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Density-independent Demography

Different populations have different numbers of individuals of different ages.
Consider the human populations of Mexico and Sweden in 1990. Mexico had
more individuals in total than Sweden, and a larger fraction of their population
was of child bearing age or younger (Figs. 2.1a, 2.1b).
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Fig. 2.1: Demography of human populations of Mexico and Sweden. Based on 1990
data from US Census Bureau, Population Division, International Programs Center.

In addition, the age-specific fertility rate is higher in Mexico, especially for
younger women (Fig. 2.1c). How did this happen, and why does Mexico have so
many young people? What are the consequences of this for their culture, their
use of resources, their domestic and foreign policies, and their future population
growth? How about Sweden?

Demography is the study of populations with special attention to age or
stage structure [113]. Originally, age-based human demography was the prove-
nance of actuaries who helped governments keep track of the number citizens
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of different ages and thus, for instance, know how many would be available
for conscription into the military.1The demography of a population is the age
(or stage) structure and the survival, fertility, and other demographic rates as-
sociated with those ages or life history stages. Age structure is the number or
relative abundance of individuals of different ages or age classes. Stage structure
is the number or relative abundance of individuals of different stages. Stages
are merely useful categories of individuals, such as size classes (e.g. diameters of
tropical trees) or life history stages (e.g. egg, larvae, and adult anurans). Stages
are particularly useful when (i) age is difficult to determine, and/or (ii) when
stage is a better predictor of demographic rates (e.g. birth, death, survival) than
is age. Demography is, in part, the study of how demographic rates vary among
ages or stages, and the consequences of those differences.

There are a few ways to study a population’s demography, and all ecology
text books can provide examples. Life tables are lists of important demographic
parameters such as survivorship, birth and death rates each age or age class.

Commonly, both age and stage based demography now take advantage of
matrix algebra to simplify and synthesize age and stage specific demography
[23]. This approach is essential when individuals don’t proceed through stages in
a simple sequential manner, perhaps reverting to an “earlier” stage. When used
with age-based demography, these matrices are referred to as Leslie matrices
[107]. L. P. Lefkovitch [100] generalized this approach to allow for complex
demography. This could include, for instance, regression from a large size class
to a smaller size class (e.g. a two-leaved woodland perennial to a one-leaved
stage). Using matrices to represent a population’s demography allows us to use
the huge workshop of linear algebra tools to understand and predict growth in
structured populations. Let’s start with a hypothetical example.

2.1 A Hypothetical Example

Pretend you are managing a small nature reserve and you notice that a new
invasive species, spotted mallwort (Capitalia globifera),2 is popping up every-
where. You think you may need to institute some control measures, and to
begin, you would like to understand its life cycle and population growth.

Careful examination of the flowers reveals perfect flowers,3 and you find from
the literature that mallwort is a perennial capable of self-fertilizing. The seeds
germinate in early fall, grow the following spring and early summer to a small
adult that has 2–3 leaves and which sometimes produce seeds. In the second
year and beyond, if the plants survive, they grow to large adults which have
four or more leaves and only then do they produce the majority of their seeds.

1 In his chapter entitled “Interesting Ways to Think about Death” G.E. Hutchinson
[84] cites C. F. Trenerry, E. L. Gover and A. S. Paul (The Origins and Early
History of Insurance, London, P. S. King & Sons, Ltd.) for description of early
Roman actuarial tables.

2 Not a real species.
3 Individual flowers possess both female and male reproductive structures.
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The seeds do not seem to survive more than one year, so there is probably no
seed bank.

You summarize what you have learned in the form of a life cycle graph (Fig.
2.1). Demographers use a life cycle graph to summarize stages that may be
observed at a single repeated point in time (e.g., when you go out to explore
in June). It also can include the probabilities that an individual makes the
transition from one stage to another over one time step (e.g. one year), as well
as the fecundities.

F3

F2

P21

Seeds A (small) A (big)

P33

P32

Fig. 2.2: Life cycle graph of the imaginary spotted mallwort (Capitalia globifera). Pi j

is the probability that an individual in stage j transitions to stage i over a single fixed
time interval between samples. Fi the number of progeny (transitioning into stage 1)
produced by an individual in stage j. Thus, for mallwort, P21 is the probability that a
seed (Seeds) makes it into the small adult stage (A-Small). P32 is the probability that
a small adult shows up as a large adult the next year. F2 is the average fertility for
individuals in the small adult stage and F3 is the average fertility for individuals in
the large adult stage.

As the manager responsible for this small reserve, you decide to keep track
of this new exotic species. After identifying a general area where the plant seems
to have obtained a foothold, you established 50 permanent 1 m2 sample plots,
located randomly throughout the invasion area. Each year, for two years, you
sample in early summer when the fruits are on the plants (when the weather
is pleasant and you can find interns and volunteers to help). In all plots you
tag and count all first year plants (2–3 leaves), and all older plants (4+ leaves).
You also are able to count fruits and have determined that there is one seed per
fruit.

Now that you have your data for two years, you would like to figure out
how quickly the population growing. You could simply keep track of the total
population size, N, or just the large adults. You realize, however, that different
stages may contribute very differently to growth, and different stages may be
better for focused control efforts. A description, or model, of the population
that includes different stages will provide this. We call such a model a demo-
graphic model, and it consists of a population projection matrix. The population
projection matrix is a matrix that represents the life cycle graph.

We use the projection matrix to calculate all kinds of fun and useful stuff
including
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• The finite rate of increase, λ (the asymptotic population growth rate).
• The stable stage distribution (the population structure that would emerge

if the demographic rates (P, F) do not change).
• Elasticty, the relative importance of each transition to λ.

2.1.1 The population projection matrix

The population projection matrix (a.k.a. the transition matrix) is simply an
organized collection of the per capita contribution of each stage j to the next
stage i in the specified time interval (often one year). These contributions, or
transitions, consist of (i) the probabilities that an individual in stage j in one
year makes it into stage i the next year, and (ii) the per capita fecundities for
reproductive stages (eq. 2.1).

Each element of the projection matrix (eq. 2.1) relates its column to its row.
Thus P21 in our matrix, eq. 2.1 is the probability that an individual in stage 1
(seeds; respresented by the column 1) makes it to the next census period and
shows up in stage 2 (1 year old small adult; represented by row 2). Similarly, P32
is the probability that an individual in stage 2 (a small one year old adult) has
made it to the large adult stage at the next census period. The fecundities are
not probabilities, of course, but are the per capita contribution of propagules
from the adult stage to the seed stage. The population projection matrix allows
us to multiply all of these transition elements by the abundances in each age
class in one year to predict, or project, the abundances of all age classes in the
following year.  0 F2 F3

P21 0 0
0 P32 P33

 (2.1)

2.1.2 A brief primer on matrices

We refer to matrices by their rows and columns. A matrix with three rows
and one column is a 3 × 1 matrix (a “three by one” matrix); we always state
the number of rows first. Matrices are composed of elements; an element of a
matrix is signified by its row and column. The element in the second row and
first column is a21.

To multiply matrices, we multiply and then sum each row by each column
(eq. B.3). More specifically, we multiply each row element of matrix A times
each column element of matrix B, sum them, and place this sum in the respec-
tive element of the final matrix. Consider the matrix multiplication in eq. B.3.
We first multiply each element of row 1 of A (a b), times the corresponding
elements of column 1 of B (m n), sum these products and place the sum in the
first row, first column of the resulting matrix. We then repeat this for each row
of A and each column of B
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A =

(
a b
c d

)
; B =

(
m o
n p

)
(2.2)

AB =

(
(am + bn) (ao + bp)
(cm + dn) (co + dp)

)
(2.3)

This requires that the number of columns in the first matrix must be the
same as the number of rows in the second matrix. It also means that the resulting
matrix will have the same number of rows as the first matrix, and the same
number of columns as the second matrix.

Matrices in R

Let’s define two 2 × 2 matrices, filling in one by rows, and the other by columns.

> M <- matrix(1:4, nr = 2, byrow = T)

> M

[,1] [,2]

[1,] 1 2

[2,] 3 4

> N <- matrix(c(10, 20, 30, 40), nr = 2)

> N

[,1] [,2]

[1,] 10 30

[2,] 20 40

Following our rules above, we would multiply and then sum the first row of M by
the first column of N, and make this element a11 of the resulting matrix product.

> 1 * 10 + 2 * 20

[1] 50

We multiply matrices using %*% to signify that we mean matrix multiplication.

> M %*% N

[,1] [,2]

[1,] 50 110

[2,] 110 250

2.1.3 Population projection

With our spotted mallwort we could multiply our projection matrix by the
observed abundances (seeds=S d, small adults - S A, large adults - LA) to project
the abundances of all age classes in subsequent years. 0 F2 F3

P21 0 0
0 P32 P33


 NS d

NS A

NLA

 =

 (0 × NS d + F2 × NS A + F3 × NLA)
(P21 × NS d + 0 × NS A + 0 × NLA)
(0 × NS d + P32 × NS A + 0 × NLA)

 (2.4)
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The next step is to create the projection matrix. Let’s pretend that over
the two years of collecting these data, you found that of the small adults we
tagged, about half (50%) survived to become large adults the following year.
This means that the transition from stage 2 (small adults) to stage 3 (large
adults) is P32 = 0.50. Of the large adults that we tagged, about 90% of those
survived to the next year, thus P33 = 0.90. We estimated that, on average, each
small adult produces 0.5 seeds (i.e. F2 = 0.50) and each large adult produces
20 seeds (i.e. F3 = 20). Last, we found that, on average, for every 100 seeds
(fruits) we counted, we found about 30 small adults (one year olds), meaning
that P21 = 0.30. Note that this requires that seeds survive until germination,
germinate, and then survive until we census them the following summer. We
can now fill in our population projection matrix, A.

A =

 0 F2 F3
P21 0 0
0 P32 P33

 =

 0 0.5 20
0.30 0 0

0 0.50 0.90

 (2.5)

Next we can multiply it the projection matrix, A, by the last year for which
we have data.

 0 0.5 20
0.3 0 0
0 0.5 0.9


100

250
50

 =

 (0 × 100 + 0.5 × 250 + 20 × 50)
(0.3 × 100 + 0 × 250 + 0 × 50)

(0 × 100 + 0.5 × 250 + 0.9 × 50)

 =

1125
30

170

 (2.6)

If we wanted more years, we could continue to multiply the projection matrix
by each year’s projected population. We will observe that, at first, each stage
increases or decreases in its own fashion (Fig. 2.3a), and that over time, they
tend to increase in a more similar fashion. This is typical for demographic
models. It is one reason why it is important to examine stage-structured growth
rather than trying to lump all the stages together — we have a much richer
description of how the population is changing.
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Stage structured growth - one step

First, we create a population projection matrix, and a vector of stage class abun-
dances for year zero.

> A <- matrix(c(0, 0.5, 20, 0.3, 0, 0, 0, 0.5, 0.9), nr = 3,

+ byrow = TRUE)

> N0 <- matrix(c(100, 250, 50), ncol = 1)

Now we perform matrix multiplication between the projection matrix and N0.

> N1 <- A %*% N0

> N1

[,1]

[1,] 1125

[2,] 30

[3,] 170

Note that the first stage declined, while the second and third stages increased.

Stage structured growth - multiple steps

Now we project our population over six years, using a for-loop. We use a for-loop,
rather than sapply, because each year depends on the previous year (see the Ap-
pendix, sec. B.6). First, we set the number of years we want to project, and then
create a matrix to hold the results. We put N0 in the first column.

> years <- 6

> N.projections <- matrix(0, nrow = nrow(A), ncol = years +

+ 1)

> N.projections[, 1] <- N0

Now we perform the iteration with the for-loop.

> for (i in 1:years) N.projections[, i + 1] <- A %*% N.projections[,

+ i]

Last, we graph the results for each stage (Fig. 2.3a). To graph a matrix, R is expecting
that the data will be in columns, not rows, and so we need to transpose the projection
matrix.

> matplot(0:years, t(N.projections), type = "l", lty = 1:3,

+ col = 1, ylab = "Stage Abundance", xlab = "Year")

> legend("topleft", legend = c("Seeds", "Small Adult", "Large Adult"),

+ lty = 1:3, col = 1, bty = "n")

2.1.4 Population growth

We have projected the stages for six years — what is its observed rate of in-
crease, Rt = Nt+1/Nt? How do we even think about R and N in stage structured
growth? The way we think about and calculate these is to add all the individuals
in all stages to get a total N, and calculate R with that, as we did in Chapter 1.
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Fig. 2.3: Population dynamics and annual growth (R = Nt+1/Nt) of spotted mallwort.
Note that stage abundance is on a log-scale.

Rt = Nt+1/Nt. (2.7)

If we do that for our mallwort, we can see that Rt changes with time (Fig. 2.3b).
We can summarize the projection as n(t) = Atn0, where At is A multiplied by
itself t times.

Annual growth rate

Now let’s calculate Rt = Nt+1/Nt for each year t. We first need to sum all the stages,
by applying the sum function to each column.

> N.totals <- apply(N.projections, 2, sum)

Now we get each Rt by dividing all the Nt+1 by each Nt. Using negative indices cause
R to drop that element.

> Rs <- N.totals[-1]/N.totals[-(years + 1)]

We have one fewer Rs than we do years, so let’s plot each R in each year t, rather
than each year t + 1 (Fig. 2.3b).

> plot(0:(years - 1), Rs, type = "b", xlab = "Year", ylab = "R")

2.2 Analyzing the Projection Matrix

You seem to have a problem on your hands (Fig. 2.3a). Being a well-trained
scientist and resource manager, several questions come to mind: What the heck
do I do now? What is this population likely to do in the future? Can these
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data provide insight into a control strategy? How confident can I be in these
projections?

After you get over the shock, you do a little more research on demographic
models; Caswell [23] is the definitive treatise. You find that, indeed, there is
a lot you can do get more information about this population that might be
helpful.

Once you have obtained the projection matrix, A, you can analysis it using
eigenanalysis to estimate

• λ, the finite rate of increase,
• stable stage structure,
• reproductive value, and
• sensitivities and elasticities.

Below, we explain each of these quantities. These quantities will help you de-
termine which stages of spotted mallwort on which to focus eradication efforts.

2.2.1 Eigenanalysis

Eigenanalysis is a mathematical technique that summarizes multivariate data.
Ecologists use eigenanalysis frequently, for (i) multivariate statistics such as
ordination, (ii) stability analyses with two or more species, and (iii) analyzing
population projection matrices. Eigenanalysis is simply a method to transform a
square matrix into independent, orthogonal, and useful chunks — the eigenvec-
tors and their eigenvalues. In demography, the most useful piece is the dominant
eigenvalue and its corresponding vector.

Eigenanalysis is a technique that finds all the solutions for λ and w of

Aw = λw, (2.8)

where A is a particular summary of our data. 4 With projection matrix analysis,
A is the projection matrix. λ is an eigenvalue and w is an eigenvector. If we
write out eq. 2.8 for a 3 × 3 matrix, we would havea11 a12 a13

a21 a22 a33
a31 a32 a33


w11

w21
w31

 = λ

w11
w21
w31

 (2.9)

There are typically an infinite number of solutions to this equation, and
what eigenanalysis does is find set of solutions that are all independent of each
other, and which capture all of the information in A in a particularly useful
way.5 Typically, the first solution captures the most important features of the

4 For ordination, we analyze a correlation or covariance matrix, and for stability
analyses, we use the matrix of pairwise partial differential equations between each
pair of species. In these eigenanalyses of a square i × j matrix A, we can think of
the elements of A describing the “effect” of stage (or species) j on stage (or species)
i, where j is a column and i is a row.

5 The number of solutions is infinite because they are just simple multiples of the set
found with eigenanalysis.
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projection matrix. We call this the dominant eigenvalue, λ1 and its correspond-
ing eigenvector, w1. The first solution does not capture all of the information;
the second solution captures much of the important remaining information. To
capture all of the information in A requires as many solutions as there are
columns of A. Nonetheless, the first solution is usually the most useful.

Eigenanalysis in R

Here we perform eigenanalysis on A.

> eigs.A <- eigen(A)

> eigs.A

$values

[1] 1.834+0.000i -0.467+1.159i -0.467-1.159i

$vectors

[,1] [,2] [,3]

[1,] 0.98321+0i 0.97033+0.00000i 0.97033+0.00000i

[2,] 0.16085+0i -0.08699-0.21603i -0.08699+0.21603i

[3,] 0.08613+0i -0.02048+0.06165i -0.02048-0.06165i

Each eigenvalue and its corresponding eigenvector provides a solution to eq. 2.8.

The first, or dominant, eigenvalue is the long term asymptotic finite rate of
increase λ. Its corresponding eigenvector provides the stable stage distribution.

We can also use eigenanalysis get the reproductive values of each stage out
of A. To be a little more specific, w we described above are right eigenvectors,
so-called because we solve for them with w on the right side of A. We will also
generate left eigenvectors v (and their corresponding eigenvalues), where vA =

λ(v). The dominant left eigenvector provides the reproductive values (section
2.2.4).

2.2.2 Finite rate of increase – λ

The asymptotic annual growth rate finite rate of increase is the dominant eigen-
value of the projection matrix. Eigenvalues are always referred to with the Greek
symbol λ, and provides a solution to eq. (2.8). The dominant eigenvalue of any
matrix, λ1, is the eigenvalue with the largest absolute value, and it is frequently
a complex number.6 With projection matrices, λ1 will always be positive and
real.

We use eigenanalysis to solve eq. 2.8 and give us the answers — like magic.
Another way to find λ1 is to simply iterate population growth a very large
number of times, that is, let t be very large. As t grows, the annual growth rate,
Nt+1/Nt, approaches λ1 (Fig. 2.4).

6 When you perform eigenanalysis, it is common to get complex numbers, with real
and imaginary parts. Eigenanalysis is, essentially, solving for the roots of the matrix,
and, just like when you solved quadratic equations by hand in high school, it is
possible to get complex numbers.
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Finding λ

Next we explicitly find the index position of the largest absolute value of the eigen-
values. In most cases, it is the first eigenvalue.

> dom.pos <- which.max(eigs.A[["values"]])

We use that index to extract the largest eigenvalue. We keep the real part, using Re,
dropping the imaginary part. (Note that although the dominant eigenvalue will be
real, R will include an imaginary part equal to zero (0i) as a place holder if any of
the eigenvalues have a non-zero imaginary part).

> L1 <- Re(eigs.A[["values"]][dom.pos])

> L1

[1] 1.834

L1 is λ1, the aysmptotic finite rate of increase.

Power iteration method of eigenanalysis

Because growth is an exponential process, we can figure out what is most important
in a projection matrix by multiplying it by the stage structure many times. This
is actually one way of performing eigenanalysis, and it is called the power iteration
method. It is not terribly efficient, but it works well in some specific applications.
(This method is not used by modern computational languages such as R.) The
population size will grow toward infinity, or shrink toward zero, so we keep rescaling
N, dividing the stages by the total N, just to keep things manageable.
Let t be big, and rescale N.

> t <- 20

> Nt <- N0/sum(N0)

We then create a for-loop that re-uses Nt for each time step, making sure we have
an empty numeric vector to hold the output.

> R.t <- numeric(t)

> for (i in 1:t) R.t[i] <- {

+ Nt1 <- A %*% Nt

+ R <- sum(Nt1)/sum(Nt)

+ Nt <- Nt1/sum(Nt1)

+ R

+ }

Let’s compare the result directly to the point estimate of λ1 (Fig. 2.4).

> par(mar = c(5, 4, 3, 2))

> plot(1:t, R.t, type = "b", main = quote("Convergence Toward " *

+ lambda))

> points(t, L1, pch = 19, cex = 1.5)
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Fig. 2.4: Iterating the population, and recalculating Rt = Nt+1/Nt at each time step
converges eventually at the dominant eigenvalue, indicated as a solid point. It is pos-
sible to use the same power iteration method to get the other eigenvalues, but it is
not worth the trouble.

2.2.3 Stable stage distribution

The relative abundance of the different life history stages is called the stage
distribution, that is, the distribution of individuals among the stages. A property
of a stage structured population is that, if all the demographic rates (elements
of the population projection matrix) remain constant, its stage structure will
approach a stable stage distribution, a stage distribution in which the relative
number of individuals in each stage is constant. Note that a population can
grow, so that the absolute number of individuals increases, but the relative
abundances of the stages is constant; this is the stable stage distribution. If the
population is not actually growing (λ = 1) and demographic parameters remain
constant, then the population is stationary and will achieve a stationary stage
distribution, where neither absolute nor relative abundances change.

How do we find the stable stage distribution? It also turns out that w1,
which is the corresponding eigenvector of λ1 (eq. (2.8)), provides the necessary
information. We scale the eigenvector w1 by the sum of its elements because
we are interested in the distribution, where all the stages should sum to one. 7

Therefore the stable stage distribution is

S S D =
w1∑S

i=1 w1
(2.10)

where S is the number of stages.
Once a population reaches its stable stage distribution it grows exponen-

tially,

7 Eigenvectors can only be specified up to a constant, arbitrary multiplier.
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Nt = AtN0

Nt = λtN0

represented either in the matrix notation (for all stages), or simple scalar nota-
tion (for total N only).

Calculating the stable stage distribution

The dominant eigenvector, w, is in the same position as the dominant eigenvalue.
We extract w, keeping just the real part, and divide it by its sum to get the stable
stage distribution.

> w <- Re(eigs.A[["vectors"]][, dom.pos])

> ssd <- w/sum(w)

> round(ssd, 3)

[1] 0.799 0.131 0.070

This shows us that if the projection matrix does not change over time, the popu-

lation will eventually be composed of 80% seeds, 13% small adults, and 7% large

adults. Iterating the population projection will also eventually provide the stable

stage distribution (e.g., Fig. 2.3a).

2.2.4 Reproductive value

If the stage structure gives us one measure of the importance of a stage (its
abundance), then the reproductive value gives us one measure of the impor-
tance of an individual in each stage. Reproductive value is the expected contri-
bution of each individual to present and future reproduction. We characterize
all individuals in a stage using the same expected reproductive value.

We find each stage’s reproductive value by solving for the dominant left
eigenvector v, where

vA = λv (2.11)

Like the relation between the dominant right eigenvector and the stable stage
distribution, this vector is actually proportional to the reproductive values. We
typically scale it for v0 = 1, so that all reproductive values are relative to that
of the first stage class (e.g. newborns or seeds).

RV =
v1∑S

i=1 v1
(2.12)
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Calculating reproductive value

We get the left eigenvalues and -vectors by performing eigenanalysis on the transpose
of the projection matrix. The positions of the dominant right and left eigenvalues are
the same, and typically they are the first. We perform eigenanalysis, extracting just
the the dominant left eigenvector; we then scale it, so the stage 1 has a reproductive
value of 1.0.

> M <- eigen(t(A))

> v <- Re(M$vectors[, which.max(Re(M$values))])

> RV <- v/v[1]

> RV

[1] 1.000 6.113 21.418

Here we see a common pattern, that reproductive value, v, increases with age. In gen-

eral, reproductive value of individuals in a stage increases with increasing probability

of reaching fecund stages.

2.2.5 Sensitivity and elasticity

Sensitivity and elasticity tell us the relative importance of each transition (i.e.
each arrow of the life cycle graph or element of the matrix) in determining
λ. They do so by combining information on the stable stage structure and
reproductive values.

The stage structure and reproductive values each in their own way contribute
to the importance of each stage in determining λ. The stable stage distribution
provides the relative abundance of individuals in each stage. Reproductive value
provides the contribution to future population growth of individuals in each
stage. Sensitivity and elasticity combine these to tell us the relative importance
of each transition in determining λ.

Sensitivities of a population projection matrix are the direct contributions of
each transition to determining λ. We would say, speaking in more mathematical
terms, that the sensitivities for the elements ai j of a projection matrix are the
changes in λ, given small changes in each element, or δλ/δai j. Not surprisingly,
then, these are derived from the stable stage distribution and the reproductive
values. Specifically, the sensitivities are calculated as

δλ

δai j
=

vi jwi j

v · w
(2.13)

where viw j is the product of each pairwise combination of elements of the dom-
inant left and right eigenvectors, v and w. The dot product, v · w, is the sum
of the pairwise products of each vector element. Dividing by this causes the
sensitivities to be relative to the magnitudes of v and w.
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Sensitivity of projection matrices

Let’s calculate sensitivities now. First we calculate the numerator for eq. 2.13.

> vw.s <- v %*% t(w)

Now we sum these to get the denominator, and then divide to get the sensitivities.
(The dot product v ·w yields a 1 × 1 matrix; in order to divide by this quantity, the
simplest thing is to cause the dot product to be a simple scalar rather than a matrix
(using as.numeric), and then R will multiply each element.)

> (S <- vw.s/as.numeric(v %*% w))

[,1] [,2] [,3]

[1,] 0.258 0.04221 0.0226

[2,] 1.577 0.25798 0.1381

[3,] 5.526 0.90396 0.4840

We see from this that the most important transition exhibited by the plant is s21,

surviving from the seed stage to the second stage (the element s31 is larger, but is

not a transition that the plant undergoes).

Elasticities are sensitivities, weighted by the transition probabilities. Sensi-
tivities are large when reproductive value and or the stable age distribution are
high, and this makes sense biologically because these factors contribute a lot
to λ. We may, however, be interested in how a proportional change in a transi-
tion element influences lambda—how does a 10% increase in seed production,
or a 25% decline in juvenile survival influence λ? For these answers, we need
to adjust sensitivities to account for the relative magnitudes of the transition
elements, and this provides the elasticities, ei j, where

ei j =
ai j

λ

δλ

δai j
. (2.14)

Elasticity of projection matrices

In R, this is also easy.

> elas <- (A/L1) * S

> round(elas, 3)

[,1] [,2] [,3]

[1,] 0.000 0.012 0.246

[2,] 0.258 0.000 0.000

[3,] 0.000 0.246 0.238

Note that all the elasticities except the seed production by small adults
appear equally important. Specifically, the same proportional change in any of
these elements will result in approximately the same change in λ.

There are two nice features of elasticities. First, impossible transitions have
elasticities equal to zero, because we multiply by the projection matrix itself.
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Second, the elasticities sum to zero, and so it is easier to compare elasticities
among differ matrices and different organisms.

Once we have the sensitivities and elasticities, we can really begin to see
what is controlling the growth rate of a stage (or age) structured population.
Although these values do not tell us which stages and transitions will, in reality,
be influenced by natural phenomona or management practices, they provide
us with the predicted effects on λ of a proportional change in a demographic
rate, P or F. This is particularly important in the management of invasive
(or endangered) species where we seek to have the maximum impact for the
minimum amount of effort and resources [23,48].

2.2.6 More demographic model details

Births

For demographic models, a “birth” is merely the appearance in the first stage.
If we census birds, a “birth” might be a fledging, if this is the youngest age class
we sampled. If we census plants, we might choose to count seeds as the first
age class, or we might use seedling, or some size threshold as the first stage.
Regardless of the first stage- or age-class we use, a birth is the first appearance
of an individual in the first stage.

Pre- vs. post-breeding census

Note that you are sampling the population of mallwort at a particular time
of year. This sampling happens to be a postbreeding census because you cap-
tured everything right after breeding, when progeny were observed directly.
The projection matrix would look different, and the interpretation of the ma-
trix elements would differ, if we had used a prebreeding census, sampling the
population before breeding. In particular, the projection matrix would have only
two stages (small and large adults), because no seeds would be present at the
time of sampling. The contribution of adults to the youngest stage, therefore,
would represent both fertility and survival to the juvenile stage in late spring.
Nonetheless, both models would be equivalent, generating the same λ.

Birth pulse vs. birth flow model

Another assumption we are making is that individuals set seed, or give birth,
all at once. We refer to the relevant model as a birth-pulse model. On the other
hand, if we assume that we have continuous reproduction, we do things quite
differently, and would refer to this as a birth-flow model. Whether a population
is breeding continuously over a year, or whether reproduction is seasonal, will
influence how we estimate fecundities. Even for synchronously breeding pop-
ulations, many models pool years into a single age class or stage. As result,
we need to be careful about how we approximate probabilities that will differ
among individuals within the age- or stage-class.

These details can get very confusing, and smart people don’t always get it
right. Therefore, consult an expert [23,48], and remember that the stages of life
cycle graph and matrix are the stages that you collect at one point in time.
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2.3 Confronting Demographic Models with Data

This section uses R extensively throughout.
It is common to create a demographic matrix model with real data, and

then use that model for an applied purpose (e.g., [44, 50]). A central question,
however, is just how confident we can be in our model, and the values we derive
from it. It turns out that we can use our data to derive confidence intervals on
important parameters.

In Chapter 1, we used resampling to draw observed annual changes in bird
counts at random to generate growth trajectories and confidence intervals on
population size. Here we resample raw data to find confidence limits on λ. The
method used here, bootstrapping, and related data-based inference techniques
have a large literature [126]. Davison and Hinkley [46] have an comprehensive
R-based text. Such randomization methods are very useful for a wide range
of models in ecology, where the data do not conform clearly to parametric
distributions or to situations like demographic models [140] or null models [60]
for which analytical approximations are difficult or not possible.

The basic idea of bootstrapping is to

1. calculate the observed parameter(s) of interest (e.g., a mean, or λ) with your
model and data,

2. resample your data with replacement to create a large number of datasets
and recalculate your parameter(s) for each resampled dataset to generate a
distribution of the bootstrapped8parameter(s),

3. Calculate a confidence interval for the bootstrapped parameter values —
this will provide an estimate of the confidence you have in your observed
parameter. This will provide an empirical confidence interval.

2.3.1 An Example: Chamaedorea palm demography

Chamaedorea radicalis Mart. (Arecaceae) is an forest understory palm of north-
ern Mexico, and it is one of approximately 100 Chamaedorea species, many of
which are economically valuable as either small, shade-tolerant potting plants
or as harvested leaves in floral arrangements. Its demography is interesting for a
number of reasons, including both management and as an example of a popula-
tion that appears to be maintained through source-sink dynamics [12]. Berry et
al. modeled Chamaedorea demography with five stages (Fig. 2.5). Demography
is also influenced by substrate type, by livestock browsing, and harvesting [12].
Here we use a subset of the data to illustrate the generation of demographic
parameters and confidence intervals.

This study was conducted in the montane mesophyll forests of Sierra de
Guatemala mountain range, near the communities of San José and Alta Cimas
within the El Cielo Biosphere Reserve, Tamaulipas, Mexico (22◦55’–23◦30’N
and 99◦02’–99◦30’W). Villagers within El Cielo (palmilleros) harvest adult C.

8 “Bootstrapped” estimates are thus named because you are picking yourself up by
your own bootstraps – a seemingly impossible task.
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Fig. 2.5: Life cycle graph for Chamaedorea radicalis. Classification criteria are based
on the number of leaflets on the youngest fully-expanded leaf. Life-history stage tran-
sitions are indicated by arrows with solid lines and reproduction is indicated by dashed
lines. Abbreviations: S-seed, Ss-seedling (bifid leaves), J-Juvenile (3–9 leaflets), A1-
small adult (10–24 leaflets), A2-large adult (> 24 leaflets). Source: [12,50]

radicalis leaves for sale to international cut-foliage markets. Harvested leaves
are usually >= 40 cm in length, and have minimal damage from insects or
pathogens [50]. These palm leaves are the only natural resource that these
villagers are authorized to harvest, and provide the main source of income for
most families. Although C. radicalis is dioecious (more complications!), Berry
et al. [12] used a one sex model, because its simplifying assumptions were well
supported with data. Data collected allowed a postbreeding census model with
a birth-pulse dynamic.

2.3.2 Strategy

There are an infinite number of ways to do anything in R, and I am certain that
my approach to this bootstrapping is not the very best way, but it is useful. It
gives valid answers in a reasonable amount of time, and that is what we want
from a model.

This is how we proceed in this instance:

1. We import the data and look at it. The appearance of the data, how the
data are entered for instance, will influence subsequent decisions about how
to proceed.

2. We extract the relevant data and calculate the projection matrix elements
(fecundities and transition probabilities). We first do it all piecewise, to
figure out what we are doing. Then we can wrap it up inside a function
putting funcname <- function(data1, data2, data3) at the beginning
and collecting and returning all relevant parameters at the end (see sec.
B.4.1 for writing functions).

3. We also create a function to generate all the demographic parameters that
we will eventually want (λ, elasticities, etc.).

4. Last, we combine these two functions into one that also resamples the orig-
inal data (with replacement), and then calls the data extraction and calcu-
lation functions to generate the new parameters for the bootstrapped data.

5. The bootstrapping is repeated B times.
6. Having generated B bootstrapped estimates of all the parameters, we can

then calculate confidence intervals for any parameter that we like.
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2.3.3 Preliminary data management

Let’s import the data and have a look at it. For these purposes, we will assume
that the data are clean and correct. Obviously, if I were doing this for the first
time, data-checking and clean-up would be an important first step. Here we
simply load them from the primer package.

> data(stagedat)

> data(fruitdat)

> data(seeddat)

Now I look at the structure of the data to make sure it is at least approximately
what I think it is.

> str(stagedat)

'data.frame': 414 obs. of 4 variables:

$ PalmNo: int 1 2 3 4 5 6 7 8 9 10 ...

$ Y2003 : int 4 5 5 4 3 2 4 3 3 4 ...

$ Y2004 : int 5 4 5 5 4 3 5 3 4 4 ...

$ Y2005 : int 5 5 5 5 4 3 5 4 4 5 ...

The stage data provide the stage of each individual in the study. Each row is
an individual, and its ID number is in column 1. Data in columns 2–4 identify
its stage in years 2003–2005.

We can count, or tabulate, the number of individuals in each stage in 2004.

> table(stagedat[["Y2004"]])

0 2 3 4 5

17 58 48 126 165

We see, for instance, that in 2004 there were 165 individuals in stage 5. We also
see that 17 individuals were dead in 2004 (stage = 0); these were alive in either
2003 or 2005.

The fruit data have a different structure. Each row simply identifies the
stage of each individual (col 1) and its fertility (number of seeds) for 2004.

> str(fruitdat)

'data.frame': 68 obs. of 2 variables:

$ Stage: int 4 4 4 4 4 4 4 4 4 4 ...

$ Y2004: int 6 0 0 0 0 0 0 0 0 0 ...

We can tabulate the numbers of seeds (columns) of each stage (rows).

> table(fruitdat[["Stage"]], fruitdat[["Y2004"]])

0 1 2 3 4 5 6 8 15 22 30 37 70 98 107 109

4 28 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

5 23 1 1 1 2 2 0 1 1 1 1 1 1 1 1 1
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For instance, of the individuals in stage 4 (row 1), 28 individuals had no seeds,
and one inidvidual had 6 seeds. Note also that only stage 4 and 5 had plants
with any seeds.

The seed data are the fates of each seed in a sample of 400 seeds, in a data
frame with only one column.

> table(seeddat)

seeddat

0 1 2

332 11 57

Seeds may have germinated (2), remained viable (1), or died (0).

2.3.4 Estimating projection matrix

Now we work through the steps to create the projection matrix from individuals
tagged in year 2003 and re-censused in 2004. If we convert the life cycle graph
(Fig. 2.5) into a transition matrix.

P11 0 0 F4 F5
P21 P22 P23 0 0
0 P32 P33 P34 0
0 0 P43 P44 P45
0 0 0 P54 P55

 (2.15)

Along the major diagonal (where i = j) the Pi j represent the probability that a
palm stays in the same stage. In the lower off-diagonal (i > j) the Pi j represent
the probability of growth, that an individual grows from stage j into stage i.
In the upper off-diagonal (i < j) the Pi j represent the probability of regression,
that an individual regresses from stage j back into stage i. The Fi represent the
fertility of stage i.

As a practical matter, we will use basic data manipulation in R to transform
the raw datat into transition elements. We had no particular reason for having
the data in this form, this is simply how the data were available.

We first create a zero matrix that we will then fill.

> mat1 <- matrix(0, nrow = 5, ncol = 5)

Fertilities

For each stage, we get mean fertility by applying mean to each stage of the 2004
fertility data. Here Stage is a factor and tapply will caculate a mean for each
level of the factor. We will assume that half of the seeds are male. Therefore,
we divide fertility by 2 to calculate the fertility associated with just the female
seeds.

> ferts <- tapply(fruitdat$Y2004, fruitdat$Stage, mean)/2

> ferts
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4 5

0.1034 6.6667

These fertilities, F4 and F5, are the transitions from stages 4 and 5 (adults)
to stage 1 (seeds). Next we insert the fertilities (ferts) into the matrix we
established above.

> mat1[1, 4] <- ferts[1]

> mat1[1, 5] <- ferts[2]

Seed transitions

Now we get the frequencies of each seed fate (die, remain viable but dormant,
or germinate), and then divide these by the number of seeds tested (the length
of the seed vector); this results in proportions and probabilities.

> seed.freqs <- table(seeddat[, 1])

> seedfates <- seed.freqs/length(seeddat[, 1])

> seedfates

0 1 2

0.8300 0.0275 0.1425

The last of these values is P21, the transition from the first stage (seeds) to the
stage 2 (seedlings). The second value is the transition of seed dormancy (P1,1),
that is, the probability that a seed remains a viable seed rather than dying or
becoming a seedling.

Next we insert the seed transitions into our projection matrix.

> mat1[1, 1] <- seedfates[2]

> mat1[2, 1] <- seedfates[3]

Vegetative stage transitions

Here we calculate the transition probabilities for the vegetative stages. The pair
of for-loops will calculate these transitions and put them into stages 2–5.The
functions inside the for-loops (a) subset the data for each stage in 2003, (b)
count the total number of individuals in each stage in 2003 (year j), (c) sum
the number of individuals in each stage in 2004, given each stage for 2003, and
then (d) calculate the proportion of each stage in 2003 that shows up in each
stage in 2004.

> for (i in 2:5) {

+ for (j in 2:5) mat1[i, j] <- {

+ x <- subset(stagedat, stagedat$Y2003 == j)

+ jT <- nrow(x)

+ iT <- sum(x$Y2004 == i)

+ iT/jT

+ }

+ }

Here we can see the key parts of a real projection matrix.
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> round(mat1, 2)

[,1] [,2] [,3] [,4] [,5]

[1,] 0.03 0.00 0.00 0.10 6.67

[2,] 0.14 0.70 0.05 0.01 0.00

[3,] 0.00 0.23 0.42 0.04 0.00

[4,] 0.00 0.00 0.46 0.67 0.07

[5,] 0.00 0.00 0.02 0.26 0.90

Compare these probabilities and fertilities to the life cycle graph and its matrix
(Fig. 2.5, eq. (2.15)).

The diagonal elements Pj, j are stasis probabilities, that an individual remains
in that stage. Growth, from one stage to the next, is the lower off-diagonal,
Pj+1, j. Regression, moving back one stage, is the upper off diagonal, Pj−1, j. The
fertilities are in the top row, in columns 4 and 5. Note that there is a transition
element in our data that is not in eq. (2.15): P53. This corresponds to very rapid
growth — a real event, albeit highly unusual.

A function for all transitions

What a lot of work! The beauty, of course, is that we can put all of those lines
of code into a single function, called, for instance, ProjMat, and all we have
to supply are the three data sets. You could examine this function by typing
ProjMat on the command line, with no parentheses, to see the code and compare
it to our code above. You code also try it with data.

> ProjMat(stagedat, fruitdat, seeddat)

This provides the observed transition matrix (results not shown).

2.3.5 Eigenanalyses

Next we want to do all those eigenanalyses and manipulations that gave us λ,
the stable age distribution,reproductive value, and the sensitivity and elasticity
matrices. All of this code is wrapped up in the function DemoInfo. Convince
yourself it is the same code by typing DemoInfo with no parentheses at the
prompt. Here we try it out on the projection matrix we created above, and
examine the components of the output.

> str(DemoInfo(mat1))

List of 6

$ lambda : num 1.13

$ SSD : num [1:5] 0.5632 0.195 0.0685 0.0811 0.0922

$ RV : num [1:5] 1 7.76 14.37 20.18 33.95

$ Sensitivities: num [1:5, 1:5] 0.072 0.559 1.034 1.452 2.442 ...

$ Elasticities : num [1:5, 1:5] 0.00174 0.0702 0 0 0 ...

$ PPM : num [1:5, 1:5] 0.0275 0.1425 0 0 0 ...
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We find that DemoInfo returns a list with six named components. The first
component is a scalar, the second two are numeric vectors, and the last three
are numeric matrices. The last of these is the projection matrix itself; it is often
useful to return that to prove to ourselves that we analyzed the matrix we
intended to.

2.3.6 Bootstrapping a demographic matrix

All of the above was incredibly useful and provides the best estimates of most or
all the parameters we might want. However, it does not provide any idea of the
certainty of those parameters. By bootstrapping these estimates by resampling
our data, we get an idea of the uncertainty.

Here we work through the steps of resampling our data, as we build a func-
tion, step by step, inch by inch. The basic idea of resampling is that we assume
that our sample data are the best available approximation of the entire popu-
lation. Therefore, we draw, with replacement, new data sets from the original
one. See the last section in Chapter 1 for ideas regarding simulations and boot-
strapping.

We will create new resampled (bootstrapped) data sets, where the rows of
the original data sets are selected at random with replacement. We then apply
ProjMat and DemoInfo.

The first step is to get the number of observations in the original data.

> nL <- nrow(stagedat)

> nF <- nrow(fruitdat)

> nS <- nrow(seeddat)

With these numbers, we will be able to resample our original data sets getting
the correct number of resampled observations.

Now we are going to use lapply to perform everything multiple times. By
“everything,” I mean

1. resample the observations to get bootstrapped data sets for vegetative
stages, seed fates, and fertilities,

2. calculate the projection matrix based on the three bootstrapped data sets,
3. perform eigenanalysis and calculate λ, stage structure, sensitivities, and

elasticities.

All of that is one replicate simulation, n = 1.
For now, let’s say n = 5 times as a trial. Eventually this step is the one we

will ask R to do 1000 or more times.

> n <- 5

Next we use lapply to do everything, that is, a replicate simulation, n times. It
will store the n replicates in a list, n components long. Each of the n components
will be the output of DemoInfo, which is itself a list.

> n <- 5

> out <- lapply(1:n, function(i) {

+ stageR <- stagedat[sample(1:nL, nL, replace = TRUE),
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+ ]

+ fruitR <- fruitdat[sample(1:nF, nF, replace = TRUE),

+ ]

+ seedR <- as.data.frame(seeddat[sample(1:nS, nS, replace = TRUE),

+ ])

+ matR <- ProjMat(stagedat = stageR, fruitdat = fruitR,

+ seeddat = seedR)

+ DemoInfo(matR)

+ })

This code above uses sample to draw row numbers at random and with replace-
ment to create random draws of data (stageR, fruitR, and seedR). We then
use ProjMat to generate the projection matrix with the random data, and use
DemoInfo to perform all the eigenanalysis and demographic calculations.

Let’s look at a small subset of this output, just the five λ generated from
five different bootstrapped data sets. The object out is a list, so using sapply
on it will do the same thing to each component of the list. In this case, that
something is to merely extract the bootstrapped λ.

> sapply(out, function(x) x$lambda)

[1] 1.114 1.127 1.195 1.114 1.096

We see that we have five different estimates of λ, each the dominant eigenvalue
of a projection matrix calculated from bootstrapped data.

We now have all the functions we need to analyze these demographic data.
I have put all these together in a function called DemoBoot, whose arguments
(inputs) are the raw data, and n, the number of bootstrapped samples.

> args(DemoBoot)

function (stagedat = NULL, fruitdat = NULL, seeddat = NULL, n = 1)

NULL

2.3.7 The demographic analysis

Now we are armed with everything we need, including estimates and means to
evaluate uncertainty, and we can move on to the ecology. We first interpret point
estimates of of demographic information, including λ and elasticities. Then we
ask whether λ differs significantly from 1.0 using our bootstrapped confidence
interval.

First, point estimates based on original data.

> estims <- DemoInfo(ProjMat(stagedat, fruitdat, seeddat))

> estims$lambda

[1] 1.134

Our estimate of λ is greater than one, so the population seems to be growing.
Which transitions seem to be the important ones?

> round(estims$Elasticities, 4)
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[,1] [,2] [,3] [,4] [,5]

[1,] 0.0017 0.0000 0.0000 0.0009 0.0693

[2,] 0.0702 0.1196 0.0030 0.0005 0.0000

[3,] 0.0000 0.0738 0.0470 0.0049 0.0000

[4,] 0.0000 0.0000 0.0712 0.1234 0.0145

[5,] 0.0000 0.0000 0.0044 0.0793 0.3162

It appears that the most important transition is persistence in the largest adult
stage (a5,5 = 0.3). Specifically, proportional changes to the persistence in this
stage, neither regressing nor dying, are predicted to have the largest postive
effect on the lambda of this population.

We stated above that the population appears to be growing. However, this
was based on a sample of the population, and not the entire population. One
way to make inferences about the population is to ask whether the confidence
interval for λ lies above 1.0. Let’s use DemoBoot to bootstrap our confidence
interval for λ.9 First, we’ll run the bootstrap, and plot the λ’s.

> system.time(out.boot <- DemoBoot(stagedat, fruitdat, seeddat,

+ n = 1000))

user system elapsed

9.606 0.020 9.630

> lambdas <- sapply(out.boot, function(out) out$lambda)

> hist(lambdas, prob = T)

> lines(density(lambdas))

From this it seems clear that the population is probably growing (λ > 1.0),
because the lower limit of the histogram is relatively large (Fig. 2.6). We need to
get a real confidence interval, however. Here we decide on a conventional α and
then calculate quantiles, which will provide the median (the 50th percentile),
and the lower and upper limits to the 95% confidence interval.10

> alpha <- 0.05

> quantile(lambdas, c(alpha/2, 0.5, 1 - alpha/2))

2.5% 50% 97.5%

1.058 1.126 1.196

From this we see that the 95% confidence interval (i.e. the 0.025 and 0.975
quantiles) does not include 1.0. Therefore, we conclude that under the condi-
tions experienced by this population in this year, this Chamaedorea population,
from which we drew a sample, could be characterized as having a long-term
asymptotic growth rate, λ, that is greaater than 1.0, and therefore would be
likely to increase in abundance, if the environment remains the same.

9 The number of replicates needed for a bootstrap depend in part on how close the
interval is to critical points. If, for instance, your empirical P-value seems to be very
close to your cutoff of α = 0.05, then you should increase the replicates to be sure
of your result. These days n = 1000 is considered a bare minimum.

10 Quantiles are ordered points in a cumulative probability distribution function.
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Fig. 2.6: The frequency distribution for our bootstrapped λ. Note that it is fairly
symmetrical, and largely greater than 1.0.

A caveat and refinement

Bootstrapping as we have done above, known variously as the basic or per-
centile bootstrap, is not a cure-all, and it can give inappropriate estimation
and inferrence under some circumstances. A number of refinements have been
proposed that make bootstrapping a more precise and accurate procedure [46].
The problems are worst when the data are such that the bootstrap replicates
are highly skewed, so that the mean and median are quite different. When the
data are relatively symmetric, as ours is (Fig. 2.6), the inference is relatively
reliable.

Often skewness will cause the mean of the bootstrap samples to differ from
our observed estimate, and we refer to this as bias. We should adjust the boot-
strapped samples for this bias [140]. Here we calculate the bias.

> bias <- mean(lambdas) - estims$lambda

> bias

[1] -0.007923

We find that the bias is very small; this gives us confidence the our confidence
intervals are pretty good. Nonetheless, we can be thorough and correct our
samples for this bias. We subtract the bias from the bootstrapped λ to get our
confidence interval.

> quantile(lambdas - bias, c(alpha/2, 0.5, 1 - alpha/2))

2.5% 50% 97.5%

1.066 1.134 1.204

These bias-corrected quantiles also indicate that this population in this year
can be characterized by a λ > 1.
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If we want to infer something about the future success of this population, we
need to make additional assumptions. First, we must assume that our sample
was representative of the population; we have every reason to expect it is.
Second, we need to assume that this year was representative of other years. In
particular, we need to assume that the weather, the harvest intensity, and the
browsing intensity are all representative. Clearly, it would be nice to repeat this
for other years, and to try to get other sources of information regarding these
factors.

2.4 Summary

Demography is the study of structured populations. Structure may be described
by age or stage, and is represented by life cycle graphs and a corresponding pro-
jection or transition matrix of transition probabilities and fertilities. The finite
rate of increase, λ, and the stable stage/age distribution are key characteristics
of a population, and are estimated using eigenalysis; populations will grow ge-
ometrically at the per capita rate of λ only when the population has reached
its stable stage/age distribution. We measure the importance of transition el-
ements with sensitivities and elasticities, the absolute or relative contributions
λ of transition elements. Demographic information is frequently useful for en-
dangered and invasive species.

Problems

2.1. Demographic analysis of a plant population
Goldenseal (Hydrastis canadensis) is a wild plant with medicinal properties
that is widely harvested in eastern North American. Its rhizome (the thick
underground stem) is dug up, and so harvesting can and frequently does have
serious negative impacts on populations. A particular population of goldenseal
is tracked over several years and investigators find, tag, and monitor several
sizes of individuals [57]. After several years of surveys, they identify six relevant
stages: dormant seed, seedling, small 1-leaved plant, medium 1-leaved plant,
large 1-leaved plant, fertile plant (flowering, with 2 leaves). They determine
that the population project matrix is:

A =



0 0 0 0 0 1.642
0.098 0 0 0 0 0.437

0 0.342 0.591 0.050 0.095 0
0 0.026 0.295 0.774 0.177 0.194
0 0 0 0.145 0.596 0.362
0 0 0 0.016 0.277 0.489


(2.16)

(a) Draw a life cycle graph of this population of goldenseal. Include the matrix
elements associated with each transition.
(b) Start with N = (0 10 10 10 10 10) and graph population dynamics for all
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stages for 10 years.
(c) Determine the stable stage distribution.
(d) Determine λ. Explain what this tells us about the population, including any
assumptions regarding the stable stage distribution.
(d) Determine the elasticities. Which transition(s) are most influential in deter-
mining growth rate?
(e) Discuss which stages might be most suitable for harvesting; consider this
question from both a financial and ecological perspective.

2.2. Demographic analysis of an animal population
Crouse et al. [44] performed a demographic analysis of an endangered sea turtle
species, the loggerhead (Caretta caretta). Management of loggerhead popula-
tions seemed essential for their long term survival, and a popular management
strategy had been and still is to protect nesting females, eggs, and hatchlings.
The ground breaking work by Crouse11 and her colleagues compiled data to cre-
ate a stage-based projection matrix to analyze quantitatively which stages are
important and least important in influencing long-term growth rate. This work
led to US Federal laws requiring that US shrimp fishermen use nets that include
Turtle Excluder Devices (TEDs, http://www.nmfs.noaa.gov/pr/species/turtles/
teds.htm ). Crouse et al. determined the transition matrix for their loggerhead
populations:

A =



0 0 0 0 127 4 80
0.6747 0.7370 0 0 0 0 0

0 0.0486 0.6610 0 0 0 0
0 0 0.0147 0.6907 0 0 0
0 0 0 0.0518 0 0 0
0 0 0 0 0.8091 0 0
0 0 0 0 0 0.8091 0.8089


(2.17)

(a) Draw a life cycle graph of this loggerhead population. Include the matrix
elements associated with each transition.
(b) Determine the stable stage distribution.
(c) Determine λ. Explain what this tells us about the population, including any
assumptions regarding the stable stage distribution.
(d) Determine the elasticities. Which transition(s) are most influential in deter-
mining growth rate?
(e) What is the predicted long-term relative abundance of all stages? What do
we call this?
(f) If your interest is to maximize long-term growth rate, in which stage(s)
should you invest protection measures? Which stages are least likely to enhance
long-term growth rate, regardless of protective measures?
(g) Start with N = (0 10 10 10 10 10) and graph dynamics for all stages for 10
years.

11 Crouse was a graduate student at the time — graduate students are the life-blood
of modern science, doing cutting edge work and pushing their fields forward.
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