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Genetic Association Studies

Recent technological advancements allowing for large-scale sequencing efforts
present an exciting opportunity to uncover the genetic underpinnings of com-
plex diseases. In an attempt to characterize these genetic contributors to dis-
ease, investigators have embarked in multitude on what are commonly referred
to as population-based genetic association studies. These studies generally aim
to relate genetic sequence information derived from unrelated individuals to a
measure of disease progression or disease status. The field of genomics spans
a wide array of research areas that involve the many stages of processing from
genetic sequence information to protein products and ultimately the expres-
sion of a trait. The breadth of genomic investigations also includes studies
of multiple organisms, ranging from bacteria to viruses to parasites to hu-
mans. In this chapter, two settings are described in which population-based
genetic association studies have marked potential for uncovering disease etiol-
ogy while elucidating new approaches for targeted, individualized therapeutic
interventions: (1) complex disease association studies in humans; and (2) stud-
ies involving the Human Immunodeficiency Virus (HIV).

In both settings, interest lies in characterizing associations between mul-
tiple genetic polymorphisms and a measured trait. In addition, these settings
share the essential need to account appropriately for patient-level covariates
as potential confounders or modifiers of disease progression to make clinically
meaningful conclusions. While these two settings are not comprehensive, to-
gether they provide a launching point for discussion of quantitative methods
that address the challenges inherent in many genetic investigations. This chap-
ter begins by describing types of population-based studies, which represent one
class of investigations within the larger field of genomics research. Also dis-
cussed are the fundamental features of data arising from these investigations
as well as the analytical challenges inherent in this endeavor.
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2 1 Genetic Association Studies

1.1 Overview of population-based investigations

Population-based genetic association studies can be divided roughly into four
categories of studies: candidate polymorphism, candidate gene, fine mapping
and whole or partial genome-wide scans. In the following paragraphs, each
of these types of studies is described briefly, followed by a discussion of how
population-based genetic investigations fit within a larger context of genomic-
based studies. Further discussions of population-based and family-based de-
signs can be found in Thomas (2004) and Balding (2006).

1.1.1 Types of investigations

Candidate polymorphism studies

Investigations of genotype–trait associations for which there is an a priori hy-
pothesis about functionality are called candidate polymorphism studies. Here
the term polymorphism is defined simply as a genetic variant at a single lo-
cation within a gene. Technically, a variation must be present in at least 1%
of a population to be classified as a polymorphism. Such a variable site is
commonly referred to as a single-nucleotide polymorphism (SNP). Candidate
polymorphism studies typically rely on prior scientific evidence suggesting
that the set of polymorphisms under investigation is relevant to the disease
trait. The aim is to test for the presence of association, and the primary hy-
pothesis is that the variable site under investigation is functional. That is, the
goal of candidate polymorphism studies is to determine whether a given SNP
or set of SNPs influences the disease trait directly.

Candidate gene studies

Candidate gene studies generally involve multiple SNPs within a single gene.
The choice of SNPs depends on defined linkage disequilibrium (LD) blocks and
is discussed further in Section 3.1. The underlying premise of these studies is
that the SNPs under investigation capture information about the underlying
genetic variability of the gene under consideration, though the SNPs may
not serve as the true disease-causing variants. That is, the SNPs that are
being studied are not necessarily functional. Consider for example a setting
in which we want to investigate the association between a gene and disease.
A gene comprises a region of deoxyribonucleic acid (DNA), representing a
portion of the human genome. This is illustrated by the shaded rectangle in
Figure 1.1. In a simple model, we might assume that a mutation at a single
site within this region results in disease. In general, the precise location of this
disease-causing variant is not known. Instead, investigators measure multiple
SNPs that are presumed “close” to this site on the genome. The term “close”
can be thought of as physical distance, though precise methods for choosing
appropriate SNPs are described in more detail in Section 3.1.
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Fig. 1.1. Marker SNPs

These proximate SNPs are commonly referred to as markers since the
observed genotype at these locations tends to be associated with the genotype
at the true disease-causing locus. The idea underlying this phenomenon is that,
over evolutionary time (that is, over many generations of reproduction), the
disease allele was inherited alongside variants at these marker loci. This occurs
when the probability of a recombination event in the DNA region between
the disease locus and the marker locus is small. Thus, capturing variability
in these loci will tend to capture variability in the true disease locus. Further
discussion of recombination is provided in Section 1.3.1.

Fine mapping studies

The aim of fine mapping studies tends to differ from those of candidate gene
and candidate polymorphism approaches. Fine mapping studies set out to
identify, with a high level of precision, the location of a disease-causing vari-
ant. That is, these studies aim to determine precisely where on the genome the
mutation that causes the disease is positioned. Knowledge about this location
can obviate the need for investigations based on marker loci, thus reducing
the error and variability in associated tests. Within the context of mapping
studies, the term quantitative trait loci (QTL) is used to refer to a chromoso-
mal position that underlies a trait. Methods for mapping and characterizing
QTLs based on controlled experiments of inbred mouse lines are described in
Chapter 15 of Lynch and Walsh (1998). Mapping studies are not a focal point
of this text; however, we note that in some contexts the term “mapping” is
used more loosely to refer to association, the topic of this text, in both family-
and population-based studies. For comprehensive and advanced coverage of
gene mapping methods, the reader is referred to Siegmund and Yakir (2007).

Genome-wide association studies (GWAS)

Similar to candidate gene approaches, studies involving whole and partial
genome-wide scans, termed genome-wide association studies (GWAS), aim



4 1 Genetic Association Studies

to identify associations between SNPs and a trait. GWAS, however, tend to
be less hypothesis driven and involve the characterization of a much larger
number of SNPs. Partial scans generally involve between 100Kb and 500Kb
segments of DNA, while whole-genome scans range from 500Kb to 1000Kb
regions. While the underlying goal of candidate gene studies and GWAS can
be similar, the data preprocessing is generally more extensive and the compu-
tational burden greater in the context of GWAS, requiring the application of
software packages designed specifically to address the high-dimensional nature
of the data, as described in Section 3.3. While GWAS have gained in popu-
larity in recent years due to the advent and widespread availability of “SNP
chips”, they do not obviate the need for candidate gene studies. Candidate
gene studies serve to validate findings from GWAS as well as further explore
the biological and clinical interactions between genes and more traditional risk
factors for complex diseases, such as age, gender, and other patient-level clini-
cal and demographic characteristics. Importantly, the fundamental statistical
concepts and methods described throughout this text are broadly relevant to
both candidate gene studies and GWAS.

1.1.2 Genotype versus gene expression

The term “association” study has come to refer to studies that consider the
relationship between genetic sequence information and a phenotype. Gene
expression studies, based on microarray technology, on the other hand, aim
to characterize associations among gene products, such as ribonucleic acid
(RNA) or proteins, and disease outcomes. While the scientific findings from
these investigations will likely lend support to one another, it is important to
recognize that the two types of studies focus on different aspects of the cell
life cycle. In the context of association studies, the raw genetic information
as characterized by the DNA sequence is the primary predictor variable un-
der investigation, and the aim is to understand how polymorphisms in the
sequences explain the variability in a disease trait. Gene expression studies,
on the other hand, focus on the extent to which a DNA sequence coding for
a specific gene is transcribed into RNA (transcriptomics) and then translated
into a protein product (proteomics). The former arises from gene chip tech-
nology and is commonly referred to as expression data, while the latter is
an output of mass spectrometry. Since transcription and translation depend
on many internal and external regulation factors, the expression of a gene
sequence represents a different phenomenon than the sequence itself.

A fundamental unit of analysis in population association studies is the
genotype. As described in Section 1.2, genotype is a categorical variable that
takes on values from a predefined set of discrete characters. For example, in
humans, most SNPs are biallelic, indicating there are two possible bases at
the corresponding site within a gene (e.g., A and a). Furthermore, since hu-
mans are diploid, each individual will carry two bases, corresponding to each
of two homologous chromosomes. As a result, the possible genotype values
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in the population are AA, Aa and aa. In studies of gene expression, on the
other hand, the basic unit used in analysis is the gene product, which is typi-
cally a real-valued positive number. Notably, investigators may subsequently
dichotomize this variable, though this additional level of data processing will
depend on the scientific questions under consideration and prior knowledge.

In both settings, a measure of disease status or disease progress, referred
to as the trait in this text, is also collected for analysis. Notably, in population
association studies, we generally treat the genotype as the predictor variable
and the trait as the dependent variable. In gene expression studies, this may or
may not be the case. Consider for example the setting in which investigators
aim to uncover the association between breast cancer and gene expression.
In this case, the expression of a gene, as measured by how much RNA is
produced, may serve as the main dependent variable, with cancer status as
the potential predictor. The alternative formulation is also tenable. In this
text, since emphasis is on population-based association studies, it is always
assumed that genotype precedes the trait in the causal chain.

While careful consideration must be given to the several notable differences
in the form as well as the interpretation of the data, many of the statistical
methods described herein are equally applicable to gene expression studies. In
the context of genotype data, we might for example test the null hypothesis
that cholesterol level is the same for individuals with genotype AA and geno-
type aa. In the expression setting, the null hypothesis may instead be framed
as the gene expression level is the same for individuals with cardiovascular
disease and those without cardiovascular disease. In both cases, a two-sample
test for equality of means or medians (e.g., the two-sample t-test or Wilcoxon
rank sum test) could be performed and similar approaches to account for mul-
tiple testing employed. Notably, preprocessing of gene expression data prior
to formal statistical analysis also has its unique challenges. Several seminal
texts provide discussion of statistical methods for the analysis of gene expres-
sion data. See for example Speed (2003), Parmigiani et al. (2003), McLachlan
et al. (2004), Gentleman et al. (2005) and Ewens and Grant (2006).

Finally, we distinguish between genetic association studies and the rapidly
growing field of research in epigenetics. The term epigenetics is used to de-
scribe heritable features that control the functioning of genes within an in-
dividual cell but do not constitute a physical change in the corresponding
DNA sequence. The epigenome, defined literally as “above-the-genome”, also
referred to as the epigenetic code, includes information on methylation and hi-
stone patterns, called epigenetic tags, and plays an essential role in controlling
the expression of genes. These tags can inhibit and silence genes, leading to
common complex diseases such as cancer. In this text, we consider traditional
epidemiological risk factors, such as smoking status and diet, that may play
a role in defining an individual’s epigenetic makeup; however, we do not ad-
dress directly the challenges of epigenetic data. For a further discussion of the
role of epigenetics in the link between environmental exposures and disease
phenotypes, see Jirtle and Skinner (2007).
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1.1.3 Population-versus family-based investigations

The term “population”-based is used to refer to investigations involving un-
related individuals and distinguished from family-based studies. The latter,
as the name implies, involves data collected on multiple individuals within
the same family unit. The statistical considerations for family-based studies
differ from those of population-based investigations in two primary regards.
First, individuals within the same family are likely to be more similar to one
another than are individuals from different families. This phenomenon is re-
ferred to in statistics as clustering and implies a within-family correlation.
The idea is that there is something unmeasurable (latent), such as diet or
underlying biological makeup, that makes people from the same family more
alike than people across families. As a result, the trait under investigation is
more highly correlated among individuals within the same family. Account-
ing for the potential within-cluster correlation in the statistical analysis of
family-based data is essential to making valid inference in these settings.

In population-based studies, a fundamental assumption is that individu-
als are unrelated; however, other forms of clustering may exist. For example,
individuals may have been recruited across multiple hospitals so that patients
from the same hospital are more similar than those across hospitals. This
within-cluster correlation can arise particularly if the catchment areas for the
hospitals include different socioeconomic statuses or if the standards for pa-
tient care are remarkably different. Alternatively, we may have repeated mea-
surements of a trait on the same individual. This is another common situation
in which the assumption of independence is violated. In all of these cases, an-
alytical methods for correlated data are again warranted and are essential for
correctly estimating variance components. In this text, attention is restricted
primarily to methods for independent observations, though consideration is
given to clustered data methods in Section 4.4.2. Tests for relatedness are also
described in Section 3.3. In-depth and comprehensive coverage of correlated
data methods can be found in Diggle et al. (1994), Vonesh and Chinchilli
(1997), Verbeke and Molenberghs (2000), Pinheiro and Bates (2000), McCul-
loch and Searle (2001), Fitzmaurice et al. (2004) and Demidenko (2004).

A second remarkable difference between population- and family-based
studies involves what is termed allelic phase and is defined as the alignment
of nucleotides on a single homolog. Allelic phase is typically unobservable in
population-based association studies but can often be determined in the con-
text of family studies. This concept is described in greater detail in Section 1.2
and Chapter 5. As a result of these differences in the data structure, the meth-
ods for analysis of family-based association studies tend to differ from those
developed in the context of population-based studies. Though some of the
methods described herein, particularly adjustments for multiplicity, are appli-
cable to family-based studies, this text focuses on methods specifically relevant
to population association studies, including inferring haplotypic phase (Chap-
ter 5). Elaboration on the specific statistical considerations and methods for
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family-based studies can be found in Khoury et al. (1993), Liu (1998), Lynch
and Walsh (1998), Thomas (2004), Siegmund and Yakir (2007) and Ziegler
and Koenig (2007).

1.1.4 Association versus population genetics

Finally, we distinguish between population-based association studies (the
topic of this text) and population genetic investigations. Population genet-
ics refers generally to the study of changes in the genetic composition of a
population that occur over time and under evolutionary pressures. This in-
cludes, for example, the study of natural selection and genetic drift. In this
text, we instead focus on estimation and inference regarding the association
between genetic polymorphisms and a trait. Statistical methods relevant to
population genetics are described in a number of texts, including Weir (1996),
Gillespie (1998) and Ewens and Grant (2006).

1.2 Data components and terminology

Data arising from population-based genetic association studies are generally
comprised of three components: (1) the genotype of the organism under in-
vestigation; (2) a single trait or multiple traits (also referred to as pheno-
types) that are associated with disease progression or disease status; and (3)
patient-specific covariates, including treatment history and additional clinical
and demographic information. The primary aim of many association studies
is to characterize the relationship between the first two of these components,
the genotype and a trait. Pharmacogenomic investigations aim specifically to
analyze how genotypes modify the effects of drug exposure (the third data
component) on a trait. That is, these investigations focus on the statistical
interaction between treatment and genotype on a disease outcome. While the
specific aims of many association studies do not expressly involve the third
data component, patient-specific clinical and demographic information, care-
ful consideration of how these factors influence the relationship between the
genotype and trait is essential to making valid biological and clinical conclu-
sions. In this chapter, we describe each of these data components, all of which
are highly relevant to population-based association studies, and introduce
some additional terminology. A discussion of the potential interplay among
components of the data and important epidemiological principles, including
confounding, effect mediation, effect modification and conditional association,
is provided in Section 2.1.2. Further elaboration on the concept of phase am-
biguity and appropriate statistical approaches to handling this aspect of the
data are given in Chapter 5.



8 1 Genetic Association Studies

1.2.1 Genetic information

Throughout this text, the term genotype is defined as the observed genetic
sequence information and can be thought of as a categorical variable. The
term observed is used here to distinguish genotype information from haplotype
data, as described below. Humans carry two homologous chromosomes, which
are defined as segments of deoxyribonucleic acid (DNA), one inherited from
each parent, that code for the same trait but may carry different genetic
information. Thus, in its rawest form in humans, the genotype is the pair
of DNA bases adenine (A), thymine (T), guanine (G) and/or cytosine (C)
observed at a location on the organism’s genome. This pair includes one base
inherited from each of the two parental genomes and should not be confused
with the pairing that occurs to form the DNA double helix. These two types
of pairing are described further in Section 1.3.1. Genotype data can take
different forms across the array of genetic association studies and depend
both on the specific organism under investigation and the scientific questions
being considered, as we will see throughout this text.

The term nucleotide refers to a single DNA base linked with both a sugar
molecule and phosphate and is often used interchangeably with the term DNA
base. Genes are defined simply as regions of DNA that are eventually made
into proteins or are involved in the regulation of transcription; that is, regions
that regulate the production of proteins from other segments of DNA. In
candidate gene studies, the set of genes under investigation is chosen based
on known biological function. These genes may, for example, be involved in
the production of proteins that are important components of one or more
pathways to disease. In whole and partial genome-wide association studies
(GWAS), segments of DNA across large regions of the genome are considered
and may not be accompanied by an a priori hypothesis about the specific
pathways to disease.

In population-based association studies, the fundamental unit of analysis
is the single-nucleotide polymorphism (SNP). A SNP simply describes a single
base pair change that is variable across the general population at a frequency
of at least 1%. The term can also be used more loosely to describe the specific
location of this variability. The overriding premise of association studies is
that there exists variability in DNA sequences across individuals that cap-
tures information on a disease trait. Regions of DNA within and across genes
are said to have genetic variability if the alleles within the region vary across
a population. Conserved regions, on the other hand, exhibit no variability in
a population. Take the simple example of a single base pair location within a
gene. If the genotype at this site is AA for all individuals within the popula-
tion, then this site is referred to as conserved. On the other hand, if AA, Aa
and aa are observed, then this site is called variable. Here the letters A and a
are used to represent the observed nucleotides (A, C, T or G). For example, A
may represent adenine (A) and a may represent thymine (T). Further discus-
sion of notation is provided in Section 2.1.1. Highly conserved regions of DNA
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are less relevant in the context of association studies since they will not be
able to capture the variability in the disease trait. Studying highly conserved
regions would be tantamount in a traditional epidemiological investigation to
only recruiting smokers to a study and then trying to assess the impact of
smoking on cancer risk. Clearly, multiple levels of the predictor variable, in
this case smoking status, are necessary if the goal is to assess the impact of
this factor on disease.

Multilocus genotype is used to describe the observed genotype across mul-
tiple SNPs or genes, though the terms genotype and multilocus genotype are
often used interchangeably. A locus or site can refer to the portion of the
genome that encodes a single gene or the location of a single nucleotide on
the genome. Multilocus genotype data consist of a string of categorical vari-
ables, with elements corresponding to the genotype at each of multiple sites on
the genome. For example, an individual’s multilocus genotype may be given
by (Aa,Bb), where Aa is the genotype at one site and Bb is the genotype at
a second site. Again the letters A, a, B and b each represent the observed
nucleotides (A, C, T or G). Notably, the specific ordering of alleles is non-
informative, so, for example, the genotypes Aa and aA are equivalent.

The term multilocus genotype should not be confused with the concept of
haplotype. Haplotype refers to the specific combination of alleles that are in
alignment on a single homolog , defined as one of the two homologous chromo-
somes in humans. Suppose again that an individual’s multilocus genotype is
given by (Aa,Bb). The corresponding pair of haplotypes, also referred to as
this individual’s diplotype, could be (AB, ab) or (Ab, aB). That is, either the
A and B alleles are in alignment on the same homolog, in which case a and
b align, or the A and b alleles align, in which case a and B are in alignment.
These two possibilities are illustrated in Figure 1.2 and described further in
Section 2.3.2. This uncertainty is commonly referred to as ambiguity in allelic
phase or more simply phase ambiguity. In general, a multilocus genotype is
observable, although missing data can arise from a variety of mechanisms.
Haplotype data, on the other hand, are generally unobservable in population-
based studies of unrelated individuals and require special consideration for
analysis, as described in detail in Chapter 5.

This layer of missingness renders population-based association studies
unique from family-based investigations. If parental information were available
on the individual above, then it might be possible to clarify the uncertainty
in allelic phase. For example, if the maternal genotype is (AA,BB) and the
paternal genotype is (aa, bb), then it is clear that A and B align on the same
homolog that was inherited from the maternal side and the a and b align on
the copy inherited from the paternal side. In population-based studies, family
data are generally not available to infer these haplotypes. However, it is possi-
ble to draw strength from the population haplotype frequencies to determine
the most likely alignment for an individual. This is discussed in greater detail
in Chapter 5.
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Fig. 1.2. Haplotype pairs corresponding to heterozygosity at two SNP loci

The term zygosity refers to the comparative genetic makeup of two ho-
mologous chromosomes. An individual is said to be homozygous at a given
SNP locus if the two observed base pairs are the same. Heterozygosity, on the
other hand, refers to the presence of more than one allele at a given site. For
example, someone presenting with the AA or aa genotype would be called
homozygous, while an individual with the Aa is said to be heterozygous at
the corresponding locus. The term loss of heterozygosity (LOH), commonly
used in the context of oncology, refers specifically to the loss of function of
an allele, when a second allele is already inactive, through inheritance of the
heterozygous genotype.

The minor allele frequency, also referred to as the variant allele frequency,
refers to the frequency of the less common allele at a variable site. Note that
here the term frequency is used to refer to a population proportion, while
statisticians tend to use the term to refer to a count. The terms homozygous
rare and homozygous variant are commonly used to refer to homozygosity
with two copies of the minor allele. Consider the simple example of a single-
variable site for which AA is present in 75% of the population, Aa is present
in 20% and aa is present in 5%. The frequency of the A allele is then equal to
(75 + 75 + 20)%/2 = 85%, while the frequency of a is (20 + 5 + 5)%/2 = 15%.
In this case, the minor allele (a) frequency is equal to 15%. The major allele
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is the more common allele and is given by A in this example. An example
of calculating the minor and major allele frequencies in R is provided in Sec-
tion 1.3.3.

1.2.2 Traits

Population-based genetic association studies generally aim to relate genetic
information to a clinical outcome or phenotype, which are both referred to in
this text as a trait. The terms quantitative and binary traits refer respectively
to continuous and binary variables, where a binary variable is defined as one
that can take on two values, such as diseased or not diseased. The term phe-
notype is defined formally as a physical attribute or the manifestation of a
trait and in the context of association studies generally refers to a measure of
disease progression. In the context of viral genetic investigations, phenotypes
typically refer to an in vitro measure such as the 50% inhibitory concentration
(IC50), which is defined as the amount of drug required to reduce the replica-
tion rate of the virus by 50%. The term outcome tends to mean the presence
of disease, though it is often used more generally in a statistical sense to refer
to any dependent variable in a modeling framework.

Clinical measures such as total cholesterol and triglyceride levels are ex-
amples of quantitative traits, while the indicator for a cardiovascular outcome,
such as a heart attack, is an example of a binary trait. In a study of breast
cancer, the trait may be defined as an indicator for whether or not a patient
has breast cancer. In HIV investigations, traits include viral load (VL), de-
fined as the concentration of virus in plasma, and CD4+ cell count, which
is a marker for disease progression. In this text, the terms trait, phenotype
and outcome are used broadly to refer to both in vitro and in vivo clinical
measures of disease progression and disease status. Survival outcomes, such
as the time to onset of AIDS, time to a cardiovascular event, or time to death,
as well as ordinal outcomes, such as severity of disease, are other examples of
traits that are also highly relevant to the study of genetic associations with
disease. While this text focuses on continuous and binary traits, alternative
formulations apply and the general methodology presented is applicable to a
wider array of measures.

Traits can be measured cross-sectionally or over multiple time points span-
ning several weeks to several years. Data measured over time are referred to
as longitudinal or multivariate data and provide several advantages from an
analytical perspective, as discussed in detail in several texts, including Fitz-
maurice et al. (2004). The choice of using cross-sectional or longitudinal data
rests primarily on the scientific question at hand. For example, if interest lies
in determining whether genotype affects the change in VL after exposure to
a specific drug, then a longitudinal design with repeated measures of VL is
essential. On the other hand, if the interest is in characterizing VL as a func-
tion of genotype at initiation of therapy, then cross-sectional data may be
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sufficient. While longitudinal studies can increase the power to detect associ-
ation, they tend to be more costly than cross-sectional studies and are more
susceptible to missing data and the resulting biases. In this text, we focus
on the analysis of cross-sectional studies, though the overarching themes and
concepts, such as multiple testing adjustments and the need to control type-1
error rates, are equally applicable to alternative modeling frameworks.

1.2.3 Covariates

In addition to capturing information on the genotype and trait, population-
based studies generally involve the collection of other information on patient-
specific characteristics. For example, in relating genetic polymorphisms to
total cholesterol level among patients at risk for cardiovascular disease, ad-
ditional relevant information may include body mass index (BMI), gender,
age and smoking status. The additional data collected tend to be on variables
that have previously been associated with the trait of interest, in this case
cholesterol level, and may include environmental, demographic and clinical
factors. Consideration of additional variables in the context of analysis will
again depend on the scientific question at hand, the biological pathways to
disease and the overarching goal of the analysis. For example, if the aim of
a study is to identify the best predictive model (that is, to determine the
model that can give the most accurate and precise prediction of cholesterol
level for a new individual), then it is generally a good idea to include variables
previously associated with the outcome in the model. If the goal is to charac-
terize the association between a given gene and the outcome, then including
additional variables, for example self-reported race, may also be warranted if
these variables are associated with both the genotype and the outcome. This
phenomenon is typically referred to as confounding and is discussed in greater
detail in Chapter 2. On the other hand, if a variable such as smoking status
is in the causal pathway to disease (that is, the gene under investigation in-
fluences the smoking status of an individual, which in turn tends to increase
cholesterol levels), then inclusion of smoking status in the analysis may not
be appropriate. In this text, the term covariate is used loosely to refer to
any explanatory variables that are not of specific independent interest in the
present investigation. Covariates are also commonly referred to as independent
or predictor variables.

1.3 Data examples

Throughout this textbook, we provide examples using publicly available
datasets, including data arising from two human-based investigations and one
study involving HIV. Each of these datasets can be downloaded as ascii text
files from the textbook website:
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http://people.umass.edu/foulkes/asg.html

Below we include a summary of each dataset and example code for importing
the data into R. Instructions for downloading R, inputing data and basic data
manipulation strategies are given in the appendix. Additional elementary R
concepts can be found in Gentleman (2008), Spector (2008), Venables and
Smith (2008) and Dalgaard (2002). Complete information on all of the vari-
ables within each dataset can be found in the associated ReadMe files on the
textbook website.

The two settings described in this section, complex disease association
studies in humans and HIV genotype–trait association studies, serve as a
framework for the methods presented throughout the text. While both the
structure of the data and the overarching aims of the two settings are similar,
there are a few notable differences worth mentioning. In both settings, belief
lies in the idea that genetic polymorphisms (that is, variability in the genetic
makeup across a population) will inform us about the variability observed in
the occurrence or presentation of disease. Furthermore, this genetic variability
in both HIV and humans is introduced through the process of replication.
The rate at which these two organisms complete one life cycle, however, is
dramatically different. While humans tend to replicate over the course of
several years, an estimated 109 to 1010 new virions are generated in a single
day within an HIV-infected individual. Furthermore, the replication process
for HIV, described in more detail below, is highly error-prone, resulting in a
mutation rate of approximately 3 × 10−5 per base per replication cycle, see
for example Robertson et al. (1995).

As a result, there is a tremendous degree of HIV genetic variability within
a single human host. That is, each HIV-infected individual carries an entire
population of viruses, with each viral particle potentially comprised of differ-
ent genetic material. In addition, the number of viral particles varies across
individuals. Notably, both of these phenomena, genetic variability and the
amount of virus in plasma, are influenced by current and past drug expo-
sures. In contrast, humans carry two copies of each chromosome, with the
exception of the sex chromosome, one inherited from each parent, and these
tend to remain constant over an individual’s lifetime. While relatively rare,
mutations in the human genome do occur within a lifespan as a result of en-
vironmental exposure to mutagens. This process is notably slower in humans
than in HIV and is not a focal point of this text. Additional details on each
of these two settings are provided below.

1.3.1 Complex disease association studies

Characterizing the underpinnings of complex diseases, such as cardiovascular
disease and cancer, is likely to require consideration of multiple genetic and
environmental factors. As described in Section 1.1.1, human genetic inves-
tigations can involve several stages of processing of human genes, from the
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DNA sequence to the protein product, and encompass a wide assortment of
study designs. In this text, consideration is given to population-based studies
of unrelated individuals, and the primary unit of genetic analysis is the DNA
sequence. Humans inherit their genetic information from their two parental
genomes through processes termed mitosis and meiosis. All human cells, with
the exception of gametes, contain 46 chromosomes, including 22 homologous
pairs, called autosomes, and 2 sex chromosomes. Each chromosome is com-
prised of a DNA double helix with two sugar-phosphate backbones connected
by paired bases. In this context, guanine pairs with cytosine (G-C) and ade-
nine pairs with thymine (A-T). This pairing is distinct from the pairing of
homologous chromosomes that constitutes an individual’s genotype. Notably,
the latter pairing is not restricted, so that, for example, genotypes GT and
AC can be observed.

Mitosis is a process of cell division that results in the creation of daugh-
ter cells that carry identical copies of this complete set of 46 chromosomes.
Meiosis is the process by which a germ cell that contains 46 chromosomes,
consisting of one homolog from each parent cell, undergoes two cell divisions,
resulting in daughter cells, called gametes, with only 23 chromosomes each. In
turn, this new generation of maternal and paternal gametes combines to form
a zygote. A visual representation of meiosis is provided in Figure 1.3. Notably,
prior to the meiotic divisions, each of the two homologous chromosomes are
replicated to form sister chromatid . Subsequently, in the process of meiosis,
cross-over between these maternal and paternal chromatids can occur. This
is referred to as a cross-over or a recombination event and is depicted in
the figure, where we see an exchange of segments of the paternal chromatid
(shaded) and the maternal chromatid (unshaded). Finally, it is important to
note that the 23 chromosomes are combined independently so that there are
223 = 8, 388, 608 possible combinations of chromosomes within a gamete. This
phenomenon is commonly referred to as independent assortment . The reader
is referred to any of a number of excellent textbooks that describe these pro-
cesses in greater detail. See for example Chapter 19 of Vander et al. (1994)
and Alberts et al. (1994).

Meiosis ensures two things: (1) each offspring carries the same number of
chromosome pairs (23) as its parents; and (2) the genetic makeup of offspring is
not identical to that of their parents. The latter results from both recombina-
tion and independent assortment. An important aspect of meiosis is that whole
portions or segments of DNA within a chromosome tend to be passed from one
generation to another. However, portions of DNA within chromosomes that
are far from one another are less likely to be inherited together, as a result
of recombination events. In the context of candidate gene studies, the SNPs
under investigation can be known functional SNPs or what are referred to as
haplotype tagging SNPs. Functional SNPs affect a trait directly, serving as a
component within the causal pathway to disease. Haplotype tagging SNPs, on
the other hand, are chosen based on their ability to capture overall variabil-
ity within the gene under consideration. These SNPs tend to be associated
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Fig. 1.3. Meiosis and recombination

with functional SNPs but may not be causal themselves. Notably, the length
of a gene region can vary as well as the number of measured base pairs within
each gene. The latter depends on what are called linkage disequilibrium blocks
and relate to the probability of recombination within a region. This is de-
scribed further in Section 3.1.

The structure of human genetics data is similar to that in the HIV set-
ting, with a couple of notable exceptions. First, in human investigations, each
individual has exactly two bases present at each location, one from each of
the two homologous chromosomes. As described below in Section 1.3.2, in the
viral genetics setting, an individual can be infected with multiple strains, re-
sulting in any number of nucleotides at a given site. A second difference is that
in many population-based association studies, human genetic sequence data
are assumed to remain constant over the study period. One notable exception
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is in the context of cancer, in which DNA damage develops, resulting from
environmental exposure to mutagens and resulting in uncontrolled cell prolif-
eration. In the complex disease association studies described in this text, the
genes under investigation do not vary within the timeframe of study. This is
a marked difference from the viral genetic setting, in which multiple genetic
polymorphisms can occur within a short period of time, typically in response
to treatment pressures. In the following section, we describe the HIV genetic
setting in greater detail.

1.3.2 HIV genotype association studies

The Human Immunodeficiency Virus (HIV) is a retrovirus that causes a weak-
ening of the immune system in its infected host. This condition, commonly
referred to as Acquired Immunodeficiency Syndrome (AIDS), leaves infected
individuals vulnerable to opportunistic infections and ultimately death. The
World Health Organization estimates that there have been more than 25 mil-
lion AIDS-related deaths in the last 25 years, the majority of which occurred
in the developing world. Highly active anti-retroviral therapies (ARTs) have
demonstrated a powerful ability to delay the onset of clinical disease and
death, but unfortunately access to these therapies continues to be severely lim-
ited. Furthermore, drug resistance, which can be characterized by mutations
in the viral genome, reduces and in some cases eliminates their usefulness.
Both vaccine and drug development efforts, as well as treatment allocation
strategies in the context of HIV/AIDS, will inevitably require consideration
of the genetic contributors to the onset and progression of disease. In this
section, the viral life cycle and notable features of the data relevant to these
investigations are described.

A visual representation of the HIV life cycle is given in Figure 1.4. As
a retrovirus, HIV is comprised of ribonucleic acid (RNA). From the figure,
we see that the virus begins by fusing on the membrane of a CD4+ cell in
the human host and injecting its core, which includes viral RNA, structural
proteins, and enzymes, into the cell. The viral RNA is then reverse transcribed
into DNA using one of these enzymes, reverse transcriptase. Another enzyme,
integrase, then splices this viral DNA into the host cell DNA. The normal cell
mechanisms for transcription and translation then result in the production
of new viral protein. In turn, this protein is cleaved by the protease (Pr)
enzyme and together with additional viral RNA forms a new virion. As this
virion buds from the cell, the infected cell is killed, ultimately leading to the
depletion of CD4 cells, which are vital to the human immune system. ARTs,
the drugs used to treat HIV-infected individuals, aim to inhibit each of the
enzymes involved in this life cycle.

Reverse transcription of RNA into DNA is a highly error-prone process,
resulting in a mutation rate of approximately 3×10−5 per base per cycle. This,
coupled with a very fast replication cycle leading to 109 to 1010 new virions
each day, results in a very high level of genetic variability in the viral genome.
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Fig. 1.4. HIV life cycle

The resulting viral population within a single human host is commonly re-
ferred to as a quasi-species. While many of these viruses are not viable (that
is, they cannot survive with the resulting mutations), many others do remain.
Notably, evidence suggests that mutated viruses can be transmitted from one
host to another. The composition of a viral quasi-species tends to be highly
influenced by current and past treatment exposures. HIV therapies generally
consist of a combination of two or three anti-retroviral drugs, commonly re-
ferred to as a drug cocktail. There are currently four classes of drugs that each
target a different aspect of the viral life cycle: fusion inhibitors, nucleoside
reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase
inhibitors (NNRTIs) and protease inhibitors (PIs). In the presence of these
treatment pressures, viruses that are resistant to the drugs tend to emerge
as the dominant species within a person. As individuals develop resistance to
one therapy, another combination of drugs may be administered and a new
dominant species can emerge. Evidence suggests that a blueprint of drug ex-
posure history remains in latent reservoirs in the sense that a resistant species
will re-emerge quickly in the presence of a drug to which a patient previously
exhibited resistance.

The genetic composition of HIV is a single strand of RNA consisting of
the four base pairs adenine (A), cytosine (C), guanine (G) and uracil (U).
In general, and for the purpose of this textbook, the amino acid (AA) corre-
sponding to three adjacent bases is of interest since AAs serve as the building
blocks for proteins. Notably, there is not a one-to-one correspondence between
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base triplets and AAs, and thus there are instances in which base information
is more relevant, for example in phylogenetic analyses aimed at characteriz-
ing viral evolution. There are a total of 20 AAs, though between 1 and 5 are
typically observed within a given site on the viral genome across a sample of
individuals.

As described above, the viral genome changes over time and in response to
treatment exposures. Thus, while viral RNA is single stranded, an individual
can carry multiple genotypically distinct viruses, which we refer to as strains,
resulting from multiple infections or quasi-species that developed over time
within the host. Technically, a strain refers to a group of organisms with a
common ancestor; however, here we use the term more loosely to refer to
genetically distinct viral particles. As a result, multiple AAs can be present
at a given site within a single individual. Typically, a frequency of at least
20% within a single host is necessary for standard population sequencing
technology to recognize the presence of an allele. Thus, the number of AAs at
a given location within an individual tends to range between one and three. In
contrast, there are always exactly two alleles present at a given site within an
individual for the human genetic setting, one inherited from each of the two
parental genomes. Regions of the genome are segments of RNA that generally
code for a protein of interest. For example, in the context of studying viral
resistance, the Protease (Pr) region and Reverse Transcriptase (RT) regions
are of interest since these code for enzymes that are targeted by ARTs. The
Envelope region, on the other hand, may be relevant to studies of vaccine
efficacy since it is involved in cell entry. Regions are tantamount to genes in
the context of human genetic studies.

1.3.3 Publicly available data used throughout the text

The FAMuSS study

The Functional SNPS Associated with Muscle Size and Strength (FAMuSS)
study was conducted to identify the genetic determinants of skeletal muscle
size and strength before and after exercise training. A total of n = 1397
college student volunteers participated in the study, and data on 225 SNPs
across multiple genes were collected. The exercise training involved students
training their non-dominant arms for 12 weeks. The primary aim of the study
was to identify genes associated with muscle performance and specifically to
understand associations among SNPs and normal variation in volumetric MRI
(muscle, bone, subQ fat), muscle strength, response to training and clinical
markers of metabolic syndrome. Primary findings are given in Thompson et al.
(2004). A complete list of associated publications can be found in the ReadMe
file on the textbook webpage.

The data are contained in a tab-delimited text file entitled FMS data.txt
and illustrated, in part, in Table 1.1. The file contains information on genotype
across all SNPs as well as an extensive list of clinical and demographic factors
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for a subset (n = 1035) of the study participants. We begin by specifying the
web location of the data file as follows:

> fmsURL <- "http://people.umass.edu/foulkes/asg/data/FMS_data.txt"

We then use the read.delim() function to pull the data into R directly from
the textbook website:

> fms <- read.delim(file=fmsURL, header=T, sep="\t")

By specifying header=T, we are indicating that the first row of the text file
contains the variable names. Alternatively, we could have specified header=F,
which assumes that the first line of the file is the first record of data. We also
indicate with the argument sep="\t" that a tab separates each variable within
a line of the data. Common alternative specifications are sep="," and sep="",
indicating comma and space delimiters, respectively. As described in the ap-
pendix, other useful functions for reading data into R include read.table()
and read.csv(). The specifications given above are the default values for
read.delim() and need not be written out explicitly. We do so for the pur-
pose of illustration.

A portion of the data on the first 20 individuals in this sample are dis-
played in Table 1.1. Included in this table are the genotypes for four SNPs
within the actn3 gene and a few corresponding clinical and demographic
parameters. The variable Term indicates the year and term (1—spring, 2—
summer, 3—fall) of recruitment into the study, and Gender, Age and Race are
all self-declared values of these demographic factors. The percentage changes
in muscle strength before and after exercise training are given by NDRM.CH
for the non-dominant arm and DRM.CH for the dominant arm. Generation of
the LaTeX code for Table 1.1 is done in R using the xtable() function in
the xtable package. The print() function with the floating.environment
option set equal to ‘sidewaystable’ is used to generate a landscape table.
Alternatively, we can print the table in R as shown below:

> attach(fms)

> data.frame(id, actn3_r577x, actn3_rs540874, actn3_rs1815739,

+ actn3_1671064, Term, Gender, Age, Race, NDRM.CH,DRM.CH)[1:20,]

We use the attach() function so that we can call each variable by its name
without having to indicate the corresponding dataframe. For example, after
submitting the command attach(fms), we can call the variable Gender with-
out reference to fms. Alternatively, we could write fms$Gender, which is valid
whether or not the attach() function was used. A dataframe must be re-
attached at the start of a new R session for the corresponding variable names
to be recognized. The numbers 1:20 within the square brackets and before
the comma are used to indicate that row numbers 1 through 20 are to be
printed.

We see from this table that the genotype for id=FA-1801 at the first
recorded SNP (r577x) within the gene actn3 is the pair of bases CC. In most
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cases, SNPs are biallelic, which means that two bases are observed within a
site across individuals. For example, for SNP r577x in gene actn3, the letters
C and T are observed, while at rs540874 in gene actn3, the two bases G and
A are observed. This pairing is not restricted (that is, A can be present with
T , C or G within another site), distinguishing this from the pairing of bases
that occurs to form the DNA double helix within a single homolog (in which
A always pairs with T and C with G).

Recall that an individual is said to be homozygous if the two observed
base pairs are the same at a given site and heterozygous if they differ. From
Table 1.1, for example, we see that individual FA-1801 from the FAMuSS
study is homozygous at actn3 rs540874 with the observed genotype equal
to GG. Likewise, individual FA-1807 is homozygous at this site since the
observed genotype is AA. Individuals FA-1802, 1803 and 1804, on the other
hand, are all heterozygous at actn3 rs540874 since their genotypes contain
both the G and A alleles. Determination of a minor allele and its frequency is
demonstrated in the following example using data from the FAMuSS study.

Example 1.1 (Identifying the minor allele and its frequency). Suppose we are
interested in determining the minor allele for the SNP labeled actn3 rs540874
in the FAMuSS data. To do this, we need to calculate corresponding allele
frequencies. First we determine the number of observations with each genotype
for this SNP using the following code:

> attach(fms)

> GenoCount <- summary(actn3_rs540874)

> GenoCount

AA GA GG NA’s

226 595 395 181

The table() function in R outputs the counts of each level of the ordinal
variable given as its argument. In this case, we see n = 226 individuals have
the AA genotype, n = 595 individuals have the GA genotype and n = 395
individuals have the GG genotype. An additional n = 181 individuals are
missing this genotype. For simplicity, we assume that this missingness is non-
informative. That is, we make the strong assumption that our estimates of the
allele frequencies would be the same had we observed the genotypes for these
individuals. To calculate the allele frequencies, we begin by determining our
reduced sample size (that is, the number of individuals with complete data):

> NumbObs <- sum(!is.na(actn3_rs540874))

The genotype frequencies for AA, GA and GG are then given respectively by

> GenoFreq <- as.vector(GenoCount/NumbObs)

> GenoFreq

[1] 0.1858553 0.4893092 0.3248355 0.1488487
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The frequencies of the A and G alleles are calculated as follows:

> FreqA <- (2*GenoFreq[1] + GenoFreq[2])/2

> FreqA

[1] 0.4305099

> FreqG <- (GenoFreq[2] + 2*GenoFreq[3])/2

> FreqG

[1] 0.5694901

Thus, we report A is the minor allele at this SNP locus, with a frequency
of 0.43. In this case, an individual is said to be homozygous rare at SNP
rs540874 if the observed genotype is AA. Homozygous wildtype, on the other
hand, refers to the state of having two copies of the more common allele, or
the genotype GG in this case.

Alternatively, we can achieve the same result using the genotype() and
summary() functions within the genetics package. First we install and upload
the R package as follows:

> install.packages("genetics")

> library(genetics)

We then create a genotype object and summarize the corresponding genotype
and allele frequencies:

> Geno <- genotype(actn3_rs540874,sep="")

> summary(Geno)

Number of samples typed: 1216 (87%)

Allele Frequency: (2 alleles)

Count Proportion

G 1385 0.57

A 1047 0.43

NA 362 NA

Genotype Frequency:

Count Proportion

G/G 395 0.32

G/A 595 0.49

A/A 226 0.19

NA 181 NA

Heterozygosity (Hu) = 0.4905439

Poly. Inf. Content = 0.3701245

Here we again see that A corresponds to the minor allele at this SNP locus,
with a frequency of 0.43, while G is the major allele, with a greater frequency
of 0.57. �
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The Human Genome Diversity Project (HGDP)

The Human Genome Diversity Project (HGDP) began in 1991 with the aim
of documenting and characterizing the genetic variation in humans worldwide
(Cann et al., 2002). Genetic and demographic data are recorded on n = 1064
individuals across 27 countries. In this text, we consider genotype information
across four SNPs from the v-akt murine thymoma viral oncogene homolog 1
(AKT1) gene. In addition to genotype information, each individual’s country
of origin, gender and ethnicity are recorded. For complete information on
this study, readers are referred to http://www.stanford.edu/group/morrinst/
hgdp.html. Data are contained in the tab-delimited text file HGDP AKT1.txt
on the textbook website. Again we begin by specifying the location of the
data:

> hgdpURL <- "http://people.umass.edu/foulkes/asg/data/HGDP_AKT1.txt"

Then we apply the read.delim() function to read the data into R:

> hgdp <- read.delim(file=hgdpURL, header=T, sep="\t")

Data on the first 20 observations in this dataset are provided in Table 1.2.
Here the variable Population refers to ethnicity, Geographic.origin is the
country of origin and Geographic.area is a more general description of loca-
tion for the individuals in this cohort.

The Virco data

Several publicly available datasets that include viral sequence information,
treatment histories and clinical measures of disease progression for HIV-
infected individuals are downloadable at the Stanford Resistance Database:
http://hivdb.stanford.edu/. In this text we consider a data set generated by
VircoTM , which includes protease (Pr) sequence information on 1066 viral
isolates and corresponding fold-resistance measures for each of eight Pr in-
hibitors. Fold resistance is a comparative measure of responsiveness to a drug,
where the referent value is for a wildtype or consensus virus. The consensus
AA at a site on the viral genome is defined as the AA that is most common
at this site in the general population. The data are comma delimited and
contained in the file Virco data.csv on the textbook website. We use the
read.csv() function in R to read in the data:

> vircoURL <- "http://people.umass.edu/foulkes/asg/data/Virco_data.csv"

> virco <- read.csv(file=vircoURL, header=T, sep=",")

Note that we now indicate sep="," since the data are comma delimited.
This is the default for the read.csv() function. Complete information on the
variables in the database and associated publications can be found on the
Stanford Resistance Database website. A sample of the data on a select set
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of variables is given in Table 1.3. The variable SeqID is the sequence iden-
tifier, and IsolateName is the name given to the corresponding isolate. The
drug-specific fold-resistance variables are labeled Drug.Fold, so, for example,
Indinavir (IDV) fold resistance is given by the variable IDV.Fold. A higher
fold-resistance value indicates that the corresponding isolate is more resistant
(less sensitive) to the indicated drug than a wildtype sequence based on an in
vitro assay.

The genotype information is available in two formats. The first represen-
tation is given by the variables with names that begin with the letter P and
followed by a number. This number refers to the amino acid position within
the Pr region of the viral sequence. For example, the variable P10 represents
the tenth AA position within the Pr region of the viral genome. A “−” in
the data table indicates the presence of the population consensus AA, while a
letter indicates a mutation in the form of the AA corresponding to this letter.
For example, for SeqID==3852, a variant AA is observed at site 10 in the form
of Isoleucine (I). A total of 99 P variables are included in this dataset, corre-
sponding to the 99 AA sites in the protease region of the viral genome. An
alternative formulation of the data is given by the variable MutList, which is
a list of all the observed mutations. These data are coded by a letter, followed
by a number, followed by another letter. The number is again the AA loca-
tion, the first letter is the consensus AA at this site and the letter following
the number is the AA(s) that are observed at the corresponding location. For
example, L10I indicates that AA I is present in place of leucine (L) at site
10.
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Problems 27

Problems

1.1. State the primary analytic considerations that distinguish population-
based and family-based investigations.

1.2. Define and contrast the following terms: (a) genotype, (b) haplotype, (c)
phase, (d) homologous, (e) allele, and (f) zygosity.

1.3. Based on the FAMuSS data, determine the minor allele and its frequency
for the actn3 1671064 SNP. Report these frequencies overall and stratified
by the variable labeled Race. Interpret your findings.

1.4. Using the HGDP data, summarize the genotype frequencies for the SNP
labeled AKT1.C6024T, overall and by geographic area, using the variable
named geographic.area. Interpret the results.

1.5. Report the observed proportion of mutations at sites 1, 10, 30, 71, 82
and 90 in the Protease region of the HIV genome for the Virco data using the
variables labeled P1, P10, P30, P71, P82 and P90. Explain your findings.
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