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2.1 � Introduction

The evolution of methods which capture genetic sequence data has inspired a parallel 
evolution of computational tools which can be used to analyze and compare the 
data. Indeed, much of the progress in modern biological research has stemmed from 
the application of such technology. In this chapter we provide an overview of the 
main classes of tools currently used for sequence comparison. For each class of 
tools we provide a basic overview of how they work, their history, and their current 
state. There have been literally hundreds of different tools produced to align, clus-
ter, filter, or otherwise analyze sequence data and it would be impossible to list all 
of them in this chapter, so we supply only an overview of the tools that most readers 
may encounter. We apologize to researchers who feel that their particular piece of 
software should have been included here. The reader will notice that there is much 
conceptual and application overlap between tools and in many cases one tool or 
algorithm is used as one part of another tool’s implementation. Most of the more 
popular sequence comparison tools are based on ideas and algorithms which can be 
traced back to the 1960s and 1970s when the cost of computing power first became 
low enough to enable wide spread development in this area. Where applicable we 
describe the original algorithms and then list the iterations of the idea (often by 
different people in different labs) noting the important changes that were included 
at each stage. Finally we describe the software packages currently used by today’s 
bioinformaticians. A quick search will allow the reader to find many papers which 
formally compare different implementations of a particular algorithm, so while we 
may note that one algorithm is more efficient or accurate than another we stress that 
we have not performed any formal benchmarking or comparison analysis here.

The classes of tools discussed below are sequence alignment, including sequence 
homology searches and similarity scoring, sequence filtering methods, usually 
used for identifying, masking, or removing repetitive regions in sequences, and 
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sequence assembly and clustering methods. Sequence annotation tools including 
gene prediction and marker discovery have been covered elsewhere in this volume 
and are not discussed here.

2.2 � Sequence Alignment

At the most basic level a sequence alignment is a residue by residue matching 
between two sequences, and algorithms which search for homologous regions 
between two sequences by aligning them residue by residue are arguably the most 
fundamental components of sequence comparison. It is also biologically relevant to 
consider situations where nucleotides have either been inserted into or deleted from 
DNA; most, but not all, sequence alignment algorithms allow the matching of a 
residue with a gap element or simply a gap.

Consider two sequences which are identical except that the first sequence contains 
one extra residue. When we view the alignment of these two sequences, the extra 
residue will be matched to a gap. This corresponds to an insertion event in the first 
sequence or a deletion event in the second. On the other hand, if we note that an 
insertion event has occurred in the first sequence (with respect to the second) then we 
know how to match that residue to a gap in the second. Thus one way to build a 
sequence alignment is to find a series of insertions, deletions, or replacements, 
collectively called mutation events, which will transform one sequence into the other. 
The number of mutation events needed to transform one sequence into the other is 
called the edit distance. As there will always be more than one series of possible 
mutation events which transform the first sequence into the second, it makes sense to 
rate each set’s likelihood of occurrence. Greater confidence is placed in alignments 
which have a higher likelihood of occurring. Each alignment can be rated by consid-
ering both the cumulative probabilities and biological significance of each mutation 
event. For example, an alignment which infers a lesser amount of mutations to transform 
one sequence into another is almost always considered more likely to have occurred 
than an alignment which infers many more mutations, therefore many alignment 
algorithms work by minimizing the edit distance.

To resolve the issue of biological significance, information about the distribution 
of mutation events is used. This information is most commonly stored, in a scoring 
matrix. Each pair of matched residues (or residue – gap pairs) can be scored and the 
similarity score is the sum of the scores of the individual residues. Most alignment 
algorithms seek to produce meaningful alignments by maximizing the similarity 
score for two sequences. Traditionally, sequence alignment algorithms have been 
called global if they seek to optimize the overall alignment of two sequences. Often 
the resulting alignment can include long stretches of residues which are matched 
with different residues or gaps. Conversely, if the algorithm seeks to align highly 
conserved subsequences while ignoring any intervening unconserved regions then 
it is called a local alignment algorithm. A local alignment of two sequences can 
produce a number of different subsequent alignments. So far, only the case where 
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two sequences are being compared has been described. This is called a pairwise 
alignment. The case where more than two sequences are being compared concurrently 
is called a multiple alignment.

Alignment algorithms can be broadly classified as taking a heuristic or dynamic 
programming approach. Generally, dynamic programming based approaches are 
guaranteed to produce the best alignments but are very often computationally and 
memory expensive, while heuristic based algorithms sacrifice guaranteed quality 
for speed. Note that a heuristic algorithm can produce an optimal alignment; there 
is just no guarantee that it will. Often dynamic programming approaches are used 
to finish or perfect alignments made using heuristics.

2.2.1 � Substitution Matrices

When two sequences are aligned there are often residues in one sequence which do 
not match residues in the other. There is usually more than one way to align two 
sequences, so a scoring system is needed to decide which of the possible alignments 
is the best. For a nucleotide alignment, a simple scoring system could award one 
point for every match and zero points for a mismatch or a gap. This information can 
be stored in a matrix called a substitution matrix. An example of such a matrix is 
shown as the first matrix in Fig. 2.1 below. This is the substitution matrix employed 
with good results in the original Needleman–Wunsch algorithm (Needleman and 
Wunsch 1970). However, this matrix was criticized as lacking in both biological 
relevance and mathematical rigor and there have been a number of attempts to 
improve on both this and some earlier methods resulting in the scoring systems used 
today. In 1974, Sellers introduced a metric which could be used to describe the 
evolutionary distance between two sequences (Sellers 1974) and this method was 
generalized by Waterman et al in 1976 (Waterman et al. 1976). The idea behind these 
scoring systems was to minimize the number of mutations needed to transform one 
sequence into the other while also taking into account the differing probabilities of 
distinct mutation events. For example, a more sophisticated scoring system could 
award negative scores for gaps (a gap penalty) and for mismatches the scores 

Fig. 2.1  Two examples of nucleotide similarity matrices. The first matrix implements a binary 
scoring scheme awarding one point for a match and one for a mismatch. The second matrix intro-
duces a more sophisticated method where biological observations such as the unequal probabili-
ties of transitions and transversions influence the score
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could differ according to whether the mismatch was a transition event or a transversion 
event. An example of this is the second matrix in Fig. 2.1 below.

For protein alignments, each row and column in the substitution matrix S 
corresponds to a particular amino acid, where each entry S 

i,j
 contains a value 

representing the probability of substituting the residue in row i for the residue in 
column j. The most widely used examples of such matrices are the point accepted 
mutation (PAM) matrices (Dayhoff 1978) and Block substitution matrices 
(BLOSUM) (Henikoff and Henikoff 1992). Both matrices share many similarities. 
They are both 20 × 20 matrices and in both cases identities and conservative 
substitutions are given high scores while unlikely replacements are given much 
lower scores. Both matrices are assigned numbers which identify when they should 
be used, for example PAM30 or BLOSUM62. However, one should use a higher 
numbered BLOSUM matrix when comparing more similar sequences while for 
PAM matrices lower numbers should be used. A more important difference is the 
way the matrices are built. PAM matrices are derived from an explicit model of 
evolution and based on observations of closely related protein sequences, while 
BLOSUM matrices are based directly on observations of alignments of more 
distantly related sequences using a much larger dataset than for PAM. As a result 
the BLOSUM matrices tend to produce better results than PAM matrices, particularly 
when aligning distantly related sequences.

Work on the PAM matrix model of protein evolution was undertaken by Dayhoff 
in the late 1970s (Dayhoff 1978). The main idea behind the PAM matrices is that 
of all possible mutations; we are going to observe only those which are accepted by 
natural selection. PAM1 was calculated using the observed relative frequencies of 
amino acids and 1,572 observed mutations in multiple alignments for 71 families 
of closely related proteins. Each entry in PAM1 represents the expected rates of 
amino acid substitution we would expect if we assume that on average only 1% of 
the residues in one sequence have mutated (Dayhoff 1978). By assuming that 
further mutations would follow the same pattern and allowing multiple substitutions 
at the same site, one can calculate the expected rates of substitution if we assume 
on average that 2% of the residues have mutated.This is the PAM2 matrix. Thus all 
the PAM matrices are calculated from the PAM1 matrix and are based on an explicit 
model of evolution based on point mutations. Matrices were calculated by Dayhoff 
up to PAM250.

The PAM approach performs well on closely related sequences but its perfor-
mance declines for more distantly related sequences. The BLOSUM matrices were 
derived by Steven and Jorja Henikoff in the early 1990s to address this problem. To 
build a BLOSUM matrix, local alignments are made using sequences obtained 
from the BLOCKS database. Sequences with a similarity greater than a given cut 
off are combined into one sequence producing groups with a given maximum simi-
larity. This reduces any bias caused by large numbers of highly similar sequences 
(Henikoff and Henikoff 1992). The value for the cut off is appended to the name of 
the matrix, thus the BLOSUM62 matrix is effectively made by comparing 
sequences with less than 62% similarity. As a result BLOSUM80 is a better matrix 
to use when aligning closely related sequences than BLOSUM30 which is better 
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suited to aligning highly diverged sequences. BLOSUM62 is the default matrix 
used in the BLAST algorithm described below.

2.2.2 � Pairwise Sequence Alignment Algorithms

At the base of many sequence comparison tools are pairwise sequence alignment 
algorithms. Beginning in the mid 1960s a large number of heuristic algorithms were 
suggested for the pairwise alignment of protein sequences. The era of modern sequence 
alignment techniques began in 1970 with the publication by Needleman and Wunsch 
of a dynamic programming method which could be used to make a global pairwise 
alignment of two protein sequences (Needleman and Wunsch 1970). In 1981, Smith 
and Waterman extended the ideas put forward by Needleman and Wunsch to create 
the local alignment algorithm known as the Smith–Waterman algorithm (Smith 
et al. 1981). Both the Needleman–Wunsch and Smith–Waterman methods belong 
to a class of algorithms called dynamic programming algorithms. This class of 
algorithms can find optimal solutions to problems but can take a long time to run, 
especially in complicated cases or for large data sets. These two algorithms are the 
most accurate pairwise alignment algorithms in existence. Nearly all of the newer 
local pairwise alignment algorithms use a two step approach to reduce the running 
time. The first stage uses heuristics to search for areas which have a high probability 
of producing alignments. Next, these areas are passed to a dynamic programming 
algorithm such as the Smith–Waterman algorithm for true alignment. The most 
commonly used two step approaches are FASTP/FASTA, the BLAST family of 
algorithms, Crossmatch/SWAT, and BLAT, although there are many others.

Higher order sequence comparison tools often employ pairwise alignment algo-
rithms to judge similarity for use in clustering or assembly, so it is important to 
understand how these basic algorithms work and which sequences they are better 
suited to. We provide below an overview of the most common pairwise alignment 
algorithms.

2.2.2.1 � The Needleman–Wunsch Algorithm

This is a highly accurate, dynamic programming based, global pairwise alignment 
algorithm. It was originally developed for aligning protein sequences but can also 
be used to align DNA sequences. This algorithm aligns two sequences A and B 
with lengths m and n residues respectively, by finding a path through a two dimen-
sional m × n array; S. As all m × n values in S must be calculated for every align-
ment, the work needed to align two sequences becomes intractable for large m and 
n. For the following example, we assume the use of the simple nucleotide similarity 
matrix in Fig.  2.1. First the bottom right cell S

m,n
 is assigned the value 1 or 0 

depending on whether the base in position m of A matches the base in position n 
of B. The cell diagonally above and to the left of this cell; S

m-1, n-1
, is given a value 
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of 2 if the base in position m – 1 of A matches the base in position n – 1 of B or a 
value of 1 otherwise. This is because a match will produce a maximum run of 
matches of length 2 for all bases from this point on, whereas a mismatch will 
produce a run of at most one match. The algorithm continues working backwards 
until every cell has been assigned a value. Finally the algorithm starts from the 
highest scoring cell in the array, and finds a path through the array which maximizes 
the cumulative sum of the values in the cells visited in the path. The resulting path 
represents a maximally matching global alignment.

2.2.2.2 � The Smith–Waterman Algorithm

In 1981 Smith and Waterman extended the ideas presented by Needleman and 
Wunsch to create an algorithm which is capable of finding optimal local pairwise 
alignments. The method uses a distance metric introduced by Sellers in 1974 which 
can be summarized by a matrix similar to the second example in the Fig. 2.1 (Smith 
et  al. 1981). This algorithm uses a method similar to that of Needleman and 
Wunsch; first filling in all the values for an m × n matrix based on the score for 
a maximum length run of matches and then finding a path through the matrix. 
There are two main differences between the Smith–Waterman algorithm and 
the Needleman–Wunsch algorithm. The first is that the matrix is completed 
from the top left cell downwards as opposed to the backtracking done by Needleman 
and Wunsch. The second is that the path is built by finding the maximal valued 
cell in the matrix and then backtracking until a zero is found. The resulting path 
represents an alignment of two segments, one from each sequence. Note that while 
not all the bases in both sequences are aligned, there can be no other pair of seg-
ments which will produce a higher score. The algorithm was modified by Gotoh to 
include affine gap penalties (Gotoh 1982) and is sometimes called the Smith–
Waterman–Gotoh algorithm. This algorithm is without doubt the cornerstone of 
modern sequence comparison.

2.2.2.3 � SWAT and CrossMatch

Unlike many other fast pairwise algorithms, SWAT does not employ first stage 
heuristics to speed up the Smith–Waterman algorithm. Instead, the authors of 
SWAT focused on speeding up the code itself by revising recursion relations and 
making efficient use of word-packing. This resulted in a significant reduction in the 
number of machine instructions executed per Smith–Waterman matrix cell. Thus 
they have produced a raw implementation of the Smith–Waterman–Gotoh algo-
rithm which is about one tenth as fast as BLAST. SWAT is normally used to search 
query sequences against a sequence database or as an engine in other sequence 
comparison tools.

CrossMatch is a general-purpose sequence comparison utility based on SWAT 
and is used for comparing sets of DNA sequences. CrossMatch uses the same 
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algorithm as SWAT, but allows the use of heuristics to constrain the comparison of 
pairs of sequences to bands of the Smith–Waterman matrix that surround one or more 
matching words in the sequences. This step reduces the running time for large-scale 
nucleotide sequence comparisons without significantly compromising sensitivity. 
CrossMatch and SWAT form the kernel of the Phrap assembly program and 
CrossMatch is used as the comparison engine in RepeatMasker. Both Phrap and 
RepeatMasker are described in more detail below. SWAT and CrossMatch are unpub-
lished software; however, information can be found at: www.genome.washington.
edu/UWGC/analysistools/Swat.cfm.

2.2.2.4 � The BLAST Family of Algorithms

BLAST (Altschul et al. 1990) and its many derivatives are arguably the most widely 
used pairwise local alignment algorithms. The BLAST algorithm attempts to heu-
ristically optimize a measure of local similarity called the maximal segment pair 
(MSP). The MSP is defined as the highest scoring pair of identical length seg-
ments chosen from two sequences. To enable the reporting of multiple local align-
ments BLAST can also return other locally maximal segment pairs. Put simply, the 
speed of the BLAST algorithm is mainly due to its ability to identify and divert 
resources away from areas in the query sequences which have very little chance of 
producing high scoring alignments. Most BLAST implementations enable the user 
to search a pre-compiled database for high scoring segments in a set of query 
sequences. The database is created by running the program formatdb which produces 
a set of files that have been optimized for size and speed of searching. The algorithm 
has three distinct steps. First, using the information in the database and the query 
sequence, the algorithm compiles a list of high scoring words of a set length k 
(k-mers) from the query sequence. The database is scanned for matches to the 
words and where these hits occur, the algorithm tries to extend the hit to the left and 
right. BLAST uses a minimum score cutoff when assessing word hit quality to filter 
out any hits which could have occurred due to random chance. Note that the BLAST 
algorithm is characterized by the creation of k-mer lists for each query sequence 
and a linear search of the entire database for words in these lists. The BLAST algorithm 
has been highly successful and there are many different implementations available 
which have been adapted to better suit particular applications.

2.2.2.5 � BLAT

BLAT stands for BLAST-Like Alignment Tool and was developed by James Kent 
for use in the annotation and assembly of the human genome (Kent 2002). Kent was 
given the task of aligning many millions of mouse genomic reads against the human 
genome. He found that when using BLAST, the need to calculate high scoring 
k-mer lists for each query sequence and the linear nature of the database search 
proved too slow. To solve this problem, BLAT creates an indexed list of all possible 
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non-overlapping k-mers from sequences in the database. BLAT then compiles a list 
of all overlapping k-mers from each query sequence and attempts to find these in 
the database. In the regions where multiple perfect hits occur, BLAT performs a 
Smith–Waterman alignment of the two sequences. This allows BLAT to maintain 
relatively high sensitivity, although it must be noted for example that TBLASTX 
can be configured to be more sensitive to distant relationships than BLAT. The 
reduced sensitivity is compensated for by the fact that BLAT can be run up to 50 
times faster than TBLASTX (Kent 2002).

2.2.3 � Multiple Sequence Alignment Algorithms

It is often necessary to produce an alignment of a group of three or more sequences. 
Examples include the comparison of the evolutionary distances between protein 
sequences, the evaluation of secondary structure via sequence relationship, or the 
identification of families of homologous genes. Efforts have been made to extend 
dynamic programming pairwise alignments to handle three or more sequences 
(Murata et  al. 1985). However, the computational complexity of handling more 
than 4 sequences proved too much for the available computing power. Many modern 
multiple alignment algorithms use a method first suggested in 1987 by Feng and 
Doolittle called the progressive method (Feng and Doolittle 1987). The underlying 
assumption used in constructing the progressive method is that sequences with a 
high level of similarity are evolutionarily related. Given a set of sequences to be 
aligned, Feng and Doolittle use the Needleman–Wunsch pairwise alignment algo-
rithm to calculate rough evolutionary distances between every pair of sequences 
and these are used to create a reference phylogenetic tree. Starting from the two 
closest branches on the tree, a pairwise alignment is made and a consensus sequence 
is produced which is used as a substitute for the branch. This is continued for 
the next closest pair of branches until all the sequences have been added and the 
alignment is complete.

The intermediate pairwise alignments may include two of the query sequences, 
one query sequence and one consensus sequence or two consensus sequences. It is 
important to note that the order in which sequences are added will affect the ultimate 
alignment and it is very difficult to repair the damage caused to the overall quality 
of an alignment if a less than optimal choice is made early on. However, algorithms 
such as MUSCLE attempt to do this. The use of a reference tree helps ensure that 
closely related sequences are aligned before distantly related sequences. Thus the 
progressive method utilizes a greedy algorithm. Feng and Doolittle stressed the point 
that any gaps added to the alignment in earlier stages must remain, creating the rule 
“once a gap, always a gap” (Feng and Doolittle 1987). This ensures that distantly 
related sequences cannot disturb meaningful alignments between closely related 
sequences, however some implementations of the progressive method do not follow 
this rule. Finally it is important to note that the reference tree should not be used to 
infer phylogenetic relationships, as there is a high probability that the tree is erroneous 
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(in that sense). However, a new tree (or set of trees) can be made with the resulting 
multiple alignment and this can be used to study phylogeny. There are a number of 
multiple alignment algorithms based on the progressive method. The most widely 
used are the CLUSTAL family of algorithms, MUSCLE and T-Coffee.

2.2.3.1 � The CLUSTAL Family of Algorithms

The CLUSTAL family of multiple alignment algorithms includes the original 
program CLUSTAL as well as CLUSTAL V and CLUSTAL W. All of the CLUSTAL 
derivatives are based on the progressive method (Higgins and Sharp 1988; Higgins 
et al. 1992; Thompson 1994). The original CLUSTAL package was released as a 
collection of different pieces of software with each one performing one stage of a 
progressive alignment. CLUSTAL V was a rewrite of this system which combined 
all the packages into one program. CLUSTAL W is a further update to CLUSTAL 
V which incorporates sequence weighting, position-specific gap penalties, and 
weight matrix choice. For the rest of this section we describe only the features of 
CLUSTAL W.

Highly similar sequences will be positioned very closely on the reference tree 
and consequently will be added to the alignment much earlier than divergent 
sequences. Too many highly similar sequences in the query set can create bias in 
the topology of the reference tree which can lead to future alignment errors 
(Higgins and Sharp 1988). Sequence weighting attempts to reduce this bias by 
down-weighting groups of similar sequences and up-weighting divergent sequences. 
This feature reduces the negative impact that the topology of the reference tree can 
have on the final alignment (Thompson 1994). When the algorithm starts, it can use 
gap penalties and substitution matrices as supplied by the user. CLUSTAL W 
provides a choice of PAM or BLOSUM matrices with the default being BLOSUM. 
As the algorithm progresses, CLUSTAL W adjusts the gap penalties according to 
the position, content (hydrophilic or hydrophobic regions) and length of the 
sequences. CLUSTAL W also adjusts the weight of the substitution matrix based 
on the estimated evolutionary distances obtained from the reference tree. These 
additions to the CLUSTAL algorithm reduce the negative impact of sub-optimal 
parameter choices made by the user.

CLUSTAL W is the most widely used multiple sequence alignment algorithm 
and represents an acceptable balance between speed and accuracy. The next two 
algorithms are faster and more accurate respectively. The first, MUSCLE, sacrifices 
some accuracy for significant gains in speed, while the second, T-Coffee, makes 
significant gains in accuracy for a modest sacrifice in speed.

2.2.3.2 � MUSCLE

MUSCLE is a very fast multiple sequence alignment algorithm based on the 
progressive method. The algorithm is split into three phases. The first is typical of a 
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progressive algorithm except that instead of using an alignment algorithm to generate 
the reference tree and evolutionary distances, MUSCLE employs the faster method 
of k-mer counting to judge similarity (Edgar 2004). Once the preliminary tree has 
been built, MUSCLE progressively adds sequences to the multiple alignment 
following the branching order, with closer branches being added first. At this stage, 
a new tree can be constructed and the progressive alignment can be returned to 
the user. The second phase seeks to improve the results of the first by iteratively 
constructing progressive alignments in the same manner as the first stage but using 
the most recent tree generated from the previous progressive alignment. At the end 
of each iteration, a new tree is made for use in the next round or phase. The third and 
final phase performs iterative refinement on the tree produced in the second phase. 
At each iteration, the tree is first separated into two pieces by removing an edge. 
Superfluous indels (insertions or deletions) are removed from each of the partial 
multiple alignments and then the tree is rejoined by re-aligning the partial multiple 
alignments. MUSCLE can produce multiple alignments achieving accuracy similar 
to CLUSTAL W but two to three orders of magnitude faster. Thus MUSCLE is 
suited to fast alignment of large sequence datasets.

2.2.3.3 � T-Coffee

Nearly all progressive based multiple alignment algorithms employ a greedy 
algorithm for adding sequences to the alignment. Unfortunately, errors can occur 
if the sequences are added in a less than ideal order. T-Coffee is an implementation 
of the progressive method which attempts to rectify some of the problems associ-
ated with the greedy approach to progressive alignment while minimizing speed 
sacrifices. To achieve this, T-Coffee first builds a library of both global and local 
pairwise alignments between all the query sequences. T-Coffee uses the progressive 
method, but in contrast to the algorithms described above, it attempts to consider 
the effects on every query sequence for each sequence being added. This approach 
seems to have worked as, on average, T-Coffee produces more accurate alignments 
than the competing algorithms (Notredame et al. 2000). However, this comes at 
the cost of increased running time, so T-Coffee may not be suited to the task of 
aligning large datasets.

2.3 � Filtering, Clustering, and Assembly

This section covers the area of sequence filtering and the related areas of sequence 
clustering and sequence assembly. There is a great deal of overlap in the methods 
used for both sequence assembly and clustering. Pre-filtering reads and masking 
low complexity areas can improve the performance of assembly and clustering 
algorithms and is often a first step in many assembly/clustering pipelines.
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2.3.1 � Filtering and Masking

The first phase for many sequence comparison algorithms is filtering or masking 
regions whose presence will reduce the efficacy of tasks further down the pipe-
line. For example, consider the process of automated sequence annotation. One 
task involves querying the sequence to be annotated against a database of 
sequences with high confidence annotations (usually performed by making pair-
wise alignments). If the query sequence contains a substring which is common to 
many, largely unrelated or loosely related sequences, then the algorithm may 
return a large number of matches to sequences in the database which do not 
reflect meaningful annotations. These common elements are usually called 
repetitive, repeats or low complexity sequences. For sequence assembly, finding 
overlaps between reads is a fundamental task, and spurious overlaps caused by 
low complexity sequences can severely impede an assembly program’s ability to 
produce accurate contigs.

Masking repetitive regions usually involves replacing all of the nucleotide bases 
in the repetitive region with another generic character, usually an “X” or an “N.” 
The majority of assembly and alignment programs ignore these characters by 
default. In this way, results made by comparing masked sequences are usually more 
accurate than those where masking has not been performed. Masking can also 
decrease the running time of sequence comparison algorithms by reducing the 
number of possible alignments.

Another form of pre-filtering is sequence trimming. Often DNA sequences will 
begin, and possibly also end, with nucleotide bases from the vector used in the 
cloning stage, and for many different types of reads, the quality of the data 
decreases towards the end of the sequence read. An easy way to overcome these 
problems is to trim the ends of the sequence reads. There are a number of programs 
which can be used to trim sequences, however they are not discussed here. Finally, 
reads which contain low amounts of information can simply be removed from the 
data set, for example if the majority of the read consists entirely of As or Ns. When 
raw quality values are available, it is also common to simply discard reads whose 
overall quality is below a certain threshold.

2.3.1.1 � RepeatMasker

RepeatMasker screens DNA sequences for interspersed repeats and low complexity 
DNA sequences. The output of the program is a detailed annotation of the repeats 
present in the query sequence as well as a modified version of the query sequence 
where all the annotated repeats have been replaced by Ns or Xs. RepeatMasker 
draws information about which regions are repetitive by comparing the query 
sequences to a curated database of repeats. RepeatMasker uses CrossMatch for this 
task (Smit et al. 1996)
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2.3.2 � Sequence Clustering

With the quantity of sequence data contained in online repositories increasing at an 
accelerating pace, tools that can cluster related sequences into meaningful groups 
provide a way for researchers to efficiently sort through and make sense of this 
mountain of data. Many researchers are interested in clustering reads from 
expressed sequence tag (EST) datasets in the hope of identifying the full length 
genes which the ESTs represent. Another application of clustering is the identifica-
tion of single nucleotide polymorphisms (SNPs). Clustering is often used to reduce 
redundancy in a dataset. For example, the BLOSUM substitution matrices use 
clustering of similar sequences as a first step to reduce the negative effect caused 
by including too many highly similar sequences. Clustering can also be useful as a 
first step in sequence assembly pipelines. Sequence assembly programs will often 
perform significantly better when run multiple times on sets of closely related 
sequences than when attempting to assemble the whole data set as one chunk. This 
approach can also significantly reduce the running time of the assembler. Clustering 
algorithms typically take as input a set of reads to be sorted and input parameters 
specifying the degree of similarity required for reads to be grouped together. The 
output is a grouping of the reads that match these criteria.

Most clustering algorithms use an agglomerative approach. At the start of the 
algorithm, each sequence is effectively in its own group. The algorithm succes-
sively merges groups if the similarity criteria are met, and repeats this process until 
no more merges are possible. These final merged groups are then returned to the 
user. Depending on user input or the algorithm itself, two groups will be merged 
when there exists a single pair of sequences (one sequence from each group) which 
match the similarity criteria. This is referred to as single linkage clustering or 
transitive closure. It is sometimes possible to raise the minimum number of pairs 
needed for merging to occur. If every possible pair of sequences from both groups 
must match the similarity criteria for merging to occur then this is called complete 
linkage clustering. Complete linkage clustering typically produces many small, 
high quality clusters, whereas single linkage clustering typically produces fewer, 
larger, lower quality clusters. Depending on the application, one approach may be 
more favorable than the other.

The similarity criterion for clustering is usually stated in terms of the minimum 
overlap and minimum percentage identity. This is sometimes augmented by limiting 
the maximum number of mismatches allowable. There are two main approaches 
available to find overlaps. The first uses information gathered from successive 
pairwise alignments, effectively looking at the edit distance, the number of mutation 
events needed to describe the distance. The second uses a k-mer counting approach, 
where the presence of multiple identical words is used to infer an overlap. Both 
methods perform well, but the k-mer counting approach has been proved to handle 
sequencing errors better. Furthermore, the k-mer counting approach can be imple-
mented in linear time whereas the edit distance approach can only be as fast as the 
underlying alignment algorithm, which in the case of Smith–Waterman is quadratic, 
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and slightly better for BLAST-like algorithms. Two popular clustering algorithms are 
WCD (Hazelhurst et al. 2008) and d2_cluster (Burke et al. 1999).

2.3.3 � Sequence Assembly Overview

The greatest challenge to sequencing genomes is the vast difference in scale between 
the size of the genomes and the lengths of the reads produced by the different 
sequencing methods. While there may be a 10–500-fold difference in scale between 
the short reads produced by next generation sequencing and modern Sanger sequenc-
ing, this still dwarfs the difference between the Sanger read length and the lengths 
of complete chromosomes. For example, human chromosomes vary between 47 and 
245 million nucleotides in length, around 50,000–250,000 times longer than the 
average Sanger reads. For all technologies, the challenge is the assembly of sequence 
reads to produce a representation of the complete chromosomes. Whether this chal-
lenge is significantly greater for short reads is being hotly debated.

The first sequence fragment assembly algorithms were developed in the early 
1980s. Early sequencing efforts focused on creating multiple overlapping align-
ments of the reads (typically the Sanger sequence reads) to produce a layout assem-
bly of the data. A consensus sequence is read from the alignment and the DNA 
sequence is inferred from this consensus. This approach was referred to as the 
overlap-layout-consensus approach and culminated in a variety of sequence assem-
bly applications such as CAP3 and Phrap. Previous generation DNA sequencing 
has produced relatively long, high quality reads which were amenable to assembly 
using the overlap-layout-consensus approach.

From the late 1980s to the mid 1990s research began to focus on formalizing, 
benchmarking, and classifying fragment assembly algorithm approaches. Three 
papers, (Pevzner 1987, Myers, 1995, Idury and Waterman 1995) formalized the 
approach of placing sequence reads or fragments in a directed graph. Myers 
focused on formalizing the traditional overlap-layout-repeat method while Pevzner 
and Idury and Waterman developed a new method for solving the assembly problem. 
While both methods involved the construction of graphs, they differed in that 
whereas the fragments in Myers graph (Myers 1995) are represented as nodes, the 
fragments in Pevzner’s and Idury and Waterman’s graphs (Pevzner 1987; Pevzner 
2001; Idury and Waterman 1995) are represented as edges.

2.3.3.1 � The Overlap Graph Method

The overlap graph method was formalized by Myers in 1995 (Myers 1995) and is 
referred to here as the Myers method. In this graph, each vertex represents a read 
or fragment, and any two vertices are joined by an edge if the two fragments 
overlap (often imperfectly with some level of significance set by the user). Next, 
the graph is simplified by the removal of transitive edges and contained nodes 
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which add little or no information. The removal of transitive edges is shown in 
Fig. 2.2. Contained nodes occur when the graph is made from reads of different 
lengths and one read is completely contained within another.

Finally, chains of nodes or linearly connected sub graphs are collapsed into 
“chunks” which themselves are treated as single nodes in the graph. This is shown 
in Fig. 2.3. These graph simplification methods are very effective for reducing the 
computational complexity of assembly and many modern day algorithms employ 
these methods. Once the graph has been simplified, the Myers method finds a maxi-
mum likelihood non-cyclic (Hamiltonian) path through the graph and infers the 
layout of the fragments from this path.

2.3.3.2 � The Eulerian Path Method

Idury and Waterman proposed an algorithm which could be used to assemble data 
generated in sequencing by hybridization (SBH) experiments (Idury and Waterman 
1995). Although the mathematics for it was developed by Pevzner in 1989 (Pevzner 
1989), this is the first algorithm developed using this approach. We refer to the 
combined ideas of Idury and Waterman and Pevzner as the IWP method. The main 
application of SBH is now gene chips and not genome sequencing, but the ideas 
described in the IWP model can be seen in a number of sequence assembly algorithms, 
most notably the EULER algorithms developed by Pevzner in 2001 (Pevzner 
2001). In Idury and Waterman’s algorithm, sequence fragments are broken down 

Fig. 2.2  Removal of transitive edges from the overlap graph. (a) The original graph with numbers 
depicting offsets in the alignment of equal length reads. The dashed lines are transitive edges. 
(b) The simplified graph. (c) The short reads and their alignment as given by the graph yields 
the sequence ACCGGCTGAG

Fig. 2.3  The collapsing of linearly connected sub graphs into single nodes greatly reduces the 
complexity of the overlap graph. (a) The original graph which contains linearly connected sub 
graphs. (b) The simplified graph with white nodes representing “chunks”
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into every possible read of some length k (k is very small, approximately 10 bases) 
referred to as k-tuples. The set of all k-tuples found is often referred to as the 
spectrum of reads (Pevzner 2001). In Idury and Waterman’s model, assembled 
sequences are represented as paths through a de Bruijn graph where each node in the 
graph is a k-1 tuple. Two nodes X and Y are joined by a directed edge if there exists 
a read R in the spectrum where the first k-l bases of R match X and the last k-1 bases 
in R match Y. Thus it follows that if two edges are adjacent in the graph they will 
have a perfect overlap of k-1 bases. It is important to note that this model only 
finds perfect overlaps, while the Myers method can accept imperfect overlaps. 
An example of such a de Bruijn graph is shown in Fig. 2.4. Here the graph is for 
the sequence CAGTCGAGTTCTCTG with k equal to 4. Erroneous reads cause 
the inclusion of extra edges which can cause “tangles” in the graph. The dashed edge 
from TTC to TCG is due to the erroneous read TTCG being included in the spec-
trum. Idury and Waterman (Idury and Waterman 1995) describe a number of graph 
simplifications which can remove errors from the graph.

Assembly is achieved by finding an Eulerian path in the de Bruijn graph. That 
is a path which visits every edge exactly once. It is well known that the problem of 
finding Hamiltonian paths in a graph is NP hard whereas the problem of finding 
Eulerian paths is relatively easy. However, the theoretical advantage that the IWP 
method seems to have over the method of Myers has not translated into great 
computational or time savings. This is mainly due to the fact that heuristics have 
been employed to speed up the latter. The main problem with the Eulerian Path 
approach is that errors in real data cause the inclusion of extra edges, causing 
tangles. When there are too many errors in the data, the graph becomes entangled, 
and as a result the algorithm cannot be scaled up. An example of how erroneous 
reads cause graphs to become entangled is given in Fig. 2.4. In 2001, Pevzner 
successfully applied the method of Idury and Waterman to read sets with errors by 
developing an error correction algorithm which could reduce the number of errors 
by approximately 86% (Pevzner 2001). Pevzner introduced a number of transfor-
mations which simplify the graph and these transformations have a conceptual overlap 
with Myers simplifications. One transformation replaces a number of consecutive 
edges by one edge, in a way which mimics the collapse of linearly connected sub 
graphs described above. This process of edge formation/simplification is performed 

Fig. 2.4  A de Bruijn graph for the sequence CAGTCGAGTTCTCTG. The erroneous read TTCG 
has been included in the spectrum causing the inclusion of the dashed edge. Erroneous edges 
cause the graph to become entangled
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at the beginning of the assembly so that only the minimal number of edges possible 
need be processed.

The two methods described above have formed the foundation for modern assem-
bly approaches, and all modern sequence fragment assemblers include variations of 
these concepts, and in some cases algorithms may borrow from both methods.

2.3.3.3 � Problems of Assembling Complex Genomes

One challenge of genome sequencing lies in the fact that only a small portion of the 
genome encodes genes, and that these genes are often surrounded by repetitive DNA 
which is comparably information poor. Large repeats can cause ambiguity with frag-
ment assembly and thus pose the greatest challenge when assembling genomic data. 
In Fig. 2.5, we know that regions B and C are surrounded by identical repetitive 
regions X and that both regions lie between regions A and D, but without more 
information, it is impossible to know the correct ordering of B and C.

The traditional method to overcome the problems created by large repeats when 
assembling sequence reads is to increase the read length to such a point that every 
repeat is spanned by at least one read. In practice however, this is simply not pos-
sible as these repeats are frequently longer than the current Sanger read length. 
Modifications to the original shotgun method that attempt to overcome this prob-
lem try to increase the “effective” read length. These include using paired end 
sequencing, where DNA fragments of known approximate size are generated and 
sequenced from both ends. Information about these pairs such as average fragment 
size and the orientation of reads with respect to the read pair is included in the 
assembly process (Pevzner 2001). If the distance between the paired ends, known 
as the insert size, is large enough, then there is a high probability that repeats will 
be spanned by a pair of reads (or mates) which can remove ambiguity from the 
assembly. For example, if paired end data is analyzed and region B is found to have 
mates in regions A and C but not D, while region C has mates in regions B and D 
but not A, then an ordering can be inferred. This is shown in Fig. 2.6. Note that 
if the insert size was too large and paired ends from B reached over to region D 
while the paired ends of C reached over to region A there would still be doubt as 
to how these reads should be arranged. There is also a problem if the insert size is too 
small and paired reads do not reach past the repetitive region. To address these 
issues, a number of different size fragment libraries are often used.

Fig. 2.5  An example of how repeats cause ambiguity in assembly. Because both fragments B and 
C are surrounded by repetitive region X, there is no way to know their ordering in the assembly
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Errors in data further exacerbate the problem of resolving repetitive regions as 
it is often difficult to differentiate between reads from slightly different repetitive 
regions and reads from the same region that contain errors. This can cause a prob-
lem called over-collapsing, where multiple copies of a repeat will be assembled on 
top of each other. Although we would expect a significant increase in read depth for 
contigs, which are made from over collapsed regions, the read depth is frequently 
variable across the genome and is therefore an unreliable indicator of repeat 
regions. Both paired end data and various statistical methods have been applied in 
an attempt to solve the problem of assembling short read sequence data and these 
are described in more detail below.

2.3.4 � Traditional Fragment Assembly Algorithms

For many years, the vast majority of DNA sequence data has been produced using 
variations of the chain termination method first introduced by Sanger in 1977 (Sanger 
et al. 1977). The Sanger sequence reads are typically 700–1,000 bases long and of 
high quality. The individual nucleotide bases in a sequence file is called, based on 
information found in a chromatogram, a trace file which is produced by the automatic 
sequencing machines. Phred is the most commonly used base calling software pack-
age (Ewing et al. 1998), and the two most commonly used programs for assembling 
the Sanger sequence data are Phrap and CAP3. Both programs make use of Phred 
generated quality scores when performing the assembly, although this data can be 
omitted if it is not available. Aside from being used to assemble data generated in 
large scale genome sequencing projects, these programs have also been used to 
assemble EST sequence data. Both Phrap and CAP3 use variations of a Myers-like 
approach to fragment assembly, though Phrap deviates from this standard template 
in the final consensus phase.

2.3.4.1 � Phrap

Phrap stands for “phragment assembly program” or “Phil’s revised assembly 
program” and is used for assembling shotgun DNA sequence data. Unlike many 
other assemblers, Phrap makes use of the whole read and not just the trimmed high 
quality portion. Phrap can be provided with a mixture of machine generated and 

Fig.  2.6  Resolution of ambiguities using paired end data. Solid edges indicate overlaps while 
dashed edges show links between reads in a region and the region(s) containing the paired mate
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user supplied quality data to assist in making reliable contigs. One aspect which 
sets Phrap apart from many other Myers type algorithms is that Phrap returns contig 
sequences which are mosaics of the highest quality parts of reads rather than a 
consensus or majority vote.

Phrap searches for reads with matching words and then does a SWAT compari-
son between pairs of reads with this property. This allows Phrap to efficiently 
make use of the very accurate Smith–Waterman algorithm encoded in the SWAT 
algorithm. This first stage identifies all potential overlaps. The next stage effec-
tively masks vector sequences. This stage also identifies near duplicate reads, 
reads with self matches, and reads which have more than one significant overlap 
in any given region. These steps help Phrap to deal with repetitive elements. 
Phrap then constructs contig layouts based on strong pairwise alignments using a 
greedy algorithm and from these layouts produces the contigs. Finally, Phrap 
aligns reads to the contigs identifying inconsistencies and possible misassembled 
sites. Phrap returns Phred-like quality scores for each base in the contig based on 
the consistency of the pairwise alignments at that position (http://www.phrap.org/
phredphrap/phrap.html).

2.3.4.2 � CAP3

CAP3 is the third generation of the CAP assembly algorithm and was released in 
1999 (Huang and Madan 1999). CAP3 uses a Myers-like method which makes 
extensive use of quality values and paired read data. The overlap stage begins by 
using a BLAST-like algorithm to identify areas where detailed local alignments are 
produced using a modified version of the Smith–Waterman algorithm which 
weights the substitution matrix at each position using the quality scores at the bases 
concerned. Where CAP3 differs from other algorithms is in the way that these 
overlaps are then validated. First, CAP3 identifies good regions in a read. A good 
region is a run of nucleotide bases with high quality scores and which share an 
overlap with a region in another read which also has high quality scores. CAP3 uses 
the good regions to identify which bases to trim from the ends of the reads. Once 
the good regions have been identified, CAP3 produces a global alignment of the 
reads previously identified as having local alignments and attempts to identify 
inconsistencies in the global alignments between good regions. There are a number 
of criteria each overlap must satisfy and any overlaps which do not meet all the 
criteria are discarded. This completes the overlap stage. CAP3 then uses a greedy 
algorithm to produce a layout of the reads which is validated by checking whether 
the paired read data (if supplied) produces any inconsistencies. Finally, the reads 
are aligned to the layout and a consensus produced. CAP3 also produces Phred-like 
quality scores which are returned to the user. In benchmarking, CAP3 generally 
produces better quality, shorter contigs than Phrap due to the strict methods for 
creating contigs (Huang and Madan 1999). However, CAP3 relies heavily on paired 
end data and even more so on quality values, and may not perform as well if given 
raw sequence data alone.
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2.3.5 � Short Read Fragment Assembly Algorithms

Several assemblers have been developed for short sequence reads, these include 
Edena, Velvet, EULER SR, SASSY and ALLPATHS. All of these algorithms 
borrow from the Myers or IWP models described above either implicitly or explicitly, 
and there are many similarities between the different algorithms in terms of their 
overall structure. Most algorithms are divided into up to five stages which include 
some or all of the following procedures: read error correction, read filtering, naïve 
assembly, refining of naïve assembly (using paired end data if available), and finish-
ing. To understand what a naïve assembly is we need to define the terms consecutive 
and linearly connected. Two reads A and B are consecutive if they overlap (either 
the first k bases in A match the last k bases in B or vice versa) and for a graph with 
no transitive edges, two reads A and B are linearly connected if they are consecutive 
and there exists no read C which is consecutive with A on the same side as B or with 
B on the same side as A. For naïve assembly, we mean that starting with some read 
R we can try to extend that read (on one side) by examining the consecutive reads 
(on that side). If there is only one candidate, then the read can be extended in the 
direction of the overlap by the bases which are overhanging. This process mimics 
the collapsing of linearly connected sub graphs in the Myers model or edge forma-
tion in the IWP model. Thus, any string of linearly connected reads can be concat-
enated into one long read. For a given read there may be more than one candidate to 
extend with, and in this case the extension stops. Similarly, the extension stops when 
there are no candidates. The case where there is more than one candidate can be 
caused when the extension reaches the boundary of a duplicated or repetitive region 
in the genome or as happens much more frequently, it can be caused by errors in the 
data. If all possible extensions have been made for all available reads, then the result-
ing set of extended reads represents a naïve assembly. The accuracy of this assembly 
declines rapidly as both the error rate and the complexity of the organism being 
sequenced increase (Chaisson et al. 2004; Whiteford et al. 2005).

2.3.5.1 � Edena

Edena, released in 2008 (Hernandez et  al. 2008), is the first short read assembly 
algorithm to be released which uses the traditional overlap-layout-consensus 
approach. Edena does not include an error correction phase before graph production, 
which leads to the formation of a messy sequence graph; however it does include a 
three step error correction phase which cleans the graph before assembly begins. The 
first phase of the algorithm removes duplicate reads, keeping only the original read 
and the number of times it has been seen. Next it uses the reads to construct an over-
lap graph where the reads are represented as nodes. Two nodes are joined by an edge 
if there is an overlap between them larger than a set minimum (defined by the user). 
Once this graph has been built, it contains many erroneous edges which have to be 
removed. First it removes transitive edges in the graph in the same manner as 
described by Myers (Myers 1995). Following this, all dead end paths are removed. 
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A dead end path is a series of consecutive nodes shorter than 10 reads in length which 
is attached to the main body of the graph on one side and to nothing on the other. 
These paths are caused when areas are sequenced with very low coverage, causing 
breaks in the sequence of consecutive reads, or when a series of errors combine to 
make a series of consecutive reads. Finally, the algorithm removes what are called 
P-bubbles. These occur when there are two regions which are identical except for a 
one base difference. In the case where this is caused by single nucleotide polymor-
phisms (SNPs) in repetitive regions, we would expect each side of the bubble to have 
a similar topology and copy number. Where a P-bubble is caused by an error, we 
would expect to see one side of the bubble with a very sparse topology and signifi-
cantly lower copy number. Figure 2.7 gives such an example.

When P-bubbles are found, Edena removes the side with the lowest copy 
number/sparsest topology. Hernandez points out that P-bubbles may be caused 
by clonal polymorphisms which would account for the low coverage and sparse 
topology observed (Hernandez et  al. 2008). However, as Edena does not take 
paired end information into account, the method used for eliminating P-bubbles 
will most certainly cause over-collapsing of low copy-number repetitive regions. 
Once the graph has been cleaned using the three operations described above, a 
naïve assembly is formed and the resulting contigs are returned to the user.

2.3.5.2 � Velvet

Velvet is the name given to the collection of algorithms that assemble short read 
data which were released by Zerbino in 2008 (Zerbino and Birney 2008). Velvet 
uses an IWP model to make the initial graph. Like Edena, Velvet does not include 
an initial error correction phase but instead uses a series of error correction 
algorithms to clean up the resulting graph. These algorithms work in a method 
analogous to the error correction phase in Edena (Hernandez et al. 2008), where 
tips are removed and then bubbles. In Velvet, tips are removed only if they are 
shorter than 2k, where k is the read length. Unlike Edena, Velvet uses an Eulerian 
path approach, which although highly efficient in terms of memory use, appears to 
further complicate the P-bubble removal step. Velvet includes an algorithm called 
Tour Bus which traverses the graph looking for P-bubbles, and when they are 
found, uses a combination of copy number and topographical information to 
remove the erroneous edges. Velvet then assumes that all low copy number edges 

Fig. 2.7  An example of a P-bubble most likely caused by an error. The reads making up the lower 
sequence will typically have a low copy number and the overlaps are very short. However, this 
phenomenon can also be caused by low copy number repeats
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that remain must be errors and removes them from the graph. Like many of the 
algorithms described here, Velvet does not make use of paired read information and 
therefore has an increased probability of over-collapsing repetitive regions.

2.3.5.3 � Euler SR

There have been many iterations of the original EULER algorithm developed by 
Pevzner in 2001 (Pevzner 2001). The latest addition to the EULER family is EULER 
SR which is a version of EULER optimized to handle short reads (Chaisson and 
Pevzner 2008). The algorithm described by Idury and Waterman did not include a 
step for filtering or correcting errors, however it did include a number of graph 
simplifications which could be used to reduce the impact of errors. Unfortunately, 
this method could not scale up to handle the large amounts of error present in real 
data. The original EULER algorithm was designed as an implementation of the 
Idury and Waterman algorithm, but included a novel method for error correction. 
A short read is broken down into a number of even shorter k-tuples which are stored 
in a database. In the case when the dataset contains no errors then we would expect 
that the k-tuples generated for a particular read R would appear a number of times 
in the database, as all reads overlapping with R would also contain some number 
of these k-tuples. Pevzner describes a read as “solid” if all of its k-tuples appear 
at least n times (where n is set by the user) or “weak” otherwise. When used with 
real data, if a read has been classified as weak, the algorithm tries to find the mini-
mum number of base changes which will change its classification to strong. If that 
number is less than d (where d has been set by the user) then the changes are made, 
otherwise the read is discarded. Pevzner shows that this method corrects over 86% 
of errors with very few false positives for the dataset he analyzed (Pevzner 2001). 
This represents the most sophisticated and efficient approach for error correction of 
short reads that has been developed thus far. EULER SR builds on the original 
EULER algorithm and contains optimizations to make it more memory efficient, a 
property which is necessary for the vast amount of data produced by short read 
assemblers. Interestingly, in testing EULER SR, a hybrid approach was assessed 
where short read data was combined with longer Roche 454 read data. It was found 
that there was no significant improvement in assembly for the majority of reads 
(Pevzner 2001), which is contrary to most of the current opinion in this field. After 
the errors have been removed, a graph is built and a set of contigs produced by 
naïve assembly is returned to the user.

2.3.5.4 � SASSY

We are currently developing an assembly algorithm called SASSY which is based on 
a Myers like method that incorporates paired end data. SASSY is being developed 
primarily to assemble eukaryotic sequences of around 100–200 Kbp in length cloned 
into BACs. While SASSY shares many similarities with the software described 
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above, there are a number of key differences. We have developed a novel iterative 
approach to graph construction which removes the need for some of the simplifica-
tion steps typically needed for this type of implementation. We aggressively filter 
the data set, flagging up to approximately 90% of the reads which are set aside to 
be used only in later stages. With the remaining reads we construct a first round 
naïve assembly using only reads which have an overlap of at least k – t nucleotide 
bases, where k is the read length and t is very low (usually 2 or 3). The advantage 
of using this approach is that erroneous areas of the graph usually have a sparse 
topology and the number of common bases between any two reads in these areas is 
usually much lower than for reads in correct areas of the graph. Thus, assemblies 
generated in the first round represent high confidence assemblies, however their 
length is typically very short, with an N50 of less than 50 bases for Applied 
Biosystems SOLiD reads and slightly longer for Illumina Solexa reads. It should 
be noted that the longest contigs produced from this preliminary assembly are 
typically 4,000–12,000 bases long. These longer contigs are used to identify stable 
areas in the overlap graph. The next stage involves building a new overlap graph 
which explicitly combines the overlap data in the original graph with the paired 
read data. Normally this would be difficult because of the repetitive nature of the 
data, but by starting the graph building in stable areas, many of the problems asso-
ciated with repeats are resolved. Thus we use the naïve contigs only as a guide 
instead of trying to extend them, which is the case for the other algorithms described 
in this section. Following the construction of the overlapping graph, we align all 
the reads flagged in the filtering stage to the assembled contigs. We examine the 
distribution of the insert size for the mapped reads to identify erroneous assemblies 
which are repaired where possible or flagged as conspicuous in the case when there 
is no obvious resolution. Finally, new contigs are built from the new overlap graph 
and these are returned to the user. SASSY is being developed to make optimal use 
of local topology and paired end data in order to avoid the problems of over-
collapsing repetitive regions or unnecessarily breaking contigs when errors are 
present in the data. This software is currently still in a developmental stage; however, 
initial test versions promise to overcome many of the limitations inherent in current 
small read assembly software.

2.3.5.5 � ALLPATHS

ALLPATHS is another recent addition to the collection of short read assemblers 
based on an IWP model (Butler et  al. 2008). ALLPATHS begins by correcting 
errors using an EULER like method, and then makes a large set of naïve assemblies 
which are referred to as “unipaths.” At this stage, ALLPATHS leaves the model 
followed by EULER, and uses paired read information to sort unipaths into local-
ized groups which can be worked on individually and in parallel. For each localized 
set of unipaths, ALLPATHS chooses paired reads which lie in the set, and proceeds 
to work out every path of consecutive unireads which could possibly be followed 
from the read to its mate. Once this is completed, the number of paths is trimmed 
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down using localization information and other statistical methods until, ideally, only 
one path remains. This method reduces the complexity in the overall sequence graph 
by making local optimizations, allowing many shorter unipaths to be condensed into 
longer unipaths. Once the long unipath generation has been completed separately, 
the results from the local optimizations are stitched together to produce one long 
sequence graph. One limitation of this algorithm is its sensitivity to the standard 
deviation of the fragment length used to make the paired sequence reads. Butler 
notes that in some cases, a large number read-mate pairs generate over 103 possible 
paths, and in some cases more than 107 possible paths are generated, which causes 
ALLPATHS to return erroneous unipaths (Butler et al. 2008). The final phase incor-
porates both read pair information and statistics to identify erroneous assemblies, 
and if possible it tries to fix them. The most unique aspect of ALLPATHS is that no 
information is discarded at any stage in the algorithm which improves the ability to 
repair errors in the final phase. Unlike every other algorithm described here it returns 
the entire graph to the user as opposed to just the contigs.

2.4 � Discussion

There are many branches of research into sequence comparison (more than have 
been covered here) with varying levels of complexity. The amount of effort being 
spent on solving different branches has continuously shifted as computational 
power has increased and the nature of the data being produced has changed. 
For example, multiple sequence alignment algorithms only started to receive wide-
spread attention from the mid 1980s, almost 20 years after the merits of different 
phylogenetic tree making algorithms were being heavily debated, and many years 
after efficient algorithms had been produced for pairwise alignments. Pairwise 
sequence alignment has long been the base currency of sequence comparison, but 
graph theoretical methods; in particular k-mer distance methods and k-mer group-
ing/sorting have been demonstrated to be valuable for increasing the speed at which 
analysis can be performed. The typically long and accurate sequence reads 
produced using the Sanger sequencing method have been largely replaced (in terms 
of volume of data being produced) by next generation sequencing methods which 
produce copious amounts of largely error laden data, and the current focus of 
bioinformatics in this area has been to develop algorithms that can accurately 
assemble this data into long stretches of sequence. Again, graph theoretical 
approaches have proved valuable. Progress in the area of sequence assembly has 
only been feasible using computing power developed in recent years, although it 
should be noted that more than 40 years after the birth of comparative algorithms, 
the lack of ever greater computing power remains the main hindrance to progress. 
As an example, the original implementation of CLUSTAL was tested on a 10 MHz 
microcomputer (PC) with only 640K of memory, while the current iteration of the 
program SASSY was developed using an 8 core (1.8 GHz per core) cluster with 
access to 16 GB of memory and almost unlimited hard disk space. There is a clear 
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trend that advances in computing hardware continue to spur development of ever 
more sophisticated comparison algorithms, allowing researchers greater insight 
into comparative genomics and the workings of the biological world.
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