lagrange
in the same year, as we have seen. The statement concerning cubes was first proved by
Wieferich (1909), with a gap filled by Kempner (1912), and the statement concerning
fourth powers was first proved by Balasubramanian, Deshouillers and Dress (1986).

In a later edition of his book, Waring (1782) raised the same question for higher
powers. Waring’s problem was first solved by Hilbert (1909), who showed that, for
each k ∈ N, there exists γk ∈ N such that every positive integer is a sum of at most
γk k-th powers. The least possible value of γk is traditionally denoted by g(k). For
example, g(2) = 4, since 7 = 22 + 3 · 12 is not a sum of less than 4 squares.

A lower bound for g(k) was already derived by Euler (c. 1772). Let m = �(3/2)k�
denote the greatest integer ≤ (3/2)k and take

n = 2km − 1.

Since 1 ≤ n < 3k , the only k-th powers of which n can be the sum are 0k, 1k and 2k .
Since the number of powers 2k must be less than m, and since n = (m − 1)2k +
(2k − 1)1k , the least number of k-th powers with sum n is m + 2k − 2. Hence
g(k) ≥ w(k), where

w(k) = �(3/2)k� + 2k − 2.

In particular,

w(2) = 4, w(3) = 9, w(4) = 19, w(5) = 37, w(6) = 73.
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By the results stated above, g(k) = w(k) for k = 2, 3, 4 and this has been shown to
hold also for k = 5 by Chen (1964) and for k = 6 by Pillai (1940).

Hilbert’s method of proof yielded rather large upper bounds for g(k). A completely
new approach was developed in the 1920’s by Hardy and Littlewood, using their ana-
lytic ‘circle’ method. They showed that, for each k ∈ N, there exists Γk ∈ N such that
every sufficiently large positive integer is a sum of at most Γk k-th powers. The least
possible value of Γk is traditionally denoted by G(k). For example, G(2) = 4, since
no positive integer n ≡ 7 mod 8 is a sum of less than four squares. Davenport (1939)
showed that G(4) = 16, but these are the only two values of k for which today G(k)
is known exactly.

It is obvious that G(k) ≤ g(k), and in fact G(k) < g(k) for all k > 2. In par-
ticular, Dickson (1939) showed that 23 and 239 are the only positive integers which
require the maximum 9 cubes. Hardy and Littlewood obtained the upper bound G(k) ≤
(k−2)2k−1+5, but this has been repeatedly improved by Hardy and Littlewood them-
selves, Vinogradov and others. For example, Wooley (1992) has shown that G(k) ≤
k(log k + log log k + O(1)).

By using the upper bound for G(k) of Vinogradov (1935), it was shown by
Dickson, Pillai and Niven (1936–1944) that g(k) = w(k) for any given k > 6,
provided that

(3/2)k − �(3/2)k� ≤ 1− �(3/2)k�/2k .

It is possible that this inequality holds for every k ∈ N. For a given k, it may be checked
by direct calculation, and Kubina and Wunderlich (1990) have verified in this way that
the inequality holds if k ≤ 471600000. Furthermore, using a p-adic extension by
Ridout (1957) of the theorem of Roth (1955) on the approximation of algebraic num-
bers by rationals, Mahler (1957) proved that there exists k0 ∈ N such that the inequality
holds for all k ≥ k0. However, the proof does not provide a means of estimating k0.

Thus we have the bizarre situation that G(k) is known for only two values of k,
that g(k) is known for a vast number of values of k and is given by a simple formula,
probably for all k, but the information about g(k) is at present derived from informa-
tion about G(k). Is it too much to hope that an examination of the numerical data will
reveal some pattern in the fractional parts of (3/2)k?

7 Further Remarks

There are many good introductory books on the theory of numbers, e.g. Davenport [4],
LeVeque [28] and Scholz [41]. More extensive accounts are given in Hardy and
Wright [15], Hua [18], Narkiewicz [33] and Niven et al. [34].

Historical information is provided by Dickson [5], Smith [42] and Weil [46], as
well as the classics Euclid [11], Gauss [13] and Dirichlet [6]. Gauss’s masterpiece is
quoted here and in the text as ‘D.A.’

The reader is warned that, besides its use in §1, the word ‘lattice’ also has quite a
different mathematical meaning, which will be encountered in Chapter VIII.

The basic theory of divisibility is discussed more thoroughly than in the usual texts
by Stieltjes [43]. For Proposition 6, see Prüfer [35]. In the theory of groups, Schreier’s
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refinement theorem and the Jordan–Hölder theorem may be viewed as generalizations
of Propositions 6 and 7. These theorems are stated and proved in Chapter I, §3 of
Lang [23]. The fundamental theorem of arithmetic (Proposition 7) is usually attributed
to Gauss (D.A., §16). However, it is really contained in Euclid’s Elements (Book VII,
Proposition 31 and Book IX, Proposition 14), except for the appropriate terminology.
Perhaps this is why Euler and his contemporaries simply assumed it without proof.

Generalizations of the fundamental theorem of arithmetic to other algebraic struc-
tures are discussed in Chap. 2 of Jacobson [21]. For factorial domains, see Samuel [39].

Our discussion of the fundamental theorem did not deal with the practical problems
of deciding if a given integer is prime or composite and, in the latter case, of obtaining
its factorization into primes. Evidently if the integer a is composite, its least prime
factor p satisfies p2 ≤ a. In former days one used this observation in conjunction with
tables, such as [24], [25], [26]. With new methods and supercomputers, the primal-
ity of integers with hundreds of digits can now be determined without difficulty. The
progress in this area may be traced through the survey articles [48], [7] and [27]. Fac-
torization remains a more difficult problem, and this difficulty has found an important
application in public-key cryptography; see Rivest et al. [37].

For Proposition 12, cf. Hillman and Hoggatt [17]. A proof that the ring of all al-
gebraic integers is a Bézout domain is given on p. 86 of Mann [31]. The ring of all
functions which are holomorphic in a given region was shown to be a Bézout domain
by Wedderburn (1915); see Narasimhan [32].

For Gauss’s version of Proposition 17, see D.A., §42. It is natural to ask if Corol-
lary 18 remains valid if the polynomial ring R[t] is replaced by the ring R[[t]] of
formal power series. The ring K [[t1, . . . , tm]] of all formal power series in finitely
many indeterminates with coefficients from an arbitrary field K is indeed a factorial
domain. However, if R is a factorial domain, the integral domain R[[t]] of all formal
power series in t with coefficients from R need not be factorial. For an example in
which R is actually a complete local ring, see Salmon [38].

For generalizations of Eisenstein’s irreducibility criterion (Proposition 19), see
Gao [12]. Proposition 21 is proved in Rhai [36]. Euclidean domains are studied further
in Samuel [40]. Quadratic fields Q(

√
d) whose ring of integers Od is Euclidean are

discussed in Clark [3], Dubois and Steger [8] and Eggleton et al. [9].
Congruences are discussed in all the books on number theory cited above. In con-

nection with Lemma 32 we mention a result of Frobenius (1895). Frobenius proved
that if G is a finite group of order n and if d is a positive divisor of n, then the number
of elements of G whose order divides d is a multiple of d . He conjectured that if the
number is exactly d , then these elements form a (normal) subgroup of G. The conjec-
ture can be reduced to the case where G is simple, since a counterexample of minimal
order must be a noncyclic simple group. By appealing to the recent classification of all
finite simple groups (see Chapter V, §7), the proof of the conjecture was completed by
Iiyori and Yamaki [20].

There is a table of primitive roots on pp. 52–56 of Hua [18]. For more extensive
tables, see Western and Miller [47].

It is easily seen that an even square is never a primitive root, that an odd square
(including 1) is a primitive root only for the prime p = 2, and that −1 is a primitive
root only for the primes p = 2, 3. Artin (1927) conjectured that if the integer a is not
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a square or −1, then it is a primitive root for infinitely many primes p. (A quantitative
form of the conjecture is considered in Chapter IX.) If the conjecture is not true, then
it is almost true, since it has been shown by Heath-Brown [16] that there are at most
3 square-free positive integers a for which it fails.

A finite subgroup of the multiplicative group of a division ring need not be cyclic.
For example, if H is the division ring of Hamilton’s quaternions, H× contains the
non-cyclic subgroup {±1,±i,± j,±k} of order 8. All possible finite subgroups of the
multiplicative group of a division ring have been determined (with the aid of class field
theory) by Amitsur [2].

For Carmichael numbers, see Alford et al. [1].
Galois (1830) showed that there were other finite fields besides Fp and indeed, as

Moore (1893) later proved, he found them all. Finite fields have the following basic
properties:

(i) The number of elements in a finite field is a prime power pn , where n ∈ N and
the prime p is the characteristic of the field.

(ii) For any prime power q = pn , there is a finite field Fq containing exactly q
elements. Moreover the field Fq is unique, up to isomorphism, and is the
splitting field of the polynomial tq − t over Fp.

(iii) For any finite field Fq , the multiplicative group F×q of nonzero elements is cyclic.
(iv) If q = pn , the map σ : a → a p is an automorphism of Fq and the distinct auto-

morphisms of Fq are the powers σ k(k = 0, 1, . . . , n − 1}.
The theorem of Chevalley and Warning (Proposition 34) extends immediately to

arbitrary finite fields. Proofs and more detailed information on finite fields may be
found in Lidl and Niederreiter [30] and in Joly [22].

A celebrated theorem of Wedderburn (1905) states that any finite division ring is
a field, i.e. the commutative law of multiplication is a consequence of the other field
axioms if the number of elements is finite. Here is a purely algebraic proof.

Assume there exists a finite division ring which is not a field and let D be one
of minimum cardinality. Let C be the centre of D and a ∈ D\C . The set M of all
elements of D which commute with a is a field, since it is a division ring but not the
whole of D. Evidently M is a maximal subfield of D which contains a. If [D : C] = n
and [M : C] = m then, by Proposition I.32, [D : M] = m and n = m2. Thus m is
independent of a.

If C has cardinality q , then D has cardinality qn,M has cardinality qm and the
number of conjugates of a in D is (qn − 1)/(qm − 1). Since this holds for every a ∈
D\C , the partition of the multiplicative group of D into conjugacy classes shows that

qn − 1 = q − 1+ r(qn − 1)/(qm − 1)

for some positive integer r . Hence q − 1 is divisible by

(qn − 1)/(qm − 1) = 1+ qm + · · · + qm(m−1).

Since n > m > 1, this is a contradiction.
For the history of the Chinese remainder theorem (not only in China), see

Libbrecht [29].
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We have developed the arithmetic of quaternions only as far as is needed to prove
the four-squares theorem. A fuller account was given in the original (1896) paper
of Hurwitz [19]. For more information about sums of squares, see Grosswald [14]
and also Chapter XIII. For Waring’s problem, see Waring [45], Ellison [10] and
Vaughan [44].
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