
Chapter 2
Tools for Assessing the Damage Tolerance
of Primary Structural Components

R. Jones and D. Peng

Abstract Fatigue considerations play a major role in the design of optimised flight
vehicles, and the ability to accurately design against the possibility of fatigue fail-
ure is paramount. However, recent studies have shown that, in the Paris Region,
cracking in high-strength aerospace quality steels and Mil Annealed Ti–6AL–4V
titanium is essentially R ratio independent. As a result, the crack closure and Willen-
borg algorithm’s available within commercial crack growth codes are inappropriate
for predicting/assessing cracking under operational loading in these materials. To
help overcome this shortcoming, this chapter presents an alternative engineering
approach that can be used to predict the growth of small near-micron-size defects
under representative operational load spectra and reveal how it is linked to a prior
law developed by the Boeing Commercial Aircraft Company. A simple method for
estimating the S–N response of 7050-T7451 aluminium is then presented.

Keywords Fatigue crack growth · Fatigue modelling · Life prediction · Similitude

2.1 Introduction

To achieve their design requirements, modern military make extensive use of alu-
minium, high-strength steels, that is, 4340 and D6ac, and titanium. The Joint Strike
Fighter (F-35), the Super Hornet and the F/A-18 make extensive use of 7050-T7451
aluminium. However, there has been an increasing use of titanium in primary struc-
tural members due to its high strength, light weight, and good fatigue and fracture
toughness properties. As a result, bulkheads in the F-22, the Super Hornet, the Swiss
F/A-18, and the Joint Strike Fighter are made of titanium. In the F-22, titanium
accounts for ∼36%, by weight, of all structural materials used in the aircraft.
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Until recently, it had been thought that fatigue crack growth in 7050-T7451, high-
strength aerospace steels and titanium was well understood. However, in his review
of fatigue crack growth under variable amplitude loading, Skorupa [1] concluded
that, viz:

Experimental results also suggest that the underlying causes of load interaction phenomena
are not necessarily similar for different groups of metals, e.g. steels of and Al and Ti alloys.

Furthermore, as a result of the Australian Defence Science and Technology
Organisation’s Flaw IdentificatioN through the Application of Loads (FINAL) test-
ing program [2] it is now known [3, 4] that similitude-based concepts on which the
crack growth programs AFGROW, NASGRO, and FASTRAN are based cannot be
used to accurately predict the growth of near-micron-size flaws in 7050-T7451 alu-
minium alloy under representative in-flight loading. In this context it should also be
noted that Forth, James, Johnston, and Newman [5] have reported that crack growth
data obtained for D6ac and 4340 steels using compact tension (CT) specimens tested
in accordance with the ASTM standards exhibited no R ratio dependency and hence
no closure in the Paris region (Region II), see Fig. 2.1.
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Fig. 2.1 Fatigue crack
growth data from D6AC steel.
Plot reproduced from [5]

This behaviour, that is, the da/dN versus ΔK relationship appearing to be R ratio
dependent in Region I but showing no R ratio dependence and hence no closure in
the Paris region, is also evident in the work of James and Knott [6] who studied
cracking in QIN (HY80) steel, see Fig. 2.2.

As such, the various closure-based models and the Willenborg crack growth
law, which models load interaction and sequence effects by modifying the effec-
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Fig. 2.2 Fatigue crack
growth data from QIN
(HY80) steel. Plot reproduced
from [6]

tive R ratio, available within these codes cannot be used to accurately predict
crack growth in high-strength steels. Jones, Farahmad, and Rodopoulos [7] have
revealed that Mil Annealed Ti–6AL–4V titanium has a similar (near) R ratio inde-
pendence. As such the various closure-based models and the Willenborg crack
growth law cannot be used to accurately predict crack growth in Ti–6AL–4V. (This
R ratio independence has also been seen in crack growth in rail steels [8] which
have also been found to conform to the generalised Frost–Dugdale crack growth
law [8, 9].)

When addressing the question of crack growth under representative in-service
loading it should also be noted that in the review paper on crack growth and simili-
tude Davidson [10] concluded that similitude was lost during fatigue crack growth
under variable amplitude loading and stated that: “Detailed measurements of fatigue
cracks undergoing simple load spectra confirm that when ΔKeff is based on Kopen,
good correlations are achieved with large crack growth data.This understanding,
although useful, does not easily translate to an engineering method for computing
crack growth rate under complex variable amplitude loading.”

The question thus arises: How can a valid virtual assessment of the perfor-
mance of an aircraft/rail component under representative operational loading be
performed if the fundamental concepts inherent in the existing crack growth codes,
viz: AFGROW, FASTRAN, and NASGROW, do not apply to the materials from
which the component fabricated, that is, for components made out of 4340 and
D6ac steel, QIN (HY80) steel, rail steels, Mil Annealed Ti–6AL–4V, STOA Ti–
6AL–4V, etc.? This chapter presents one possible approach which is based on the
equivalent block formulation presented in [8, 11, 18] and reveals how it is linked to
spectra where the constant amplitude Region II growth mechanism tends to be sup-
pressed and a single value of C∗ can be used to predict the crack length versus cycles
history.
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2.2 An Equivalent Block Method for Predicting Fatigue
Crack Growth

It is now known that the mechanisms underpinning crack growth under variable
amplitude load differ from those seen under constant amplitude loading [12]. It is
also known that many materials either follow a non-similitude-based crack growth
law [3, 4, 8, 9], lose similitude as the crack grows [10], or exhibit a near R ratio
independence in the Paris Region [5–8]. In these cases, crack growth under rep-
resentative operational loading cannot be predicted using the concepts inherent in
the existing crack growth codes, viz: AFGROW, FASTRAN, and NASGROW, since
they do not apply to the materials from which the component is fabricated, and since
the data used in these calculations are obtained from constant amplitude tests that
may not reflect the mechanisms driving growth under the spectrum of interest [12].
However, many practical engineering problems, that is, cracking in rail and aircraft
structures, involve complex load spectra that can be approximated by a number of
repeating load blocks. Schijve [13], Gallagher, and Stalnaker [14], Miedlar, Berens,
Gunderson, and Gallagher [15], Barsom and Rolfe [16] and Miller, Luthra, and
Goranson [17] revealed that these repeated blocks of loads can, in certain circum-
stances, be treated as equivalent to load cycles. We now show how this concept,
that is, an equivalent block approach, can be used to describe crack growth in Mil
Annealed Ti–6AL–4V and D6ac steel under complex variable amplitude loading.

To this end let us consider the case of block loading, where each block consists of
a spectrum with n cycles that have peak stresses of σ i, i = 1. . . n, with the associated
cyclic ranges being Δσ i, i = 1. . . n. Let us also assume that:

(i) The slope of the a versus block curve has a minimal number of discontinuities.
(ii) There are a large number of blocks before failure.

With these assumptions, Jones and Pitt [18] derived an “equivalent block” variant
of the generalised Frost–Dugdale crack growth law [4, 8] to account for the crack
growth per block, da/dB, viz

da/dB = C̃ Kmax
γa1−γ/2 (2.1)

where C̃ is a spectra-dependent constant and Kmax is the maximum value of the
stress intensity factor in the block. (The precise relationship between C̃ and the
constant of proportionality in the Paris crack growth law is yet to be determined.)
Jones, Molent, and Krishnapillai [11] subsequently extended this “equivalent block”
law to have a form consistent with regions I, II, and III, viz

da/dB = (C̃a1−γ/2 Kmax
γ − da/dBo)/(1.0 − Kmax/Kc) (2.2)

where a is now the average crack length in the block, and Kc is the apparent cyclic
fracture toughness. Here, as described in [11], the term da/dBo reflects the both
nature of the discontinuity from which the crack initiates and the apparent fatigue
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threshold for this particular block loading spectra. However, it should (again) be
stressed that this variant of the generalised Frost–Dugdale law is only applicable
to crack growth data where the slope of the a versus block curve has minimal dis-
continuities and there are a large number of blocks to failure, see [8, 11, 18]. This
formulation is (extensively) validated in [8, 11].

At this stage it is important to note that Miller, Luthra, and Goranson [17], at
the Boeing Commercial Aircraft Company, have also developed a related (non-
similitude) approach whereby instead of Equation (2.2) da/dB was expressed as

da/dB = C(K/g(a/t))m (2.3)

where the function g(a/t), which is a function of ratio of the crack length (a) to
the thickness (t) of the specimen, was experimentally determined and its functional
form is presented in [17]. This formulation was necessary to enable the predictions
to match the measured crack length histories. However, Jones, Pitt, and Peng have
shown [8] that the experimental test data used in [17] to determine the function g(a/t)
followed the generalised Frost-Dugdale crack growth law so that the two method-
ologies essentially coincide.

In the next section we present three examples that illustrate how the present non-
similitude approach, that is, Equation (2.2), can be used to accurately predict crack
growth in 7050-T7451, D6ac steel, and Mil Annealed Ti–6AL–4V aluminium spec-
imens subjected to complex variable amplitude load spectra.

2.3 Fatigue Crack Growth under Variable Amplitude Loading

The first problem considered is that of crack growth in the 1969 General Dynam-
ics, now Lockheed Martin Tactical Aircraft Systems (LMTAS), F-111 wing fatigue
tested under a representative F-111 usage spectra. (An early F-111 in-flight failure
was largely responsible for the USAF adopting a damage tolerance approach.) In
this test, cracking was measured at a cut-out location designated as fuel flow hole 58
[19] on the lower (tension) surface of the D6ac steel wing pivot fitting, see Figs. 2.3
and 2.4.

Before attempting to predict crack growth in the pivot fitting we first confirmed
that growth in D6ac steel conformed to the generalised Frost–Dugdale law. This
was done via a collaborative project with Dr. Scott Forth at NASA [20]. As part of
this project we examined the results of a detailed NASA study into crack growth in
D6ac steel CT specimens. The test matrix evaluated is given in Table 2.1.

In this study it was found, see Fig. 2.5, that if we restrict ourselves to regions
where Kmax < 115.0 Ksi

√
in ( = 125 MPa

√
m) then the data conforms to the

generalised Frost–Dugdale crack growth law, viz

da/dN = 8.12 × 10−9 a(1−γ/2)(Δκ)γ − 2.79 × 10−7 (2.4)
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Fig. 2.3 Full 3D F-111 model, from DSTO
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Fig. 2.4 Interior of the DSTO 3D F111 model

where the value of γ = 2.6 was taken from Murtagh and Walker [19] and where as
per Walker [21] we have defined the crack driving force as

Δκ = Kmax
(1−p)ΔK p (2.5)

where a value of p = 0.95 was found to best collapse the data. This low value of
p confirmed the finding reported in [5] that the crack increment per cycle (da/dN)
essentially has no R ratio dependency.

Having established that crack growth in D6ac steel conforms to the Generalised
Frost–Dugdale law we assumed that in the 1969 wing tests there was, as reported in

R. Jones and D. Peng
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Table 2.1 Test matrix

Test frequency Hz

Ct3-5-tl Constant Kmax = 15 18
Ct3-10b-lt Constant R = 0.3 LI 20
Ct3-12-lt Constant R = 0.9 LI 20
Ct3-25-lt Constant R = 0.7 LI 20
Ct3-27-lt Constant R = 0.9 LI 22
Ct3-29-lt Constant R = 0.3 LI 10
Ct3-46-lt R = 0.1 LI 20
Ct3-47-lt R = 0.8 LI 10

LI = Load increasing test, Kmax = constant Kmax test.
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Fig. 2.5 Crack growth in
D6ac steel, from [20]

[19], an initial 0.19-mm semi-circular flaw. At each increment of crack growth, the
stress intensity factors were computed using a weight function technique together
with the stress field determined from the finite element model shown in Figs. 2.3
and 2.4. Crack growth was then predicted using Equation (2.2) with γ = 2.6 and
KC = 87 MPa

√
m, as given in [19], and C̃ = 3.0 × 10−6. The load spectra used

in the 1969 test, and in this study, was provided by the Australian Defence Science
and Technology Organisation (DSTO) and corresponds to that used in [19].

The resultant predicted crack depth histories are presented in Fig. 2.6 where we
see good agreement between the predicted and the measured crack depth histories.
In this example, when using Equation (2.2) to compute crack growth at the deepest
point of the semi-elliptical surface flaw the quantity ‘a’ on the left- and the right-
hand sides of Equation (2.2) is the crack depth. Similarly, when using Equation (2.2)
to compute crack growth at the surface points, the quantity ‘a’ on the left- and the
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Fig. 2.6 Measured and predicted crack growth in the 1969 F-111 wing test

right-hand side of Equation (2.2) is the half crack surface length. In this fashion, we
allow for the variation of the crack aspect ratio during crack growth.

2.3.1 Fatigue Crack Growth in an F/A-18 Aircraft Bulkhead

The next problem considered involved cracking in an F/A-18 Y488 bulkhead tested
as part of the DSTO Flaw IdeNtification through the Application of Loads (FINAL)
test program, see Dixon et al. [2]. This test program utilised ex-service Canadian
Forces (CFs) and US Navy (USN) wing attachment centre barrel (CB) sections
loaded using an industry-standard-modified mini-FALSTAFF spectrum, see [2],
which is representative of flight loads seen by fighter aircraft. Since cracking in
the bulkhead was three-dimensional, a three-dimensional FE model was required,
see Figs. 2.7 and 2.8. The location of the crack is shown in Fig. 2.8, where node
4390 represents the centre of the initial semi-elliptical surface flaw. This problem
had previously been studied using a cycle-by-cycle approach [4] and it was known
that cracking in 7050-T7451 conformed to the generalised Frost–Dugdale law, [4,
22]. As in [4] we again used a weight function technique together with the stress
field as determined from the FE model of the bulkhead to compute the associated
stress intensity factors. The crack growth history from initial equivalent pre-crack
sizes (EPS) of 0.003 mm was predicted using Equation (2.2) with γ = 3.36 and Kc

of 35.4 MPa
√

m as given in [4] and C̃ = 2.25 × 10−10.

R. Jones and D. Peng
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Fig. 2. 7 The bulkhead structure

Node 4390

Fig. 2.8 The local mesh

The predicted crack depth history, allowing for changes in the aspect ratio of the
flaw as the crack grows, is shown in Fig. 2.9 together with the associated experi-
mental test result, where we see that there is very good agreement. Figure 2.9 also
contains a comparison with predictions, presented in [4], made using FASTRAN
II. Here we see that FASTRAN II predicted a very long fatigue life. Furthermore,
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the shape of the crack depth versus cycles curve predicted by FASTRAN II differed
markedly from the test data. In Fig. 2.9 we see that the experimental and predicted
(from Equation 2.2) crack depth histories show a behaviour that is consistent across
three decades of crack lengths, that is, from 0.003 mm to more than 5 mm.

2.3.2 Crack Growth in Mil Annealed Ti–6AL–4V under
a Fighter Spectrum

Jones, Farahmad, and Rodopoulos [7], who analysed the data presented in [23, 24],
found that crack growth in Mil Annealed Ti–6AL–4V titanium was essentially R
ratio independent, see Fig. 2.10. Figure 2.10 shows that cracking in Mil Annealed
Ti-6AL-4V also appears to conform to the generalised Frost–Dugdale law, viz

da/dN = C∗a(1−γ/2) (Δκ)γ − da/dN0 (2.6)

with Δκ as given in Equation (2.5) C∗ ∼ 2.5 10–11, γ = 2.5, p = 0.08, Kc = 100 MPa√
m and da/dN0 = 4.45 × 10–9. As explained in [4, 8, 9] the term da/dN0 reflects

both the nature of the discontinuity from which the crack initiates and the apparent
fatigue threshold. The small value of p reveals that crack growth in Mil Annealed
Ti–6AL–4V titanium has a very weak R ratio dependency. We also see that this
relationship, that is, Equation (2.6), holds over 3 orders of magnitude, that is, 2 ×
10–9 < da/dN < 2 × 10–6. It should also be noted that this value of γ compares well
with that of γ = 2.6 obtained by Zhuang et al. [25] for Mil Annealed Ti–6AL–4V
tested under spectrum loading.

With this in mind let us now examine the crack growth data presented by
Northrop-Grumman [26] who studied crack growth in 6-inch-wide and 0.289-inch-
thick centre cracked Mil Annealed Ti-6AL–4V panels subjected to a fighter load

R. Jones and D. Peng
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Fig. 2.10 Crack growth in
Mil-Annealed Ti–6AL–4V,
from [7]

spectrum with a peak remote stress of 103 ksi (710 MPa). The resultant predic-
tions are shown in Fig. 2.11 where we again see an excellent agreement between the
measured and the computed crack length histories. In this case, the left hand side
of Equation (2.2) is da/dBlock, C̃ = 2.83 × 10−10, γ = 2.5, and Kc = 150 ksi

√
in

(163 MPa
√

m).
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a 
(m

m
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Fig. 2.11 Grumman centre
cracked panel crack growth
under a fighter spectra

The above examples illustrate how the equivalent block method may be used to
simulate crack growth under variable amplitude loading both for aluminium alloys
and for the materials that exhibit minimal R ratio dependency. However, it must be
stressed that this approach has a number of fundamental requirements, viz:
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(i) There are a large number of blocks before failure.
(ii) The slope of the a versus block curve has a minimal number of discontinuities.

Applications of this methodology to a range of aluminium alloys as well as to
cracking under a Helicopter load spectra and spectra corresponding to several con-
trol points in the Joint Strike Fighter are given in [8, 11, 27, 28].

White, Barter, and Molent [12] studied block loading which consisted of a large
number of variable amplitude loads interspersed with a single block of constant
amplitude loading. They found that at the onset of the constant amplitude loading,
the crack changed planes and subsequently reverted back to its original plane after
the constant amplitude loading ceased. This indicated that the mechanism’s driving
constant amplitude and variable amplitude loading differed and that, in the Paris
region, the constant amplitude mechanism was suppressed during variable ampli-
tude loading. This observation explains why, in the examples presented above, only
one value of C∗ is needed to represent crack growth. At this stage it should be noted
that Liu [29] has shown that the Frost–Dugdale law has different slopes in regions
I and II. Tiong and Jones [30] revealed that for aluminium alloys the value of C∗ in
Region II is approximately 5 times its Region I value. However, when the Region II
growth mechanism is suppressed crack growth can be predicted using the C∗ value
associated with Region I.

2.4 A Virtual Engineering Approach for Predicting the S–N
Curves for 7050-T7451

Section 2.1 when taken together with the cycle-by-cycle study presented by Jones,
Molent, and Pitt [4] illustrates the ability of the Generalised Frost–Dugdale law to
simulate the growth of near-micron-size flaws in 7050-T7451 aluminium alloy. As
a result, it is possible to use this formulation to derive the S–N curve for 7050-
T7451. To illustrate this approach let us assume that the material contains a small
semi-circular surface initial defect and that it retains this semi-circular shape during
growth. Then

ΔK = FΔσ
√

(aπ) (2.7)

where Δσ is the remote stress, F is a geometry factor, also termed β, which is also
commonly called a boundary correction factor. For a small three-dimensional semi-
elliptical surface flaw we can approximate F as

F = 2 × 1.12/π (2.8)

so that

ΔK = (2 × 1.12/π)Δσ
√

(a/π) (2.9)

R. Jones and D. Peng
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To account for R ratio effects in aluminium alloys under constant amplitude load-
ing, we will adopt Newman’s [31] proposal that ΔK be replaced by ΔKeff, which
for the present problem we can express as

ΔKeff = (1 − σo/σmax)(2 × 1.12 σmax
√

(a/π)) (2.10)

where σ o is the so-called “crack opening stress”, see Appendix. However, when
performing crack growth calculations for surface flaws, FASTRAN-II [31] only uses
0.9 of this value, that is,

ΔKeff(in calcs.) = 0.9(1 − σo/σmax)(2 × 1.12 σmax
√

(a/π)) (2.11)

so that

da/dN = C∗(0.9(1 − σo/σmax)(2 × 1.1.2 σmax/
√

π)))γa (2.12)

Integrating Equation (2.12) gives

N = ln(af/ai)/C∗(2 × 0.91.12 × (1 − σo/σmax)σmax/
√

(π))γ (2.13)

where ai is the initial defect size, which as shown by Molent et al. [32], for 7050-
T7451 aluminium has a mean value of ∼10 microns and af is the crack size at
failure.

2.4.1 Computing the Endurance Limit

If we say that there will be no growth if the computed value of da/dN (at the initial
flaw size ai) is less than a critical value then this will give an endurance stress. In
this work we will take this value to be between 1–2 × 10–10 m/cycle. This produces
a different endurance limit for each stress.

For 7050-T7451 C∗ = 1.21 × 10–12 and γ = 3.36. The resultant predicted S–N
curve is plotted in Fig. 2.12 along with the associated Mil Handbook 5 S–N curve.
Note that the yield stress for this material in the thick plate condition is in the range
455–496 MPa (66–72 ksi).

2.5 Conclusion

The Australian Defence Science and Technology Organisation’s Flaw Identifica-
tioN through the Application of Loads (FINAL) testing program revealed that the
crack growth programs AFGROW, NASGRO, and FASTRAN cannot be used to
accurately predict the growth of near-micron-size flaws in 7050-T7451 aluminium
alloy under representative in-flight loading. This paper has shown that the Region II
crack growth data reveals that cracking in high-strength aerospace quality steels and
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Fig. 2.12 Measured and predicted S–N curves for 7050-T7451 aluminium alloy

Mil Annealed Ti–6AL–4V titanium is essentially R ratio independent. As a result,
the crack closure and Willenborg algorithm’s available within commercial crack
growth codes are also inappropriate for predicting/assessing cracking under oper-
ational loading in these materials. To help overcome this shortcoming this chapter
has presented an alternative engineering approach that is linked to the formulation
developed by the Boeing Commercial Aircraft Company, which can be used to pre-
dict the growth of small near-micron-size defects under representative operational
load spectra. This approach:

i. is generally consistent with experimental results,
ii. can be used to predict crack growth from near-micron-size initial flaws, and

iii. has the potential to accurately predict crack growth in real aircraft structures
under complex load spectra.

However, it should be stressed that this variant of the Generalised Frost–Dugdale
law is only applicable to crack growth data where the slope of a versus block
curve has minimal discontinuities and there are a large number of blocks to fail-
ure. In such cases the constant amplitude Region II growth mechanism tends to be

R. Jones and D. Peng
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suppressed and a single value of C∗ can be used to predict the crack length versus
cycles history.
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Appendix: Formulae for Computing the Crack Opening Stress

Newman [31] defined an opening load, which he denoted as S0, as:

S0/Smax = A0 + A1 R + A2 R2 + A3 R3 for R ≥ 0 (2.14)

and

S0/Smax = A0 + A1 = R for R < 0 (2.15)

for Smax < 0.8σ0, Smin > −σ0, where Smax and Smin are the maximum minimum
stress in the cycle and σ 0 is the yield stress. If S0/Smax is less than R then S0 = Smin,
whilst if S0/Smax is negative then S0/Smax = 0.0.

The A j coefficients in Equations (2.14) and (2.15) are functions of α, the con-
straint factor, and Smax/σ0 and are given in [31] as:

Ao = (0.825 − 0.34α + 0.05α2)[COS(πSmaxF/2σ0]1/α

A1 = (0.415 − 0.071α)SmaxF/σ0

A2 = 1−A0 − A1−A3

A3 = 2A0 + A1 − 1 (2.16)

for α = 1 to 3.
The boundary correction factor, F, accounts for the influence of finite width on

the stresses required to propagate the crack. For 3D small 3D surface cracks we can
approximate F as F ∼ 2 × 1.12/π.



44

References

1. M. Skorupa, “Load Interaction Effects During Fatigue Crack Growth Under Variable Ampli-
tude Loading—A Literature Review. Part II: Qualitative Interpretation,” Fatigue Fract. Eng.
Mater. Struct., Vol. 22, 1999, pp. 905–926.

2. B. Dixon, L. Molent, and S.A. Barter, “The FINAL program of enhanced teardown for agile
aircraft structures,” Proceedings of 8th NASA/FAA/DOD Conference on Aging Aircraft,
Palm Springs, 31 Jan–3 Feb, 2005.

3. L. Molent, R. Singh, and J. Woolsey, “A method for evaluation of in-service fatigue cracks,”
Eng. Fail. Anal., Vol. 12, 2005, pp. 13–24.

4. R. Jones, L. Molent, and S. Pitt, “Crack growth from small flaws,” Int. J. Fatigue, Vol. 29,
2007, pp. 658–1667.

5. S.C. Forth, M.A. James, W.M. Johnston, and J.C. Newman, Jr., “Anomolous Fatigue Crack
Growth Phenomena in High-strength Steel,” Proceedings Int. Congress on Fracture, Italy,
2007.

6. M.N. James and J.F. Knott, “An Assessment of Crack Closure and the Extent of the Short
Crack Regime in QlN (HY80) Steel,” Fatigue Frac. Eng. Mater. Struc., Vol. 8, No. 2, 1985,
pp. 177–191.

7. R. Jones, B. Farahmand, and C. Rodopoulos, “Fatigue crack growth discrepencies with stress
ratio,” Theor. Appl. Frac. Mech., doi: 10.1016/tafmec.2009.01.004.

8. R. Jones, S. Pitt, and D. Peng, “The Generalised Frost–Dugdale Approach to Modeling
Fatigue Crack Growth,” Eng Fail Anal, 15, 2008, pp. 1130–1149.

9. R. Jones, B. Chen, and S. Pitt, “Similitude: Cracking in Steels,” Theor. Appl. Frac. Mech.,
Vol. 48, No. 2, pp. 161–168.

10. D.L. Davidson, “How Fatigue Cracks Grow, Interact with Microstructure, and Lose Simil-
itude,” Fatigue and Fracture Mechanics: 27th Volume, ASTM STP 1296, R.S. Piascik,
J.C. Newman, and N.E. Dowling, Eds., American Society for Testing and Materials, 1997,
pp. 287–300.

11. R. Jones, L. Molent, and K. Krishnapillai, “An Equivalent Block Method for Computing
Fatigue Crack Growth,” Int. J. Fatigue, Vol. 30, 2008, pp. 1529–1542.

12. P. White, S.A. Barter, and L. Molent, “Observations of Crack Path Changes Under
Simple Variable Amplitude Loading in AA7050-T7451,” Int. J. Fatigue, Vol. 30, 2008,
pp. 1267–1278.

13. J. Schijve, “Fatigue Crack Growth Under Variable-Amplitude Loading,” Eng. Frac. Mech.,
Vol. 11, 1979, pp. 207–221.

14. J.P. Gallagher and H.D. Stalnaker, “Developing Normalised Crack Growth Curves for Track-
ing Damage in Aircraft, American Institute of Aeronautics and Astronautics,” J. Aircraft,
Vol. 15, No. 2, pp. 114–120.

15. P.C. Miedlar, A.P. Berens, A. Gunderson, and J.P. Gallagher, “Analysis and Support Initiative
for Structural Technology (ASIST),” AFRL-VA-WP-TR-2003-3002, 2003.

16. J.M. Barsom and S.T. Rolfe, “Fracture and Fatigue Control in Structures: Applications of
Fracture Mechanics,” Butterworth-Heinemann Press, 1999.

17. M. Miller, V.K. Luthra, and U.G. Goranson, “Fatigue Crack Growth Characterization of Jet
Transport Structures,” Proc. of 14th Symposium of the International Conference on Aeronau-
tical Fatigue (ICAF), Ottawa, Canada, 1987.

18. R. Jones, and S. Pitt, “Crack Patching: Revisited,” Comp. Struct., Vol. 32, 2006, pp. 218–223.
19. B.J. Murtagh and K.F. Walker, “Comparison of Analytical Crack Growth Modelling and the

A-4 Wing Test Experimental Results for a Fatigue Crack in an F-111 Wing Pivot Fitting Fuel
Flow Hole Number 58”, DSTO-TN-0108, 1997.

20. R. Jones and S.C. Forth, “Cracking In D6ac Steel,” Submitted J. Theor. Appl. Fract. Mech.,
2008 (in press).

R. Jones and D. Peng



2 Tools for Assessing the Damage Tolerance 45

21. E.K. Walker, “The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3
and 7076-T6 Aluminium.” In: Effect of Environment and Complex Load History on Fatigue
Life, ASTM STP 462, American Society for Testing and Materials, Philadelphia, 1970,
pp. 1–14.

22. R. Jones, C. Wallbrink, S. Pitt, and L. Molent, “A Multi-Scale Approach to Crack Growth,”
Proceedings Mesomechanics 2006: Multiscale Behavior of Materials and Structures: Analyt-
ical, Numerical and Experimental Simulation, Porto, Portugal, 2006.

23. C.M. Hudson, “Fatigue-Crack Propagation in Several Titanium and One Superalloy Stainless-
Steel Alloys, NASA TN D-2331, 1964.

24. T.R. Porter, “Method of Analysis and Prediction for Variable Amplitude Fatigue Crack
Growth,” Eng. Fract. Mech., Vol. 4, 1972, pp. 717–736.

25. W. Zhuang, S. Barter, L. Molent, “Flight-By-Flight Fatigue Crack Growth Life Assessment,”
Int J Fatigue, Vol. 29, 2007, pp. 1647–165.

26. P.D. Bell and M. Creager, “Crack Growth Analysis For Arbitrary Spectrum Loading,” Volume
I – Results and Discussion, Final Report: June 1972 – October 1974, Technical Report
AFFDL-TR-74-129, 1974.

27. R. Jones, S. Pitt, and D. Peng, “An Equivalent Block Approach to Crack Growth,” In: Multi-
scale Fatigue Crack Initiation and Propagation of Engineering Materials: Structural Integrity
and Microstructural Worthiness, G.C. Sih, Ed., ISBN 978-1-4020-8519, Springer Press, 2008.

28. L. Molent, S. Barter, and R. Jones, “Some Practical Implications of Exponential Crack
Growth,” In: Multiscale Fatigue Crack Initiation and Propagation of Engineering Materials:
Structural Integrity and Microstructural Worthiness, G.C. Sih, Ed., ISBN 978-1-4020-8519,
Springer Press, 2008.

29. H.W. Liu, Crack Propagation in Thin Metal Sheet Under Repeated Loading, Wright Air
Development Center, WADC TN, 1959, pp. 59–383.

30. U.H. Tiong and R. Jones, “Damage Tolerance Analysis of a Helicopter Component,” Int. J.
Fatigue, 2008 doi:10.1016/j.ijfatigue.2008.05.012

31. J.C. Newman, Jr., FASTRAN-II- A fatigue Crack Growth Structural Analysis Program, NASA
Technical Memorandum 104159, 1992.

32. L. Molent, Q. Sun and A.J. Green, “Characterisation of equivalent initial flaw sizes in 7050
aluminium alloy,” Fatigue Fract. Engng. Mater Struct., Vol. 29, 2006, pp. 916–937.



http://www.springer.com/978-0-387-95923-8


