Chapter 2
Optical Waveguide Modes

The optical waveguide is the fundamental element that interconnects the various
devices of an optical integrated circuit, just as a metallic strip does in an electri-
cal integrated circuit. However, unlike electrical current that flows through a metal
strip according to Ohm’s law, optical waves travel in the waveguide in distinct opti-
cal modes. A mode, in this sense, is a spatial distribution of optical energy in one
or more dimensions that remains constant in time. In this chapter, the concept of
optical modes in a waveguiding structure is discussed qualitatively, and key results
of waveguide theory are presented with minimal proof to give the reader a general
understanding of the nature of light propagation in an optical waveguide. Then, in
Chap. 3, a mathematically sound development of waveguide theory is given.

2.1 Modes in a Planar Waveguide Structure

As shown in Fig. 2.1, a planar waveguide is characterized by parallel planar bound-
aries with respect to one (x) direction, but is infinite in extent in the lateral directions
(z and y). Of course, because it is infinite in two dimensions, it cannot be a practical
waveguide for optical integrated circuits, but it forms the basis for the analysis of
practical waveguides of rectangular cross section. It has therefore been treated by a
number of authors, including McWhorter [1], McKenna [2], Tien [3], Marcuse [4],
Taylor and Yariv [5] and Kogelnik [6]. In Section 2.1.2 we follow the approach of
Taylor and Yariv [5] to examine the possible modes in a planar waveguide, without
fully solving the wave equation.

2.1.1 Theoretical Description of the Modes of a Three-Layer
Planar Waveguide

To begin the discussion of optical modes, consider the simple three-layer planar
waveguiding structure of Fig. 2.1. The layers are all assumed to be infinite in extent
in the y and z directions, and layers 1 and 3 are also assumed to be semi-infinite in
the x direction. Light waves are assumed to be propagating in the z direction. It has
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18 2 Optical Waveguide Modes

Fig. 2.1 Diagram of the
basic three-layer planar
waveguide structure. Three
mode are shown, representing
distributions of electric field
in the x direction

been stated previously that a mode is a spatial distribution of optical energy in one
or more dimensions. An equivalent mathematical definition of a mode is that it is an
electromagnetic field which is a solution of Maxwell’s wave equation

V2E(r, 1) = [n*(r)/c*] 9°E(r, 1)/317, 2.1

where E is the electric field vector, r is the radius vector, n(r) is the index of refrac-
tion, and c is the speed of light in a vacuum. For monochromatic waves, the solutions
of (2.1) have the form
E(r,t) = E(r)e'”’, (2.2)

where w is the radian frequency. Substituting (2.2) into (2.1) we obtain

V2E(r) + k*n*(r)E@r) = 0, (2.3)
where k = w/c. If we assume, for convenience, a uniform plane wave propagating
in the z direction, i.e., E(r) = E(x, y) exp(—ifz), B being a propagation constant,
then (2.3) becomes

9?E(x, y)/ax> + 9*E(x, y)/8y* + [k*n*(r) — B*E(x, y) = 0. (2.4)

Since the waveguide is assumed infinite in the y direction, by writing (2.4) sepa-
rately for the three regions in x, we get

Region 1 92E(x, y)/ax2 + (k2 % — BHE(x, y)=20
Region 2 92E(x, y)/ax2 + (kzn% — B)E(x, y)=20 2.5)
Region3  9?E(x, y)/dx? + (k*n3 — BHE(x,y) =0,

where E(x, y) is one of the Cartesian components of E(x, y). The solutions of (2.5)
are either sinusoidal or exponential functions of x in each of the regions, depending
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Fig. 2.2 Diagram of the . ! T b 8
possible modes in a planar > e ,/7 T’ A
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waveguide [2.5]
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on whether (kzni2 — ,82), i =1, 2,3, is greater than or less than zero. Of course,
E(x, y) and 0E(x, y)/0x must be continuous at the interface between layers. Hence
the possible modes are limited to those shown in Fig. 2.2.

Consider how the mode shape changes as a function of 8, for the case of constant
frequency @ and ny > n3 > n;. This relative ordering of the indices is quite a com-
mon case, corresponding, for example, to a waveguiding layer of index n, formed
on a substrate with smaller index n3, surrounded by air of index n;. As we will see in
Chapter 3, it is a necessary condition for waveguiding in Layer 2 that n, be greater
than both n; and n3. When B8 > kny, the function E(x) must be exponential in all
three regions and only the mode shape shown as (a) in Fig. 2.2 could satisfy the
boundary conditions of E(x) and dE(x)/dx being continuous at the interfaces. This
mode is not physically realizable because the field increases unboundedly in Lay-
ers 1 and 3, implying infinite energy. Modes (b) and (c) are well confined guided
modes, generally referred to as the zeroth order and first order transverse electric
modes, TEy and TE, [7]. For values of 8 between kn, and kn3 such modes can be
supported. If S is greater than kn; but less than kn3, a mode like that in (d) will result.
This type of mode, which is confined at the air interface but sinusoidally varying at
the substrate, is often called a substrate radiation mode. It can be supported by the
waveguide structure, but because it is continually losing energy from the waveguid-
ing Region 2 to the substrate Region 3 as it propagates, it tends to be damped out
over at short distance. Hence it is not very useful in signal transmission, but, infact,
it may be very useful in coupler applications such as the tapered coupler. This type
of coupler will be discussed in Chapter 6. If 8 is less than kn; the solution for E(x)
is oscillatory in all three regions of the waveguide structure. These modes are not
guided modes because the energy is free to spread out of the waveguiding Region 2.

They are generally referred to as the air radiation modes of the waveguide structure.
Of course, radiation is also occuring at the substrate interface.
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2.1.2 Cutoff Conditions

We shall see in Chapter 3, when (2.1) is formally solved, subject to appropriate
boundary conditions at the interface, that 8 can have any value when it is less than
kns, but only discrete values of 8 are allowed in the range between kns and kn,.
These discrete values of § correspond to the various modes TE;, j =0, 1,2, ... (or
TMy, k=0, 1, 2, ...). The number of modes that can be supported depends on the
thickness ¢ of the waveguiding layer and on w, n;, n, and ns. For given t, ny, n,, and
ns there is a cutoff frequency w. below which waveguiding cannot occur. This .
corresponds to a long wavelength cutoff A..

Since wavelength is often a fixed parameter in a given application, the cutoff
problem is frequently stated by asking the question, “for a given wavelength, what
indices of refraction must be chosen in the three layers to permit waveguiding of a
given mode?” For the special case of the so-called asymmetric waveguide, in which
n; is very much less than n3, it can be shown (Chapter 3) that the required indices
of refraction are related by

An =ny —n3 = 2m + 1)’A3/(32n,t%), (2.6)

where the mode number m = 0, 1, 2, ..., and )¢ is the vacuum wavelength. The
change in index of refraction required for waveguiding of the lower-order modes is
surprisingly small. For example, in a gullium arsenide waveguide with n, equal to
3.6 [8] and with 7 on the order of X, (2.6) predicts that a An on the order of only
1072 is sufficient to support waveguiding of the TE, mode.

Because only a small change in index is needed, a great many different methods
of waveguide fabrication have proven effective in a variety of substrate materials.
The more important of these have been listed in Table 2.1 so that the reader will be
familiar with the names of the techniques when they are mentioned in the follow-
ing discussion of experimental observations of waveguide performance. A thorough
explanation of the methods of waveguide fabrication is given in Chapters 4 and 5.

Table 2.1 Methods of fabricating waveguides for optical integrated circuits

1) Deposited this films (glass, nitrides, oxides, organic polymers)
2) Photoresist films
3) Ion bombarded glass
4) Diffused dopant atoms
5) Heteroepitaxial layer growth
6) Electro-optic effect
7) Metal film stripline
8) lon migration
9) Reduced carrier concentration in a semiconductor
a) epitaxial layer growth
b) diffusion counterdopirig
¢) ion implantation counterdoping or compensation
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2.1.3 Experimental Observation of Waveguide Modes

Since the waveguides in optical integrated circuits are typically only a few microm-
eters thick, observation of the optical mode profile across a given dimension can-
not be accomplished without a relatively elaborate experimental set-up, featuring at
least 1000x magnification. One such system [9], which works particularly well for
semiconductor waveguides, is shown in Fig. 2.3. The sample, with its waveguide at
the top surface, is fixed atop an x-y-z micropositioner. Microscope objective lenses,
used for input beam coupling and output image magnification, are also mounted
on micropositioners to facilitate the critical alignment that is required. The light
source is a gas laser, emitting a wavelength to which the waveguide is transparent.
For example, a helium-neon laser operating at 1.15 pm is good for GaAs, GaAlAs
and GaP waveguides, while one emitting at 6328 A can be used for GaP but not for
GaAlAs or GaAs. For visual observation of the waveguide mode, the output face
of the waveguide can be imaged onto either a white screen or an image converter
(IC) screen depending on whether visible wavelength or infrared (ir) light is used.
The lowest order mode (m = 0) appears as a single band of light, while higher order
modes have a correspondingly increased number of bands, as shown in Fig. 2.4.
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Fig. 2.3 Diagram of an experimental setup than can be used to measure optical mode shapes [2.9]
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Fig. 2.4a, b, ¢ Optical mode patterns in a planar waveguide, a TEy, b TE;, ¢ TE,. In the planar
guide, light is unconfined in the y direction, and is limited, as shown in the photos, only by the
extent of spreading of the input laser beam. For the corresponding TE,, patterns of a rectangular
waveguide, see [10]

The light image appears as a band rather than a spot because it is confined by the
waveguide only in the x direction. Since the waveguide is much wider than it is thick
the laser beam is essentially free to diverge in the y direction.

To obtain a quantitative display of the mode profile, i.e. optical power density
vs. distance across the face of the waveguide, a rotating mirror is used to scan the
image of the waveguide face across a photodetector that is masked to a narrow slit
input. The electrical signal from the detector is then fed to the vertical scale of an
oscilloscope on which the horizontal sweep has been synchronized with the mirror
scan rate. The result is in the form of graphic displays of the mode shape, like those
shown in Fig. 2.5. Note that the modes have the theoretically predicted sinusoidal-
exponential shape, by remembering that what is observed is optical power density,
or intensity, which is proportional to E2. Details of the mode shape, like the rate
of exponential decay (or extinction) of the evanescent “tail” extending across the
waveguide-substrate and waveguide-air interfaces, depend strongly on the values of
A at the interface. As can be seen in Fig. 2.5, the extinction is much sharper at
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Fig. 2.5 Optical mode TEgand TE, MODE PROFILES
shapes are measured using
the apparatus of Fig. 2.3. The
waveguide in this case was
formed by proton
implantation into a gallium
arsenide substrate to produce
a 5 um thick carrier-
compensated layer [12]
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the waveguide-air interface where An >~ 2.5 than at the waveguide-substrate plane
where An 2~ 0.01-0.1.

A system like that shown in Fig. 2.3 is particularly useful for analysis of mode
shapes in semiconductor waveguides, which generally support only one or two
modes because of the relatively small An at the waveguide-substrate interface. Gen-
erally, the position of the focused input laser beam can be moved toward the center
of the waveguide to selectively pump the zeroth order mode, or toward either the
air or substrate interface to select the first order mode. It becomes very difficult to
visually resolve the light bands in the case of higher-order, multimode waveguides
because of spatial overlapping, even though the modes may be electromagnetically
distinct and non-coupled one to another. Waveguides produced by depositing thin
films of oxides, nitrides or glasses onto glass or semiconductor substrates usually
are multi-mode, supporting 3 or more modes, because of the larger waveguide-
substrate An [11-14]. For waveguides of this type, a different experimental tech-
nique, employing prism coupling, is most often used to analyze the modes.

The prism coupler will be discussed in detail in Chapter 7. At this point it suffices
to say that the prism coupler has the property that it selectively couples light into
(or out of) a particular mode, depending on the angle of incidence (or emergence).
The mode-selective property of the prism coupler, which is illustrated in Fig. 2.6,
results from the fact that light in each mode within a waveguide propagates at a
different velocity, and continuous phase-matching is required for coupling. The par-
ticular angle of incidence required to couple light into a given mode or the angle of
emergence of light coupled out of a given mode can both be accurately calculated
from theory, as will be seen in Chapter 7. The prism coupler can thus be used to
analyze the modes of a waveguide. This can be done in two ways.

In one approach, the angle of incidence of a collimated, monochromatic laser
beam on an input coupler prism is varied and the angles for which a propagating
optical mode is introduced into the waveguide are noted. The propagation of optical
energy in the waveguide can be observed by merely placing a photodetector at the
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Fig. 2.6 The prism coupler
used as a device for modal
analysis Y. Yo
{ i
\ )

output end of the waveguide. One can then determine which modes the waveguide
is capable of supporting by calculatin from the angle of incidence data.

An alternative method uses the prism as an output coupler. In this case,
monochromatic light is introduced into the waveguide in a manner so as to excite
all of the waveguide modes. For example, a diverging laser beam, either from a
semiconductor laser, or from a gas laser beam passed through a lens to produce
divergence, is focused onto the input face of the waveguide. Since the light is not
collimated, but rather enters the waveguide at a variety of angles, some energy is

Fig. 2.7 Photograph of “m”
lines produced by prism
coupling of light out of a
planar wave-guide. (Photo
courtesy of U.S. Army
ARRADCOM, Dover, NJ)
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introduced into all of the waveguide modes for which the waveguide is above cutoff
at the particular wavelength used. If a prism is then used as an output coupler, light
from each mode emerges from the prism at a different angle. Again, the particular
modes involved can be determined by calculation from the emergence angle data.
Since the thickness of the waveguide is much less than its width, the emerging light
from each mode appears as a band, producing a series of so-called “m” lines as
shown in Fig. 2.7, corresponding to the particular mode number.

When the prism coupler is used to analyze the modes of a waveguide, the actual
mode shape, or profile, cannot be determined in the same way as that of the scanning
mirror approach of Fig. 2.3. However, the prism coupler method lets one determine
how many modes can be supported by a multimode waveguide, and, as will be seen
in Chap. 6, the phase velocity (hence the effective index of refraction) for each mode
can be calculated from incidence and emergence angle data.

2.2 The Ray-Optic Approach to Optical Mode Theory

In Section 2.1, we considered the propagation of light in a waveguide as an elec-
tromagnetic field which mathematically represented a solution of Maxwell’s wave
equation, subject to certain boundary conditions at the interfaces between planes
of different indices of refraction. Plane waves propagating along the z direction,
supported one or more optical modes. The light propagating in each mode trav-
eled in the z direction with a different phase velocity, which is characteristic of
that mode. This description of wave propagation is generally called the physical-
optic approach. An alternative method, the so-called ray-optic approach [6, 15, 16,
17], is also possible but provides a less complete description. In this latter for-
mulation, the light propagating in the z direction is considered to be composed
of plane waves moving in zig-zag paths in the x-z plane undergoing total internal
reflection at the interfaces bounding the waveguide. The plane waves compris-
ing each mode travel with the same phase velocity. However, the angle of reflec-
tion in the zigzag path is different for each mode, making the z component of the
phase velocity different. The plane waves are generally represented by rays drawn
normal to the planes of constant phase as shown in Fig. 2.8, which explains the
name ray-optic.

N2> N3>m

Fig. 2.8 Optical ray pattern 8,
within a multimode planar
waveguide 3
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2.2.1 Ray Patterns in the Three-Layer Planar Waveguide

The ray patterns shown in Fig. 2.8 correspond to two modes, say the TE, and TE;,
propagating in a three layer waveguide with n, > n3 > n;. The electric (E) and
magnetic (H) fields of these plane waves traveling along zig-zag paths would add
vectorially to give the E and H distributions of the waves comprising the same two
modes, propagating in the z direction, that were described by the physical-optic
model of Section 2.1. Both the ray-optic and physical-optic formulations can be
used to represent either TE waves, with components E,, H;, and H,, or TM waves,
with components H,, E. and E,.

The correlation between the physical-optic and ray-optic approaches can be seen
by referring back to (2.5). The solution to this equation in the waveguiding Region
2 has the form [2.5]:

Ey(x,z) o« sin(hx + y), 2.7

where a TE mode has been assumed, and where # and y are dependent on the
particular waveguide structure. Substituting (2.7) into (2.5) for Region 2, one obtains
the condition

B+ h* = k*nl. (2.8)

Remembering that k = w/c, it can be seen that 8, h and kn, are all propagation
constants, having units of (length)~'. A mode with a z direction propagation con-
stant B,, and an x direction propagation constant i can thus be represented by a
plane wave travelling at an angle 6,, = tan~! (h/B,) with respect to the z direction,
having a propagation constant kn,, as diagrammed in Fig. 2.9. Since the frequency
is constant, kn, = (w/c)n, is also constant, while 6y,, By, and & are all parameters
associated with the mth mode, with different values for different modes.

To explain the waveguiding of light in a planar three-layer guide like that of
Fig. 2.8 by the ray-optic method, one needs only Snell’s law of refraction, coupled
with the phenomenon of total internal reflection. For a thorough discussion of these
basic concepts of optics see, for example, Condon [18], or Billings [19], or Benett
[20]. Consider a ray of light propagating within a three-layer waveguide structure
as shown in Fig. 2.10. The light rays of Fig. 2.10a,b and c correspond to a radiation
mode, a substrate mode, and a guided mode, respectively. The angles of incidence

Fig. 2.9 Geometric
(vectorial) relationship O h
between the propagation \ m

constants of an optical
waveguide :8 m
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Fig. 2.10 a, b, c. Optical ray patterns for a air radiation modes; b substrate radiation modes; ¢
guided mode. In each case a portion of the incident light is reflected back into layer 3; however,
that ray has been omitted from the diagrams

and refraction, ¢;, with i = 1, 2, 3, are measured with respect to the normals to the
interface planes, as is common practice in optics. From Snell’s law

sin §01/ sin @y = nz/nl (29)

and
sin ¢/ sin @3 = n3/n;. (2.10)

Beginning with very small angles of incidence, ¢3, near zero, and gradually
increasing @3, we find the following behavior. When ¢3 is small, the light ray passes
freely through both interfaces, suffering only refraction, as in Fig. 2.10a. This case
corresponds to the radiation modes discussed in Section 2.1. As ¢j3 is increased
beyond the point at which ¢, exceeds the critical angle for total internal reflec-
tion at the n, — ny, interface, that light wave becomes partially confined as shown
in Fig. 2.10b, corresponding to a substrate radiation mode. The condition for total
internal reflection at the n, — n; interface is given by [19]

@ > sin~(ny/n), (2.11)

or, combining (2.11) and (2.10),

v

@3 > sin”'(n1/n3). (2.12)

As @3 is further increased beyond the point at which ¢, also exceeds the critical
angle for total internal reflection at the n, — nj3 interface, the lightwave becomes

totally confined, as shown in Fig. 2.10c, corresponding to a guided mode. In this
case, the critical angle is given by

@2 > sin”'(n3/ny), (2.13)
or, combining (2.2.7) and (2.2.4),

@3 > sin~'(1) = 90°. (2.14)
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The conditions given by (2.11) and (2.13) for determining what type of modes
can be supported by a particular waveguide as a function of ¢, are exactly equivalent
to the conditions given by (2.11) as a function of . For example, (2.5) indicates that
only radiation modes result for § less than kn;. Referring to Fig. 2.9, note that,

@2 = B/kns. (2.15)
Thus, if 8 < kni,
@2 < kni/kny =ny/ns, (2.16)

which is the same condition given by (2.11). Similarly, if 8 is greater than kn; but
less than kn3, (2.5) indicates that substrate radiation modes will be supported. Only
when B > kns, can confined waveguide modes occur. From Fig. 2.9, if § > knj,

singoz e ﬂ/kng > kn3/kn2 > n3/n;. (2.17)

Equation (2.17), obtained from physical-optic theory, is merely a repeat of (2.13)
that resulted from the ray-optic approach. Finally, if ft is greater than kn,,

sing, = B/kny > 1. (2.18)

Equation (2.18) is, of course, a physically unrealizable equality, corresponding to
the physically unrealizable “a” type of modes of Fig. 2.2. Thus an equivalence has
been demonstrated between the ray-optic and physical-optic approaches in regard

to the determination of mode type.

2.2.2 The Discrete Nature of the Propagation Constant f8

The correspondence between the ray-optic and physical optic formalisms extends
beyond merely determining what type modes can be supported. It has been men-
tioned previously, and will be demonstrated mathematically in Chapter 3, that the
solution of Maxwell’s equation subject to the appropriate boundary conditions
requires that only certain discrete values of B are allowed. Thus, there are only a
limited number of guided modes that can exist when 8 is in the range

kny < B < kn,. (2.19)

This limitation on B can be visualized quite conveniently using the ray-optic
approach. The plane wavefronts that are normal to the zig-zag rays of Fig. 2.8 are
assumed to be infinite, or at least larger than the cross section of the waveguide that
is intercepted; otherwise they would not fit the definition of a plane wave, which
requires a constant phase over the plane. Thus, there is much overlapping of the
waves as they travel in the zig-zag path. To avoid decay of optical energy due to
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destructive interference as the waves travel through the guide, the total phase change
for a point on a wavefront that travels from the n, — n3 interface to the n, — n,
interface and back again must be a multiple of 27. This leads to the condition,

2knot 8in O, — 2g023 — 2(021 =2mm, (2.20)

where ¢ is the thickness of the waveguiding Region 2, 6, is the angle of reflection
with respect to the z direction, as shown in Fig. 2.8, m is the mode number, and ¢,3
and ¢, are the phase changes suffered upon total internal reflection at the inter-
faces. The phases —2¢,3 and —2¢,,, represent the Goos-Hénchen shifts [21, 22].
These phase shifts can be interpreted as penetration of the zig-zag ray (for a certain
depth §) into the confining layers 1 and 3 before it is reflected [6, pp. 25-29].

The values of ¢,3 and ¢, can be calculated from [22]:

tan p; = (n3 sin” @3 — n2)? /(ny cos ¢2) 2an)

tan @y = (n% sin® ©) — I’l%)llz/(l’lz CoS @)
for TE waves, and

tan g3 = na(n3sin® @y — nH)? /(n3n; cos gy) 222)
tan @y = n%(n% sin® 0 — n%)l/z/(n%nz CoS ¢7)

for TM waves.
It can be seen that substitution of either (2.21) or (2.22) into (2.20) results in a
transcendental equation in only one variable, 6,, or ¢, where

Om = = — O, (2.23)
2
For a given m, the parameters n;, n,, n3 and t, ¢, (or 6,,) can be calculated.
Thus a discrete set of reflection angles ¢y, are obtained corresponding to the various
modes. However, valid solutions do not exist for all values of m. There is a cutoff
condition on allowed values of m for each set of n;, ny, n3 and t, corresponding to
the point at which ¢y, becomes less than the critical angle for total internal reflection
at either the n, — n3 or the n, — n; interface, as discussed in Section 2.2.1.
For each allowed mode, there is a corresponding propagation constant 8., given
by

B = kny sin g, = kny cos Oy,. (2.24)
The velocity of the light parallel to the waveguide is then given by
v =c(k/p), (2.25)

and one can define an effective index of refraction for the guide as
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negr = ¢/v = B/k. (2.26)

Chapter 2 has described the optical modes that can exist in a three-layer planar
waveguide. We have seen that the modes can be described either by a physical-optic
method, based on a solution of Maxwell’s wave equation, or by a ray-optic method,
relying on geometrical ray tracing principles of classical optics. In Chapter 3, the
mathematical model underlying the mode theory will be developed in greater detail.

Problems

2.1

2.2

23

24

25

2.6

2.7

2.8

29

We wish to fabricate a planar waveguide in GaAs for light of wavelength X
= 1.1 pm that will operate in the single (fundamental) mode. If we assume a
planar waveguide like that of Fig. 2.1 with the condition n, — n; >> ny —
n3, what range of values can n, — n3 have if n, = 3.4 and the thickness of the
waveguiding layer t = 3 um?

Repeat Problem 2.1 for the case Ay = 1.06 jum, all other parameters remaining
unchanged.

Repeat Problems 2.1 and 2.2 for a waveguide of thickness r = 6 pm.

In a planar waveguide like that of Fig. 2.8 with n, = 2.0, n3, = 1.6, and n| =
1, what is the angle of propagation of the lowest order mode (6() when cutoff
occurs? Is this a maximum or a minimum angle for 64?

Sketch the three lowest order modes in a planar waveguide like that of Fig. 2.8
with n; = n3 < n,.

A mode is propagating in a planar waveguide as shown with g, = 0.8 kn,.
How many reflections at the n; — n, interface does the ray experience in trav-
eling a distance of 1 cm in the z direction?

lt:]pm

m

ny=2.0
%0290004

" 1
z

Show that the Goos—Hinchen phase shift goes to zero as the cutoff angle is
approached for a waveguided optical mode.

Calculate the Goos—Hinchen shifts for a TE mode guided with § = 1.85 k in
a guide like that of Fig. 2.8, with n; = 1.0, n, = 2.0, n3 = 1.7.

Show by drawing the vectorial relationship between the propagation constants
(as in Fig. 2.9) How B, kn, and h change in relative magnitude and angle as
one goes from the lowest-order mode in a waveguide progressively to higher-
order modes.
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2.10 A planar asymmetric waveguide is fabricated by depositing a 2 pwm thick layer

of TayOs (n = 2.09) on to a quartz substrate (n = 1.05).

(a) How many modes can this waveguide support for light of 6328 A (vacuum
wavelength)?

(b) If a 20 (um layer of quartz (n = 1.05) is deposited on top of the Ta,Os
waveguide, how many modes can it support for light of 6328 A (vacuum
wavelength)?

2.11 (a) Find the minimum required thickness for a planar slab waveguide with

index of refraction = 3.5 on a substrate with index = 3.38 if it is to sup-
port the propagation of the lowest order TE mode of light with a vacuum
wavelength 880 nm. The medium surrounding the waveguide and substrate
is air.

(b) It the thickness of the waveguide were increased above its minimum value
by a factor of 2, and all other parameters remained unchanged, how many
TE modes could be supported?
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