
Chapter 2
Single-Index Models

This chapter describes single-index models for conditional mean and quantile func-
tions. Single-index models relax some of the restrictive assumptions of familiar
parametric models, such as linear models and binary probit or logit models. In addi-
tion, single-index models achieve dimension reduction and, thereby, greater estima-
tion precision than is possible with fully nonparametric estimation of E(Y|X = x)
when X is multidimensional. Finally, single-index models are often easy to compute,
and their results are easy to interpret. Sections 2.1–2.9 present a detailed discussion
of single-index models for conditional mean functions. Conditional quantile func-
tions are discussed in Section 2.9.

2.1 Definition of a Single-Index Model of a Conditional
Mean Function

Let Y be a scalar random variable and X be a d × 1 random vector. In a single-index
model, the conditional mean function E(Y|X = x) has the form

E(Y|X = x) = G
(
x′β
)

, (2.1)

where β is an unknown d × 1 constant vector and G is an unknown function. The
quantity x′β is called an index. The inferential problem in (2.1) is to estimate β and
G from observations of (Y , X).

Model (2.1) contains many widely used parametric models as special cases. If G
is the identity function, then (2.1) is a linear model. If G is the cumulative normal
or logistic distribution function, then (2.1) is a binary probit or logit model. A tobit
model is obtained if one assumes that G

(
x′β
) = E(Y|X = x) in the model

Y = max
(
0, X′β + U

)
,

where U is an unobserved, normally distributed random variable that is independent
of X and has a mean of zero. When G is unknown, (2.1) provides a specification that
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8 2 Single-Index Models

is more flexible than a parametric model but retains many of the desirable features
of parametric models.

A single-index model achieves dimension reduction and avoids the curse of
dimensionality because, as will be seen later in this chapter, the index x′β aggre-
gates the dimension of x. Consequently, G in a single-index model can be esti-
mated with the same rate of convergence in probability that it would have if the
one-dimensional quantity X′β were observable. Moreover, β can be estimated with
the same rate of convergence, n−1/2, that is achieved in a parametric model. Thus,
in terms of rate of convergence in probability, the single-index model is as accurate
as a parametric model for estimating β and as accurate as a one-dimensional non-
parametric mean regression for estimating G. This dimension-reduction feature of
single-index models gives them a considerable advantage over nonparametric meth-
ods in applications where X is multidimensional and the single-index structure is
plausible.

The assumptions of a single-index model are weaker than those of a paramet-
ric model and stronger than those of a fully nonparametric model. Thus, a single-
index model reduces the risk of misspecification relative to a parametric model
while avoiding some drawbacks of fully nonparametric methods such as the curse
of dimensionality, difficulty of interpretation, and lack of extrapolation capability.

There is an important exception to the characterization of a single-index model
as intermediate or as making weaker assumptions than a nonparametric model.
This exception occurs in the estimation of structural economic models. A struc-
tural model is one whose components have a clearly defined relation to economic
theory. It turns out that the restrictions needed to make possible a structural interpre-
tation of a nonparametric model can cause the nonparametric model to be no more
general than a single-index model. To see why, consider a simple structural model
of whether an individual is employed or unemployed.

Example 2.1: A Binary-Response Model of Employment Status An important
model in economic theory states that an individual is employed if his market wage
exceeds his reservation wage, which is the value of his time if unemployed. Let Y

∗

denote the difference between an individual’s market and reservation wages. Con-
sider the problem of inferring the probability distribution of Y

∗
conditional on a

vector of covariates, X, that characterizes the individual and, possibly, the state of
the economy. Let H denote the conditional mean function. That is, E(Y

∗|X = x) =
H(x). Then

Y
∗ = H(X) − U, (2.2)

where U is an unobserved random variable that captures the effects of variables other
than X that influence employment status (unobserved covariates). Suppose that U is
independent of X, and let F be the cumulative distribution function (CDF) of U. The
estimation problem is to infer H and F. It turns out, however, that this problem has



2.1 Definition of a Single-Index Model of a Conditional Mean Function 9

no solution unless suitable a priori restrictions are placed on H and F. The remainder
of this example explains why this is so and compares alternative sets of restrictions.

To begin, suppose that Y
∗

were observable. Then H could be estimated nonpara-
metrically as the nonparametric mean regression of Y

∗
on X. More importantly, the

population distribution of the random vector (Y
∗
, X) would identify (that is, uniquely

determine) H if H is a continuous function of the continuous components of X. F
would also be identified if Y

∗
were observable, because F would be the CDF of the

identified random variable U = H(X) − Y
∗
. F could be estimated as the empirical

distribution function of the quantity that is obtained from U by replacing H with
its estimator. However, Y

∗
is not observable because the market wage is observable

only for employed individuals, and the reservation wage is never observable. An
individual’s employment status is observable, though. Moreover, according to the
economic theory model, Y

∗ ≥ 0 for employed individuals, whereas Y
∗
< 0 for indi-

viduals who are not employed. Thus, employment status provides an observation of
the sign of Y

∗
. Let Y be the indicator of employment status: Y = 1 if an individual

is employed and Y = 0 otherwise. We now investigate whether H and F can be
inferred from observations of (Y , X).

To solve this problem, let G(x) = P(Y = 1|x) be the probability that Y = 1 con-
ditional on X = x. Because Y is binary, G(x) = E(Y|X = x) and G can be estimated
as the nonparametric mean regression of Y on X. More importantly, the population
distribution of the observable random vector (Y , X) identifies G if G is a continuous
function of the continuous components of X. It follows from (2.2) that P(Y

∗ ≥ 0|X =
x) = F[H(x)]. Therefore, since Y

∗ ≥ 0 if and only if Y = 1, P(Y
∗ ≥ 0|X = x) =

P(Y = 1|x) and

F[H(x)] = G(x). (2.3)

The problem of inferring H and F can now be seen. The population distribution
of (Y , X) identifies G. H and F are related to G by (2.3). Therefore, H and F are
identified and nonparametrically estimable only if (2.3) has a unique solution for H
and F in terms of G.

One way to achieve identification is by assuming that H has the single-index
structure

H(x) = x′β. (2.4)

If (2.4) holds, then identification of H is equivalent to identification of β. As will be
discussed in Section 2.3, β is identified if X has at least one continuously distributed
component whose β coefficient is nonzero, F is differentiable and nonconstant, and
certain other conditions are satisfied. F is also identified and can be estimated as the
nonparametric mean regression of Y on the estimate of X′β.

The single-index model (2.4) is more restrictive than a fully nonparametric
model, so it is important to ask whether H and F are identified and estimable non-
parametrically. This question has been investigatedby Matzkin (1992, 1994). The
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answer turns out to be no unless H is restricted to a suitably small class of functions.
To see why, suppose that X is a scalar and

G(x) = 1

1 + e−x
.

Then one solution to (2.3) is

H(x) = x

and

F(u) = 1

1 + e−u
; − ∞ < u < ∞.

Another solution is

H(x) = 1

1 + e−x

and

F(u) = u; 0 ≤ u ≤ 1.

Therefore, (2.3) does not have a unique solution, and F and H are not identified
unless they are restricted to classes that are smaller than the class of all distribution
functions (for F) and the class of all functions (for H).

Matzkin (1992, 1994) gives examples of suitable classes. Each contains some
single-index models but none contains all. Thus, the single-index specification con-
sisting of (2.3) and (2.4) contains models that are not within Matzkin’s classes of
identifiable, nonparametric, structural models. Similarly, there are identifiable, non-
parametric, structural models that are not single-index models. Therefore, Matzkin’s
classes of identifiable, nonparametric, structural models are neither more nor less
general than the class of single-index models. It is an open question whether there
are interesting and useful classes of identifiable, nonparametric, structural models
of the form (2.3) that contain all identifiable single-index submodels of (2.3).

2.2 Multiple-Index Models

A multiple-index model is a generalization of a single-index model. Its form is

E(Y|X = x) = x′
0β0 + G

(
x′

1β1, . . . , x′
MβM

)
, (2.5)

where M ≥ 1 is a known integer, xm (m = 0, . . . ,M) is a subvector of x, βm

(m = 0, . . . ,M) is a vector of unknown parameters, and G is an unknown func-
tion. This model has been investigated in detail by Ichimura and Lee (1991) and
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Hristache et al. (2001). A different form of the model called sliced inverse regres-
sion has been proposed by Li (1991). If the β parameters in (2.5) are identified and
certain other conditions are satisfied, then the β s can be estimated with a n−1/2 rate
of convergence in probability, the same as the rate with a parametric model. The
estimator of E(Y|X = x) converges at the rate of a nonparametric estimate of a con-
ditional mean function with an M-dimensional argument. Thus, in a multiple-index
model, estimation of E(Y|X = x) but not of β suffers from the curse of dimension-
ality as M increases.

The applications in which a multiple-index model is likely to be useful are dif-
ferent from those in which a single-index model is likely to be useful. The curse
of dimensionality associated with increasing M and the need to specify identifi-
able indices a priori limit the usefulness of multiple-index models for estimating
E(Y|X = x). There are, however, applications in which the object of interest is β,
not E(Y|X = x), and the specification of indices arises naturally. The following
example provides an illustration.

Example 2.2: A Wage Equation with Selectivity Bias Let W denote the loga-
rithm of an individual’s market wage. Suppose we want to estimate E(W|Z = z) ≡
E(W|z), where Z is a vector of covariates such as experience and level of educa-
tion. Suppose, also, that the conditional mean function is assumed to be linear. Then
E(W|z) = z′α, where α is a vector of coefficients. Moreover,

W = z′α + V , (2.6)

where V is an unobserved random variable that represents the effects on wages
of variables not included in Z (e.g., unobserved ability). If (W, Z) were observ-
able for a random sample of individuals, then α could be estimated, among other
ways, by applying ordinary least squares to (2.6). However, W is observable only
for employed individuals, and a random sample of individuals is likely to include
some who are unemployed. Therefore, unless attention is restricted to groups in
which nearly everyone is employed, one cannot expect to observe (W, Z) for a ran-
dom sample of individuals.

To see how this problem affects estimation of α and how it can lead to a multiple-
index model, suppose that employment status is given by the single-index model
consisting of (2.2) and (2.4). Then the mean of W conditional on X = x, Z = z, and
Y = 1 is

E(W|z, x,Y = 1) = z′α + E
(
V|z, x,U ≤ x′β

)
. (2.7)

If V is independent of Z and X conditional on U, then (2.7) becomes

E(W|z, x,Y = 1) = z′α + G
(
x′β
)

, (2.8)

where G(x′β) = E(V|z, x,U ≤ x′β). Equation (2.8) is a multiple-index model that
gives the mean of log wages of employed individuals conditional on covariates



12 2 Single-Index Models

Z and X. Observe that (2.8) is not equivalent to the linear model (2.6) unless
E(V|z, x,U ≤ x′β) = 0. If E(V|z, x,U ≤ x′β) 	= 0, estimation of (2.6) by ordinary
least squares will give rise to a selectivity bias arising from the fact that one does not
observe W for a random sample of individuals. This is also called a sample selec-
tion problem because the observed values of W are selected nonrandomly from the
population. Gronau (1974) and Heckman (1974) used models like (2.7) under the
additional assumption that V and U are bivariate normally distributed. In this case
G is known up to a scalar parameter, and the model is no longer semiparametric.

In (2.8), α is identified only if X has at least one continuously distributed compo-
nent that is not a component of Z and whose β coefficient is nonzero. The credibility
of such an exclusion restriction in an application can be highly problematic. Manski
(1994, 1995) provides a detailed discussion of the problems of identification in the
presence of sample selection. �

2.3 Identification of Single-Index Models

The remainder of this chapter is concerned with the semiparametric single-index
model (2.1).

2.3.1 Conditions for Identification of β and G

Before estimation of β and G can be considered, restrictions must be imposed that
ensure their identification. That is, β and G must be uniquely determined by the pop-
ulation distribution of (Y , X). Identification of single-index models has been inves-
tigated by Ichimura (1993) and, for the special case of binary-response models, by
Manski (1988). Some of the restrictions required for identification are easy to see. It
is clear that β is not identified if G is a constant function. It is also clear that as in a
linear model, β is not identified if there is an exact linear relation among the compo-
nents of X (perfect multicollinearity). In other words, β is not identified if there are
a constant vector α and a constant scalar c such that X′α = c with probability one.

To obtain additional conditions for identification, let γ be any constant and δ be
any nonzero constant. Define the function G

∗
by the relation G

∗
(γ + δv) = G(v) for

all v in the support of X′β. Then

E(Y|X = x) = G
(
x′β
)

(2.9)

and

E(Y|X = x) = G
∗
(γ + x′βδ). (2.10)

Models (2.9) and (2.10) are observationally equivalent. They could not be distin-
guished empirically even if the population distribution of (Y , X) were known. There-
fore, β and G are not identified unless restrictions are imposed that uniquely specify
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γ and δ. The restriction on γ is called a location normalization, and the restriction
on δ is called a scale normalization. Location normalization can be achieved by
requiring X to contain no constant (intercept) component. Scale normalization can
be achieved by setting the β coefficient of one component of X equal to one. In this
chapter it will be assumed that the components of X have been arranged so that scale
normalization is carried out on the coefficient of the first component. Moreover, for
reasons that will now be explained, it will also be assumed that this component of X
is a continuously distributed random variable.

To see why there must be at least one continuously distributed component of X,
consider the following example.

Example 2.3: A Single-Index Model with Only Discrete Covariates Suppose that
X = (X1,X2) is two-dimensional and discrete with support consisting of the corners
of the unit square: (0,0), (1,0), (0,1), and (1,1). Set the coefficient X1 equal to one to
achieve scale normalization. Then (2.1) becomes

E(Y|X = x) = G (x1 + β2x2) .

Suppose that the values of E(Y|X = x) at the points of support of X are as shown in
Table 2.1. Then all choices of β2 and G that equate the entry in the second column
to the corresponding entry in the third column are correct models of E(Y|X = x).
These models are observationally equivalent and would be indistinguishable from
one another even if the population distribution of (Y , X) were known. There are
infinitely many such models, so β2 and G are not identified. Bierens and Hartog
(1988) provide a detailed discussion of alternative, observationally equivalent forms
of β and G when all components of X are discrete. �

Another requirement for identification is that G must be differentiable. To under-
stand why, observe that the distinguishing characteristic of a single-index model
that makes identification possible is that E(Y|X = x) is constant if x changes in
such a way that x′β stays constant. However, if X′β is a continuously distributed
random variable, as it is if X has at least one continuous component with a nonzero
coefficient, the set of X values on which X′β = c has probability zero for any c.
Events of probability zero happen too infrequently to permit identification. If G is
differentiable, then G(X′β) is close to G(c) whenever X′β is close to c. The set of

Table 2.1 An unidentified single-index model

(x1,x2) (x1, x2) E(Y|X = x) G(x1 + β2x2)

(0, 0) 0 G(0)
(1, 0) 0.1 G(1)
(0, 1) 0.3 G(β2)
(1, 1) 0.4 G(1 + β2)
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X values on which X′β is within any specified nonzero distance of c has nonzero
probability for any c in the interior of the support of X′β. This permits identification
of β through “approximate” constancy of X′β.

It is now possible to state a complete set of conditions for identification of β in
a single-index model. This theorem assumes that the components of X are all con-
tinuous random variables. Identification when some components of X are discrete is
more complicated. This case is discussed after the statement of the theorem.

Theorem 2.1 (Identification in Single-Index Models): Suppose that E(Y|X = x)
satisfies model (2.1) and X is a d-dimensional random variable. Then β and G are
identified if the following conditions hold:

(a) G is differentiable and not constant on the support of X′β .
(b) The components of X are continuously distributed random variables that have

a joint probability density function.
(c) The support of X is not contained in any proper linear subspace of R

d .
(d) β1 = 1 . �

Ichimura (1993) and Manski (1988) provide proofs of several versions of this
theorem. It is also possible to prove a version that permits some components of X to
be discrete. Two additional conditions are needed. These are as follows: (1) varying
the values of the discrete components must not divide the support of X′β into disjoint
subsets and (2) G must satisfy a nonperiodicity condition.

The following example illustrates the need for condition (1).

Example 2.4: Identification of a Single-Index Model with Continuous and
Discrete Covariates Suppose that X has one continuous component, X1, whose
support is [0,1], and one discrete component, X2, whose support is the two-point
set {0,1}. Assume that X1 and X2 are independent and that G is strictly increasing
on [0,1]. Set β1 = 1 to achieve scale normalization. Then X′β = X1+β2X2. Observe
that E[Y|X = (x1,0)] = G(x1) and E[Y|X = (x1,1)] = G(x1 + β2). Observations
of X for which X2 = 0 identify G on [0,1]. However, if β2 > 1, the support of
X1 + β2 is disjoint from [0,1], and β2 is, in effect, an intercept term in the model for
E[Y|X = (x1,1)]. As was explained in the discussion of location and scale normal-
ization, an intercept term is not identified, so β2 is not identified in this model.

The situation is different if β2 < 1, because the supports of X1 and X1 + β2 then
overlap. The interval of overlap is [β2,1]. Because of this overlap, there is a subset
of the support of X on which X2 = 1 and G(X1 + β2) = G(v) for some v ∈ [0,1].
The subset is {X: X1 ∈ [β2,1], X2 = 1}. Since G(v) is identified for v ∈ [β2,1] by
observations of X1 for which X2 = 0, β2 can be identified by solving

E[Y|X = (x1,1)] = G(x1 + β2) (2.11)

on the set of x1 values where the ranges of E(Y|X = (x1,1)) and G(x1 + β2) overlap.
�
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To see why G must satisfy a nonperiodicity condition, suppose that in Exam-
ple 2.3 G were periodic on [β2,1] instead of strictly increasing. Then (2.11) would
have at least two solutions, so β2 would not be identified. The assumption that
G is strictly increasing on [0,1] prevents this kind of periodicity, but many other
shapes of G also satisfy the nonperiodicity requirement. See Ichimura (1993) for
details.

2.3.2 Identification Analysis When X Is Discrete

One of the conclusions reached in Section 2.3.1 is that β and G are not identified in
a semiparametric single-index model if all components of X are discrete. It does not
necessarily follow, however, that data are completely uninformative about β. In this
section it is shown that if G is assumed to be an increasing function, then one can
obtain identified bounds on the components of β.

To begin, it can be seen from Table 2.1 that there is a G that solves (2.11) for
every possible value of β2 in Example 2.3. Therefore, nothing can be learned about
β2 if nothing is known about G. This is not surprising. Even when the compo-
nents of X are all continuous, some information about G is necessary to identify β

(e.g., differentiability in the case of Theorem 2.1). Continuity and differentiability of
G are not useful for identification when all components of X are discrete. A property
that is useful, however, is monotonicity. The usefulness of this property is illustrated
by the following example, which is a continuation of Example 2.3.

Example 2.5: Identification When X Is Discrete and G Is Monotonic Consider
the model of Example 2.3 and Table 2.1 but with the additional assumption that G
is a strictly increasing function. That is,

G(v1) < G(v2) ⇔ v1 < v2. (2.12)

Inequality (2.12) together with the information in columns 2 and 3 of Table 2.1
implies that β2 > 1. This result is informative, even though it does not point-identify
β2, because any value of β2 in ( − ∞,∞) is possible in principle. Knowledge of the
population distribution of (Y , X) combined with monotonicity of G excludes all
values in ( − ∞,1].

If the support of X is large enough, then it is possible to identify an upper bound
on β2 as well as a lower bound. For example, suppose that the point (X1,X2) =
(0.6,0.5) is in the support of X along with the four points in Example 2.3 and that
E(Y|X1 = 0.6, X2 = 0.5) = G(0.6 + 0.5β2) = 0.35. This information combined
with (2.12) and row 3 of Table 2.1 implies that β2 < 0.6+0.5β2, so β2 < 1.2. There-
fore, the available information gives the identified bounds 1 < β2 < 1.2. Any value
of β2 in the interval (1,1.2) is logically possible given the available information, so
the bounds 1 < β2 < 1.2 are the tightest possible. �
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Now consider the general case in which X is d-dimensional for any finite d ≥ 2
and has M points of support for any finite M ≥ 2. Let xm denote the m th point of
support (m = 1, . . . , M). The population distribution of (Y , X) identifies G(x′

mβ)
for each m. Assume without loss of generality that the support points xm are sorted
so that

G(x′
1β) ≤ G(x′

2β) ≤ · · · ≤ G(x′
Mβ).

Achieve location and scale normalization by assuming that X has no constant com-
ponent and that β1 = 1. Also, assume that G is strictly increasing. Then tight, identi-
fied bounds on βm ( 2 ≤ m ≤ M) can be obtained by solving the linear programming
problems

maximize (minimize): bm

subject to: x′
jb ≤ x′

j+1b; j = 1, . . . , M − 1
(2.13)

with strict equality holding in the constraint if G(x′
jb) = G(x′

j+1b). The solutions to
these problems are informative whenever they are not infinite.

Bounds on other functionals of β can be obtained by suitably modifying the
objective function of (2.13). For example, suppose that z is a point that is not in the
support of X and that we are interested in learning whether E(Y|X = z) = G(z′β)
is larger or smaller than E(Y|X = xm) = G(x′

mβ) for some xm in the support of X.
G(z′β) − G(x′

mβ) is not identified if X is discrete, but (z − xm)′β can be bounded
by replacing bm with (z − xm)′b in the objective function of (2.13). If the resulting
lower bound exceeds zero, then we know that G(z′β) > G(x′

mβ), even though G(z′β)
is unknown. Similarly, G(z′β) < G(x′

mβ) if the upper bound obtained from the
modified version of (2.13) is negative.

Now consider solving (2.13) with the objective function (xm − z)′b for each
m = 1,. . ., M. Suppose this procedure yields the result (xm − z)′β < 0 if m ≤ j for
some j ( 1 ≤ j ≤ M). Then it follows from monotonicity of G that G(z′β) > G(x′

jβ).
Similarly, if the solutions to the modified version of (2.13) yield the result (xm −
z)′β > 0 if m ≥ k for some k ( 1 ≤ k ≤ M), then G(z′β) < G(x′

kβ). Since G(x′
jβ)

and G(x′
kβ) are identified, this procedure yields identified bounds on the unidentified

quantity G(z′β), thereby providing a form of extrapolation in a single-index model
with a discrete X. The following example illustrates this form of extrapolation.

Example 2.6: Extrapolation When X Is Discrete and G Is Monotonic Let G,
E(Y|X = x), and the points of support of X be as in Example 2.5. Order the points
of support as in Table 2.2. As in Example 2.5, the available information implies that

1 < β2 < 1.2 (2.14)

but does not further identify β2. Suppose that z = (0.3,0.25)′. What can be said
about the value of E(Y|X = z) = G(z′β) = G(0.3 + 0.25β2)? This quantity is not
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Table 2.2 A second unidentified single-index model

m xm E(Y|X = xm) G(xm)

1 (0, 0) 0 G(0)
2 (1, 0) 0.1 G(1)
3 (0, 1) 0.3 G(β2)
4 (0.6, 0.5) 0.35 G(0.6 + 0.5β2)
5 (1, 1) 0.4 G(1 + β2)

identified, but the following bounds may be obtained by combining the information
in Table 2.2 with inequality (2.14):

− 0.6 < (x1 − z)′β < −0.55,

0.4 < (x2 − z)′β < 0.45,

0.45 < (x3 − z)′β < 0.60,

0.55 < (x4 − z)′β < 0.60,

and

1.45 < (x5 − z)′β < 1.60.

Therefore, monotonicity of G implies that G(x′
1β) < G(z′β) < G(x′

2β), so identified
bounds on the unidentified quantity G(z′β) are 0 < G(z′β) < 0.1. �

2.4 Estimating G in a Single-Index Model

We now turn to the problem of estimating G and β in the single-index model (2.1). It
is assumed throughout the remainder of this chapter that G and β are identified. This
section is concerned with estimating G. Estimation of β is dealt with in Sections 2.5
and 2.6.

Suppose, for the moment, that β is known. Then G can be estimated as the
nonparametric mean regression of Y on X′β. There are many nonparametric mean-
regression estimators that can be used. See, for example, Härdle (1990), Härdle and
Linton (1994), and the Appendix. This chapter uses kernel estimators. The proper-
ties of these estimators are summarized in the Appendix.

To obtain a kernel estimator of G(z) at any z in the support of X′β, let the data con-
sist of a random sample of n observations of (Y , X). Let {Yi, Xi : i = 1, . . . , n}
denote the sample. Here, the subscript i indexes observations, not components of X.
Define Zi = X′

iβ. Let K be a kernel function, and let {hn} be a sequence of band-
width parameters. Under the assumption that β is known, the kernel nonparametric
estimator of G(z) is

G
∗
n(z) = 1

nhnp∗
n(z)

n∑

i=1

YiK

(
z − Zi

hn

)
, (2.15)
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where

p
∗
n(z) = 1

nhn

n∑

i=1

K

(
z − Zi

hn

)
. (2.16)

The estimator (2.15) cannot be implemented in an application because β and, there-
fore, Zi are not known. This problem can be remedied by replacing the unknown β

with an estimator bn. Define Zni = X′
ibn to be the corresponding estimator of Zi.

The resulting kernel estimator of G is

Gn(z) = 1

nhnpn(z)

n∑

i=1

YiK

(
z − Zni

hn

)
, (2.17)

where

pn(z) = 1

nhn

n∑

i=1

K

(
z − Zni

hn

)
. (2.18)

It is shown in Sections 2.5 and 2.6 that β can be estimated with a n−1/2 rate of
convergence in probability. That is, there exist estimators bn with the property that
(bn − β) = Op(n−1/2). This is faster than the fastest possible rate of convergence in
probability of a nonparametric estimator of E(Y|X′β = z). As a result, the difference
between the estimators G

∗
n and Gn is asymptotically negligible. Specifically,

(nhn)1/2[Gn(z) − G(z)] = (nhn)1/2[G
∗
n(z) − G(z)] + op(1)

for any z in the support of Z. Therefore, estimation of β has no effect on the asymp-
totic distributional properties of the estimator of G. The reasoning behind this con-
clusion is easily outlined. Let b̃n and β̃, respectively, denote the vectors obtained
from bn and β by removing their first components (the components set by scale nor-
malization). Let X̃i be the vector obtained from Xi, by removing its first component.
Define K′ to be the derivative of the kernel function K . For any b̃ and b ≡ (1, b̃′)′,
define

An(b̃) = 1

nhn

n∑

i=1

YiK

(
z − X′

ib

hn

)
,

Anz(b̃) = − 1

nh2
n

n∑

i=1

YiK
′
(

z − X′
ib

hn

)
X̃i,

p̃n(b̃) = 1

nhn

n∑

i=1

K

(
z − X′

ib

hn

)
,
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and

p̃nz(b̃) = − 1

nh2
n

n∑

i=1

K′
(

z − X′
ib

hn

)
X̃i.

Now observe that Gn(z) = An(b̃n)/p̃n(b̃n) and G
∗
n(z) = An(β̃)/p̃n(β̃). Therefore, a

Taylor-series expansion of the right-hand side of (2.17) about bn = β yields

Gn(z) = G
∗
n(z) +

⎡

⎣
Anz

(
b̃

∗
n

)

p̃n

(
b̃∗

n

) −
An

(
b̃

∗
n

)
p̃nz

(
b̃

∗
n

)

p̃2
nz

(
b̃∗

n

)

⎤

⎦ (b̃n − β), (2.19)

where b̃
∗
n is between b̃n and β̃. By using a suitable uniform law of large numbers

(see, e.g., Pakes and Pollard 1989, Lemma 2.8), it can be shown that the quantity in
brackets on the right-hand side of (2.19) converges in probability to a nonstochastic
limit. Therefore, there is a nonstochastic function � such that

Anz

(
b̃

∗
n

)

p̃n

(
b̃∗

n

) −
An

(
b̃

∗
n

)
p̃nz

(
b̃

∗
n

)

p̃2
nz

(
b̃∗

n

) = �(z) + op(1). (2.20)

It follows from (2.19), (2.20), and bn − β = Op(n−1/2) that

Gn(z) − G
∗
n(z) = �(z)(b̃n − β̃) + op(b̃n − β̃) = Op(n−1/2).

This implies that

(nhn)1/2[Gn(z) − G
∗
n(z)] = Op(h1/2

n ), (2.21)

which gives the desired result
The foregoing results concerning estimation of G apply with any bn that is a

n−1/2-consistent estimator of β. We now turn to developing such estimators.

2.5 Optimization Estimators of β

Estimators of β can be classified according to whether they require solving nonlinear
optimization problems. This section discusses estimators that are obtained as the
solutions to nonlinear optimization problems. Section 2.6 discusses estimators that
do not require solving optimization problems.
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2.5.1 Nonlinear Least Squares

If G were known, then β could be estimated by nonlinear least squares or weighted
nonlinear least squares (WNLS). Let the data consist of the random sample
{Yi, Xi : i = 1, . . . , n}. Then the WNLS estimator of β, bNLS, is the solution
to

minimize: S
∗
n(b) = 1

n

n∑

i=1

W(Xi)
[
Yi − G

(
X′

ib
)]2, (2.22)

where W is the weight function. Under mild regularity conditions, bNLS is a consis-
tent estimator of β, and n1/2(bNLS − β) is asymptotically normally distributed with
a mean of zero and a covariance matrix that can be estimated consistently. See, for
example, Amemiya (1985), Davidson and MacKinnon (1993), and Gallant (1987).

The estimator bNLS is not available in the semiparametric case, where G is
unknown. Ichimura (1993) showed that this problem can be overcome by replac-
ing G in (2.22) with a suitable estimator. This estimator is a modified version of
the kernel estimator (2.17). Carroll et al. (1997) proposed using a local-linear esti-
mator for a more elaborate model that includes a single-index model as a special
case. Ichimura (1993) makes three modifications of the usual kernel estimator. First,
observe that if Gn is defined as in (2.17), then the denominator of Gn

(
X′

ib
)

con-
tains the term pn

(
X′

ib
)
. To keep this term from getting arbitrarily close to zero as n

increases, it is necessary to restrict the sums in (2.17) and (2.22) to observations i
for which the probability density of X′β at the point X′

iβ exceeds a small, positive
number. Second, observation i is excluded from the calculation of Gn

(
X′

ib
)
. Third,

the terms of the sums in the calculation of Gn are weighted the same way that the
terms in the sum (2.22) are weighted.

To carry out these modifications, let p( · , b) denote the probability density func-
tion of X′b. Let B be a compact set that contains β. Define Ax and Anx to be the
following sets:

Ax = {
x: p(x′b, b) ≥ η for all b ∈ B

}

and

Anx = {
x:
∥∥x − x∗∥∥ ≤ 2hn for some x∗ ∈ Ax

}
,

where η > 0 is a constant, hn is the bandwidth used for kernel estimation, and ‖·‖ is
the Euclidean norm. Anx contains Ax and shrinks toward Ax as hn → 0. Let I denote
the indicator function. I( · ) = 1 if the event in parentheses occurs and 0 otherwise.
Define Ji = I(Xi ∈ Ax) and Jni = I(Xi ∈ Anx). Finally, define

Gni(z, b) = 1

nhnpni(z, b)

∑

j 	=i

JnjW(Xj)YjK

(
z − X′

jb

hn

)

, (2.23)
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where for any z

pni(z, b) = 1

nhn

∑

j 	=i

JnjW(Xj)K

(
z − X′

jb

hn

)

. (2.24)

The estimator of G(X′
ib) that is used in (2.22) is Gni(X′

ib, b). Thus, the semiparamet-
ric WNLS estimator of β is the solution to

minimize: Sn(b̃) = 1

n

n∑

i=1

JiW(Xi)
[
Yi − Gni

(
X′

ib, b
)]2. (2.25)

The minimization is over b̃, not b, to impose scale normalization. Let b̃n denote the
resulting estimator, and call it the semiparametric WNLS estimator of β̃.

Ichimura (1993) gives conditions under which b̃n is a consistent estimator of
β̃ and

n1/2(b̃n − β̃)
d−→ N(0, 
). (2.26)

The covariance matrix, 
, is given in (2.28) below. The conditions under which
(2.26) holds are stated in Theorem 2.2.

Theorem 2.2: Equation (2.26) holds if the following conditions are satisfied:

(a) {Yi, Xi : i = 1, . . . , n} is a random sample from a distribution that satisfies
(2.1).

(b) β is identified and is an interior point of the known compact set B.
(c) Ax is compact, and W is bounded and positive on Ax.
(d) E(Y|X′b = z) and p(z, b) are three times continuously differentiable with

respect to z. The third derivatives are Lipschitz continuous uniformly over B for
all z ∈ {z: z = x′b, b ∈ B, x ∈ Ax

}
.

(e) E|Y|m < ∞ for some m ≥ 3 . The variance of Y conditional on X = x is
bounded and bounded away from 0 for x ∈ Ax .

(f) The kernel function K is twice continuously differentiable, and its second
derivative is Lipschitz continuous. Moreover K(v) = 0 if |v| > 1, and

∫ 1

−1
v jK(v)dv =

{
1 if j = 0

0 if j = 1
.

(g) The bandwidth sequence {hn} satisfies (log hn) /
[
nh3+3/(m−1)

n

]
→ 0 and

nh8
n → 0 as n → ∞ . �

There are several noteworthy features of Theorem 2.2. First, b̃n converges in
probability to β̃ at the rate n−1/2, which is the same rate that would be obtained if
G were known and faster than the rate of convergence of a nonparametric density
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or mean-regression estimator. This result was used in deriving (2.21). Second, the
asymptotic distribution of n1/2(b̃n − β̃) is centered at zero. This contrasts with the
case of nonparametric density and mean-regression estimators, whose asymptotic
distributions are not centered at zero in general when the estimators have their fastest
possible rates of convergence. Third, the range of permissible rates of convergence
of hn includes the rate n−1/5, which is the standard rate in nonparametric density and
mean-regression estimation. Finally, Theorem 2.2 requires β to be contained in the
known, compact set B. Therefore, in principle Sn(b̃) should be minimized subject
to the constraint b̃ ∈ B. In practice, however, the probability that the constraint is
binding for any reasonable B is so small that it can be ignored. This is a useful result
because solving a constrained nonlinear optimization problem is usually much more
difficult than solving an unconstrained one.

Stating the covariance matrix, 
, requires additional notation. Let p( · |x̃, b)
denote the probability density function of X′b conditional on X̃ = x̃. Define p(·|x̃) =
p( · |x̃, β), σ 2(x) = Var(Y|X = x), and

G(z, b) = plim
n→∞

Gni(z, b).

Calculations that are lengthy but standard in kernel estimation show that

G(z, b) = E[E(Y|X′ b = z, X̃)I(X ∈ Ax)W(X)p(z|X̃, b)]

E[I(X ∈ Ax)W(X)p(z|X̃, b)]

= R1(z, b)

R2(z, b)
,

where

R1(z, b) = E{G[z − X̃′(b̃ − β̃)]p[z − X̃′(b̃ − β̃)|X̃]W(X)I(X ∈ Ax)}

and

R2(z, b) = E{p[z − X̃′(b̃ − β̃)|X̃]W(X)I(X ∈ Ax)}.

Moreover,

G(z, β) = G(z)

and for z = x′β

∂G(z, β)

∂ b̃
= G′(z)

{

x̃ − E[X̃W(X)|X′β = z, X ∈ Ax]

E[W(X)|X′β = z, X ∈ Ax]

}

. (2.27)
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Now define

C = 2E

[
I(X ∈ Ax)W(X)

∂G(X′β,β)

∂ b̃

∂G(X′β,β)

∂ b̃′

]

and

D = 4E

[
I(X ∈ Ax)W2(X)σ 2(x)

∂G(X′β,β)

∂ b̃

∂G(X′β,β)

∂ b̃′

]
.

Then


 = C−1DC−1. (2.28)

Theorem 2.2 is proved in Ichimura (1993). The technical details of the proof are
complex, but the main ideas are straightforward and based on the familiar Taylor-
series methods of asymptotic distribution theory. With probability approaching one
as n → ∞, the solution to (2.25) satisfies the first-order condition

∂Sn(b̃n)

∂ b̃
= 0.

Therefore, a Taylor-series expansion gives

n1/2 ∂Sn(β̃)

∂β̃
= −∂2Sn(b̄n)

∂ b̃∂ b̃′ n1/2(b̃n − β̃), (2.29)

where b̄n is between b̃n and β̃. Now consider the left-hand side of (2.29). Differen-
tiation of Sn gives

n1/2 ∂Sn(β̃)

∂ b̃
= − 2

n1/2

n∑

i=1

JiW(Xi)
[
Yi − Gni

(
X′

iβ,β
)] ∂Gni

(
X′

iβ,β
)

∂ b̃
.

Moreover,

Gni
(
X′

iβ,β
) p−→ G

(
X′

iβ
)

and

∂Gni
(
X′

iβ,β
)

∂ b̃

p−→ ∂G
(
X′

iβ,β
)

∂ b̃

sufficiently rapidly that we may write

n1/2 ∂Sn(β̃)

∂ b̃
= − 2

n1/2

n∑

i=1

JiW(Xi)
[
Yi − G

(
X′

iβ
)] ∂G

(
X′

iβ,β
)

∂ b̃
+ op(1). (2.30)
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The first term on the right-hand side of (2.30) is asymptotically distributed as
N(0, D) by the multivariate generalization of the Lindeberg–Levy central limit the-
orem. Therefore, the left-hand side of (2.29) is also asymptotically distributed as
N(0, D).

Now consider the right-hand side of (2.29). Differentiation of Sn gives

∂2Sn(b̄n)

∂ b̃∂ b̃′ =2

n

n∑

i=1

JiW(Xi)
∂Gni(X′

i b̄n,b̄n)

∂ b̃

∂Gni(X′
i b̄n,b̄n)

∂ b̃

− 2

n

n∑

i=1

JiW(Xi)[Yi − Gni(X
′
i b̄n,b̄n)]

∂2Gni(X′
i b̄n,b̄n)

∂ b̃∂ b̃′ .

Because Gni(x′b, b) and its derivatives converge to G(x′b, b) and its derivatives uni-
formly over both arguments, we may write

∂2Sn(b̄n)

∂ b̃∂ b̃′ =2

n

n∑

i=1

JiW(Xi)
∂G(X′

iβ, β)

∂ b̃

∂G
(
X′

iβ, β
)

∂ b̃

− 2

n

n∑

i=1

JiW(Xi)[Yi − G(X′
iβ, β)]

∂2G(X′
iβ, β)

∂ b̃∂ b̃′ + op(1).

The first term on the right-hand side of this equation converges almost surely to
C and the second term converges almost surely to zero by the strong law of large
numbers. This result together with the previously obtained asymptotic distribution
of the left-hand side of (2.29) implies that (2.29) can be written in the form

N(0, D) = Cn1/2(b̃n − β̃) + op(1). (2.31)

Equation (2.26) is obtained by multiplying both sides of (2.31) by C–1.
In applications, 
 is unknown, and a consistent estimator is needed to make

statistical inference possible. To this end, define

Cn = 2

n

n∑

i=1

JiW(Xi)
∂Gni(X′

ibn, bn)

∂ b̃

∂Gni(X′
ibn, bn)

∂ b̃′

and

Dn = 4

n

n∑

i=1

JiW(Xi)[Yi − Gni(X
′
ibn)]2 ∂Gni(X′

ibn, bn)

∂ b̃

∂Gni(X′
ibn, bn)

∂ b̃′ .

Under the assumptions of Theorem 2.2, Cn and Dn, respectively, are consistent esti-
mators of C and D. 
 is estimated consistently by


n = C−1
n DnC−1

n .
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Intuitively, these results can be understood by observing that because Gni converges
in probability to G and bn converges in probability to β,

Cn = 2

n

n∑

i=1

JiW(Xi)
∂G(X′

iβ,β)

∂ b̃

∂G(X′
iβ,β)

∂ b̃′ + op(1)

and

Dn = 4

n

n∑

i=1

JiW(Xi)[Yi − G(X′
iβ)]2 ∂G(X′

iβ,β)

∂ b̃

∂G(X′
iβ,β)

∂ b̃′ + op(1).

Convergence of Cn to C and Dn to D now follows from the strong law of large
numbers.

2.5.2 Choosing the Weight Function

The choice of weight function, W, affects the efficiency of the estimator of β̃. Ideally,
one would like to choose W so as to maximize the asymptotic efficiency of the
estimator. Some care is needed in defining the concept of asymptotic efficiency so
as to avoid the pathology of superefficiency. See Bickel et al. (1993) and Ibragimov
and Has’minskii (1981) for discussions of superefficiency and methods for avoiding
it. Estimators that are restricted so as to avoid superefficiency are called regular.

Within the class of semiparametric WNLS estimators, an estimator is asymptot-
ically efficient if the covariance matrix 
 of its asymptotic distribution differs from
the covariance matrix 


∗
of any other weighted WNLS estimator by a positive-

semidefinite matrix. That is, 

∗ − 
 is positive semidefinite. More generally, one

can consider the class of all regular estimators of single-index models (2.1). This
class includes estimators that may not be semiparametric WNLS estimators. The
definition of an asymptotically efficient estimator remains the same, however. The
covariance matrix of the asymptotic distribution of any regular estimator exceeds
that of the asymptotically efficient estimator by a positive-semidefinite matrix.

The problem of asymptotically efficient estimation of β in a semiparametric
single-index model is related to but more difficult than the problem of asymptot-
ically efficient estimation in a nonlinear regression model with a known G. The case
of a nonlinear regression model (not necessarily a single-index model) in which G
is known has been investigated by Chamberlain (1987), who derived an asymptotic
efficiency bound. The covariance matrix of the asymptotic distribution of any regu-
lar estimator must exceed this bound by a positive-semidefinite matrix. The model is
E(Y|X = x) = G(x, β). The variance function, σ 2(x) = E{[Y − G(X, β)]2|X = x},
is unknown. Chamberlain (1986) showed that the efficiency bound is


NLR =
{

E

[
1

σ 2(X)

∂G(X, β)

∂b

∂G(X, β)

∂b′

]}−1

.
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This is the covariance matrix of a weighted (or generalized) nonlinear least-squares
estimator of β with weight function W(x) = 1/σ 2(x). For the special case of the
linear model G(x, β) = xβ, Carroll (1982) and Robinson (1987) showed that this
covariance matrix is obtained asymptotically even if σ 2(x) is unknown by replac-
ing σ 2(x) with a nonparametric estimator. Thus, lack of knowledge of σ 2(x) causes
no loss of asymptotic efficiency relative to infeasible generalized least-squares
estimation.

The problem of efficient estimation of β in a single-index model with an
unknown G has been investigated by Hall and Ichimura (1991) and Newey and
Stoker (1993). These authors showed that under regularity conditions, the efficiency
bound for estimating β in a single-index model with unknown G and using only data
for which X ∈ Ax is (2.28) with weight function W(x) = 1/σ 2(x). With this weight
function, C = D in (2.28), so the efficiency bound is


SI =
{

E

[
I(X ∈ Ax)

σ 2(X)

∂G(X′β,β)

∂ b̃

∂G(X′β,β)

∂ b̃′

]}−1

. (2.32)

This bound is achieved by the semiparametric WNLS estimator if σ 2(X) is known
or independent of X. The assumption that the estimator uses only observations for
which X ∈ Ax can be eliminated by letting Ax grow very slowly as n increases.
Chamberlain (1986) and Cosslett (1987) derived this asymptotic efficiency bound
for the case in which (2.1) is a binary-response model (that is, the only possible val-
ues of Y are 0 and 1) and G is a distribution function. Chamberlain and Cosslett also
derived efficiency bounds for certain kinds of censored regression models. Except
in special cases, 
SI exceeds the asymptotic efficiency bound that would be achiev-
able if G were known. Thus, there is a cost in terms of asymptotic efficiency (but
not rate of convergence of the estimator) for not knowing G. Cosslett (1987) gives
formulae for the efficiency losses in binary-response and censored linear regression
models.

When σ 2(x) is unknown, as is likely in applications, it can be replaced by a con-
sistent estimator. Call this estimator s2

n(x) . The asymptotic efficiency bound will
be achieved by setting W(x) = 1/s2

n(x) in the semiparametric WNLS estimator
(Newey and Stoker 1993). Therefore, an asymptotically efficient estimator of β can
be obtained even when σ 2 (x) is unknown.

A consistent estimator of σ 2 (x) can be obtained by using the following two-
step procedure. In the first step, estimate β by using semiparametric WNLS with
W(x) = 1. The resulting estimator is n−1/2 -consistent and asymptotically normal
but inefficient. Let ei be the ith residual from the estimated model. That is, ei =
Yi−Gni(X′

ibn, bn). In the second step, set s2
n(x) equal to a nonparametric estimator of

the mean regression of e2
i on Xi. Robinson (1987) discusses technical problems that

arise if X has unbounded support or a density that can be arbitrarily close to zero.
He avoids these problems by using a nearest-neighbor nonparametric regression
estimator. In practice, a kernel estimator will suffice if Ax is chosen so as to keep the
estimated density of X away from zero.
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This concludes the discussion of semiparametric weighted nonlinear least-
squares estimation of single-index models. To summarize, Ichimura (1993) has
given conditions under which the semiparametric WNLS estimator of β in (2.1)
is n−1/2-consistent and asymptotically normal. The estimator of β is also asymp-
totically efficient if the weight function is a consistent estimator of 1/σ 2(x). A con-
sistent estimator of σ 2(x) can be obtained by a two-step procedure in which the
first step is semiparametric WNLS estimation of β with a unit weight function and
the second step is nonparametric estimation of the mean of the squared first-step
residuals conditional on X .

2.5.3 Semiparametric Maximum-Likelihood Estimation
of Binary-Response Models

This section is concerned with estimation of (2.1) when the only possible values of
Y are 0 and 1. In this case, G(x′β) = P(Y = 1|X = x). If G were a known function,
then the asymptotically efficient estimator of β would be the maximum-likelihood
estimator (MLE). The MLE solves the problem

maximize: log L(b) = 1

n

n∑

i=1

{Yi log G(X′
ib) + (1 − Yi) log [1 − G(X′

ib)]}. (2.33)

In the semiparametric case, where G is unknown, one can consider replacing G on
the right-hand side of (2.33) with an estimator such as Gni in (2.23). This idea has
been investigated in detail by Klein and Spady (1993). It is clear from (2.33) that
care must be taken to ensure that any estimate of G is kept sufficiently far from
0 and 1. Klein and Spady (1993) use elaborate trimming procedures to accom-
plish this without artificially restricting X to a fixed set Ax on which G(X′β) is
bounded away from 0 and 1. They find, however, that trimming has little effect on
the numerical performance of the resulting estimator. Therefore, in practice little is
lost in terms of estimation efficiency and much is gained in simplicity by using only
observations for which x ∈ Ax. This method will be used in the remainder of this
section.

A second simplification can be obtained by observing that in the special case
of a binary-response model, Var(Y|X = x) = G(x′β)[1 − G(x′β)]. Thus, σ 2(x)
depends only on the index z = x′β. In this case, W cancels out of the numerator and
denominator terms on the right-hand side of (2.27), so

∂G(z, β)

∂ b̃
= G′(z){x̃ − E[X̃|X′β = z, X ∈ Ax]}.

By substituting this result into (2.28) and (2.32), it can be seen that the covariance
matrix of the asymptotic distribution of the semiparametric WNLS estimator of β is
the same whether the estimator of G is weighted or not. Moreover, the asymptotic
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efficiency bound 
SI can be achieved without weighting the estimator of G. Accord-
ingly, define the unweighted estimator of G

Ĝni(z, b) = 1

nhnp̂ni(z, b)

∑

j 	=i

JnjYiK

(
z − X′

jb

hn

)

,

where

p̂ni(z, b) = 1

nhn

∑

j 	=i

JnjK

(
z − X′

jb

hn

)

.

Now consider the following semiparametric analog of (2.33):

maximize: log LSP(b̃) = 1

n

n∑

i=1

Ji{Yi log Ĝni(X
′
ib, b) + (1−Yi) log [1−Ĝni(X

′
ib, b)]}.

(2.34)

Let b̃n denote the resulting estimator of β̃. If β is identified (see the discussion in
Section 2.3), consistency of b̃n for β̃ can be demonstrated by showing that Ĝni(z, b)
converges to G(z, b) uniformly over z and b. Therefore, the probability limit of the
solution to (2.34) is the same as the probability limit of the solution to

maximize: log L
∗
SP(b̃) = 1

n

n∑

i=1

Ji{Yi log G(X′
ib, b) + (1 − Yi) log [1 − G(X′

ib, b)]}.
(2.35)

The solution to (2.34) is consistent for β̃ if the solution to (2.35) is. The solution
to (2.35) is a parametric maximum-likelihood estimator. Consistency for β̃ can be
proved using standard methods for parametric maximum-likelihood estimators. See,
for example, Amemiya (1985).

By differentiating the right-hand side of (2.34), it can be seen that bn ≡ (1, b̃n
′
)′

satisfies the first-order condition

1

n

n∑

i=1

Ji
Yi − Ĝni(X′

ibn, bn)

Ĝni(Xibn, bn)[1 − Ĝni(Xibn, bn)]

∂Ĝni(X′
ibn, bn)

∂ b̃
= 0

with probability approaching 1 as n → ∞. This is the same as the first-order condi-
tion for semiparametric WNLS estimation of β with the estimated weight function

W(x) = {Ĝni(x
′bn, bn)[1 − Ĝni(x

′bn, bn)]}−1

= {G(x′β)[1 − G(x′β)]}−1 + op(1)

= [Var(Y|X = x)]−1 + op(1).

It now follows from the discussion of asymptotic efficiency in semiparametric
WNLS estimation (Section 2.5.2) that the semiparametric maximum-likelihood
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estimator of β in a single-index binary-response model achieves the asymptotic effi-
ciency bound 
SI .

The conclusions of this section may be summarized as follows. The semipara-
metric maximum-likelihood estimator of β in a single-index binary-response model
solves (2.34). The estimator is asymptotically efficient and satisfies

n1/2(b̂n − β̃)
d−→ N(0, 
SI).

2.5.4 Semiparametric Maximum-Likelihood Estimation
of Other Single-Index Models

Ai (1997) has extended semiparametric maximum-likelihood estimation to single-
index models other than binary-response models. As in the binary-response esti-
mator of Klein and Spady (1993), Ai (1997) forms a quasi-likelihood function by
replacing the unknown probability density function of the dependent variable con-
ditional on the index with a nonparametric estimator. To illustrate, suppose that
the probability distribution of the dependent variable Y depends on the explana-
tory variables X only through the index X′β. Let f ( · |v, β) denote the probability
density function of Y conditional on X′β = v. If f were known, then β could be esti-
mated by parametric maximum likelihood. For the semiparametric case, in which f
is unknown, Ai replaces f with a kernel estimator of the density of Y conditional on
the index. He then maximizes a trimmed version of the resulting quasi-likelihood
function. Under suitable conditions, the resulting semiparametric estimator of β

is asymptotically efficient (in the sense of achieving the semiparametric efficiency
bound). See Ai (1997) for the details of the trimming procedure and regularity con-
ditions.

Ai and Chen (2003) have given conditions for asymptotically efficient estimation
of β in the moment condition model

E[ρ(Z, β,g( · ))|X] = 0, (2.36)

where Z = (Y ′, X′
Z)′, Y is a random vector, XZ is a subvector of the random vector

X, ρ is a vector of known functions, β is an unknown finite-dimensional parameter,
and g is a finite-dimensional vector of unknown functions that may include β among
their arguments. Model (2.36) is very general and includes single-index models,
partially linear models, and many others as special cases. The cost of this generality,
however, is that the analysis of (2.36) is both lengthy and complicated. The details
are given in Ai and Chen (2003).

2.5.5 Semiparametric Rank Estimators

If G in (2.1) is a nondecreasing function and Y − G(X′β) is independent of X, then
X′

iβ > X′
jβ implies that P(Yi > Yj) > P(Yj > Yi). This suggests estimating β by
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choosing the estimator bn so as to make the rank ordering of {Yi: i = 1, . . . , n}
as close as possible to that of {X′

iβ: i = 1, . . . , n}. The resulting maximum rank
correlation (MRC) estimator is

bn, MRC = arg max
b

1

n(n − 1)

n∑

i=1

n∑

j=1
j 	=i

I(Yi > Yj)I(X′
ib > X′

jb).

The MRC estimator was first proposed by Han (1987), who also gave conditions for
consistency of the estimator. Cavanagh and Sherman (1998) proposed a modified
estimator

bn,CS = arg max
b

1

n(n − 1)

n∑

i=1

n∑

j=1
j 	=i

M(Yi)I(X′
ib > X′

jb),

where M is an increasing function. This estimator is consistent under conditions that
are weaker than those required for the MRC estimator. It is also easier to compute
than the MRC estimator.

Deriving the asymptotic distributions of these estimators is complicated because
their objective functions are discontinuous. Sherman (1993) gave conditions under
which n1/2(bn, MRC − β) is asymptotically normally distributed with mean 0.
Cavanagh and Sherman (1998) gave conditions for asymptotic normality of
n1/2(bn,CS − β). The derivation of these results relies on empirical process meth-
ods that are beyond the scope of this book. Sherman (1993) and Cavanagh and
Sherman (1998) also give methods for estimating the covariance matrices of the
asymptotic distributions of n1/2(bn, MRC − β) and n1/2(bn,CS − β), but these are
hard to implement. Subbotin (2008) proves that the bootstrap estimates these dis-
tributions consistently, which makes the bootstrap a potentially attractive method
for carrying out inference with bn, MRC and bn,CS in applied research. Rank estima-
tors are not asymptotically efficient and can be hard to compute, but they do not
require bandwidths or other smoothing parameters. This may be an advantage in
some applications.

2.6 Direct Semiparametric Estimators

Semiparametric weighted nonlinear least-squares and maximum-likelihood esti-
mators have the significant practical disadvantage of being very difficult to com-
pute. This is because they are solutions to nonlinear optimization problems whose
objective functions may be nonconvex (nonconcave in the case of the maximum-
likelihood estimator) or multimodal. Moreover, computing the objective functions
requires estimating a nonparametric mean regression at each data point and, there-
fore, can be very slow.

This section describes an estimation approach that does not require solving an
optimization problem and is noniterative (hence the name direct). Direct estimates
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can be computed very quickly. Although direct estimators are not asymptotically
efficient, an asymptotically efficient estimator can be obtained from a direct estima-
tor in one additional, noniterative, computational step. The relative computational
simplicity of direct estimators makes them highly attractive for practical data
analysis.

Xia et al. (2002) have proposed an iterative scheme called rMAVE (Refined Min-
imum Average Conditional Variance Estimation) that simplifies the computations of
semiparametric weighted nonlinear least-squares and maximum-likelihood estima-
tors. Xia (2006) has given conditions under which rMAVE yields the asymptotically
efficient estimator of a single-index model. However, these conditions include start-
ing the rMAVE iterations at a point b0 that satisfies ‖b0 − β‖ = o(n−9/20). Conse-
quently, rMAVE has no apparent advantages over taking an additional step beyond
one of the direct estimators that is described in this section.

Section 2.6.1 describes a well-known direct estimation method under the
assumption that X is a continuously distributed random vector. Section 2.6.2
describes a direct estimation method that overcomes an important disadvantage of
the method of Section 2.6.1 though at the cost of additional complexity. Section
2.6.3 shows how the direct estimation method can be extended to models in which
some components of X are discrete. Section 2.6.4 describes the one-step method for
obtaining an asymptotically efficient estimator from a direct estimate.

2.6.1 Average-Derivative Estimators

The idea underlying direct estimation of a single-index model when X is a contin-
uously distributed random vector is very simple. Let (2.1) hold. Assume that G is
differentiable, as is required for identification of β. Then

∂E(Y|X = x)

∂x
= βG′(x′β). (2.37)

Moreover, for any bounded, continuous function W,

E

[
W(X)

∂E(Y|X)

∂x

]
= βE

[
W(X)G′(X′β)

]
. (2.38)

The quantity on the left-hand side of (2.38) is called a weighted average derivative
of E(Y|X) with weight function W. Equation (2.38) shows that a weighted average
derivative of E(Y|X) is proportional to β. Owing to the need for scale normalization,
β is identified only up to scale, so any weighted average derivative of E(Y|X) is
observationally equivalent to β. Thus, to estimate β, it suffices to estimate the left-
hand side of (2.38) for some W. The scale normalization β1 = 1 can be imposed,
if desired, by dividing each component of the left-hand side of (2.38) by the first
component.
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The left-hand side of (2.38) can be estimated by replacing ∂E(Y|X)/∂x with a
kernel (or other nonparametric) estimator and the population expectation E( · ) with
a sample average. Hristache et al. (2001), Härdle and Stoker (1989), Powell et al.
(1989), and Stoker (1986, 1991a,b) describe various ways of doing this. The dis-
cussion in this section concentrates on the method of Powell et al. (1989), which
is especially easy to analyze and implement. Section 2.6.2 describes the method of
Hristache et al. (2001), which overcomes an important disadvantage of the method
of Powell et al. (1989).

To describe the method of Powell et al. (1989), let p( · ) denote the probability
density function of X, and set W(x) = p(x). Then the left-hand side of (2.38) can be
written in the form

E

[
W(X)

∂E(Y|X)

∂x

]
= E

[
p(X)

∂E(Y|X)

∂x

]

=
∫

∂E(Y|X = x)

∂x
p(x)2dx.

Assume that p(x) = 0 if x is on the boundary of the support of X. Then integration
by parts gives

E

[
W(X)

∂E(Y|X)

∂x

]
= −2

∫
E(Y|X = x)

∂p(x)

∂x
p(x)dx

= −2E

[
Y
∂p(X)

∂x

]
.

Define

δ = −2E[Y∂p(X)/∂x]. (2.39)

Then δ is observationally equivalent to β up to scale normalization. A consistent
estimator of δ can be obtained by replacing p with a nonparametric estimator and
the expectation operator with a sample average. Let {Yi, Xi: i = 1, . . . , n} denote
the sample. The estimator of δ is

δn = −2
n∑

i=1

Yi
∂pni(Xi)

∂x
, (2.40)

where pni(Xi) is the estimator of p(Xi). The quantity δn is called a density-weighted
average-derivative estimator.

To implement (2.40), the estimator of p must be specified. A kernel estimator is
attractive because it is relatively easily analyzed and implemented. To this end, let
d = dim (X), and let K be a kernel function with a d -dimensional argument. Condi-
tions that K must satisfy are given in Theorem 2.3 below. Let {hn} be a sequence of
bandwidth parameters. Set
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pni(x) = 1

n − 1

1

hd
n

∑

j 	=i

K

(
x − Xj

hn

)
.

It follows from the properties of kernel density estimators (see the Appendix) that
pni(x) is a consistent estimator of p(x). Moreover, ∂p(x)/∂x is estimated consistently
by ∂pni(x)/∂x. The formula for ∂pni(x)/∂x is

∂pni(x)

∂x
= 1

n − 1

1

hd+1
n

∑

j 	=i

K′
(

x − Xj

hn

)
, (2.41)

where K′ denotes the gradient of K. Substituting (2.41) into (2.40) yields

δn = − 2

n(n − 1)

1

hd+1
n

n∑

i=1

∑

j 	=i

YiK
′
(

Xi − Xj

hn

)
. (2.42)

Observe that the right-hand side of (2.42) does not have a density estimator or other
random variable in its denominator. This is because setting W(x) = p(x) in the
weighted average derivative defined in (2.38) cancels the density function that would
otherwise be in the denominator of the estimator of E(Y|X = x). This lack of a
random denominator is the main reason for the relative ease with which δn can be
analyzed and implemented.

Powell et al. (1989) give conditions under which δn is a consistent estimator of
δ and n1/2(δn − δ) is asymptotically normally distributed with mean 0. The formal
statement of this result and the conditions under which it holds are given in Theorem
2.3. Let ‖·‖ denote the Euclidean norm. Let P = (d + 2)/2 if d is even and P =
(d + 3)/2 if d is odd.

Theorem 2.3: Let the following conditions hold.

(a) The support of X is a convex, possibly unbounded, subset of R
d with a

nonempty interior. X has a probability density function p. All partial deriva-
tives of p up to order P + 1 exist.

(b) The components of ∂E(Y|X)/∂x and of the matrix [∂p(X)/∂x](Y , X′) have
finite second moments. E[Y∂rp(X)] exists for all positive integers r ≤ P + 1 ,
where ∂rp(x) denotes any order r mixed partial derivative of p. E(Y2|X = x)
is a continuous function of x. There is a function m(x) such that

E [(1 + |Y| + ‖X‖ )m(X)]2 < ∞,
∥
∥∥∥
∂p(x + ζ )

∂x
− ∂p(x)

∂x

∥
∥∥∥ < m(x) ‖ζ‖ ,

and

∥∥
∥∥
∂p(x + ζ )E(Y|X = x + ζ )

∂x
− ∂p(x)E(Y|X = x)

∂x

∥∥
∥∥ < m(x) ‖ζ‖ .
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(c) The kernel function K is symmetrical about the origin, bounded, and differen-
tiable. The moments of K through order P are finite. The moments of K of order
r are all 0 if 1 ≤ r < P. In addition

∫
K(v)dv = 1.

(d) The bandwidth sequence {hn} satisfies nh2P
n → 0 and nhd+2

n → ∞ as n → ∞.
Then

n1/2(δn − δ)
d−→ N(0, 
AD),

where


AD = 4E[R(Y , X)R(Y , X)′] − 4δδ′ (2.43)

and

R(y, x) = p(x)
∂E(Y|X = x)

∂x
− [Y − E(Y|X = x)]

∂p(x)

∂x
. �

A consistent estimator of 
AD is given in (2.44) below.
Several comments may be made about the conditions imposed in Theorem 2.3.

Condition (a) implies that X is a continuously distributed random variable and that
no component of X is functionally determined by other components. Condition (b)
requires the existence of various moments and imposes smoothness requirements
on p(x), E(Y|X = x), and E(Y2|X = x). Condition (c) requires K to be a higher-
order kernel, meaning that some of its even moments vanish. In condition (c), the
order is P. Higher-order kernels are used in density estimation and nonparametric
mean regression to reduce bias. See the Appendix for further discussion of this use
of higher-order kernels. Here, the higher-order kernel is used to make the bias of
δn have size o(n−1/2), which is needed to ensure that the asymptotic distribution of
n1/2(δn−δ) is centered at 0. Finally, the rate of convergence of hn is faster than would
be optimal if the aim were to estimate p(x) or E(Y|X = x) nonparametrically. Under
the conditions of Theorem 2.3, the rate of convergence in probability of an estimator
of p(x) or E(Y|X = x) is maximized by setting hn ∝ n−1/(2P+d), which is too slow
to satisfy the requirement in condition (d) that nh2P

n → 0 as n → ∞. The rela-
tively fast rate of convergence of hn required by condition (d), like the higher-order
kernel required by condition (c), is needed to prevent the asymptotic distribution of
n1/2(δn − δ) from having a nonzero mean.

Kernel density and mean-regression estimators cannot achieve Op(n−1/2) rates
of convergence, so it may seem surprising that δn achieves this rate. The fast con-
vergence of δn is possible because the sum over i on the right-hand side of (2.42)
makes δn an average of kernel estimators. Averages of kernel estimators can achieve
faster rates of convergence than kernel estimators that are not averaged.
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A consistent estimator of 
AD can be obtained from (2.43) by replacing δ with δn,
the population expectation with a sample average, and R with a consistent estimator.
Powell et al. (1989) give the details of the calculation. The result is that 
AD is
estimated consistently by


AD, n = 4

n

n∑

i=1

Rn(Yi, Xi)Rn(Yi, Xi)
′ − 4δnδ

′
n, (2.44)

where

Rn(Yi, Xi) = − 1

n − 1

1

hd+1
n

∑

j 	=i

(Yi − Yj)K
′
(

Xi − Xj

hn

)
.

2.6.2 An Improved Average-Derivative Estimator

The density-weighted average-derivative estimator of (2.42) requires the density of
X to be increasingly smooth as the dimension of X increases. This is necessary to
make n1/2(δ̂n − δ) asymptotically normal with a mean of 0. See assumption (a) of
Theorem 2.3. The need for increasing smoothness is a form of the curse of dimen-
sionality. Its practical consequence is that the finite-sample performance of the
density-weighted average-derivative estimator is likely to deteriorate as the dimen-
sion of X increases, especially if the density of X is not very smooth. Specifically,
the estimator’s bias and mean-square error are likely to increase as the dimension of
X increases.

Hristache et al. (2001) proposed an iterated average-derivative estimator that
overcomes this problem. Their estimator is based on the observation that G(x′β)
does not vary when x varies in a direction that is perpendicular to β. Therefore,
only the directional derivative of E(Y|X = x) along the direction of β is needed for
estimation. If this direction were known, then estimating the directional derivative
would be a one-dimensional nonparametric estimation problem, and there would be
no curse of dimensionality.

Of course, the direction of β is not known in applications, but Hristache et al.
show that it can be estimated with sufficient accuracy through an iterative proce-
dure. At each iteration, the gradient of E(Y|X = x) is estimated using two band-
widths. The bandwidth in the estimated direction of β decreases as the iterations
proceed, and the bandwidth in the estimated perpendicular direction increases. The
use of two bandwidths enables the iterative procedure to mimic taking a directional
derivative with increasing accuracy as the iterations proceed. The contribution to
variance from estimation in the estimated perpendicular direction is small because
the bandwidth in this direction is large. The contribution to bias is small despite
the large bandwidth because E(Y|X = x) varies little in the estimated perpendicular
direction.
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The details of the estimation procedure are as follows:

1. Specify the values of the tuning parameters ρ1, ρmin, aρ , ah, h1, and hmax.
Methods for doing this are discussed below. Also, set b0 = 0 and j = 1 .

2. At iteration j(j = 1,2, . . . ), set Sj = (I + ρ−2
j bj−1b′

j−1)1/2 , where bj−1 is the
estimate of β at iteration j−1 , I is the k×k identity matrix, and k = dim (β).

3. Let K be a kernel function. Denote the data by {Yi, Xi: i = 1, . . . , n} . For each
i, � = 1, . . . , n , define the column vector X�i = X� − Xi . Let Êj(Xi) and
∇̂Ej(Xi) denote the estimates of E(Y|X = Xi) and ∂E(Y|X = Xi)/∂x at the jth
iteration. For each i = 1, . . . , n , these are obtained from the formula

[
Êj(Xi)

∇̂Ej(Xi)

]
=
[

n∑

�=1

(
1

X�i

)(
1

X�i

)′
K

(∥∥SjX�i
∥∥2

h2
j

)]−1 n∑

�=1

Y�

(
1

X�i

)
K

(∥∥SjX�i
∥∥2

h2
j

)

.

4. Compute the vector bj = n−1∑n
i=1 ∇̂Ej(Xi) .

5. Set hj+1 = ahhj and ρj+1 = aρρj . If ρj+1 > ρmin , set j = j + 1 and return
to Step 2. Terminate if ρj+1 ≤ ρmin .

Let j(n) denote the total number of iterations. The average-derivative estimate of β

is bj(n). This estimate does not satisfy the scale normalization that requires its first
component to equal 1, but that normalization can be achieved by division. Alter-
natively, bj(n) can be normalized to have unit length. This is the normalization that
Hristache et al. use. It gives the estimate θ̂ = bj(n)/

∥∥bj(n)
∥∥. In Step 3, Êj(Xi) and

∇̂Ej(Xi) are local-linear estimates of E(Y|X = Xi) and its gradient. Local-linear
estimation is discussed in the Appendix. In particular, Êj(Xi) and ∇̂Ej(Xi) solve the
problem

[
Êj(Xi)

∇̂Ej(Xi)

]
= arg min

c∈R, b∈Rk

n∑

�=1

(Y� − c − b′X�i)
2 K

(∥∥SjX�i
∥∥2

h2
j

)

.

Hristache et al. proposed the following choices of tuning parameters. These choices
are based on heuristic considerations and simulation evidence:

ρ1 = 1, ρmin = n−1/3/hmax, aρ = e−1/6,

h1 = n−1/(4∨d), hmax = 2d1/2, ah = e1/[2(4∨d)].

We now state the asymptotic properties of the estimator. Make the following
assumptions.

HJS1: The kernel, K, is a continuously differentiable, decreasing function on
R+ with K(0) = 1 and K(v) = 0 for all v ≥ 1 .

HJS2: The model is Yi = G(X′
iβ) + Ui, where the Ui are independently and

identically normally distributed with mean 0 and finite variance σ 2 .
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HJS3: The function G is twice differentiable with a bounded second derivative.
HJS4: The points {Xi: i = 1, . . . , n} are independently and identically dis-

tributed with a continuous, strictly positive density on [0,1]d .

We now have the following theorem.

Theorem 2.4: Let assumptions HJS1–HJS4 hold. Define zn = (1 + 2 log n +
2 log log n)1/2 and β∗ = n−1β ′∑n

i=1 G′(X′
iβ). Then for all sufficiently large n,

P

[∥∥∥(θ̂ − θ ) − γ

n1/2

∥∥∥ >
Cz2

nn−2/3

‖β∗‖
]

≤ 3j(n)

n
,

where C is a constant and γ is a normally distributed random vector in R
d with

mean 0 and a bounded covariance matrix. �
Hristache et al. actually assume a fixed design (the Xi s are nonrandom), but this

requires a rather complicated “design regularity” condition. A random design satis-
fies this condition with a probability that approaches 1 exponentially as n increases.
Normality of the Ui s is not essential. The results can be extended to heteroskedastic,
nonnormal Uis that satisfy sup1≤i≤n E[ exp (λUi)] ≤ D for some positive constants
λ and D. The requirement that Xi ∈ [0,1]d is not restrictive because it can always be
satisfied by transforming the Xi s.

Theorem 2.4 states, among other things, that the iterated average-derivative esti-
mator is n−1/2-consistent and asymptotically normally distributed with a mean of 0.
In contrast to the density-weighted average-derivative estimator of Section 2.6.1,
this happens whenever X has a continuous, positive density, regardless of the dimen-
sion of X. Increasing smoothness and higher-order kernels are not needed to accom-
modate high-dimensional X s. The covariance matrix of the asymptotic distribution
of the iterated average-derivative estimator is not specified, but this is unimportant
because the estimator can be made asymptotically efficient with covariance matrix

SI by taking one step toward the minimum of a suitable version of the weighted
nonlinear least-squares estimator of Section 2.5. See Section 2.6.4.

2.6.3 Direct Estimation with Discrete Covariates

Average-derivative methods cannot be used to estimate components of β that mul-
tiply discrete components of X. This is because derivatives of E(Y|X = x) with
respect to discrete components of X are not identified. This section explains how
direct (noniterative) estimation can be carried out when some components of X are
discrete.

To distinguish between continuous and discrete covariates, let X denote the con-
tinuously distributed covariates and Z denote the discrete ones. Rewrite (2.1) in the
form

E(Y|X = x, Z = z) = G(x′β + z′α), (2.45)
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where α is the vector of coefficients of the discrete covariates. As was discussed
in Section 2.3, identification requires there to be at least one continuous covari-
ate. There need not be any discrete covariates, but it is assumed in this section
that there is at least one. Let dz ≥ 1 denote the number of discrete covariates and
components of Z.

The problem of interest in this section is estimating α. The parameter β can be
estimated by using the average-derivative estimators of Sections 2.6.1 and 2.6.2 as
follows. Let Sz ≡ {z(i): i = 1, . . . , M} be the points of support of Z. Define δ

(i)
n to

be the average-derivative estimator of δ that is obtained by applying the methods
of Section 2.6.1 or 2.6.2 to the observations for which Z = z(i). Let δ

(i)
n1 be the

first component of δ
(i)
n . Let wni ( i = 1, . . . , M) be a set of nonnegative (possibly

data-dependent) weights that sum to one. The estimator of β is

bn =

M∑

i=1
wniδ

(i)
n

M∑

i=1
wniδ

(i)
n1

. (2.46)

One possible set of weights is wni = ni/n, where ni is the number of observations
the sample for which Z = z(i). However, the results presented in this section hold
with any set of nonnegative weights that sum to one.

To see how α can be estimated, assume for the moment that G in (2.45) is known.
Let p(·|z) denote the probability density function of X′β conditional on Z = z. Make
the following assumption.

Assumption G: There are finite numbers v0, v1, c0, and c1 such that v0 < v1,
c0 < c1, and G(v) = c0 or c1 at only finitely many values of v. Moreover, for each
z ∈ Sz,

(a) G(v + z′α) < c0 if v < v0 ,
(b) G(v + z′α) > c1 if v > v1 ,
(c) p( · |z) is bounded away from 0 on an open interval containing [v0,v1] .

Parts (a) and (b) of Assumption G impose a form of weak monotonicity on G. G
must be smaller than c0 at sufficiently small values of its argument and larger than c1
at sufficiently large values. G is unrestricted at intermediate values of its argument.
Part (c) ensures that G(v + z′α) is identified on v0 ≤ v ≤ v1.

To see the implications of Assumption G for estimating α, define

J(z) =
∫ v1

v0

{c0I[G(v + z′α) < c0] + c1I[G(v + z′α) > c1]

+ G(v + z′α)I[c0 ≤ G(v + z′α) ≤ c1]}dv.

Define va = max{v0 + z′α: z ∈ Sz} and vb = min{v1 + z′α: z ∈ Sz}. Make the
change of variables v = u − z′α in the integrals on the right-hand side of J(z).
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Observe that by Assumption G, I[G(u) < c0] = 0 if u > vb, I[G(u) > c1] = 0 if
u < va, and I[c0 ≤ G(u) ≤ c1] = 0 if u < va or u > vb. Therefore,

J(z) = c0

∫ va

v0+z′α
I[G(u) < c0]du + c0

∫ vb

va

I[G(u) < c0]du

+
∫ vb

va

G(u)I[c0 ≤ G(u) ≤ c1]du + c1

∫ vb

va

I[G(u) > c1]du

+ c1

∫ v1+z′α

vb

I[G(u) > c1]du

= c0(va − v0 − z′α) + c0

∫ vb

va

I[G(u) < c0]du +
∫ vb

va

G(u)I[c0 ≤ G(u) ≤ c1]du

+ c1

∫ vb

va

I[G(u) > c1]du + c1(v1 − vb + z′α).

It follows that for i = 2, . . . , M

J[z(i)] − J[z(1)] = (c1 − c0)[z(i) − z(1)]′α. (2.47)

Since c0, c1, and the support of Z are known, (2.47) constitutes M − 1 linear equa-
tions in the dz unknown components of α. These equations can be solved for α if a
unique solution exists. To do this, define the (M − 1) × 1 vector �J by

�J =
⎡

⎢
⎣

J[z(2)] − J[z(1)]
...

J[z(M)] − J[z(1)]

⎤

⎥
⎦ .

Also, define the (M − 1) × dz matrix W by

W =
⎡

⎢
⎣

z(2) − z(1)

...
z(M) − z(1)

⎤

⎥
⎦ .

Then

W ′�J = (c1 − c0)−1W ′Wα.

Therefore, if W ′W is a nonsingular matrix,

α = (c1 − c0)(W ′W)−1W ′�J. (2.48)

Equation (2.48) forms the basis of the estimator of α. The estimator is obtained
by replacing the unknown G(v + z′α) that enters �J with a kernel estimator of the
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nonparametric mean regression of Y on X′ bn conditional on Z = z. The resulting
estimator of G(v + z′α) is

Gnz(v) = 1

nhnzpnz(v)

n∑

i=1

I(Zi = z)YiK

(
v − Vni

hnz

)
, (2.49)

where hnz is a bandwidth, K is a kernel function, Vni = X′
i bn, and

pnz(v) = 1

nhnz

n∑

i=1

I(Zi = z)K

(
v − Vni

hnz

)
. (2.50)

The estimator of α is then

an = (c1 − c0)−1(W ′W)−1W ′�Jn, (2.51)

where

�Jn =
⎡

⎢
⎣

Jn[z(2)] − Jn[z(1)]
...

Jn[z(M)] − Jn[z(1)]

⎤

⎥
⎦

and

Jn(z) =
∫ v1

v0

{c0I[Gnz(v) < c0] + c1I[Gnz(v) > c1]

+ Gnz(v)I[c0 ≤ Gnz(v) ≤ c1]}dv.

Horowitz and Härdle (1996) give conditions under which an in (2.51) is a consis-
tent estimator of α and n1/2(an−α) is asymptotically normally distributed with mean
0. The formal statement of this result is given in Theorem 2.5. Define V = X′β,
Vi = X′

iβ, v = x′β, and Gz(v) = G(v + z′α). Let p(v|z) be the probability density
of V conditional on Z = z, let p(z) be the probability that Z = z ( z ∈ Sz), let
p(v, z) = p(v|z)p(z), and let p(v, x̃|z) be the joint density of (V , X̃) conditional on
Z = z. Finally, define

�(z) = −
∫ v1

v0

G′
z(v)E(X̃|v, z)I[c0 ≤ G(v + z′α) ≤ c1]dv.

Theorem 2.5: Let the following conditions hold.

(a) Sz is a finite set. E
(∥∥X̃

∥∥2 |Z = z
)

< ∞ and E
(
|Y| ∥∥X̃

∥∥2 |Z = z
)

< ∞ for

each z ∈ Sz . E
(
|Y|2 ∥∥X̃

∥∥2 |V = v, Z = z
)

, E(|Y|2|V = v, Z = z) , and

p(v, z) are bounded uniformly over v ∈ [v0 − ε,v1 + ε] for some ε > 0 and
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all z ∈ Sz. For each z ∈ Sz , p(v, x̃|z) is everywhere three times continuously
differentiable with respect to v and the third derivative is bounded uniformly.
Var(Y|V = v, Z = z) > 0 for all z ∈ Sz and almost every v.

(b) W ′W is nonsingular.
(c) E(Y|X = x, Z = z) = G(x′β + z′α) . G is r times continuously differentiable for

some r ≥ 4 . G and its first r derivatives are bounded on all bounded intervals.
(d) Assumption G holds.
(e) If d = dim (X) > 1 , there is a (d − 1) × 1 vector-valued function ω(y, x, z)

satisfying E[ω(Y , X, Z)] = 0 ,

n1/2(bn − β) = 1

n1/2

n∑

i=1

ω(Yi, Xi,Zi) + op(1),

and

1

n1/2

n∑

i=1

ω(Yi, Xi,Zi)
d→ N(0,Vω)

for some finite matrix Vω .
(f) K in (2.49) and (2.50) is a bounded, symmetrical, differentiable function that

is nonzero only on [ − 1,1] . K′ is Lipschitz continuous. For each integer j
between 0 and r (r ≥ 4),

∫ 1

−1
v jK(v)dv =

{
1 if j = 0

0 if 1 ≤ j ≤ r − 1
.

(g) As n → ∞, nhr+3
n → ∞ and nh2r

n → 0, where hn is the bandwidth in (2.49)
and (2.50).

Then an is a consistent estimator of α. Moreover, n1/2(an − α) is asymptotically
distributed as N(0, 
α), where 
α is the covariance matrix of the dz × 1 random
vector �n whose m th component is

m∑

j=2

[(W ′W)−1W ′]mjn
−1/2

n∑

i=1

{I(Zi = z(j))p(Vi,z
(j))−1

[Yi − Gz(j) (Vi)]I[c0 ≤ Gz(j) (Vi) ≤ c1] − I(Zi = z(1))p(Vi,z
(1))−1

[Yi − Gz(1) (Vi)]I[c0 ≤ Gz(1) (Vi) ≤ c1] + (�z(j) − �z(1) )ω(Yi, Xi,Zi)}. �

Condition (a) makes Z a discrete random variable with finite support and estab-
lishes the existence and properties of certain moments. The need for conditions
(b) and (d) has already been discussed. Condition (c) makes E(Y|X = x, Z = z) a
single-index model. Condition (e) is satisfied by the estimators of β discussed in
Sections 2.6.1 and 2.6.2 but does not require the use of these estimators. Condi-
tions (f) and (g) require K to be a higher-order kernel with undersmoothing. As in



42 2 Single-Index Models

Section 2.6.1, conditions (f) and (g) are used to insure that the asymptotic distribu-
tion of n1/2(an − α) is centered at 0.

The covariance matrix 
α can be estimated consistently by replacing unknown
quantities with consistent estimators. �z is estimated consistently by

�nz = −1

n

n∑

i=1

X̃iI(Zi = z)I(v0 ≤ Vni ≤ v1)I[c0 ≤ Gnz(Vni) ≤ c1]G′
nz(Vni)/pnz(Vni),

where G′
nz(v) = dGnz(v)/dv. Define λ(y,v, z) to be the (M − 1) × 1 vector whose

(j − 1) component ( j = 2, . . . , M) is

λj(y,v, z) = I(z = z(j))
y − Gnz(j) (v)

pnz(j) (v)
I[c0 ≤ Gnz(j)(v) ≤ c1]

− I(z = z(1))
y − Gnz(1) (v)

pnz(1) (v)
I[c0 ≤ Gnz(1)(v) ≤ c1].

Let ωn be a consistent estimator of ω. Then 
α is estimated consistently by the
sample covariance of the dz × 1 vector whose mth component ( m = 1, . . . , dz) is

m∑

j=2

[(W ′W)−1W ′]mj[λj(Yi, Vni, Zi) + (�nz(j) − �nz(1) )ωn(Yi, Xi, Zi)].

Horowitz and Härdle (1996) show how to estimate ω when the estimator of β is
(2.46) and the δ

(i)
n are density-weighted average-derivative estimates (Section 2.6.1).

To state their result, let pni(x) be a kernel estimator of the probability density of X
conditional on Z = z(i). That is,

pni(x) = 1

nisn

n∑

j=1

I(Zj = z(i))K
∗
(

x − Xj

sn

)
,

where K
∗

is a kernel function of a k -dimensional argument, ni is the number of
observations for which Z = z(i), and sn is a bandwidth. Let x(1) be the first compo-
nent of x. Then the estimator of ω is

ωn(y, x, z(i)) = −2
ni

nδ(i)
n1

[y − G(x′bn + z(i)′an)]

[
∂pni(x)

∂ x̃
− b̃n

∂pni(x)

∂x(1)

]
.

2.6.4 One-Step Asymptotically Efficient Estimators

In parametric estimation, an asymptotically efficient estimator can be obtained
by taking one Newton step from any n−1/2-consistent estimator toward the
maximum-likelihood estimator. This procedure is called one-step asymptotically
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efficient estimation. The resulting estimator is called a one-step asymptotically effi-
cient estimator. This section shows that the same idea applies to estimation of β in a
semiparametric single-index model. Specifically, let Sn be the objective function of
the semiparametric WNLS estimator (2.25) with W(x) = 1/s2

n(x). Then an asymp-
totically efficient estimator of β can be obtained by taking one Newton step from
any n1/2 -consistent estimator toward the minimum of Sn. In the case of a single-
index binary-response model, the step may be taken toward the maximum of the
semiparametric log-likelihood function (2.34).

One-step asymptotically efficient estimation is especially useful in semiparamet-
ric single-index models because the direct estimators described in Sections 2.6.1–
2.6.3 can be computed very rapidly. Therefore, one-step estimators can be obtained
with much less computation than is needed to minimize Sn or maximize the semi-
parametric log-likelihood function.

Consider one-step asymptotically efficient estimation based on Sn . Let X denote
the entire vector of covariates, continuous and discrete. Let β denote the entire vec-
tor of coefficients of X in (2.1). Let b̃

∗
n be any n−1/2 -consistent estimator of β̃. It is

convenient in applications but not essential to the arguments made here to let b̃
∗
n be

a direct estimator. The one-step asymptotically efficient estimator of β̃ is

b̃n = b̃
∗
n−

[
∂2Sn(b̃

∗
n)

∂ b̃∂ b̃′

]−1
∂Sn(b̃

∗
n)

∂ b̃
. (2.52)

To see why b̃n is asymptotically efficient, write (2.52) in the form

n1/2(b̃n − β̃) = n1/2(b̃
∗
n− β̃) −

[
∂2Sn(b̃

∗
n)

∂ b̃∂ b̃′

]−1

n1/2 ∂Sn(b̃
∗
n)

∂ b̃
. (2.53)

Observe that just as in the arguments leading to (2.31),

∂2Sn(b̃
∗
n)

∂ b̃∂ b̃′ = C + op(1). (2.54)

Moreover, a Taylor-series expansion gives

∂Sn(b̃
∗
n)

∂ b̃
= ∂Sn(β̃)

∂ b̃
+ ∂2Sn(b̄n)

∂ b̃∂ b̃′ (b̃
∗
n− β̃),

where b̄n is between b̃
∗
n and β̃. The second-derivative term in this equation converges

in probability to C, so

n1/2 ∂Sn(b̃
∗
n)

∂ b̃
= n1/2 ∂Sn(β̃)

∂ b̃
+ Cn1/2(b̃

∗
n− β̃) + op(1). (2.55)
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Substitution of (2.54) and (2.55) into (2.53) yields

n1/2(b̃n − β̃) = −C−1n1/2 ∂Sn(β̃)

∂ b̃
+ op(1).

As in (2.30)

n1/2 ∂Sn(β̃)

∂ b̃

d−→ N(0, D).

Therefore, n1/2(b̃n−β̃)
d−→ N(0,C−1DC−1). Since C−1DC−1 = 
SI when W(x) =

1/s2
n(x),

n1/2(b̃n − β̃)
d−→ N(0, 
SI).

This establishes the asymptotic efficiency of the one-step semiparametric WNLS
estimator. The same arguments apply to the one-step semiparametric maximum-
likelihood estimator after replacing Sn with the semiparametric log-likelihood
function.

2.7 Bandwidth Selection

Implementation of any of the semiparametric estimators for single-index models
that are discussed in this chapter requires choosing the numerical values of one or
more bandwidth parameters and, possibly, of other tuning parameters. The selec-
tion of tuning parameters for the average-derivative estimator of Section 2.6.2 was
discussed in that section. This section summarizes what is known about selecting
tuning parameters for other estimators.

Härdle et al. (1993) investigated bandwidth selection for the semiparametric
weighted nonlinear least-squares estimator of (2.25). They proposed optimizing the
objective function over b̃ and the bandwidth hn. They gave conditions under which
this yields an estimate of the bandwidth that minimizes the asymptotic integrated
mean-square error of a kernel estimator of G. Thus, the resulting bandwidth esti-
mate is an estimate of the asymptotically optimal bandwidth for kernel estimation
of G. This bandwidth does not necessarily have any optimality properties for esti-
mation of β.

As can be seen from the results in Sections 2.4, 2.5, and 2.6, in semipara-
metric single-index models, the asymptotic distribution of n1/2(bn − β) does not
depend on the bandwidth hn. Therefore, bandwidth selection must be based on a
higher-order approximation to the distribution of n1/2(bn−β). Härdle and Tsybakov
(1993) used such an approximation to obtain a formula for the bandwidth that min-
imizes the asymptotic approximation to E ‖δn − δ‖2, where δ and δn, respectively,
are as in (2.39) and (2.42), and ‖·‖ is the Euclidean norm. This is an asymptot-
ically optimal bandwidth for estimating β. Powell and Stoker(1996) obtained the
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bandwidth that minimizes the asymptotic mean-square error of a single component
of δn − δ.

Two aspects of the results of Härdle and Tsybakov (1993) and Powell and Stoker
(1996) are especially noteworthy. First, the asymptotically optimal bandwidth has
the form

hn,opt = h0n−2/(2P+d+2),

where P and d are defined as in Theorem 2.3 and h0 is a constant. Second, Powell
and Stoker (1996) provide a method for estimating h0 in an application. To state
this method, let hn1 be an initial bandwidth estimate that satisfies hn1 → 0 and
nhc

n1 → ∞ as n → ∞, where c = max (η + 2d + 4, P + d + 2) for some η > 0.
Define

qn(y1, x1,y2, x2) = − 1

hd+1
n1

(y1 − y2)K′
(

x1 − x2

hn1

)

and

Q̂ = 2hd+2
n1

n(n − 1)

∑

i<j

qn(Yi, Xi,Yj, Xj)
2.

Let δn(h) denote the density-weighted average-derivative estimator of δ based on
bandwidth h. Let τ 	= 1 be a positive number. Define

Ŝ = δn(τhn1) − δn(hn1)

(τhn1)P − hP
n1

.

The estimator of h0 is

ĥ0 =
[

(d + 2)Q̂

PŜ2

]1/(2P+d+2)

.

Another possible approach to bandwidth selection is based on resampling the
data. Suppose that the asymptotically optimal bandwidth has the form

hn,opt = h0n−γ

for some known γ . For example, in density-weighted average-derivative estimation,
γ = 2P + d + 2. Let m < n be a positive integer. Let {Y∗

i , X
∗
i : i = 1, . . . , m} be a

sample of size m that is obtained by sampling the estimation data randomly without
replacement. Then {Y∗

i , X
∗
i } is a random sample from the population distribution

of (Y , X). Repeat this resampling process J times. Let bmj(h) ( j = 1, . . . , J) be
the estimate of β that is obtained from the jth sample using bandwidth h = τm−γ ,
where τ is a constant. Let bn be the estimate of β that is obtained from the full
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sample by using a preliminary bandwidth estimate that satisfies the requirements
needed to make bn a n−1/2-consistent estimator of β. Let τm be the solution to the
problem

minimize:
1

J

J∑

j=1

[bmj(h) − bn]2.

Then τm estimates h0, and hn,opt is estimated by

ĥn,opt = τmn−γ .

Horowitz and Härdle (1996) used Monte Carlo methods to obtain rules of thumb
for selecting the tuning parameters required for the estimator of α described in Sec-
tion 2.6.3. Horowitz and Härdle (1996) obtained good numerical results in Monte
Carlo experiments by setting hnz = svzn

−1/7.5
z , where svz is the sample standard

deviation of X′bn conditional on Z = z ∈ Sz and nz is the number of observations
with Z = z. In these experiments, the values of the other tuning parameters were

v1 = min
z∈Sz

max
1≤i≤n

{X′
ibn − hnz: Zi = z},

v0 = max
z∈Sz

min
1≤i≤n

{X′
ibn + hnz: Zi = z},

c0 = max
z∈Sz

max
Xibn≤v0

G
∗
nz(X

′
ibn),

and
c1 = min

z∈Sz
min

Xibn≥v1
G

∗
nz(X

′
ibn).

In the formulae for c0 and c1, G
∗
nz is the kernel estimator of Gz that is obtained

using a second-order kernel instead of the higher-order kernel used to estimate
α. Horowitz and Härdle (1996) found that using a second-order kernel produced
estimates of c0 and c1 that were more stable than those obtained with a higher-
order kernel.

2.8 An Empirical Example

This section presents an empirical example that illustrates the usefulness of semi-
parametric single-index models. The example is taken from Horowitz and Härdle
(1996) and consists of estimating a model of product innovation by German manu-
facturers of investment goods. The data, assembled in 1989 by the IFO Institute of
Munich, consist of observations on 1100 manufacturers. The dependent variable is
Y = 1 if a manufacturer realized an innovation during 1989 in a specific product
category and 0 otherwise. The independent variables are the number of employ-
ees in the product category (EMPLP), the number of employees in the entire firm
(EMPLF), an indicator of the firm’s production capacity utilization (CAP), and a
discrete variable DEM, which is 1 if a firm expected increasing demand in the prod-
uct category and 0 otherwise.The first three independent variables are standardized
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so that they have units of standard deviations from their means. Scale normalization
was achieved by setting βEMPLP = 1.

Table 2.3 shows the parameter estimates obtained using a binary probit model and
the direct semiparametric methods of Sections 2.6.1 and 2.6.3. Figure 2.1 shows a
kernel estimate of G′(v). There are two important differences between the semipara-
metric and probit estimates. First, the semiparametric estimate of βEMPLF is small
and statistically nonsignificant, whereas the probit estimate is significant at the 0.05
level and similar in size to βCAP. Second, in the binary probit model, G is a cumu-
lative normal distribution function, so G′ is a normal density function. Figure 2.1
reveals, however, that G′ is bimodal. This bimodality suggests that the data may be
a mixture of two populations. An obvious next step in the analysis of the data would
be to search for variables that characterize these populations. Standard diagnostic
techniques for binary probit models would provide no indication that G′ is bimodal.
Thus, the semiparametric estimate has revealed an important feature of the data that
could not easily be found using standard parametric methods.

Table 2.3 Estimated coefficients (standard errors) for model of product innovation

EMPLP EMPLF CAP DEM

Semiparametric model

1 0.032 0.346 1.732
(0.023) (0.078) (0.509)

Probit model

1 0.516 0.520 1.895
(0.024) (0.163) (0.387)

Source: Horowitz and Härdle (1996). The coefficient of EMPLP is 1 by scale normalization.

G
' (

v)
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Fig. 2.1 Plot of G′( v) for model of product innovation. Source: Horowitz and Härdle (1996)
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2.9 Single-Index Models of Conditional Quantile Functions

Let Qα(Y|X) denote the α-quantile of Y conditional on X, where 0 < α < 1.
Then P[Y ≤ Qα(Y|X)|X] = α. In a single-index model of the conditional quantile
function,

Qα(Y|X = x) = G(x′β), (2.56)

where β is an unknown constant vector and G is an unknown function. It is not
difficult to show that G and β are identified under the assumptions of Theorem 2.1.
Moreover, if bn is a n−1/2-consistent estimator of β, then G can be estimated with a
one-dimensional nonparametric rate of convergence by carrying out a nonparamet-
ric quantile regression of Y on X′ bn. Nonparametric quantile regression is discussed
briefly in the Appendix and in more detail by Chaudhuri (1991a,b), Fan et al. (1994),
and Yu and Jones (1998). This section concentrates on n−1/2-consistent estimation
of β. As is explained in the Appendix, estimating a conditional quantile function
requires optimizing a nonsmooth objective function. Consequently, quantile esti-
mation is more complex technically than estimation of conditional mean functions,
and it requires regularity conditions that are more elaborate and difficult to interpret
intuitively.

As with single-index models of conditional mean functions, β in (2.56) is pro-
portional to ∂Qα(Y|X = x)/∂x. Let W be a weight function. Define

δ = E

[
∂Qα(Y|X = x)

∂x
W(x)

]
. (2.57)

Then δ and β are equal up to a proportionality constant. Replacing ∂Qα(Y|X =
x)/∂x with a nonparametric estimator and the population expectation with a sample
average in (2.57) yields an average-derivative estimator of δ and, hence, β up to a
proportionality constant. Specifically, let the data {Yi, Xi : i = 1, . . . , n} be a sim-
ple random sample of (Y , X), and let ∂Q̂α(Y|Xi)/∂x be a nonparametric estimator
of ∂Qα(Y|X = x)/∂x|x=Xi . Then the average-derivative estimator is

δ̂AD = 1

n

n∑

i=1

[
∂Q̂α(Y|Xi)

∂x

]

W(Xi).

Chaudhuri et al. (1997) have derived the asymptotic distributional properties of
δ̂AD. Their result requires the following definition of smoothness of a function. The
definition is somewhat technical but basically requires derivatives of the function to
be continuous. Let V be an open, convex subset of R

d, where d = dim (X). Let m
be a function from R

d to R. Define m to have order of smoothness p on V and write
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m ∈ Sp(V) if p = �+γ for some integer � ≥ 0 and γ satisfies 0 < γ ≤ 1, all partial
derivatives of m through order � exist, and each order � partial derivative satisfies

∣∣
∣D�m(x1) − D�m(x2)

∣∣
∣ ≤ C ‖x1 − x2‖γ

for all x1, x2 ∈ V , where D�m denotes any order � partial derivative of m and C > 0
is a finite constant.

Let pX denote the probability density function of X and pY|X denote the density
of Y conditional on X. For sequences of numbers {cn} and {dn}, let cn � dn mean
that cn/dn is bounded away from 0 and ∞ as n → ∞. Let [p] denote the largest
integer that is less than or equal to p. For data {Yi, Xi : i = 1, . . . , n} define
Ui = Yi−Qα(Y|Xi). Let ∇ denote the gradient operator. Define l(x) = ∇ log [pX(x)].

Now make the following assumptions.

QAD1: The probability density of X is positive on V and pX ∈ Sp1 (V) , where
p1 = 1 + γ for some γ ∈ (0,1].

QAD2: The weight function W is supported on a compact set with nonempty
interior that is contained in V, and W ∈ Sp1 (V).

QAD3: Define U = Y − Qα(Y|X = x). Let pU|X(u|x) denote the probability
density function of U at u conditional on X = x. Then pU|X(u|x) considered
as a function of x belongs to Sp1(V) for all u in a neighborhood of 0. Moreover
pU|X(u|x) > 0 and ∂pU|X(u|x)/∂u exists and is continuous for all u in a
neighborhood of 0 and all x ∈ V .

QAD4: Qα(Y|X = x) ∈ Sp4(V), where p4 > 3 + 3d/2.
QAD5: Q̂α(Y|X = x) is the local polynomial estimator of Chaudhuri (1991a,b)

with a polynomial of degree [p4] and bandwidth hn satisfying hn � n−κ

with 1
2(p4−1) < κ < 1

4+3d .

The next theorem states the result of Chaudhuri et al. (1997).

Theorem 2.6: Let assumptions QAD1–QAD4 hold. Then as n → ∞,

δ̂AD − δ = 1

n

n∑

i=1

{
W(Xi)∇Qα(Y|Xi) − [α − I(Ui ≤ 0)]

∇W(Xi) + W(Xi)l(Xi)

pY|X[Qα(Y|Xi)|Xi]

}

− β + op(n−1/2). �

Theorem 2.6 implies that n1/2(δ̂AD − δ) is asymptotically normally distributed
with mean 0 and variance equal to the variance of the summand on the right-hand
side of (2.58). As in average-derivative estimation of a conditional mean function
(Section 2.6), averaging of the nonparametric estimator ∂Q̂α/∂x in (2.58) enables
δ̂AD to achieve a n−1/2 rate of convergence instead of the slower rate for nonpara-
metric estimation of derivatives. It follows from QAD5 that Qα must be increas-
ingly smooth as d increases. Thus, the average-derivative estimator of Chaudhuri
et al. (1997), like the density-weighted average-derivative estimator of Powell et al.
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(1989) for conditional mean functions, has a curse of dimensionality. Methods for
choosing W and hn in applications and for avoiding the curse of dimensionality in
average-derivative estimation of conditional quantile functions have not yet been
developed.

Khan (2001) has developed a rank estimator of β in (2.56) that is n−1/2-consistent
and asymptotically normal if G is monotonic. The average-derivative estimator does
not require monotonicity, but the rank estimator requires less smoothness than does
the average-derivative estimator. In addition, the rank estimator can accommodate
discrete components of X, although at least one component must be continuously
distributed. Khan’s estimator is based on an estimator of Cavanagh and Sherman
(1998) and is

bn = arg min
b̃∈B̃, b1=1

1

n

n∑

i,j=1
i 	=j

W(Xi)Q̂α(Y|Xi)I(X′
ib > X′

jb),

where b̃ denotes the vector consisting of all components of b except the first, B̃ ∈
R

d−1 is a compact parameter set, W is a weight function, and Q̂α is Chaudhuri’s
(1991a,b) nonparametric estimator of Qα .

To obtain the asymptotic distribution of Khan’s estimator, define

τ1(x, b) =
∫

W(x)Qα(Y|X = x)I(x′b > v′b)pX(v)dv

+
∫

W(v)Qα(Y|X = v)I(v′b > x′b)pX(v)dv

and

τ2(x, b) =
∫

I(x′b > v′b)pX(v)dv.

Let β̃ be the vector consisting of all components of β except the first. Let N be a
neighborhood of β̃. Now make the following assumptions.

RAD1: β̃ is in the interior of the compact parameter set B̃.
RAD2: Qα(Y|X = x) = G(x′β) and G is a nonconstant, increasing function.
RAD3: Qα(Y|X) ∈ Sp(V), where p > 3d/2 and V is the support of X.
RAD4: The weight function W is continuous, bounded, and bounded away from

0 on its support, SW. SW has the form SW1 × S̃W , where SW1 is a compact
subset of the support of the first component of X and has a nonempty interior.
S̃W is a compact subset of the remaining d − 1 components of X and
has a nonempty interior. SW is not contained in any proper linear subspace
of R

d.
RAD5: The support of X is a convex subset of R

d with a nonempty interior.
RAD6: X has a probability density function, pX, that is continuous and bounded

on its support. Moreover, pX(x) ≥ c for some constant c > 0 and all
x ∈ SW .
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RAD7: Let t0 satisfy G(t) < G(t0) if t < t0. Assume that

T ≡ max
x̃∈S̃W , b̃∈B̃

|x̃′b̃| < ∞.

Then [t0 − 3T ,t0 + 3T] ∈ SW1.
RAD8: Define U = Y − Qα(Y|X = x). Let pU|X(u|x) denote the probability

density function of U at u conditional on X = x. Then pU|X(u|x) considered
as a function of x is Lipschitz continuous for all u in a neighborhood of 0.
Moreover pU|X(u|x) considered as a function of u is continuous, bounded,
and bounded away from 0 for all u in a neighborhood of 0.

RAD9: For each x in the support of X and all b̃ ∈ N, ∇2τ1(x, b)
≡ ∂2τ1(x, b)/∂ b̃∂ b̃′ exists and is Lipschitz continuous. Moreover,
E[∇2τ1(X, β)] is negative definite.

RAD10: For each x in the support of X and all b̃ ∈ N , ∇τ2(x, b) ≡
∂τ2(x, b)/∂ b̃ exists and is continuous. Moreover, E ‖∇τ2(X, β)‖ < ∞.

RAD11: Q̂α is a local polynomial estimator based on a polynomial of degree
[p] and bandwidth hn satisfying n1/2hp

n → 0 and ( log n)/(nh3d
n )1/2 → 0

as n → ∞.

The following theorem shows that n1/2(b̃n − β̃) is asymptotically normal under
RAD1–RAD11.

Theorem 2.7: Let RAD1–RAD11 hold. Then n1/2(b̃n − β̃)
d−→ N(0, D−1�D−1) ,

where D = 0.5E[∇2τ1(X, β)], � = E[s(Y , X)s(Y , X)′], and

s(y, x) = W(x)

pU|X(0|x)
{I[y ≤ Qα(Y|X = x)] − α}∇τ2(x, β). �

Khan (2001) proves Theorem 2.7, provides an estimator of the covariance matrix
D−1�D−1, and shows that under slightly modified assumptions, the conclusion of
the theorem holds if some components of X are discrete. Like the average-derivative
estimator, the rank estimator requires fully nonparametric estimation of Qα and
has a curse of dimensionality, but the rank estimator’s smoothness assumptions are
weaker than the smoothness assumptions of the average-derivative estimator.
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