2

Belief, probability and exchangeability

We first discuss what properties a reasonable belief function should have, and
show that probabilities have these properties. Then, we review the basic ma-
chinery of discrete and continuous random variables and probability distribu-
tions. Finally, we explore the link between independence and exchangeability.

2.1 Belief functions and probabilities

At the beginning of the last chapter we claimed that probabilities are a way
to numerically express rational beliefs. We do not prove this claim here (see
Chapter 2 of Jaynes (2003) or Chapters 2 and 3 of Savage (1972) for details),
but we do show that several properties we would want our numerical beliefs
to have are also properties of probabilities.

Belief functions

Let F, G, and H be three possibly overlapping statements about the world.
For example:

F = { a person votes for a left-of-center candidate }
G = { a person’s income is in the lowest 10% of the population }
H = { a person lives in a large city }

Let Be() be a belief function, that is, a function that assigns numbers to
statements such that the larger the number, the higher the degree of belief.
Some philosophers have tried to make this more concrete by relating beliefs
to preferences over bets:

e Be(F) > Be(G) means we would prefer to bet F' is true than G is true.
We also want Be() to describe our beliefs under certain conditions:

e Be(F|H) > Be(G|H) means that if we knew that H were true, then we
would prefer to bet that I is also true than bet G is also true.

P.D. Hoff, A First Course in Bayesian Statistical Methods,
Springer Texts in Statistics, DOI 10.1007/978-0-387-92407-6_2,
(© Springer Science+Business Media, LLC 2009



14 2 Belief, probability and exchangeability

e Be(F|G) > Be(F|H) means that if we were forced to bet on F, we would
prefer to do it under the condition that G is true rather than H is true.

Axioms of beliefs

It has been argued by many that any function that is to numerically represent
our beliefs should have the following properties:

B1 Be(not H|H) < Be(F|H) < Be(H|H)
B2 Be(F or G|H) > max{Be(F|H),Be(G|H)}
B3 Be(F and G|H) can be derived from Be(G|H) and Be(F|G and H)

How should we interpret these properties? Are they reasonable?

B1 says that the number we assign to Be(F|H), our conditional belief in F
given H, is bounded below and above by the numbers we assign to complete
disbelief (Be(not H|H)) and complete belief (Be(H|H)).

B2 says that our belief that the truth lies in a given set of possibilities should
not decrease as we add to the set of possibilities.

B3 is a bit trickier. To see why it makes sense, imagine you have to decide
whether or not F' and G are true, knowing that H is true. You could do this
by first deciding whether or not G is true given H, and if so, then deciding
whether or not F' is true given G and H.

Axioms of probability

Now let’s compare B1, B2 and B3 to the standard axioms of probability.
Recall that FF U G means “F or G,” FN G means “F and G” and 0 is the
empty set.

P1 0=Pr(not H/H) <Pr(F|H) <Pr(H|H)=1

P2 Pr(FUG|H)=Pr(F|H)+Pr(GIH)if FNG =10

P3 Pr(FNG|H) =Pr(G|H)Pr(F|GNH)

You should convince yourself that a probability function, satisfying P1, P2

and P3, also satisfies B1, B2 and B3. Therefore if we use a probability
function to describe our beliefs, we have satisfied the axioms of belief.

2.2 Events, partitions and Bayes’ rule

Definition 1 (Partition) A collection of sets {H1,...,Hg} is a partition
of another set H if

1. the events are disjoint, which we write as H; N H; =0 for i # j;
2. the union of the sets is H, which we write as UszlHk =H.

In the context of identifying which of several statements is true, if H is the
set of all possible truths and {Hq,..., Hx} is a partition of H, then exactly
one out of {Hy,..., Hx} contains the truth.



2.2 Events, partitions and Bayes’ rule 15
Ezxamples

e Let H be someone’s religious orientation. Partitions include
— {Protestant, Catholic, Jewish, other, none};
— {Christian, non-Christian};
— {atheist, monotheist, multitheist}.
e Let H be someone’s number of children. Partitions include
{0, 1, 2, 3 or more};
- {0,1,2,3,4,5,6,...}.
o Let H be the relationship between smoking and hypertension in a given
population. Partitions include
— {some relationship, no relationship};
— {negative correlation, zero correlation, positive correlation}.

Partitions and probability
Suppose {Hj, ..., Hk} is a partition of H, Pr(H) = 1, and F is some specific

event. The axioms of probability imply the following:

K
Rule of total probability : ZPr(Hk) =1
k=1

M=

Rule of marginal probability : Pr(F) = Pr(E N Hy)

k=1

I
M=

PI‘(E|Hk) PI‘(Hk)

x>
I

1

Pr(E|H;) Pr(H;)
Pr(E)
_ _ Pr(E[H;) Pr(H;)
Sy Pr(E|Hy) Pr(Hy)

Bayes’ rule: Pr(H;|E) =

Ezample

A subset of the 1996 General Social Survey includes data on the education level
and income for a sample of males over 30 years of age. Let { Hy, Hy, Hs, Hy} be
the events that a randomly selected person in this sample is in, respectively,
the lower 25th percentile, the second 25th percentile, the third 25th percentile
and the upper 25th percentile in terms of income. By definition,

{Pr(H,),Pr(Hs), Pr(Hs), Pr(H,)} = {.25,.25,.25, .25}
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Note that {Hy, Ho, H3, H4} is a partition and so these probabilities sum to 1.
Let E be the event that a randomly sampled person from the survey has a
college education. From the survey data, we have

(Pr(B|H,), Pr(E|Hs), Pr(E|Hs), Pr(E|Hy)} = {.11,.19, .31, .53}

These probabilities do not sum to 1 - they represent the proportions of people
with college degrees in the four different income subpopulations Hy, Ho, Hj
and H,. Now let’s consider the income distribution of the college-educated
population. Using Bayes’ rule we can obtain

{Pr(H,|E), Pr(Hy|E), Pr(Hs|E), Pr(Hy|E)} = {.09,.17, .27, AT},

and we see that the income distribution for people in the college-educated
population differs markedly from {.25,.25,.25,.25}, the distribution for the
general population. Note that these probabilities do sum to 1 - they are the
conditional probabilities of the events in the partition, given E.

In Bayesian inference, {Hj, ..., Hx } often refer to disjoint hypotheses or
states of nature and E refers to the outcome of a survey, study or experiment.
To compare hypotheses post-experimentally, we often calculate the following
ratio:

Pr(H;|E) _ Pr(E|H;) Pr(H;)/ Pr(E)
Pr(H;|E) Pr(E|H;)Pr(H;)/Pr(E
_ Pr(E|H;)Pr(H;)
- Pr(B|Hj) Pr(Hj)
Pr(E|H;) Pr(H;)

= “Bayes factor” x “prior beliefs” .

This calculation reminds us that Bayes’ rule does not determine what our
beliefs should be after seeing the data, it only tells us how they should change
after seeing the data.

Ezxample

Suppose we are interested in the rate of support for a particular candidate for
public office. Let

H = { all possible rates of support for candidate A };

H; = { more than half the voters support candidate A };

H; = { less than or equal to half the voters support candidate A };

E = { 54 out of 100 people surveyed said they support candidate A }.

Then {H;, Hy} is a partition of H. Of interest is Pr(Hy |E), or Pr(H,|E)/ Pr(Hs|E).
We will learn how to obtain these quantities in the next chapter.
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2.3 Independence

Definition 2 (Independence) Two events F' and G are conditionally inde-
pendent given H if Pr(FNG|H) = Pr(F|H) Pr(G|H).

How do we interpret conditional independence? By Axiom P3, the following

is always true:
Pr(FNG|H) = Pr(G|H)Pr(F|HNG).

If F and G are conditionally independent given H, then we must have

Pr(G|H) Pr(F|H N G) "2 Pr(F N G|H) "L pr(F|H) Pr(G|H)
Pr(G|H) Pr(F|H N G) - Pr(F|H)Pr(G|H)
Pr(F|HNG) = Pr(F|H).

Conditional independence therefore implies that Pr(F|H NG) = Pr(F|H). In
other words, if we know H is true and F’ and G are conditionally independent
given H, then knowing G does not change our belief about F'.

Ezxamples

Let’s consider the conditional dependence of F and G when H is assumed to
be true in the following two situations:

F = { a hospital patient is a smoker }
G = { a hospital patient has lung cancer }
H = { smoking causes lung cancer}

F = { you are thinking of the jack of hearts }
G = { a mind reader claims you are thinking of the jack of hearts }
H = { the mind reader has extrasensory perception }

In both of these situations, H being true implies a relationship between F
and G. What about when H is not true?

2.4 Random variables

In Bayesian inference a random variable is defined as an unknown numeri-
cal quantity about which we make probability statements. For example, the
quantitative outcome of a survey, experiment or study is a random variable
before the study is performed. Additionally, a fixed but unknown population
parameter is also a random variable.
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2.4.1 Discrete random variables

Let Y be a random variable and let ) be the set of all possible values of Y.
We say that Y is discrete if the set of possible outcomes is countable, meaning
that Y can be expressed as YV = {y1,92,...}.

Ezamples

e Y = number of churchgoers in a random sample from a population
e Y = number of children of a randomly sampled person
e Y = number of years of education of a randomly sampled person

Probability distributions and densities

The event that the outcome Y of our survey has the value y is expressed as
{Y = y}. For each y € ), our shorthand notation for Pr(Y = y) will be p(y).
This function of y is called the probability density function (pdf) of Y, and it
has the following properties:

1. 0<p(y) <1forally e

General probability statements about Y can be derived from the pdf. For
example, Pr(Y € A) =3 , p(y). If A and B are disjoint subsets of ), then

PrYeAorY e B)=Pr(Y € AUB) =Pr(Y € A) + Pr(Y € B)

= py)+ > _py)

yeEA yEB

Ezxample: Binomial distribution

Let Y = {0,1,2,...,n} for some positive integer n. The uncertain quantity
Y € Y has a binomial distribution with probability 0 if

Pr(Y = y|0) = dbinom(y,n,0) = (Z) 0Y(1—0)"v.

For example, if # = .25 and n = 4, we have:

4

Pr(Y =0/ = .25) (0) = 316
4

Pr(Y =1/ = .25) = (1) = 422
4

Pr(Y =2/ = .25) = (2> = 211
4

Pr(Y =30 = .25) = (3) = .047
4

Pr(Y = 4|0 = .25) (4) =.004.
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Ezxample: Poisson distribution

Let ¥ = {0,1,2,...}. The uncertain quantity Y € ) has a Poisson distribution
with mean 6 if
Pr(Y = y|#) = dpois(y, ) = 0¥e? /y!.

For example, if § = 2.1 (the 2006 U.S. fertility rate

~

Pr(Y =0/6=21) = (2.1)06_2'1/(0!) =.12
Pr(Y =1l =2.1) = (2.1)'e 21 /(1!) = .26
Pr(Y =2/6=21)= (2.1)2e—2-1/(2!) = .27
Pr(Y =3l =21) = (2.1)36*2'1/(3!) =.19
q ES
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Fig. 2.1. Poisson distributions with means of 2.1 and 21.

2.4.2 Continuous random variables

Suppose that the sample space ) is roughly equal to R, the set of all real
numbers. We cannot define Pr(Y" < 5) as equal to }_ 5 p(y) because the
sum does not make sense (the set of real numbers less than or equal to 5 is
“uncountable”). So instead of defining probabilities of events in terms of a pdf
p(y), courses in mathematical statistics often define probability distributions
for random variables in terms of something called a cumulative distribution
function, or cdf:

Fy) =Pr(Y <y).

Note that F'(co) =1, F(—o0) =0, and F'(b) < F(a) if b < a. Probabilities of
various events can be derived from the cdf:
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o Pr(Y >a)=1-F(a)
o Prla<Y <b)=F()— F(a)

If F is continuous (i.e. lacking any “jumps”), we say that Y is a continuous
random variable. A theorem from mathematics says that for every continuous
cdf F there exists a positive function p(y) such that

This function is called the probability density function of Y, and its properties
are similar to those of a pdf for a discrete random variable:

1. 0 <p(y )forallyey;
2. fyeRp dy = 1.

As in the discrete case, probability statements about Y can be derived from
the pdf: Pr(Y € A) = fyeAp(y) dy, and if A and B are disjoint subsets of ),
then

Pr(YeAorY e B)=Pr(Y € AUB) =Pr(Y € A) +Pr(Y€B

L
yEA yeB

Comparing these properties to the analogous properties in the discrete case,
we see that integration for continuous distributions behaves similarly to sum-
mation for discrete distributions. In fact, integration can be thought of as a
generalization of summation for situations in which the sample space is not
countable. However, unlike a pdf in the discrete case, the pdf for a continuous
random variable is not necessarily less than 1, and p(y) is not “the probability
that Y = y.” However, if p(y1) > p(y2) we will sometimes informally say that
1 “has a higher probability” than ys.

Ezxample: Normal distribution

Suppose we are sampling from a population on Y = (—o00, 00), and we know
that the mean of the population is y and the variance is 0. Among all prob-
ability distributions having a mean of y and a variance of o2, the one that is
the most “spread out” or “diffuse” (in terms of a measure called entropy), is
the normal(p, 02) distribution, having a cdf given by

| 1(y—p\"
Pr(Y§y|u702)=F(y)=/ s eXP{—2 <yaﬂ) } dy.

Evidently,
1 exp 1 (y u)
2mo 2 o)

p(ylp, o) = dnorm(y, u, o) =
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Letting 1 = 10.75 and o = .8 (02 = .64) gives the cdf and density in Figure
2.2. This mean and standard deviation make the median value of ¢¥ equal
to about 46,630, which is about the median U.S. household income in 2005.
Additionally, Pr(e¥ > 100000) = Pr(Y > log 100000) = 0.17, which roughly
matches the fraction of households in 2005 with incomes exceeding $100,000.
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Fig. 2.2. Normal distribution with mean 10.75 and standard deviation 0.8.

2.4.3 Descriptions of distributions

The mean or expectation of an unknown quantity Y is given by

E[Y] =3, cyyp(y) if Y is discrete;
EY]= [ cyup
The mean is the center of mass of the distribution. However, it is not in general

equal to either of

(y) dy if Y is continuous.

the mode: “the most probable value of Y,” or
the median: “the value of Y in the middle of the distribution.”

In particular, for skewed distributions (like income distributions) the mean
can be far from a “typical” sample value: see, for example, Figure 2.3. Still,
the mean is a very popular description of the location of a distribution. Some
justifications for reporting and studying the mean include the following:

1. The mean of {Y7,...,Y,} is a scaled version of the total, and the total is
often a quantity of interest.

2. Suppose you are forced to guess what the value of Y is, and you are
penalized by an amount (Y — yguess)?. Then guessing E[Y] minimizes your
expected penalty.
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3. In some simple models that we shall see shortly, the sample mean contains
all of the information about the population that can be obtained from the
data.

Vo) v T
S T - :
= | l
[« '
2 |
@ — - ‘ —— mode
3 < D : - - - median
= vg' : mean
N — |
S T v |
ST
— |
S |
|
o | o | 1
(= S )
T T T T T I T T T T T T I
8 9 10 11 12 13 0 50000 150000 250000
y y

Fig. 2.3. Mode, median and mean of the normal and lognormal distributions, with
parameters @ = 10.75 and o = 0.8.

In addition to the location of a distribution we are often interested in how
spread out it is. The most popular measure of spread is the wvariance of a
distribution:

Var[Y] = E[(Y — E[Y])?]
— E[y2 — 2YE[Y] + E[Y]?]
= E[Y?] - 2E[Y]* + E[Y]?
= E[Y?] - E[Y]%.

The variance is the average squared distance that a sample value Y will be
from the population mean E[Y]. The standard deviation is the square root of
the variance, and is on the same scale as Y.

Alternative measures of spread are based on quantiles. For a continuous,
strictly increasing cdf F', the a-quantile is the value y, such that F(y,) =
Pr(Y < yo) = a. The interquartile range of a distribution is the interval
(y.25,¥.75), which contains 50% of the mass of the distribution. Similarly, the
interval (y.025,¥.975) contains 95% of the mass of the distribution.
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2.5 Joint distributions

Discrete distributions

Let

e V1,5 be two countable sample spaces;
e Y1,Y5 be two random variables, taking values in )i, Vs respectively.

Joint beliefs about Y7 and Y5 can be represented with probabilities. For ex-
ample, for subsets A C Yy and B C Vs, Pr({Y1 € A} N {Y> € B}) represents
our belief that Y7 is in A and that Y5 is in B. The joint pdf or joint density
of Y7 and Y5 is defined as

Pyvivs (W1, y2) = Pr({Y1 = y1} N {Y2 = yo}), for y1 € V1, y2 € Vs.

The marginal density of Y7 can be computed from the joint density:

Py, (y1) =Pr(Y1 = 1)
= Y Pr({Vi=y}n{Ya =y}
Y2E€EYV2
= Z pylyz(yhyz)-
Y2€Y2

The conditional density of Y3 given {Y; = y1 } can be computed from the joint
density and the marginal density:

pram () = ST =)

_ vy, (y1,92)
Py (y1)

You should convince yourself that

{Pv1,Pyz|y; } can be derived from py,y,,
{Pv2,Pyv1|y, } can be derived from py,y,,
Py1y, can be derived from {py,,py, v, }»
Py1y, can be derived from {py,,py,|v, }

but
Dv,y, cannot be derived from {py,,py, }.

The subscripts of density functions are often dropped, in which case the type
of density function is determined from the function argument: p(y;) refers to

Py; (Y1), p(y1,y2) refers to py, v, (Y1, 92), p(y1ly2) refers to py, v, (y1ly2), ete.
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Example: Social mobility

Logan (1983) reports the following joint distribution of occupational categories
of fathers and sons:

son’s occupation
father’s occupation|farm operatives craftsmen sales professional
farm 0.018 0.035 0.031 0.008  0.018
operatives 0.002 0.112 0.064 0.032  0.069
craftsmen 0.001  0.066 0.094 0.032 0.084
sales 0.001  0.018 0.019 0.010  0.051
professional 0.001  0.029 0.032 0.043 0.130

Suppose we are to sample a father-son pair from this population. Let Y7 be
the father’s occupation and Y5 the son’s occupation. Then

Pr(Y> = professional N'Y; = farm)
Pr(Y; = farm)
.018

.018 +.035 + .031 + .008 + .018
.164 .

Pr(Y; = professional|Y; = farm)

Continuous joint distributions

If Y7 and Y5 are continuous we start with a cumulative distribution function.
Given a continuous joint cdf Fy,y,(a,b) = Pr({Y1 < a} N {Y3 < b}), there is
a function py,y, such that

a b
Fy,v,(a,b) = / / Pyiys (1, y2) dy2dy: -
— 00 — 00

The function py,y, is the joint density of Y7 and Y5. As in the discrete case,
we have

v (1) = [70 pvive (Y2, 2) dys;
Pyaivi (Y2y1) = Pvive (1, ¥2) /Py, (1) -

You should convince yourself that py,|y, (y2|y1) is an actual probability den-
sity, i.e. for each value of y; it is a probability density for Ys.

Mized continuous and discrete variables

Let Y7 be discrete and Y5 be continuous. For example, Y; could be occupa-
tional category and Y5 could be personal income. Suppose we define

e a marginal density py, from our beliefs Pr(Y; = y1);
e aconditional density py, |y, (y2|y1) from Pr(Ya < yo|Y1 = y1) = Fy, v, (y2[y1)
as above.
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The joint density of Y7 and Y5 is then

Pyivs (W1, y2) = Py (W1) X Dya vy (2]y1),

and has the property that

Pr(Y; € A,Y; € B) :/ > pviva (Wi, y2) ¢ dya.
y2€B y1EA

Bayes’ rule and parameter estimation

Let

f = proportion of people in a large population who have a certain character-
istic.

Y = number of people in a small random sample from the population who
have the characteristic.

Then we might treat 6 as continuous and Y as discrete. Bayesian estimation
of @ derives from the calculation of p(f|y), where y is the observed value of Y.
This calculation first requires that we have a joint density p(y, ) representing
our beliefs about # and the survey outcome Y. Often it is natural to construct
this joint density from

o p(0), beliefs about 6;
e p(yld), beliefs about Y for each value of 6.

Having observed {Y = y}, we need to compute our updated beliefs about 6:

p(0y) = p(0,y)/p(y) = p(O)p(y|0)/p(y) .

This conditional density is called the posterior density of 6. Suppose 6, and
0, are two possible numerical values of the true value of #. The posterior
probability (density) of 6, relative to 6y, conditional on Y =y, is

p(aly) _ p(Ba)p(ylba)/p(y)
p(Osly)  p(0)p(ylOs)/p(y)
_ p(0a)p(yl0a)
p(0s)p(yl6s)

This means that to evaluate the relative posterior probabilities of 8, and 6y,
we do not need to compute p(y). Another way to think about it is that, as a
function of 6,

p(0ly) o< p(0)p(yl0).
The constant of proportionality is 1/p(y), which could be computed from

p(y)=/9p(y,9) d9:/@p(yl9)p(9) do
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e P(O)p(s]9)
Py
plely) = I

As we will see in later chapters, the numerator is the critical part.

2.6 Independent random variables

Suppose Y7, ...,Y, are random variables and that € is a parameter describing
the conditions under which the random variables are generated. We say that
Y1,...,Y, are conditionally independent given 6 if for every collection of n
sets {41,...,A4,} we have

Pr(Y1 S Al, .. .,Yn € An|9) = Pr(Y1 S A1|9) X oo X Pr(Yn S An|9)

Notice that this definition of independent random variables is based on our
previous definition of independent events, where here each {Y; € A;} is an
event. From our previous calculations, if independence holds, then

PI‘(Y; S AJ@,Y} € AJ) == PI‘(Y; € Al|9),

so conditional independence can be interpreted as meaning that Y; gives no
additional information about Y; beyond that in knowing 6. Furthermore, under
independence the joint density is given by

P15+ ynl0) = i (110) X -+ X Py, (ya0) = pr (1:l0),

the product of the marginal densities.

Suppose Y7, ...,Y,, are generated in similar ways from a common process.
For example, they could all be samples from the same population, or runs
of an experiment performed under similar conditions. This suggests that the
marginal densities are all equal to some common density giving

P, ynl0) = [ p(uil6).
=1

In this case, we say that Y7,...,Y,, are conditionally independent and identi-
cally distributed (i.i.d.). Mathematical shorthand for this is

Yi,..., Y10 ~iid. p(y|0).
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2.7 Exchangeability

Ezxample: Happiness

Participants in the 1998 General Social Survey were asked whether or not
they were generally happy. Let Y; be the random variable associated with this
question, so that

v — 1 if participant i says that they are generally happy,
71 0 otherwise.

In this section we will consider the structure of our joint beliefs about
Y1,..., Y10, the outcomes of the first 10 randomly selected survey partici-
pants. As before, let p(y1,...,%10) be our shorthand notation for Pr(Y; =
Y1y .-, Y10 = Y10), Where each y; is either 0 or 1.

Ezxchangeability
Suppose we are asked to assign probabilities to three different outcomes:

»(1,0,0,1,0,1,1,0,1,1) = ?
p(1,0,1,0,1,1,0,1,1,0) = 7
p(1,1,0,0,1,1,0,0,1,1) = 7

Is there an argument for assigning them the same numerical value? Notice
that each sequence contains six ones and four zeros.

Definition 3 (Exchangeable) Let p(yi,...,yn) be the joint density of Y1,

v Yo If pyr, - s Yn) = PWYnys - - -, Yr, ) for all permutations © of {1,...,n},
then Y1,...,Y, are exchangeable.

Roughly speaking, Y7,...,Y,, are exchangeable if the subscript labels convey
no information about the outcomes.

Independence versus dependence
Consider the following two probability assignments:

PI(Ym:l):a
PI‘(YlOZ]_‘Yl:%:...zysz}/b:l):b

Should we have a < b, a = b, or a > b? If a # b then Yo is NOT independent
of Yl, ey }/9
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Conditional independence

Suppose someone told you the numerical value of 6, the rate of happiness
among the 1,272 respondents to the question. Do the following probability
assignments seem reasonable?

PI‘(YlO = 1‘0)
PI(YIO = ]-|Y1 =UYiy--- 7Y9 = y9a9)

£~ X~ W~
> T

Pr(Yy =1{Y1 = y1,...,Ys = ys, Y10 = ¥10,0) R

If these assignments are reasonable, then we can consider the Y;’s as condition-
ally independent and identically distributed given 6, or at least approximately
so: The population size of 1,272 is much larger than the sample size of 10, in
which case sampling without replacement is approximately the same as i.i.d.
sampling with replacement. Assuming conditional independence,

Pr(Y; = uil0,Y; = y;,j # i) = 0V (1—0)' "%
Pr(Y1 =y1,..., Y10 = y10l0) = Heyi(l _ 0)1—%
=X Vi(1 — )0 X,

If 0 is uncertain to us, we describe our beliefs about it with p(), a prior
distribution. The marginal joint distribution of Y7, ..., Yo is then

1 1
Pyt -1 y10) = / Py -+ y10l0)p(6) d6 — / 6% (1 — 0)10-S vip(9) do.
0 0

Now consider our probabilities for the three binary sequences given above:

p(1,0 0,1,0,1,1,0,1,1) = [65(1—0)*p(0) dO
p(1,0,1,0,1,1,0,1,1,0) f961—) p(0) df
p(1,1,0,0,1,1,0,0,1,1) = [65(1 p(0) df

It looks like Y7,...,Y,, are exchangeable under this model of beliefs.
Claim:

If 0 ~ p(d) and Yi,...,Y, are conditionally i.i.d. given 6, then marginally

(unconditionally on ), Y1,...,Y, are exchangeable.

Proof:

Suppose Y7,...,Y, are conditionally i.i.d. given some unknown parameter 6.
Then for any permutation 7 of {1,...,n} and any set of values (y1,...,yn) €

Y,
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Y1,y Yn) = /p(yl, .o, yn|0)p(9) db (definition of marginal probability)
= / {Hp(yl|9)}p(6‘) de (Y;’s are conditionally i.i.d.)
i=1

= / {Hp(ym |0)}p(0) de (product does not depend on order)
i=1

=DYrys- - Yr,) (definition of marginal probability) .

2.8 de Finetti’s theorem

We have seen that

Yi,...,Y,|0iid

6 ~ p(0) } =Y,...,Y, are exchangeable.

What about an arrow in the other direction? Let {Y7, Y, ...} be a potentially
infinite sequence of random variables all having a common sample space ).

Theorem 1 (de Finetti) LetY; € Y for alli € {1,2,...}. Suppose that, for
any n, our belief model for Y1,...,Y, is exchangeable:

P13 Yn) = PWrys - Ynn)

for all permutations m of {1,...,n}. Then our model can be written as

Py, v) =/{Hp<yi|e>}p<9> o
1

for some parameter 8, some prior distribution on 8 and some sampling model
p(y|0). The prior and sampling model depend on the form of the belief model

p(ylv' ;yn)

The probability distribution p(6) represents our beliefs about the outcomes of
{Y1,Ys,...}, induced by our belief model p(y1,ya,...). More precisely,

p(0) represents our beliefs about lim, . Y Y;/n in the binary case;
p(0) represents our beliefs about lim, . > (Y; < ¢)/n for each ¢ in the
general case.

The main ideas of this and the previous section can be summarized as follows:

Y1,...,Y,|0 are i.i.d.
0 ~ p(6)

When is the condition “Y7,...,Y, are exchangeable for all n” reasonable?
For this condition to hold, we must have exchangeability and repeatability.
Exchangeability will hold if the labels convey no information. Situations in
which repeatability is reasonable include the following:

} < Y,...,Y, are exchangeable for all n.
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Y1,...,Y, are outcomes of a repeatable experiment;

Yi,...,Y, are sampled from a finite population with replacement;

Yi,...,Y, are sampled from an infinite population without replacement.
If Yi,...,Y, are exchangeable and sampled from a finite population of size

N >> n without replacement, then they can be modeled as approximately
being conditionally i.i.d. (Diaconis and Freedman, 1980).

2.9 Discussion and further references

The notion of subjective probability in terms of a coherent gambling strategy
was developed by de Finetti, who is of course also responsible for de Finetti’s
theorem (de Finetti, 1931, 1937). Both of these topics were studied further by
many others, including Savage (Savage, 1954; Hewitt and Savage, 1955).

The concept of exchangeability goes beyond just the concept of an in-
finitely exchangeable sequence considered in de Finetti’s theorem. Diaconis
and Freedman (1980) consider exchangeability for finite populations or se-
quences, and Diaconis (1988) surveys some other versions of exchangeability.
Chapter 4 of Bernardo and Smith (1994) provides a guide to building statis-
tical models based on various types of exchangeability. A very comprehensive
and mathematical review of exchangeability is given in Aldous (1985), which
in particular provides an excellent survey of exchangeability as applied to
random matrices.
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