Chapter 2
Sequence Comparison Tools

Michael Imelfort

2.1 Introduction

The evolution of methods which capture genetic sequence data has inspired a parallel
evolution of computational tools which can be used to analyze and compare the
data. Indeed, much of the progress in modern biological research has stemmed from
the application of such technology. In this chapter we provide an overview of the
main classes of tools currently used for sequence comparison. For each class of
tools we provide a basic overview of how they work, their history, and their current
state. There have been literally hundreds of different tools produced to align, clus-
ter, filter, or otherwise analyze sequence data and it would be impossible to list all
of them in this chapter, so we supply only an overview of the tools that most readers
may encounter. We apologize to researchers who feel that their particular piece of
software should have been included here. The reader will notice that there is much
conceptual and application overlap between tools and in many cases one tool or
algorithm is used as one part of another tool’s implementation. Most of the more
popular sequence comparison tools are based on ideas and algorithms which can be
traced back to the 1960s and 1970s when the cost of computing power first became
low enough to enable wide spread development in this area. Where applicable we
describe the original algorithms and then list the iterations of the idea (often by
different people in different labs) noting the important changes that were included
at each stage. Finally we describe the software packages currently used by today’s
bioinformaticians. A quick search will allow the reader to find many papers which
formally compare different implementations of a particular algorithm, so while we
may note that one algorithm is more efficient or accurate than another we stress that
we have not performed any formal benchmarking or comparison analysis here.
The classes of tools discussed below are sequence alignment, including sequence
homology searches and similarity scoring, sequence filtering methods, usually
used for identifying, masking, or removing repetitive regions in sequences, and

M. Imelfort (<)
University of Queensland, Queensland, Australia
e-mail: m.imelfort@ugq.edu.au

D. Edwards et al. (eds.), Bioinformatics: Tools and Applications, 13
DOI 10.1007/978-0-387-92738-1_2, © Springer Science+Business Media, LLC 2009



14 M. Imelfort

sequence assembly and clustering methods. Sequence annotation tools including
gene prediction and marker discovery have been covered elsewhere in this volume
and are not discussed here.

2.2 Sequence Alignment

At the most basic level a sequence alignment is a residue by residue matching
between two sequences, and algorithms which search for homologous regions
between two sequences by aligning them residue by residue are arguably the most
fundamental components of sequence comparison. It is also biologically relevant to
consider situations where nucleotides have either been inserted into or deleted from
DNA; most, but not all, sequence alignment algorithms allow the matching of a
residue with a gap element or simply a gap.

Consider two sequences which are identical except that the first sequence contains
one extra residue. When we view the alignment of these two sequences, the extra
residue will be matched to a gap. This corresponds to an insertion event in the first
sequence or a deletion event in the second. On the other hand, if we note that an
insertion event has occurred in the first sequence (with respect to the second) then we
know how to match that residue to a gap in the second. Thus one way to build a
sequence alignment is to find a series of insertions, deletions, or replacements,
collectively called mutation events, which will transform one sequence into the other.
The number of mutation events needed to transform one sequence into the other is
called the edit distance. As there will always be more than one series of possible
mutation events which transform the first sequence into the second, it makes sense to
rate each set’s likelihood of occurrence. Greater confidence is placed in alignments
which have a higher likelihood of occurring. Each alignment can be rated by consid-
ering both the cumulative probabilities and biological significance of each mutation
event. For example, an alignment which infers a lesser amount of mutations to transform
one sequence into another is almost always considered more likely to have occurred
than an alignment which infers many more mutations, therefore many alignment
algorithms work by minimizing the edit distance.

To resolve the issue of biological significance, information about the distribution
of mutation events is used. This information is most commonly stored, in a scoring
matrix. Each pair of matched residues (or residue — gap pairs) can be scored and the
similarity score is the sum of the scores of the individual residues. Most alignment
algorithms seek to produce meaningful alignments by maximizing the similarity
score for two sequences. Traditionally, sequence alignment algorithms have been
called global if they seek to optimize the overall alignment of two sequences. Often
the resulting alignment can include long stretches of residues which are matched
with different residues or gaps. Conversely, if the algorithm seeks to align highly
conserved subsequences while ignoring any intervening unconserved regions then
it is called a local alignment algorithm. A local alignment of two sequences can
produce a number of different subsequent alignments. So far, only the case where



2 Sequence Comparison Tools 15

two sequences are being compared has been described. This is called a pairwise
alignment. The case where more than two sequences are being compared concurrently
is called a multiple alignment.

Alignment algorithms can be broadly classified as taking a heuristic or dynamic
programming approach. Generally, dynamic programming based approaches are
guaranteed to produce the best alignments but are very often computationally and
memory expensive, while heuristic based algorithms sacrifice guaranteed quality
for speed. Note that a heuristic algorithm can produce an optimal alignment; there
is just no guarantee that it will. Often dynamic programming approaches are used
to finish or perfect alignments made using heuristics.

2.2.1 Substitution Matrices

When two sequences are aligned there are often residues in one sequence which do
not match residues in the other. There is usually more than one way to align two
sequences, so a scoring system is needed to decide which of the possible alignments
is the best. For a nucleotide alignment, a simple scoring system could award one
point for every match and zero points for a mismatch or a gap. This information can
be stored in a matrix called a substitution matrix. An example of such a matrix is
shown as the first matrix in Fig. 2.1 below. This is the substitution matrix employed
with good results in the original Needleman—Wunsch algorithm (Needleman and
Wunsch 1970). However, this matrix was criticized as lacking in both biological
relevance and mathematical rigor and there have been a number of attempts to
improve on both this and some earlier methods resulting in the scoring systems used
today. In 1974, Sellers introduced a metric which could be used to describe the
evolutionary distance between two sequences (Sellers 1974) and this method was
generalized by Waterman et al in 1976 (Waterman et al. 1976). The idea behind these
scoring systems was to minimize the number of mutations needed to transform one
sequence into the other while also taking into account the differing probabilities of
distinct mutation events. For example, a more sophisticated scoring system could
award negative scores for gaps (a gap penalty) and for mismatches the scores

ACGT ACGT
Al1 0 0 O A|l3 212
Cl|01 00 Cl2 321
G|0O 0 10 GI12 32
T|0O 0 0 1 T2 12 3

Fig. 2.1 Two examples of nucleotide similarity matrices. The first matrix implements a binary
scoring scheme awarding one point for a match and one for a mismatch. The second matrix intro-
duces a more sophisticated method where biological observations such as the unequal probabili-
ties of transitions and transversions influence the score



16 M. Imelfort

could differ according to whether the mismatch was a transition event or a transversion
event. An example of this is the second matrix in Fig. 2.1 below.

For protein alignments, each row and column in the substitution matrix S
corresponds to a particular amino acid, where each entry S . contains a value
representing the probability of substituting the residue in row i for the residue in
column j. The most widely used examples of such matrices are the point accepted
mutation (PAM) matrices (Dayhoff 1978) and Block substitution matrices
(BLOSUM) (Henikoff and Henikoff 1992). Both matrices share many similarities.
They are both 20x20 matrices and in both cases identities and conservative
substitutions are given high scores while unlikely replacements are given much
lower scores. Both matrices are assigned numbers which identify when they should
be used, for example PAM30 or BLOSUMG62. However, one should use a higher
numbered BLOSUM matrix when comparing more similar sequences while for
PAM matrices lower numbers should be used. A more important difference is the
way the matrices are built. PAM matrices are derived from an explicit model of
evolution and based on observations of closely related protein sequences, while
BLOSUM matrices are based directly on observations of alignments of more
distantly related sequences using a much larger dataset than for PAM. As a result
the BLOSUM matrices tend to produce better results than PAM matrices, particularly
when aligning distantly related sequences.

Work on the PAM matrix model of protein evolution was undertaken by Dayhoff
in the late 1970s (Dayhoff 1978). The main idea behind the PAM matrices is that
of all possible mutations; we are going to observe only those which are accepted by
natural selection. PAM1 was calculated using the observed relative frequencies of
amino acids and 1,572 observed mutations in multiple alignments for 71 families
of closely related proteins. Each entry in PAMI represents the expected rates of
amino acid substitution we would expect if we assume that on average only 1% of
the residues in one sequence have mutated (Dayhoff 1978). By assuming that
further mutations would follow the same pattern and allowing multiple substitutions
at the same site, one can calculate the expected rates of substitution if we assume
on average that 2% of the residues have mutated.This is the PAM2 matrix. Thus all
the PAM matrices are calculated from the PAM1 matrix and are based on an explicit
model of evolution based on point mutations. Matrices were calculated by Dayhoff
up to PAM250.

The PAM approach performs well on closely related sequences but its perfor-
mance declines for more distantly related sequences. The BLOSUM matrices were
derived by Steven and Jorja Henikoff in the early 1990s to address this problem. To
build a BLOSUM matrix, local alignments are made using sequences obtained
from the BLOCKS database. Sequences with a similarity greater than a given cut
off are combined into one sequence producing groups with a given maximum simi-
larity. This reduces any bias caused by large numbers of highly similar sequences
(Henikoff and Henikoff 1992). The value for the cut off is appended to the name of
the matrix, thus the BLOSUMS62 matrix is effectively made by comparing
sequences with less than 62% similarity. As a result BLOSUMSO is a better matrix
to use when aligning closely related sequences than BLOSUM30 which is better



2 Sequence Comparison Tools 17

suited to aligning highly diverged sequences. BLOSUMS62 is the default matrix
used in the BLAST algorithm described below.

2.2.2 Pairwise Sequence Alignment Algorithms

At the base of many sequence comparison tools are pairwise sequence alignment
algorithms. Beginning in the mid 1960s a large number of heuristic algorithms were
suggested for the pairwise alignment of protein sequences. The era of modern sequence
alignment techniques began in 1970 with the publication by Needleman and Wunsch
of a dynamic programming method which could be used to make a global pairwise
alignment of two protein sequences (Needleman and Wunsch 1970). In 1981, Smith
and Waterman extended the ideas put forward by Needleman and Wunsch to create
the local alignment algorithm known as the Smith—Waterman algorithm (Smith
et al. 1981). Both the Needleman—Wunsch and Smith—Waterman methods belong
to a class of algorithms called dynamic programming algorithms. This class of
algorithms can find optimal solutions to problems but can take a long time to run,
especially in complicated cases or for large data sets. These two algorithms are the
most accurate pairwise alignment algorithms in existence. Nearly all of the newer
local pairwise alignment algorithms use a two step approach to reduce the running
time. The first stage uses heuristics to search for areas which have a high probability
of producing alignments. Next, these areas are passed to a dynamic programming
algorithm such as the Smith—Waterman algorithm for true alignment. The most
commonly used two step approaches are FASTP/FASTA, the BLAST family of
algorithms, Crossmatch/SWAT, and BLAT, although there are many others.

Higher order sequence comparison tools often employ pairwise alignment algo-
rithms to judge similarity for use in clustering or assembly, so it is important to
understand how these basic algorithms work and which sequences they are better
suited to. We provide below an overview of the most common pairwise alignment
algorithms.

2.2.2.1 The Needleman—Wunsch Algorithm

This is a highly accurate, dynamic programming based, global pairwise alignment
algorithm. It was originally developed for aligning protein sequences but can also
be used to align DNA sequences. This algorithm aligns two sequences A and B
with lengths m and n residues respectively, by finding a path through a two dimen-
sional mxn array; S. As all mxn values in S must be calculated for every align-
ment, the work needed to align two sequences becomes intractable for large m and
n. For the following example, we assume the use of the simple nucleotide similarity
matrix in Fig. 2.1. First the bottom right cell S_ is assigned the value 1 or 0
depending on whether the base in position m of A matches the base in position n

of B. The cell diagonally above and to the left of this cell; S_, . is given a value



18 M. Imelfort

of 2 if the base in position m — 1 of A matches the base in position n — 1 of B or a
value of 1 otherwise. This is because a match will produce a maximum run of
matches of length 2 for all bases from this point on, whereas a mismatch will
produce a run of at most one match. The algorithm continues working backwards
until every cell has been assigned a value. Finally the algorithm starts from the
highest scoring cell in the array, and finds a path through the array which maximizes
the cumulative sum of the values in the cells visited in the path. The resulting path
represents a maximally matching global alignment.

2.2.2.2 The Smith—-Waterman Algorithm

In 1981 Smith and Waterman extended the ideas presented by Needleman and
Wunsch to create an algorithm which is capable of finding optimal local pairwise
alignments. The method uses a distance metric introduced by Sellers in 1974 which
can be summarized by a matrix similar to the second example in the Fig. 2.1 (Smith
et al. 1981). This algorithm uses a method similar to that of Needleman and
Wunsch; first filling in all the values for an m x n matrix based on the score for
a maximum length run of matches and then finding a path through the matrix.
There are two main differences between the Smith—Waterman algorithm and
the Needleman—Wunsch algorithm. The first is that the matrix is completed
from the top left cell downwards as opposed to the backtracking done by Needleman
and Wunsch. The second is that the path is built by finding the maximal valued
cell in the matrix and then backtracking until a zero is found. The resulting path
represents an alignment of two segments, one from each sequence. Note that while
not all the bases in both sequences are aligned, there can be no other pair of seg-
ments which will produce a higher score. The algorithm was modified by Gotoh to
include affine gap penalties (Gotoh 1982) and is sometimes called the Smith—
Waterman—Gotoh algorithm. This algorithm is without doubt the cornerstone of
modern sequence comparison.

2.2.2.3 SWAT and CrossMatch

Unlike many other fast pairwise algorithms, SWAT does not employ first stage
heuristics to speed up the Smith—Waterman algorithm. Instead, the authors of
SWAT focused on speeding up the code itself by revising recursion relations and
making efficient use of word-packing. This resulted in a significant reduction in the
number of machine instructions executed per Smith—Waterman matrix cell. Thus
they have produced a raw implementation of the Smith—Waterman—Gotoh algo-
rithm which is about one tenth as fast as BLAST. SWAT is normally used to search
query sequences against a sequence database or as an engine in other sequence
comparison tools.

CrossMatch is a general-purpose sequence comparison utility based on SWAT
and is used for comparing sets of DNA sequences. CrossMatch uses the same



2 Sequence Comparison Tools 19

algorithm as SWAT, but allows the use of heuristics to constrain the comparison of
pairs of sequences to bands of the Smith—Waterman matrix that surround one or more
matching words in the sequences. This step reduces the running time for large-scale
nucleotide sequence comparisons without significantly compromising sensitivity.
CrossMatch and SWAT form the kernel of the Phrap assembly program and
CrossMatch is used as the comparison engine in RepeatMasker. Both Phrap and
RepeatMasker are described in more detail below. SWAT and CrossMatch are unpub-
lished software; however, information can be found at: www.genome.washington.
edu/UWGC/analysistools/Swat.cfm.

2.2.24 The BLAST Family of Algorithms

BLAST (Altschul et al. 1990) and its many derivatives are arguably the most widely
used pairwise local alignment algorithms. The BLAST algorithm attempts to heu-
ristically optimize a measure of local similarity called the maximal segment pair
(MSP). The MSP is defined as the highest scoring pair of identical length seg-
ments chosen from two sequences. To enable the reporting of multiple local align-
ments BLAST can also return other locally maximal segment pairs. Put simply, the
speed of the BLAST algorithm is mainly due to its ability to identify and divert
resources away from areas in the query sequences which have very little chance of
producing high scoring alignments. Most BLAST implementations enable the user
to search a pre-compiled database for high scoring segments in a set of query
sequences. The database is created by running the program formatdb which produces
a set of files that have been optimized for size and speed of searching. The algorithm
has three distinct steps. First, using the information in the database and the query
sequence, the algorithm compiles a list of high scoring words of a set length k
(k-mers) from the query sequence. The database is scanned for matches to the
words and where these hits occur, the algorithm tries to extend the hit to the left and
right. BLAST uses a minimum score cutoff when assessing word hit quality to filter
out any hits which could have occurred due to random chance. Note that the BLAST
algorithm is characterized by the creation of k-mer lists for each query sequence
and a linear search of the entire database for words in these lists. The BLAST algorithm
has been highly successful and there are many different implementations available
which have been adapted to better suit particular applications.

2.2.2.5 BLAT

BLAT stands for BLAST-Like Alignment Tool and was developed by James Kent
for use in the annotation and assembly of the human genome (Kent 2002). Kent was
given the task of aligning many millions of mouse genomic reads against the human
genome. He found that when using BLAST, the need to calculate high scoring
k-mer lists for each query sequence and the linear nature of the database search
proved too slow. To solve this problem, BLAT creates an indexed list of all possible



20 M. Imelfort

non-overlapping k-mers from sequences in the database. BLAT then compiles a list
of all overlapping k-mers from each query sequence and attempts to find these in
the database. In the regions where multiple perfect hits occur, BLAT performs a
Smith—Waterman alignment of the two sequences. This allows BLAT to maintain
relatively high sensitivity, although it must be noted for example that TBLASTX
can be configured to be more sensitive to distant relationships than BLAT. The
reduced sensitivity is compensated for by the fact that BLAT can be run up to 50
times faster than TBLASTX (Kent 2002).

2.2.3 Multiple Sequence Alignment Algorithms

It is often necessary to produce an alignment of a group of three or more sequences.
Examples include the comparison of the evolutionary distances between protein
sequences, the evaluation of secondary structure via sequence relationship, or the
identification of families of homologous genes. Efforts have been made to extend
dynamic programming pairwise alignments to handle three or more sequences
(Murata et al. 1985). However, the computational complexity of handling more
than 4 sequences proved too much for the available computing power. Many modern
multiple alignment algorithms use a method first suggested in 1987 by Feng and
Doolittle called the progressive method (Feng and Doolittle 1987). The underlying
assumption used in constructing the progressive method is that sequences with a
high level of similarity are evolutionarily related. Given a set of sequences to be
aligned, Feng and Doolittle use the Needleman—Wunsch pairwise alignment algo-
rithm to calculate rough evolutionary distances between every pair of sequences
and these are used to create a reference phylogenetic tree. Starting from the two
closest branches on the tree, a pairwise alignment is made and a consensus sequence
is produced which is used as a substitute for the branch. This is continued for
the next closest pair of branches until all the sequences have been added and the
alignment is complete.

The intermediate pairwise alignments may include two of the query sequences,
one query sequence and one consensus sequence or two consensus sequences. It is
important to note that the order in which sequences are added will affect the ultimate
alignment and it is very difficult to repair the damage caused to the overall quality
of an alignment if a less than optimal choice is made early on. However, algorithms
such as MUSCLE attempt to do this. The use of a reference tree helps ensure that
closely related sequences are aligned before distantly related sequences. Thus the
progressive method utilizes a greedy algorithm. Feng and Doolittle stressed the point
that any gaps added to the alignment in earlier stages must remain, creating the rule
“once a gap, always a gap” (Feng and Doolittle 1987). This ensures that distantly
related sequences cannot disturb meaningful alignments between closely related
sequences, however some implementations of the progressive method do not follow
this rule. Finally it is important to note that the reference tree should not be used to
infer phylogenetic relationships, as there is a high probability that the tree is erroneous



2 Sequence Comparison Tools 21

(in that sense). However, a new tree (or set of trees) can be made with the resulting
multiple alignment and this can be used to study phylogeny. There are a number of
multiple alignment algorithms based on the progressive method. The most widely
used are the CLUSTAL family of algorithms, MUSCLE and T-Coftee.

2.2.3.1 The CLUSTAL Family of Algorithms

The CLUSTAL family of multiple alignment algorithms includes the original
program CLUSTAL as well as CLUSTAL V and CLUSTAL W. All of the CLUSTAL
derivatives are based on the progressive method (Higgins and Sharp 1988; Higgins
et al. 1992; Thompson 1994). The original CLUSTAL package was released as a
collection of different pieces of software with each one performing one stage of a
progressive alignment. CLUSTAL V was a rewrite of this system which combined
all the packages into one program. CLUSTAL W is a further update to CLUSTAL
V which incorporates sequence weighting, position-specific gap penalties, and
weight matrix choice. For the rest of this section we describe only the features of
CLUSTAL W.

Highly similar sequences will be positioned very closely on the reference tree
and consequently will be added to the alignment much earlier than divergent
sequences. Too many highly similar sequences in the query set can create bias in
the topology of the reference tree which can lead to future alignment errors
(Higgins and Sharp 1988). Sequence weighting attempts to reduce this bias by
down-weighting groups of similar sequences and up-weighting divergent sequences.
This feature reduces the negative impact that the topology of the reference tree can
have on the final alignment (Thompson 1994). When the algorithm starts, it can use
gap penalties and substitution matrices as supplied by the user. CLUSTAL W
provides a choice of PAM or BLOSUM matrices with the default being BLOSUM.
As the algorithm progresses, CLUSTAL W adjusts the gap penalties according to
the position, content (hydrophilic or hydrophobic regions) and length of the
sequences. CLUSTAL W also adjusts the weight of the substitution matrix based
on the estimated evolutionary distances obtained from the reference tree. These
additions to the CLUSTAL algorithm reduce the negative impact of sub-optimal
parameter choices made by the user.

CLUSTAL W is the most widely used multiple sequence alignment algorithm
and represents an acceptable balance between speed and accuracy. The next two
algorithms are faster and more accurate respectively. The first, MUSCLE, sacrifices
some accuracy for significant gains in speed, while the second, T-Coffee, makes
significant gains in accuracy for a modest sacrifice in speed.

2.2.3.2 MUSCLE

MUSCLE is a very fast multiple sequence alignment algorithm based on the
progressive method. The algorithm is split into three phases. The first is typical of a



22 M. Imelfort

progressive algorithm except that instead of using an alignment algorithm to generate
the reference tree and evolutionary distances, MUSCLE employs the faster method
of k-mer counting to judge similarity (Edgar 2004). Once the preliminary tree has
been built, MUSCLE progressively adds sequences to the multiple alignment
following the branching order, with closer branches being added first. At this stage,
a new tree can be constructed and the progressive alignment can be returned to
the user. The second phase seeks to improve the results of the first by iteratively
constructing progressive alignments in the same manner as the first stage but using
the most recent tree generated from the previous progressive alignment. At the end
of each iteration, a new tree is made for use in the next round or phase. The third and
final phase performs iterative refinement on the tree produced in the second phase.
At each iteration, the tree is first separated into two pieces by removing an edge.
Superfluous indels (insertions or deletions) are removed from each of the partial
multiple alignments and then the tree is rejoined by re-aligning the partial multiple
alignments. MUSCLE can produce multiple alignments achieving accuracy similar
to CLUSTAL W but two to three orders of magnitude faster. Thus MUSCLE is
suited to fast alignment of large sequence datasets.

2.2.3.3 T-Coffee

Nearly all progressive based multiple alignment algorithms employ a greedy
algorithm for adding sequences to the alignment. Unfortunately, errors can occur
if the sequences are added in a less than ideal order. T-Coffee is an implementation
of the progressive method which attempts to rectify some of the problems associ-
ated with the greedy approach to progressive alignment while minimizing speed
sacrifices. To achieve this, T-Coffee first builds a library of both global and local
pairwise alignments between all the query sequences. T-Coffee uses the progressive
method, but in contrast to the algorithms described above, it attempts to consider
the effects on every query sequence for each sequence being added. This approach
seems to have worked as, on average, T-Coffee produces more accurate alignments
than the competing algorithms (Notredame et al. 2000). However, this comes at
the cost of increased running time, so T-Coffee may not be suited to the task of
aligning large datasets.

2.3 Filtering, Clustering, and Assembly

This section covers the area of sequence filtering and the related areas of sequence
clustering and sequence assembly. There is a great deal of overlap in the methods
used for both sequence assembly and clustering. Pre-filtering reads and masking
low complexity areas can improve the performance of assembly and clustering
algorithms and is often a first step in many assembly/clustering pipelines.



2 Sequence Comparison Tools 23

2.3.1 Filtering and Masking

The first phase for many sequence comparison algorithms is filtering or masking
regions whose presence will reduce the efficacy of tasks further down the pipe-
line. For example, consider the process of automated sequence annotation. One
task involves querying the sequence to be annotated against a database of
sequences with high confidence annotations (usually performed by making pair-
wise alignments). If the query sequence contains a substring which is common to
many, largely unrelated or loosely related sequences, then the algorithm may
return a large number of matches to sequences in the database which do not
reflect meaningful annotations. These common elements are usually called
repetitive, repeats or low complexity sequences. For sequence assembly, finding
overlaps between reads is a fundamental task, and spurious overlaps caused by
low complexity sequences can severely impede an assembly program’s ability to
produce accurate contigs.

Masking repetitive regions usually involves replacing all of the nucleotide bases
in the repetitive region with another generic character, usually an “X” or an “N.”
The majority of assembly and alignment programs ignore these characters by
default. In this way, results made by comparing masked sequences are usually more
accurate than those where masking has not been performed. Masking can also
decrease the running time of sequence comparison algorithms by reducing the
number of possible alignments.

Another form of pre-filtering is sequence trimming. Often DNA sequences will
begin, and possibly also end, with nucleotide bases from the vector used in the
cloning stage, and for many different types of reads, the quality of the data
decreases towards the end of the sequence read. An easy way to overcome these
problems is to trim the ends of the sequence reads. There are a number of programs
which can be used to trim sequences, however they are not discussed here. Finally,
reads which contain low amounts of information can simply be removed from the
data set, for example if the majority of the read consists entirely of As or Ns. When
raw quality values are available, it is also common to simply discard reads whose
overall quality is below a certain threshold.

2.3.1.1 RepeatMasker

RepeatMasker screens DNA sequences for interspersed repeats and low complexity
DNA sequences. The output of the program is a detailed annotation of the repeats
present in the query sequence as well as a modified version of the query sequence
where all the annotated repeats have been replaced by Ns or Xs. RepeatMasker
draws information about which regions are repetitive by comparing the query
sequences to a curated database of repeats. RepeatMasker uses CrossMatch for this
task (Smit et al. 1996)



24 M. Imelfort

2.3.2 Sequence Clustering

With the quantity of sequence data contained in online repositories increasing at an
accelerating pace, tools that can cluster related sequences into meaningful groups
provide a way for researchers to efficiently sort through and make sense of this
mountain of data. Many researchers are interested in clustering reads from
expressed sequence tag (EST) datasets in the hope of identifying the full length
genes which the ESTs represent. Another application of clustering is the identifica-
tion of single nucleotide polymorphisms (SNPs). Clustering is often used to reduce
redundancy in a dataset. For example, the BLOSUM substitution matrices use
clustering of similar sequences as a first step to reduce the negative effect caused
by including too many highly similar sequences. Clustering can also be useful as a
first step in sequence assembly pipelines. Sequence assembly programs will often
perform significantly better when run multiple times on sets of closely related
sequences than when attempting to assemble the whole data set as one chunk. This
approach can also significantly reduce the running time of the assembler. Clustering
algorithms typically take as input a set of reads to be sorted and input parameters
specifying the degree of similarity required for reads to be grouped together. The
output is a grouping of the reads that match these criteria.

Most clustering algorithms use an agglomerative approach. At the start of the
algorithm, each sequence is effectively in its own group. The algorithm succes-
sively merges groups if the similarity criteria are met, and repeats this process until
no more merges are possible. These final merged groups are then returned to the
user. Depending on user input or the algorithm itself, two groups will be merged
when there exists a single pair of sequences (one sequence from each group) which
match the similarity criteria. This is referred to as single linkage clustering or
transitive closure. It is sometimes possible to raise the minimum number of pairs
needed for merging to occur. If every possible pair of sequences from both groups
must match the similarity criteria for merging to occur then this is called complete
linkage clustering. Complete linkage clustering typically produces many small,
high quality clusters, whereas single linkage clustering typically produces fewer,
larger, lower quality clusters. Depending on the application, one approach may be
more favorable than the other.

The similarity criterion for clustering is usually stated in terms of the minimum
overlap and minimum percentage identity. This is sometimes augmented by limiting
the maximum number of mismatches allowable. There are two main approaches
available to find overlaps. The first uses information gathered from successive
pairwise alignments, effectively looking at the edit distance, the number of mutation
events needed to describe the distance. The second uses a k-mer counting approach,
where the presence of multiple identical words is used to infer an overlap. Both
methods perform well, but the k-mer counting approach has been proved to handle
sequencing errors better. Furthermore, the k-mer counting approach can be imple-
mented in linear time whereas the edit distance approach can only be as fast as the
underlying alignment algorithm, which in the case of Smith—Waterman is quadratic,



2 Sequence Comparison Tools 25

and slightly better for BLAST-like algorithms. Two popular clustering algorithms are
WCD (Hazelhurst et al. 2008) and d2_cluster (Burke et al. 1999).

2.3.3 Sequence Assembly Overview

The greatest challenge to sequencing genomes is the vast difference in scale between
the size of the genomes and the lengths of the reads produced by the different
sequencing methods. While there may be a 10-500-fold difference in scale between
the short reads produced by next generation sequencing and modern Sanger sequenc-
ing, this still dwarfs the difference between the Sanger read length and the lengths
of complete chromosomes. For example, human chromosomes vary between 47 and
245 million nucleotides in length, around 50,000-250,000 times longer than the
average Sanger reads. For all technologies, the challenge is the assembly of sequence
reads to produce a representation of the complete chromosomes. Whether this chal-
lenge is significantly greater for short reads is being hotly debated.

The first sequence fragment assembly algorithms were developed in the early
1980s. Early sequencing efforts focused on creating multiple overlapping align-
ments of the reads (typically the Sanger sequence reads) to produce a layout assem-
bly of the data. A consensus sequence is read from the alignment and the DNA
sequence is inferred from this consensus. This approach was referred to as the
overlap-layout-consensus approach and culminated in a variety of sequence assem-
bly applications such as CAP3 and Phrap. Previous generation DNA sequencing
has produced relatively long, high quality reads which were amenable to assembly
using the overlap-layout-consensus approach.

From the late 1980s to the mid 1990s research began to focus on formalizing,
benchmarking, and classifying fragment assembly algorithm approaches. Three
papers, (Pevzner 1987, Myers, 1995, Idury and Waterman 1995) formalized the
approach of placing sequence reads or fragments in a directed graph. Myers
focused on formalizing the traditional overlap-layout-repeat method while Pevzner
and Idury and Waterman developed a new method for solving the assembly problem.
While both methods involved the construction of graphs, they differed in that
whereas the fragments in Myers graph (Myers 1995) are represented as nodes, the
fragments in Pevzner’s and Idury and Waterman’s graphs (Pevzner 1987; Pevzner
2001; Idury and Waterman 1995) are represented as edges.

2.3.3.1 The Overlap Graph Method

The overlap graph method was formalized by Myers in 1995 (Myers 1995) and is
referred to here as the Myers method. In this graph, each vertex represents a read
or fragment, and any two vertices are joined by an edge if the two fragments
overlap (often imperfectly with some level of significance set by the user). Next,
the graph is simplified by the removal of transitive edges and contained nodes



26 M. Imelfort

-— ACCGGC

-_— CCGGCT
-— CGGCTG
-— GGCTGA
—-— GCTGAG

Fig. 2.2 Removal of transitive edges from the overlap graph. (a) The original graph with numbers
depicting offsets in the alignment of equal length reads. The dashed lines are transitive edges.
(b) The simplified graph. (¢) The short reads and their alignment as given by the graph yields
the sequence ACCGGCTGAG

Fig. 2.3 The collapsing of linearly connected sub graphs into single nodes greatly reduces the

complexity of the overlap graph. (a) The original graph which contains linearly connected sub
graphs. (b) The simplified graph with white nodes representing “chunks”

which add little or no information. The removal of transitive edges is shown in
Fig. 2.2. Contained nodes occur when the graph is made from reads of different
lengths and one read is completely contained within another.

Finally, chains of nodes or linearly connected sub graphs are collapsed into
“chunks” which themselves are treated as single nodes in the graph. This is shown
in Fig. 2.3. These graph simplification methods are very effective for reducing the
computational complexity of assembly and many modern day algorithms employ
these methods. Once the graph has been simplified, the Myers method finds a maxi-
mum likelihood non-cyclic (Hamiltonian) path through the graph and infers the
layout of the fragments from this path.

2.3.3.2 The Eulerian Path Method

Idury and Waterman proposed an algorithm which could be used to assemble data
generated in sequencing by hybridization (SBH) experiments (Idury and Waterman
1995). Although the mathematics for it was developed by Pevzner in 1989 (Pevzner
1989), this is the first algorithm developed using this approach. We refer to the
combined ideas of Idury and Waterman and Pevzner as the IWP method. The main
application of SBH is now gene chips and not genome sequencing, but the ideas
described in the IWP model can be seen in a number of sequence assembly algorithms,
most notably the EULER algorithms developed by Pevzner in 2001 (Pevzner
2001). In Idury and Waterman’s algorithm, sequence fragments are broken down



2 Sequence Comparison Tools 27

into every possible read of some length k (k is very small, approximately 10 bases)
referred to as k-tuples. The set of all k-tuples found is often referred to as the
spectrum of reads (Pevzner 2001). In Idury and Waterman’s model, assembled
sequences are represented as paths through a de Bruijn graph where each node in the
graph is a k-1 tuple. Two nodes X and Y are joined by a directed edge if there exists
aread R in the spectrum where the first k-1 bases of R match X and the last k-1 bases
in R match Y. Thus it follows that if two edges are adjacent in the graph they will
have a perfect overlap of k-1 bases. It is important to note that this model only
finds perfect overlaps, while the Myers method can accept imperfect overlaps.
An example of such a de Bruijn graph is shown in Fig. 2.4. Here the graph is for
the sequence CAGTCGAGTTCTCTG with k equal to 4. Erroneous reads cause
the inclusion of extra edges which can cause “tangles” in the graph. The dashed edge
from TTC to TCG is due to the erroneous read TTCG being included in the spec-
trum. Idury and Waterman (Idury and Waterman 1995) describe a number of graph
simplifications which can remove errors from the graph.

Assembly is achieved by finding an Eulerian path in the de Bruijn graph. That
is a path which visits every edge exactly once. It is well known that the problem of
finding Hamiltonian paths in a graph is NP hard whereas the problem of finding
Eulerian paths is relatively easy. However, the theoretical advantage that the IWP
method seems to have over the method of Myers has not translated into great
computational or time savings. This is mainly due to the fact that heuristics have
been employed to speed up the latter. The main problem with the Eulerian Path
approach is that errors in real data cause the inclusion of extra edges, causing
tangles. When there are too many errors in the data, the graph becomes entangled,
and as a result the algorithm cannot be scaled up. An example of how erroneous
reads cause graphs to become entangled is given in Fig. 2.4. In 2001, Pevzner
successfully applied the method of Idury and Waterman to read sets with errors by
developing an error correction algorithm which could reduce the number of errors
by approximately 86% (Pevzner 2001). Pevzner introduced a number of transfor-
mations which simplify the graph and these transformations have a conceptual overlap
with Myers simplifications. One transformation replaces a number of consecutive
edges by one edge, in a way which mimics the collapse of linearly connected sub
graphs described above. This process of edge formation/simplification is performed

Fig. 2.4 A de Bruijn graph for the sequence CAGTCGAGTTCTCTG. The erroneous read TTCG
has been included in the spectrum causing the inclusion of the dashed edge. Erroneous edges
cause the graph to become entangled



28 M. Imelfort

at the beginning of the assembly so that only the minimal number of edges possible
need be processed.

The two methods described above have formed the foundation for modern assem-
bly approaches, and all modern sequence fragment assemblers include variations of
these concepts, and in some cases algorithms may borrow from both methods.

2.3.3.3 Problems of Assembling Complex Genomes

One challenge of genome sequencing lies in the fact that only a small portion of the
genome encodes genes, and that these genes are often surrounded by repetitive DNA
which is comparably information poor. Large repeats can cause ambiguity with frag-
ment assembly and thus pose the greatest challenge when assembling genomic data.
In Fig. 2.5, we know that regions B and C are surrounded by identical repetitive
regions X and that both regions lie between regions A and D, but without more
information, it is impossible to know the correct ordering of B and C.

The traditional method to overcome the problems created by large repeats when
assembling sequence reads is to increase the read length to such a point that every
repeat is spanned by at least one read. In practice however, this is simply not pos-
sible as these repeats are frequently longer than the current Sanger read length.
Modifications to the original shotgun method that attempt to overcome this prob-
lem try to increase the “effective” read length. These include using paired end
sequencing, where DNA fragments of known approximate size are generated and
sequenced from both ends. Information about these pairs such as average fragment
size and the orientation of reads with respect to the read pair is included in the
assembly process (Pevzner 2001). If the distance between the paired ends, known
as the insert size, is large enough, then there is a high probability that repeats will
be spanned by a pair of reads (or mates) which can remove ambiguity from the
assembly. For example, if paired end data is analyzed and region B is found to have
mates in regions A and C but not D, while region C has mates in regions B and D
but not A, then an ordering can be inferred. This is shown in Fig. 2.6. Note that
if the insert size was too large and paired ends from B reached over to region D
while the paired ends of C reached over to region A there would still be doubt as
to how these reads should be arranged. There is also a problem if the insert size is too
small and paired reads do not reach past the repetitive region. To address these
issues, a number of different size fragment libraries are often used.

I pin ailn ai
I il s nb

Fig. 2.5 An example of how repeats cause ambiguity in assembly. Because both fragments B and
C are surrounded by repetitive region X, there is no way to know their ordering in the assembly

0




2 Sequence Comparison Tools 29

LN \‘\ Fa a

Fig. 2.6 Resolution of ambiguities using paired end data. Solid edges indicate overlaps while
dashed edges show links between reads in a region and the region(s) containing the paired mate

Errors in data further exacerbate the problem of resolving repetitive regions as
it is often difficult to differentiate between reads from slightly different repetitive
regions and reads from the same region that contain errors. This can cause a prob-
lem called over-collapsing, where multiple copies of a repeat will be assembled on
top of each other. Although we would expect a significant increase in read depth for
contigs, which are made from over collapsed regions, the read depth is frequently
variable across the genome and is therefore an unreliable indicator of repeat
regions. Both paired end data and various statistical methods have been applied in
an attempt to solve the problem of assembling short read sequence data and these
are described in more detail below.

2.3.4 Traditional Fragment Assembly Algorithms

For many years, the vast majority of DNA sequence data has been produced using
variations of the chain termination method first introduced by Sanger in 1977 (Sanger
et al. 1977). The Sanger sequence reads are typically 700—1,000 bases long and of
high quality. The individual nucleotide bases in a sequence file is called, based on
information found in a chromatogram, a trace file which is produced by the automatic
sequencing machines. Phred is the most commonly used base calling software pack-
age (Ewing et al. 1998), and the two most commonly used programs for assembling
the Sanger sequence data are Phrap and CAP3. Both programs make use of Phred
generated quality scores when performing the assembly, although this data can be
omitted if it is not available. Aside from being used to assemble data generated in
large scale genome sequencing projects, these programs have also been used to
assemble EST sequence data. Both Phrap and CAP3 use variations of a Myers-like
approach to fragment assembly, though Phrap deviates from this standard template
in the final consensus phase.

2.3.4.1 Phrap

Phrap stands for “phragment assembly program” or “Phil’s revised assembly
program” and is used for assembling shotgun DNA sequence data. Unlike many
other assemblers, Phrap makes use of the whole read and not just the trimmed high
quality portion. Phrap can be provided with a mixture of machine generated and



30 M. Imelfort

user supplied quality data to assist in making reliable contigs. One aspect which
sets Phrap apart from many other Myers type algorithms is that Phrap returns contig
sequences which are mosaics of the highest quality parts of reads rather than a
consensus or majority vote.

Phrap searches for reads with matching words and then does a SWAT compari-
son between pairs of reads with this property. This allows Phrap to efficiently
make use of the very accurate Smith—Waterman algorithm encoded in the SWAT
algorithm. This first stage identifies all potential overlaps. The next stage effec-
tively masks vector sequences. This stage also identifies near duplicate reads,
reads with self matches, and reads which have more than one significant overlap
in any given region. These steps help Phrap to deal with repetitive elements.
Phrap then constructs contig layouts based on strong pairwise alignments using a
greedy algorithm and from these layouts produces the contigs. Finally, Phrap
aligns reads to the contigs identifying inconsistencies and possible misassembled
sites. Phrap returns Phred-like quality scores for each base in the contig based on
the consistency of the pairwise alignments at that position (http://www.phrap.org/
phredphrap/phrap.html).

2.342 CAP3

CAP3 is the third generation of the CAP assembly algorithm and was released in
1999 (Huang and Madan 1999). CAP3 uses a Myers-like method which makes
extensive use of quality values and paired read data. The overlap stage begins by
using a BLAST-like algorithm to identify areas where detailed local alignments are
produced using a modified version of the Smith—Waterman algorithm which
weights the substitution matrix at each position using the quality scores at the bases
concerned. Where CAP3 differs from other algorithms is in the way that these
overlaps are then validated. First, CAP3 identifies good regions in a read. A good
region is a run of nucleotide bases with high quality scores and which share an
overlap with a region in another read which also has high quality scores. CAP3 uses
the good regions to identify which bases to trim from the ends of the reads. Once
the good regions have been identified, CAP3 produces a global alignment of the
reads previously identified as having local alignments and attempts to identify
inconsistencies in the global alignments between good regions. There are a number
of criteria each overlap must satisfy and any overlaps which do not meet all the
criteria are discarded. This completes the overlap stage. CAP3 then uses a greedy
algorithm to produce a layout of the reads which is validated by checking whether
the paired read data (if supplied) produces any inconsistencies. Finally, the reads
are aligned to the layout and a consensus produced. CAP3 also produces Phred-like
quality scores which are returned to the user. In benchmarking, CAP3 generally
produces better quality, shorter contigs than Phrap due to the strict methods for
creating contigs (Huang and Madan 1999). However, CAP3 relies heavily on paired
end data and even more so on quality values, and may not perform as well if given
raw sequence data alone.



2 Sequence Comparison Tools 31

2.3.5 Short Read Fragment Assembly Algorithms

Several assemblers have been developed for short sequence reads, these include
Edena, Velvet, EULER SR, SASSY and ALLPATHS. All of these algorithms
borrow from the Myers or IWP models described above either implicitly or explicitly,
and there are many similarities between the different algorithms in terms of their
overall structure. Most algorithms are divided into up to five stages which include
some or all of the following procedures: read error correction, read filtering, naive
assembly, refining of naive assembly (using paired end data if available), and finish-
ing. To understand what a naive assembly is we need to define the terms consecutive
and linearly connected. Two reads A and B are consecutive if they overlap (either
the first k bases in A match the last k bases in B or vice versa) and for a graph with
no transitive edges, two reads A and B are linearly connected if they are consecutive
and there exists no read C which is consecutive with A on the same side as B or with
B on the same side as A. For naive assembly, we mean that starting with some read
R we can try to extend that read (on one side) by examining the consecutive reads
(on that side). If there is only one candidate, then the read can be extended in the
direction of the overlap by the bases which are overhanging. This process mimics
the collapsing of linearly connected sub graphs in the Myers model or edge forma-
tion in the IWP model. Thus, any string of linearly connected reads can be concat-
enated into one long read. For a given read there may be more than one candidate to
extend with, and in this case the extension stops. Similarly, the extension stops when
there are no candidates. The case where there is more than one candidate can be
caused when the extension reaches the boundary of a duplicated or repetitive region
in the genome or as happens much more frequently, it can be caused by errors in the
data. If all possible extensions have been made for all available reads, then the result-
ing set of extended reads represents a naive assembly. The accuracy of this assembly
declines rapidly as both the error rate and the complexity of the organism being
sequenced increase (Chaisson et al. 2004; Whiteford et al. 2005).

2.3.5.1 Edena

Edena, released in 2008 (Hernandez et al. 2008), is the first short read assembly
algorithm to be released which uses the traditional overlap-layout-consensus
approach. Edena does not include an error correction phase before graph production,
which leads to the formation of a messy sequence graph; however it does include a
three step error correction phase which cleans the graph before assembly begins. The
first phase of the algorithm removes duplicate reads, keeping only the original read
and the number of times it has been seen. Next it uses the reads to construct an over-
lap graph where the reads are represented as nodes. Two nodes are joined by an edge
if there is an overlap between them larger than a set minimum (defined by the user).
Once this graph has been built, it contains many erroneous edges which have to be
removed. First it removes transitive edges in the graph in the same manner as
described by Myers (Myers 1995). Following this, all dead end paths are removed.



32 M. Imelfort

TAAAGCTAGGCTACCAT

D (Y D D G Gl D e G Cata G Gl

AAGCTAT CTATGCT ATGCTAC TGCTACC
TAAAGCTATGCTACCAT

Fig. 2.7 An example of a P-bubble most likely caused by an error. The reads making up the lower
sequence will typically have a low copy number and the overlaps are very short. However, this
phenomenon can also be caused by low copy number repeats

A dead end path is a series of consecutive nodes shorter than 10 reads in length which
is attached to the main body of the graph on one side and to nothing on the other.
These paths are caused when areas are sequenced with very low coverage, causing
breaks in the sequence of consecutive reads, or when a series of errors combine to
make a series of consecutive reads. Finally, the algorithm removes what are called
P-bubbles. These occur when there are two regions which are identical except for a
one base difference. In the case where this is caused by single nucleotide polymor-
phisms (SNPs) in repetitive regions, we would expect each side of the bubble to have
a similar topology and copy number. Where a P-bubble is caused by an error, we
would expect to see one side of the bubble with a very sparse topology and signifi-
cantly lower copy number. Figure 2.7 gives such an example.

When P-bubbles are found, Edena removes the side with the lowest copy
number/sparsest topology. Hernandez points out that P-bubbles may be caused
by clonal polymorphisms which would account for the low coverage and sparse
topology observed (Hernandez et al. 2008). However, as Edena does not take
paired end information into account, the method used for eliminating P-bubbles
will most certainly cause over-collapsing of low copy-number repetitive regions.
Once the graph has been cleaned using the three operations described above, a
naive assembly is formed and the resulting contigs are returned to the user.

2.3.5.2 Velvet

Velvet is the name given to the collection of algorithms that assemble short read
data which were released by Zerbino in 2008 (Zerbino and Birney 2008). Velvet
uses an IWP model to make the initial graph. Like Edena, Velvet does not include
an initial error correction phase but instead uses a series of error correction
algorithms to clean up the resulting graph. These algorithms work in a method
analogous to the error correction phase in Edena (Hernandez et al. 2008), where
tips are removed and then bubbles. In Velvet, tips are removed only if they are
shorter than 2k, where k is the read length. Unlike Edena, Velvet uses an Eulerian
path approach, which although highly efficient in terms of memory use, appears to
further complicate the P-bubble removal step. Velvet includes an algorithm called
Tour Bus which traverses the graph looking for P-bubbles, and when they are
found, uses a combination of copy number and topographical information to
remove the erroneous edges. Velvet then assumes that all low copy number edges



2 Sequence Comparison Tools 33

that remain must be errors and removes them from the graph. Like many of the
algorithms described here, Velvet does not make use of paired read information and
therefore has an increased probability of over-collapsing repetitive regions.

2.3.5.3 Euler SR

There have been many iterations of the original EULER algorithm developed by
Pevzner in 2001 (Pevzner 2001). The latest addition to the EULER family is EULER
SR which is a version of EULER optimized to handle short reads (Chaisson and
Pevzner 2008). The algorithm described by Idury and Waterman did not include a
step for filtering or correcting errors, however it did include a number of graph
simplifications which could be used to reduce the impact of errors. Unfortunately,
this method could not scale up to handle the large amounts of error present in real
data. The original EULER algorithm was designed as an implementation of the
Idury and Waterman algorithm, but included a novel method for error correction.
A short read is broken down into a number of even shorter k-tuples which are stored
in a database. In the case when the dataset contains no errors then we would expect
that the k-tuples generated for a particular read R would appear a number of times
in the database, as all reads overlapping with R would also contain some number
of these k-tuples. Pevzner describes a read as “solid” if all of its k-tuples appear
at least n times (where 7 is set by the user) or “weak” otherwise. When used with
real data, if a read has been classified as weak, the algorithm tries to find the mini-
mum number of base changes which will change its classification to strong. If that
number is less than d (where d has been set by the user) then the changes are made,
otherwise the read is discarded. Pevzner shows that this method corrects over 86%
of errors with very few false positives for the dataset he analyzed (Pevzner 2001).
This represents the most sophisticated and efficient approach for error correction of
short reads that has been developed thus far. EULER SR builds on the original
EULER algorithm and contains optimizations to make it more memory efficient, a
property which is necessary for the vast amount of data produced by short read
assemblers. Interestingly, in testing EULER SR, a hybrid approach was assessed
where short read data was combined with longer Roche 454 read data. It was found
that there was no significant improvement in assembly for the majority of reads
(Pevzner 2001), which is contrary to most of the current opinion in this field. After
the errors have been removed, a graph is built and a set of contigs produced by
naive assembly is returned to the user.

2.3.54 SASSY

We are currently developing an assembly algorithm called SASSY which is based on
a Myers like method that incorporates paired end data. SASSY is being developed
primarily to assemble eukaryotic sequences of around 100-200 Kbp in length cloned
into BACs. While SASSY shares many similarities with the software described



34 M. Imelfort

above, there are a number of key differences. We have developed a novel iterative
approach to graph construction which removes the need for some of the simplifica-
tion steps typically needed for this type of implementation. We aggressively filter
the data set, flagging up to approximately 90% of the reads which are set aside to
be used only in later stages. With the remaining reads we construct a first round
naive assembly using only reads which have an overlap of at least k — t nucleotide
bases, where k is the read length and ¢ is very low (usually 2 or 3). The advantage
of using this approach is that erroneous areas of the graph usually have a sparse
topology and the number of common bases between any two reads in these areas is
usually much lower than for reads in correct areas of the graph. Thus, assemblies
generated in the first round represent high confidence assemblies, however their
length is typically very short, with an N50 of less than 50 bases for Applied
Biosystems SOLIiD reads and slightly longer for Illumina Solexa reads. It should
be noted that the longest contigs produced from this preliminary assembly are
typically 4,000-12,000 bases long. These longer contigs are used to identify stable
areas in the overlap graph. The next stage involves building a new overlap graph
which explicitly combines the overlap data in the original graph with the paired
read data. Normally this would be difficult because of the repetitive nature of the
data, but by starting the graph building in stable areas, many of the problems asso-
ciated with repeats are resolved. Thus we use the naive contigs only as a guide
instead of trying to extend them, which is the case for the other algorithms described
in this section. Following the construction of the overlapping graph, we align all
the reads flagged in the filtering stage to the assembled contigs. We examine the
distribution of the insert size for the mapped reads to identify erroneous assemblies
which are repaired where possible or flagged as conspicuous in the case when there
is no obvious resolution. Finally, new contigs are built from the new overlap graph
and these are returned to the user. SASSY is being developed to make optimal use
of local topology and paired end data in order to avoid the problems of over-
collapsing repetitive regions or unnecessarily breaking contigs when errors are
present in the data. This software is currently still in a developmental stage; however,
initial test versions promise to overcome many of the limitations inherent in current
small read assembly software.

2.3.5.5 ALLPATHS

ALLPATHS is another recent addition to the collection of short read assemblers
based on an IWP model (Butler et al. 2008). ALLPATHS begins by correcting
errors using an EULER like method, and then makes a large set of naive assemblies
which are referred to as “unipaths.” At this stage, ALLPATHS leaves the model
followed by EULER, and uses paired read information to sort unipaths into local-
ized groups which can be worked on individually and in parallel. For each localized
set of unipaths, ALLPATHS chooses paired reads which lie in the set, and proceeds
to work out every path of consecutive unireads which could possibly be followed
from the read to its mate. Once this is completed, the number of paths is trimmed



2 Sequence Comparison Tools 35

down using localization information and other statistical methods until, ideally, only
one path remains. This method reduces the complexity in the overall sequence graph
by making local optimizations, allowing many shorter unipaths to be condensed into
longer unipaths. Once the long unipath generation has been completed separately,
the results from the local optimizations are stitched together to produce one long
sequence graph. One limitation of this algorithm is its sensitivity to the standard
deviation of the fragment length used to make the paired sequence reads. Butler
notes that in some cases, a large number read-mate pairs generate over 10° possible
paths, and in some cases more than 107 possible paths are generated, which causes
ALLPATHS to return erroneous unipaths (Butler et al. 2008). The final phase incor-
porates both read pair information and statistics to identify erroneous assemblies,
and if possible it tries to fix them. The most unique aspect of ALLPATHS is that no
information is discarded at any stage in the algorithm which improves the ability to
repair errors in the final phase. Unlike every other algorithm described here it returns
the entire graph to the user as opposed to just the contigs.

2.4 Discussion

There are many branches of research into sequence comparison (more than have
been covered here) with varying levels of complexity. The amount of effort being
spent on solving different branches has continuously shifted as computational
power has increased and the nature of the data being produced has changed.
For example, multiple sequence alignment algorithms only started to receive wide-
spread attention from the mid 1980s, almost 20 years after the merits of different
phylogenetic tree making algorithms were being heavily debated, and many years
after efficient algorithms had been produced for pairwise alignments. Pairwise
sequence alignment has long been the base currency of sequence comparison, but
graph theoretical methods; in particular k-mer distance methods and k-mer group-
ing/sorting have been demonstrated to be valuable for increasing the speed at which
analysis can be performed. The typically long and accurate sequence reads
produced using the Sanger sequencing method have been largely replaced (in terms
of volume of data being produced) by next generation sequencing methods which
produce copious amounts of largely error laden data, and the current focus of
bioinformatics in this area has been to develop algorithms that can accurately
assemble this data into long stretches of sequence. Again, graph theoretical
approaches have proved valuable. Progress in the area of sequence assembly has
only been feasible using computing power developed in recent years, although it
should be noted that more than 40 years after the birth of comparative algorithms,
the lack of ever greater computing power remains the main hindrance to progress.
As an example, the original implementation of CLUSTAL was tested on a 10 MHz
microcomputer (PC) with only 640K of memory, while the current iteration of the
program SASSY was developed using an 8 core (1.8 GHz per core) cluster with
access to 16 GB of memory and almost unlimited hard disk space. There is a clear



36 M. Imelfort

trend that advances in computing hardware continue to spur development of ever
more sophisticated comparison algorithms, allowing researchers greater insight
into comparative genomics and the workings of the biological world.

References

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool.
J Mol Biol 215:403-410

Bentley DR (2006) Whole-genome re-sequencing. Curr Opin Genet Dev 16(6):545-552

Burke J, Davison D, Hide W (1999) d2_cluster: A validated method for clustering EST and full-
length cDNA sequences. Genome Res 9:1135-1142

Butler J, MacCallum I, Kleber M, Shlyakhter IA, Belmonte MK, Lander ES et al (2008) ALLPATHS:
De novo assembly of whole-genome shotgun microreads. Genome Res 18(5):810-820

Chaisson MJ, Pevzner PA (2008) Short read fragment assembly of bacterial genomes. Genome
Res 18:324-330

Chaisson M, Pevzner PA, Tang HX (2004) Fragment assembly with short reads. Bioinformatics
20(13):2067-2074

Dayhoff Mo, ed., 1978, Atlas of protein Sequence and Structure, Vol 5

Dohm JC, Lottaz C, Borodina T, Himmelbauer H (2007) SHARCGS, a fast and highly accurate
short-read assembly algorithm for de novo genomic sequencing. Genome Res 17:1697-1706

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high through-
put. Nucleic Acids Res 32:1792-1797

Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using
phred. 1. accuracy assessment. Genome Res 8:175-185

Feng DF, Doolittle RF (1987) Progressive sequence alignment as a prerequisite to correct phylo-
genetic trees. ] Mol Evol 25:351-360

Gotoh O (1982) An improved algorithm for matching biological sequences. J Mol Biol 162:705-708

Hazelhurst S, Hide W, Liptak Z, Nogueira R, Starfield R (2008) An overview of the wed EST
clustering tool. Bioinformatics 24(13):1542—-1546

Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl
Acad Sci USA 89(22):10915-10919

Hernandez D, Francois P, Farinelli L, Osteras M, Schrenzel J (2008) De novo bacterial genome
sequencing: Millions of very short reads assembled on a desktop computer. Genome Res
18(5):802-809

Higgins DG, Sharp PM (1988) CLUSTAL.: a package for performing multiple sequence alignment
on a microcomputer. Gene 73:237-244

Higgins DG, Bleasby AJ, Fuchs R (1992) CLUSTAL V: improved software for multiple sequence
alignment. Bioinformatics 8(2):189-191

Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res
9:868-877

Idury RM, Waterman MS (1995) A new algorithm for DNA sequence assembly. J] Comput Biol
2:291-306

Jeck WR, Reinhardt JA, Baltrus DA, Hickenbotham MT, Magrini V, Mardis ER et al (2007)
Extending assembly of short DNA sequences to handle error. Bioinformatics 23:2942-2944

Kent JW (2002) BLAT — the BLAST-like alignment tool. Genome Res 12:656-664

Murata M, Richardson JS, Sussman JL (1985) Simultaneous comparison of three protein
sequences. Proc Natl Acad Sci USA 82(10):3073-3077

Myers EW (1995) Toward simplifying and accurately formulating fragment assembly. J Comput
Biol 2:275-290



2 Sequence Comparison Tools 37

Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in
the amino acid sequence of two proteins. J Mol Biol 48:443-453

Notredame C, Higgins DG, Heringa J (2000) T-Coffee: A novel method for fast and accurate
multiple sequence alignment. J Mol Biol 302:205-217

O’Connor M, Peifer M, Bender W (1989) Construction of large DNA segments in Escherichia
coli. Science 244:1307-1312

Penzner PA (2001) Fragment assembly with double-barreled data. Bioinformatics 17:5225-S233

Pevzner PA (1989) I-tuple DNA sequencing: computer analysis. J Biomol Struct Dyn 7:63-73

Pevzner PA, Tang HX, Waterman MS (2001) An Eulerian path approach to DNA fragment assem-
bly. Proc Natl Acad Sci USA 98(17):9748-9753

Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc
Natl Acad Sci USA 74(12):5463-5467

Sellers PH (1974) On the theory and computation of evolutionary distances. J Appl Math (siam)
26:787-793

Smit AFA, Hubley R, Green P RepeatMasker Open-3.0. 1996-2004. http://www.repeatmasker.org

Staden R (1979) A strategy of DNA sequencing employing computer programs. Nucleic Acids
Res 6:2601-2610

Thompson JD, Higgins DG, Gibson TJ, Clustal W (1994) Improving the sensitivity of progressive
multiple sequence alignment through sequence weighting, position-specific gap penalties and
weight matrix choice. Nucleic Acids Res. Nov 11;22(22):4673-4680

Warren RL, Sutton GG, Jones SIM, Holt RA (2007) Assembling millions of short DNA sequences
using SSAKE. Bioinformatics 23(4):500-501

Waterman MS, Smith TE, Beyer WA (1976) Some biological sequence metrics. J Adv Math
20:367-387

Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A et al (2008) The complete
genome of an individual by massively parallel DNA sequencing. Nature 452(7189):U872-U875

Whiteford N, Haslam N, Weber G, Prugel-Bennett A, Essex JW, Roach PL et al (2005) An analy-
sis of the feasibility of short read sequencing. Nucleic Acids Res 33(19):e171

Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn
graphs. Genome Res 18(5):821-829



2 Springer
http://www.springer.com/978-0-387-92737-4

Bioinformatics

Tools and Applications

Edwards, D.; Stajich, ).; Hansen, D. (Eds.)
20089, XlI, 451 p., Hardcowver

ISBN: @78-0-387-92737-4



	Chapter 2
	Sequence Comparison Tools
	2.1 .Introduction
	2.2 .Sequence Alignment
	2.2.1 .Substitution Matrices
	2.2.2 .Pairwise Sequence Alignment Algorithms
	2.2.2.1 .The Needleman–Wunsch Algorithm
	2.2.2.2 .The Smith–Waterman Algorithm
	2.2.2.3 .SWAT and CrossMatch
	2.2.2.4 .The BLAST Family of Algorithms
	2.2.2.5 .BLAT

	2.2.3 .Multiple Sequence Alignment Algorithms
	2.2.3.1 .The CLUSTAL Family of Algorithms
	2.2.3.2 .MUSCLE
	2.2.3.3 .T-Coffee


	2.3 .Filtering, Clustering, and Assembly
	2.3.1 .Filtering and Masking
	2.3.1.1 .RepeatMasker

	2.3.2 .Sequence Clustering
	2.3.3 .Sequence Assembly Overview
	2.3.3.1 .The Overlap Graph Method
	2.3.3.2 .The Eulerian Path Method
	2.3.3.3 .Problems of Assembling Complex Genomes

	2.3.4 .Traditional Fragment Assembly Algorithms
	2.3.4.1 .Phrap
	2.3.4.2 .CAP3

	2.3.5 .Short Read Fragment Assembly Algorithms
	2.3.5.1 .Edena
	2.3.5.2 .Velvet
	2.3.5.3 .Euler SR
	2.3.5.4 .SASSY
	2.3.5.5 .ALLPATHS


	2.4 .Discussion

	References




