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 Investigating Protein Adsorption 
via Spectroscopic Ellipsometry       

     Maria F.   Mora   ,    Jennifer L.   Wehmeyer   ,    Ron   Synowicki   ,
and    Carlos D.   Garcia        

 In this chapter, the basic concepts behind ellipsometry and spectroscopic ellipsometry are 
discussed along with some instrument details. Ellipsometry is an optical technique that meas-
ures changes in the reflectance and phase difference between the parallel ( R  P ) and perpen-
dicular ( R  S ) components of a polarized light beam upon reflection from a surface. Aside from 
providing a simple, sensitive, and nondestructive way to analyze thin films, ellipsometry 
allows dynamic studies of film growth (thickness and optical constants) with a time resolu-
tion that is relevant to biomedical research. The present chapter intends to introduce ellip-
sometry as an emerging but highly promising technique, that is useful to elucidate the 
interactions of proteins with solid surfaces. In this regard, particular emphasis is placed on 
experimental details related to the development of biomedically relevant conjugated sur-
faces. Results from our group related to adsorption of proteins to nanostructured materials, 
as well as results published by other research groups, are discussed to illustrate the advan-
tages and limitations of the technique.  

  Abbreviations and Symbols  

    G      Adsorbed amount   
    dG/dt      Adsorption rate   
D        Phase difference   
    l      Wavelength   
    y      Amplitude   
  AFM    Atomic force microscopy   
  BSA    Bovine serum albumin   
  CNT    Carbon nanotubes   
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20 M.F. Mora et al.

  d    Thickness   
  DAAO     D -amino acid oxidase   
  DC    Direct current   
  DNA    Deoxyribonucleic acid   
  EMA    Effective medium approximation   
  Fib    Fibrinogen   
  HSA    Human serum albumin   
  IEP    Isoelectric point   
  k    Extinction coefficient   
  n    Refractive index   
   R  P     Parallel component of polarized light beam   
   R  S     Perpendicular component of polarized light beam   
  SDS    Sodium dodecyl sulfate   
  SE    Spectroscopic ellipsometry   
   t     Time       

  2.1. Introduction  

 Interaction of proteins with material surfaces is a common but rather complicated 
phenomenon  [1] . One of the most remarkable consequences of this interaction is that materials 
coated with biomolecules display the properties of the adsorbed protein layer, rather than the 
material itself  [2] . Consequently, understanding the protein adsorption phenomena is critical 
for the rational design of biologically active composites with sensing, biological, and electronic 
functions. 

 Among other substrates, nanomaterials are part of an industrial revolution that provides 
materials with unique properties (thermal, mechanical, electrical, biological, etc.) not found 
in conventional/microphased materials  [3–  7] . The combination of remarkable recognition 
capabilities of biomolecules with the unique properties of nanomaterials resulted in systems 
with significantly improved performance  [8] . Apart from mechanical strength and light 
weight, most of the extraordinary biological properties of nanomaterials are linked to unique 
surface properties (surface area, surface roughness, energetics, and altered electron distribu-
tions)  [9] , which enable improved interactions between material surfaces and biological 
entities. Most importantly, the type and conformation of proteins adsorbed to nanomaterials 
proved to be a key factor in subsequent cellular responses  [4] . Consequently, various experi-
mental parameters must be optimized in order to control the biological activity of the bio/
nano composite. Proteins, which tend to spontaneously accumulate at interfaces with materi-
als, may undergo structural changes upon adsorption. The extent of such conformational 
changes induced by the sorbent surface depends on the material surface properties, the pro-
tein, the pH, and the degree of protein coverage of the surface. Understanding these confor-
mational changes is probably one of the most important points for biomedical applications 
because they can  generally  be controlled. In this respect, the structural stability of the protein, 
defined by differential scanning calorimetry as “soft” or “hard” proteins, can provide the first 
indications about the driving forces behind, and consequences of, protein–biomaterial inter-
actions  [10,   11] . Further details regarding the adsorption of proteins to biomaterials can be 
found in other chapters of this book. 

 From the kinetics standpoint, the rate of protein adsorption at the solid/liquid interface 
comprises two steps: (1) transport of the solute molecules toward the interface and 
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(2)  interaction with the sorbent material surface. The basic mechanisms of transport of 
molecules to the material surface are diffusion and convection by either laminar or turbulent 
flow. In the second step, the adsorbate molecules may attach at, or detach from, the sorbent 
material surface, giving rise to two fluxes, one forward and one backward. The relative 
contributions of each one of these fluxes to the overall adsorption process depend on both 
the attraction exerted by the material surface to the adsorbate and the solvent–sorbent inter-
actions. Many energetic and entropic effects contribute to the free energy of the protein 
adsorption process. However, when proteins are adsorbed at the solid/liquid interface, the 
main driving forces of the interaction are electrostatic and hydrophobic ones. In the simplest 
case, the protein adsorption rate (d Γ /d t ) may be considered as a first-order process, as 
described by Eq. ( 2.1 ):

 

G
= ADS S

d

d
,k C

t     
(2.1)    

where  k  ADS  is the adsorption rate constant and  C  S  is the concentration of solute (proteins, in 
the case under consideration). As the material surface coverage increases with time,  k  ADS  
decreases, and an equilibrium is reached (  G   SAT ). When changes in the structure of the protein 
upon adsorption occur, the process could be described by considering an equilibrium reac-
tion, in which the protein in solution can interact with the material surface, adsorb, and 
subsequently, undergo a structural/conformational change on that material surface. Such 
equilibria have been described for diverse proteins including lysozyme  [12] , albumin, and 
fibrinogen  [13–  18] . 

 Kinetic and thermodynamic studies have indicated that significant conformational 
changes may occur as a protein adsorbs to a surface  [19] . For this reason, many different 
techniques have been used to study not only the adsorption/desorption phenomena but also 
structural changes of such interactions  [20] . Among others, Brewster angle microscopy, neu-
tron and X-ray reflection, fluorescence and time-resolved fluorescence, circular dichroism, 
infrared spectroscopy, and electron microscopy were discussed in a book edited by Baszkin 
and Norde  [21] . Studies of protein adsorption using mass spectrometry  [22] , confocal laser 
scanning microscopy  [23] , neutron reflection  [24] , atomic force microscopy (AFM; see other 
pertinent chapters in this book), scanning force microscopy  [25] , optical waveguide light-
mode spectroscopy  [19] , quartz crystal microbalance  [26,   27] , surface plasmon resonance, 
total internal reflection fluorescence  [28,   29] , and capillary electrophoresis  [30–  33]  have 
been also reported in the scientific literature.  

  2.2. Ellipsometry  

 Another technique that can provide information regarding the protein adsorption proc-
esses as well as the structure of the adsorbed protein layer is ellipsometry. Ellipsometry is an 
optical technique that measures changes in the reflectance and phase difference between the 
parallel ( R  P ) and perpendicular ( R  S ) components of a polarized light beam upon reflection 
from a surface. Using Eq. ( 2.2 ),

 
( ) i P

S
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(2.2)    
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the intensity ratio of  R  P  and  R  S  can be related to the amplitude (  y  ) and the phase difference 
( D ) between the two components  [34] . Because ellipsometry measures the ratio of two values 
originated by the same signal, the data collected are highly accurate, and reproducible. Most 
importantly, no reference specimen is necessary. The changes in polarization measured by 
ellipsometry are extremely sensitive to film thickness (down to the monolayer level), optical 
constants, and film microstructure (such as surface roughness, index grading, and intermix-
ing). This monolayer sensitivity is useful for real-time studies of layer-by-layer film deposi-
tion, including biological monolayers on a variety of substrates. 

 When substrates are flat, isotropic, and uniform, the interpretation of the ellipsome-
try results is relatively simple. Needless to say, biological substrates rarely meet these 
specifications, and often present multiple layers with different thicknesses, optical con-
stants, and topographies. Because of the complexity of biological substrates, data must be 
obtained at multiple wavelengths and angles. Since the time of early applications, which 
were mainly focused on thickness quantification of oxide layers, ellipsometry has evolved 
to spectroscopic ellipsometry that is able to resolve details in the kinetics of layer forma-
tion for a variety of molecules  [35]  and even to investigate two-dimensional film thickness 
profiles with high spatial resolution and sensitivity  [36–  40] . Aside from providing a simple 
and nondestructive way to analyze thin, organic layers of biological interest, ellipsometry 
allows dynamic studies of film growth (thickness and optical constants) with a relevant 
time resolution.  

  2.3. Optical Models Used to Interpret Ellipsometric Results  

 Interpretation of ellipsometric measurements from raw data (  y   and  D ) is rather difficult 
and requires an optical model that describes the substrate microstructure in terms of refrac-
tive index ( n ), extinction coefficient ( k ), and thickness ( d ). This requirement is probably one 
of the biggest limitations of the technique, because the reliability of the calculated properties 
is only as good as the model used  [41] . A second limitation (pertaining mostly to very thin 
films substrates), is that ellipsometry is not very sensitive to the value of n, because the n and 
d values of very thin films are highly correlated  [42] . On the other hand, advances in instru-
mentation, matrix multiplication procedures, and modern computer applications enable 
modeling ellipsometric data with multilayer structures with better accuracy, reasonable time, 
and different optical models  [43] . Most modern instruments provide comprehensive software 
packages with a built-in mean square error calculation that can be used to quantify the 
 difference between the experimental and model-generated data. 

 The main objective of ellipsometry data analysis is to achieve an accurate descrip-
tion of the substrate using the simplest possible model. The procedure employed gener-
ally includes several iterations through four main steps: (1) modeling the dielectric 
function, (2) constructing an optical model that describes the overall behavior of the 
 system, (3) fitting the collected spectra to the optical model, and (4) calculating the fitting 
error. If done correctly, this procedure also minimizes the uncertainty associated with the 
measurements. In other words, the conclusions obtained by ellipsometry are only as good 
as the optical model. 

 Depending on the electronic properties of the materials tested, different optical models 
can be applied to the data collected by ellipsometry  [34,   44] . In the simplest case, when the 
layers can be considered transparent and homogeneous, the refractive index ( n ) as a function 
of the wavelength (  l  ) can be described using a classical Cauchy model (Eq.  2.3 ):
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( ) 2 4

,
B C

n Al l l
= + +

    (2.3)    

where  A ,  B , and  C  are constants fitted by the model. Cauchy models have been used to study 
the structure of layers of biotin–avidin  [45] , albumin  [46] , ferritin  [47] , and polymers  [48, 
  49] , as well as binding of T-2 molecules to antibodies  [50] , and other small molecules  [51, 
  52] . The interpretation of data related to biological molecules that absorb light (e.g., resonant 
electrons at 280 nm) requires the use of other models such as the Tauc–Lorentz model, which 
accounts for the unique band-gap of such amorphous materials.Tauc–Lorentz models have 
been used to describe the hemocompatibility of carbon thin films and their interaction 
mechanism with blood plasma proteins such as human serum albumin (HSA) and fibrinogen 
 [53–  57] . Similar models have also been used to evaluate the thrombogenicity of polysaccha-
ride-coated surfaces  [58] . 

 These mathematical models used to describe each layer must be combined in a reason-
able optical model that describes the overall behavior of the system. In this regard, most 
biomedically relevant substrates can be modeled by a small number of uniaxial layers with 
optical axes parallel to the normal axes of the substrate. Although other examples of these 
models abound in the literature, Figures  2.1  and  2.2  show two optical models used to describe 
biomedically relevant processes.   

 In the first case ( see  Figure  2.1 ), the model consists of a two-layer substrate (bulk 
silicon coated with a layer of amorphous hydrogenated carbon) and a protein layer (fibrin-
ogen) as an overlayer  [53] . An additional layer (four layers in total) was used to model the 
adsorption    of  β -casein at air/water and oil/water interfaces  [60] . In situations where the 

  Figure 2.1.    Three-layer model used to investigate the adsorption of fibrinogen (Fib) on hydrogenated carbon films. 
Reprinted from Ref.  [53] .       
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material surface and interface microstructures have to be accounted for, an effective 
medium approximation (EMA) model can be applied. EMA layers mix the optical con-
stants of two or more materials and are extremely useful in modeling surface roughness 
 [61] , interface layers, and volume fractions in composite materials  [62] . This is the case of 
the model illustrated in Figure  2.2 , where a five-layer model, each layer with different 
composition (of silicon, void space, and protein), was used to investigate the adsorption of 
HSA to a porous silicon substrate  [59] . Similar models were later used by Karlsson  [46, 
  63]  and Tsargorodskaya  [64]  to rationalize information related to the adsorbed protein 
amount as well as the concentration profile into the porous substrate. EMA layers also 
allow mixing materials, independently described by different optical models such as the 
Cauchy, Lorentz, or Tauc–Lorentz. EMA layers have been also applied to describe interac-
tions between ferritin and gold  [47] . 

 Once the construction of an accurate optical model, describing the adsorbed protein 
layer (and the substrate), has been achieved, the thickness of a protein layer obtained by 
ellipsometry can be used to calculate the adsorbed protein amount (  G  , expressed in milli-
grams per meter squared) using Eq.  2.4 :

 

0d( )
,

(d / d )

n n

n c
G

−
=

   

(2.4)    

where  n  and  n  0  are the refractive indices of the protein and the ambient environment, respec-
tively  [65] . In accordance with previous reports, the refractive index increment for the 
 molecules in the layer (d n /d c ) is generally assumed to be around 0.187 mL/g  [66–  69] .  

  2.4. Instrument Considerations  

 In general, ellipsometers are relatively simple instruments. Figure  2.3  shows 
 schematically (and not to scale) the main components of a rotating analyzer spectroscopic 
ellipsometer. Light from a Xe–arc lamp is directed through a monochromator (1),  collimated, 

  Figure 2.2.    Five-layer model used to investigate the adsorption/penetration of human serum albumin (HSA) to 
porous silicon substrates. Reprinted from Ref.  [59] .       
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and passed through a polarizer (3). Then, the polarized beam interacts with the substrate 
(mounted on 5) at an oblique angle. Finally, the reflected beam passes through a second 
polarizer and enters a detector (7). Although many different instrument configurations are 
available, the data acquisition frequency is generally limited by the rotating element, light 
source intensity, selected precision of the measurement, wavelengths selected, and angles 
required for each experiment.  

 Many ellipsometric adsorption studies have been performed by measuring surfaces 
ex situ in air before and after protein adsorption  [56,   70] . These experiments are very simple, 
allow many substrates (material surface/adsorbed protein) to be measured over a short period 
of time, and can be performed by minimally trained personnel. However, as pointed out by 
Arwin  [59] , this ex situ experimental approach involves rinsing and, sometimes, drying steps 
that introduce the uncertainty of possible desorption and denaturation of proteins before the 
pertinent measurements. 

 For this reason, several cells1  have been designed enabling in situ ellipsometric meas-
urements of protein adsorption processes. In this respect, a widely used design is an open cell 
assembled of fused silica slides  [35]  that could be mounted on the vertical substrate-stage of 

  Figure 2.3.    Schematic (not to scale) of the main components of a variable angle spectroscopic ellipsometer. 
(1) Monochromator, (2) fiber optic cable, (3) input unit, (4) alignment detector, (5) substrate stage, (6) goniometer 
base, and (7) detector unit. Note: The control box and the associated computer (for data acquisition and analysis) 
have been omitted from the diagram. (courtesy of J. A. Woollam Co., Inc.).       

1  Unless otherwise noted, the word “cell” in this chapter has been reserved to denominate the chamber in which the 
adsorption experiment is performed. 
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the ellipsometer. Arwin’s group also designed a cell for total internal reflection ellipsometry 
under flow injection conditions that can be also used without flow injection as well as with 
or without stirring  [47] . Logothetidis  [55]  and other research groups  [71]  have recently 
reported very interesting results obtained with other cells suited for aqueous liquids (like 
salty solutions and buffers). Although these designs have proven to be extremely useful, they 
do not provide information to resolve the question of whether the mass transfer from the bulk 
or an interfacial process is the determinant step in the protein adsorption rate. To solve this 
problem, the adsorption experiment can be performed under stagnation conditions. In this 
case, the axis of the impinging jet intersects perpendicularly to the material surface that is 
being measured. Stagnation flow cells have been extensively applied to study adsorption 
kinetics of proteins  [72–  76] , surfactants  [77] , and polymers  [78]  using reflectometry, a simi-
lar technique.  

  2.5. Material Surface Preparation  

 Unlike other techniques such as surface plasmon resonance, ellipsometry allows a wide 
variety of materials to be used as substrates. Gold  [79] , carbon  [80] , silicon  [49] , alumina 
 [81] , stainless steel  [82] , and titania  [83]  are only a few examples with biomedical relevance. 
Particularly important are micro/nanophased materials, which promote enhanced interactions 
with biological molecules. A major problem encountered when performing ellipsometric 
studies using nanomaterials is, however, that nanophase substrates are typically not suitable 
for ellipsometry. This is the case for ceramics  [4] , and material substrates prepared by either 
dip-coating  [84]  or electrophoresis  [85] , which result in rather opaque surfaces, with rough-
nesses that are several orders of magnitude larger than the nanofeatures themselves. Other 
techniques such as chemical vapor deposition  [86]  and direct-current reactive magnetron 
sputtering  [87]  offer versatility of fabrication conditions, crystal structure, composition, opti-
cal properties, bactericidal abilities, and effective ways to improve the reactivity of the 
obtained films. However, the cost and complexity of these techniques prevent them from 
being adopted for general use. 

 Often, the optical anisotropy observed in polymer thin films  [88,   89] , self-assembled 
layers  [90] , and Langmuir–Blodgett films  [91]  can be accounted for during the ellipsometric 
measurement and subsequent modeling. According to our experience, techniques such as 
sputtering, vaporization (for metallic surfaces), and sol-gel deposition  [92–  94]  have the 
potential of producing nanometer-thick films with minimum instrument requirements and 
porosity values that are appropriate for ellipsometry. Other materials such as carbon nano-
tube (CNT) films can be deposited on a variety of substrates by spin-coating  [95] , spraying 
 [96] , chemical vapor deposition  [97] , and vacuum filtration  [98] . Although they will not be 
discussed in this chapter, successful examples of ellipsometrically characterized nanostruc-
tured films abound in the literature  [99–  103] .  

  2.6.  Typical Protein Adsorption Experiment 
Followed by Ellipsometry  

 As mentioned in Sects.  2.2  and  2.3  of this chapter, the raw data generated using the 
ellipsometer are generally expressed in terms of the amplitude (  y  ) and the phase difference 
( D ) as functions of either time ( t ) or wavelength (  l  ). These data can be then interpreted using 
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an optical model, which considers the optical constants ( n  and  k ) and thicknesses ( d ) of each 
layer. Figure  2.4  shows the raw data (  y   and  D  as functions of time) obtained during a typical 
dynamic adsorption experiment collected at two wavelengths (450 and 650 nm) using spec-
troscopic ellipsometry.  

 After fitting the data with an appropriate model, in which the thickness of the protein 
layer is variable, Figure  2.4  can be expressed in terms of either thickness of the protein layer 
or surface mass (  G  )   , and expanded to include the data collected during a subsequent desorp-
tion experiment. Figure  2.5  shows the final plot of the protein adsorption/desorption 
experiment.  
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  Figure 2.4.    Typical amplitude (  y  ) and phase difference ( D ) as functions of time ( t ) collected during an adsorption 
experiment of 0.1 mg/mL of DAAO to CNT by spectroscopic ellipsometry. Other pertinent conditions are described 
in Ref.  [104] .       
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  Figure 2.5.    Typical protein adsorption/desorption experiment monitored by spectroscopic ellipsometry.       
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 Figure  2.5  can be subdivided in five regions. In the first part (A), while only the back-
ground electrolyte is pumped through the cell, the initial thickness of the substrate is meas-
ured and the baseline stability is verified. In (B), the solution containing protein is introduced 
and the protein adsorption starts at an initial fast rate process, allowing the calculation of the 
maximum adsorption rate (d  G  /d t ). As the protein molecules fill the substrate, the adsorption 
process slows down, reaching a plateau value (C). At this point, the adsorbed amount at satu-
ration (  G   SAT ), for the designated experimental conditions, can be obtained. In the next region 
(D), a desorbing agent is introduced into the cell, the adsorbed amount decreases, and the 
initial desorption rate can be calculated. Finally, in region (E) the amount of protein that 
remains on the substrate (  G   LEFT ) can be determined. Additionally, a more accurate value for 
the optical constants of the substrate and the protein layer before and after desorption can be 
obtained upon performing spectroscopic scans during stages (A), (C), and (E), respectively.  

  2.7.  Ellipsometric Determination of the Adsorption 
of Proteins to Nanomaterials  

 So far, this chapter has focused on the importance of studying protein adsorption to 
nanomaterials surfaces, the most remarkable features of ellipsometry and its instrumental and 
substrate requirements, as well as the type of data that can be collected in a typical ellipso-
metric experiment. In the following sections, the most recent results from our laboratory will 
be discussed. Emphasis will be placed on the adsorption of two proteins (bovine serum albu-
min [BSA] and  D -amino acid oxidase [DAAO]) to two nanostructured materials (TiO 2  and 
CNT) deposited on Si/SiO 2  strips. 

  2.7.1. Adsorption of BSA to Nanostructured TiO 2  

 During the last decades, plain carbon and vanadium–steel orthopedic/dental implants 
have been gradually replaced by those made of stainless steel, cobalt–chromium alloys, 
titanium–platinum alloys, and polymeric materials, such as poly(tetrafluoroethylene), 
poly(methylmethacrylate), polyethylene, and silicones  [105] . Because of their biocompatibil-
ity and mechanical properties, titanium and titanium-based alloys are one of the most popular 
materials for medical applications including bone and joint replacements, dental implants, 
and cardiovascular devices. Since titanium spontaneously generates a surface layer of TiO 2  
when exposed to oxygen-containing environments (such as air or aqueous media), its bio-
compatibility is dominated by the interaction of cells, tissues, biological fluids, and the oxide 
layer instead of the metal itself  [106] . 

 This phenomenon has been widely recognized and it has motivated recent studies of 
the interaction of various proteins and TiO 2   [107,   108] . Among other proteins, BSA has been 
extensively studied. BSA is a globular protein with an isoelectric point (IEP) of 4.5–5.0, 
approximate molecular dimensions of 4 × 4 × 14 nm, and a molecular weight of 66.5 kDa 
 [109] . Because BSA generally undergoes significant structural changes upon adsorption to 
solid surfaces, it has been considered to be a “soft” protein  [10,   11] . Besides its abundance 
in physiological fluids (such as blood plasma) and physiological functions attributed to albu-
min (control of osmotic pressure, buffer, and transport), BSA has been also considered a 
model protein for various biomedically related studies  [110–  112] . For these reasons, the 
mechanisms that regulate the adsorption of albumin to nanostructured TiO 2  surfaces were 
selected for further analysis in this chapter. In order to attain a better understanding of how 
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nanostructured surfaces modulate protein–surface interactions, the “real-time” adsorption of 
BSA to nanostructured TiO 2  was investigated using spectroscopic ellipsometry  [113] . For 
these experiments, the TiO 2 -coated substrates were prepared using dip-coating techniques 
 [92–  94]  and characterized by ellipsometry and atomic force microscopy (AFM). The thick-
ness of the deposited TiO 2  films was between 1.5 and 3.5 nm. The ellipsometric data were 
modeled by three uniaxial layers (Si, bulk; SiO 2  d = 2.5 ± 0.5 nm; and TiO 2 ) with the optical 
axis parallel to the silicon wafer substrate. As shown in Figures  2.6  and  2.7 , the agreement 
between the data generated by the optical model, the experimental data, and the topography 
of the nanostructured TiO 2  thin films (determined by AFM) was good.   
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  Figure 2.6.    An example of data (  Y  ,  blue ; and D,  red ) collected from a spectroscopic scan ( dots ) as well as data 
generated by the optical model ( lines ). Other pertinent conditions for this experiment are described in Ref.  [113] .       

  Figure 2.7.    AFM image of a representative thin-film of TiO 2  deposited on a silica wafer. Other pertinent condi-
tions for this experiment are described in Ref.  [113] .       

312

313

314

315

316

317

318

319

320



30 M.F. Mora et al.

 As shown in Figures  2.8  and  2.9 , both the adsorbed amount and the adsorption rate of 
BSA to nanostructured TiO 2  increased as a function of the protein concentration in the 
0.001–0.1 mg/mL range.   

 Although the interaction of BSA on TiO 2  was not affected by the ionic strength of the 
protein solution, greater amounts of BSA were adsorbed at the IEP. This behavior can be 
explained by considering that, at the IEP, the adsorbed molecules minimize electrostatic 
repulsions, attain closer packing  [114] , and retain their native structure. The results collected 
by ellipsometry indicate that BSA adsorbed to nanostructured TiO 2  formed a monolayer with 
a (more or less) compact arrangement. In agreement with a rather general phenomenon in 
protein adsorption  [115] , formation of the BSA adsorbed layer was driven by a combination 
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  Figure 2.8.    Effect of the protein concentration on the amount of BSA adsorbed on nanostructured TiO 2 . Other 
pertinent conditions of this experiment are described in Ref.  [113] .       
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  Figure 2.9.    Effect of the protein concentration on the initial adsorption rate of BSA on nanostructured TiO 2 . Other 
pertinent conditions of this experiment are described in Ref.  [113] .       

321

322

323

324

325

326

327

328

329

330



Investigating Protein Adsorption via Spectroscopic Ellipsometry 31

of hydrophobic (mainly) and hydrophilic interactions. Data collected by ellipsometry indi-
cated that protein layers in the 2–5-nm thickness range were obtained; this result suggests 
that, upon adsorption to nanostructured films of TiO 2 , BSA undergoes (at least some) struc-
tural changes. 

 The aforementioned results highlight the utility of spectroscopic ellipsometry to inves-
tigate not only the optical properties of nanostructured materials, but also the adsorption of 
proteins to such layers. More information regarding adsorption of BSA to nanostructured 
TiO 2  can be found in Ref.  [113] .  

  2.7.2. Adsorption of Proteins to Carbon Nanotubes: Biosensing Applications 

 Sensitive, selective, and cost-effective analysis of biomolecules is important in clinical 
diagnostics and treatment. Among others, electrochemical biosensors based on enzyme-
modified electrodes are very attractive because they integrate the selectivity of enzymatic 
reactions with highly sensitive electrochemical signal transduction  [116–  118] . Biosensors are 
currently applied in the clinical  [116,   118] , environmental  [119,   120] , agricultural  [117] , and 
pharmaceutical fields. Although different nanomaterials can be used as substrates  [121] , 
carbon nanotubes (CNT) have an enormous potential because they can act simultaneously as 
immobilization matrices and as electrochemical transducers  [122–  128] . In addition, CNT are 
stable over a large range of potentials, are catalytically active toward many electrochemical 
reactions  [127–  130] , and provide a significant increase in electrode area  [129] . Although 
considerable progress has been made by encapsulating or cross-linking enzymes  [131–  133] , 
the analytical performance of CNT biosensors still suffers from some fundamental deficien-
cies such as slow response ( ≥ 10 s) and limited sensitivity (approximately micromolar). 

 In order to better understand the driving forces and consequences of the interaction of 
proteins with CNT, preliminary studies were performed by reflectometry using BSA as a 
model protein  [74] . According to those results, BSA molecules arriving to the CNT surface 
adopted a preferred orientation with the positive and nonpolar patches of the protein facing 
the hydrophobic sorbent surface; this arrangement resulted in an attachment-controlled 
adsorption process. Even under electrostatically unfavorable conditions, dehydration of both 
the CNT surface and the nonpolar regions of BSA promoted adsorption on CNT. At steady 
state conditions, a layer of BSA adsorbed to CNT (at the IEP of the protein) resembled a 
close-packed monolayer of protein molecules. At pH values away from the IEP, repulsive 
protein–protein interactions prevailed over attractive surface–protein interactions, limiting 
the amount of BSA adsorbed to the CNT layer. 

 More recently, our group described the interaction of CNT with  D -amino acid oxidase 
(EC 1.4.3.3, DAAO)  [104] . DAAO is a dimeric protein of approximately 80.6 kDa that 
exhibits an elongated ellipsoidal framework with approximate dimensions of 11 nm (length) 
× 4 nm (width)  [134]  and an IEP in the 6.3  [135]  to 7.0  [136]  range. DAAO is of particular 
interest because it recognizes functional groups, instead of a specific analyte  [137,   138] . 
Therefore, combining DAAO with a separation technique such as capillary electrophoresis 
should increase the versatility of the sensor, allowing detection of several analytes with simi-
lar structure. Although the biological role of DAAO in animals is not clear yet, recent 
progress in the detection of  D -amino acids has linked DAAO to aging  [139,   140]  and patho-
logical conditions such as schizophrenia  [141,   142] , epilepsy, Alzheimer’s disease, and renal 
diseases  [143] . Additionally, understanding the adsorption mechanisms of DAAO to solid 
surfaces would enable developing more efficient catalysts for biomedical applications 
 [144–  146] . Consequently, understanding the driving forces for the adsorption of DAAO to 
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CNT would enable the rational design of biosensors and biocatalysts, avoiding harsh immo-
bilization conditions and trapping membranes  [147,   148] . 

 Dynamic adsorption/desorption experiments of DAAO to CNT were performed as a 
function of the protein concentration, pH, and ionic strength. In general, all adsorption 
experiments exhibited a similar general behavior: (1) adsorption of DAAO to the CNT sur-
face was a single step process; (2) adsorbed DAAO was not significantly affected by rinsing 
the substrate with buffer; and (3) part of the adsorbed DAAO was removed by rinsing with 
4 mM sodium dodecyl sulfate (SDS). An example of the data collected during such adsorp-
tion/desorption experiments is shown in Figure  2.5 . Neither the desorption kinetics nor the 
amount of protein remaining attached to the CNT surface was affected by the amount of 
DAAO adsorbed (  G   SAT ). Based on these experimental observations, the overall adsorption 
process could be interpreted as the sum of two different populations of DAAO on the CNT 
surface: one that is removable by SDS (  G   1 ), and another (  G   2 ) that remains attached to the 
surface even after washing with surfactant. 

 Thickness values of the adsorbed DAAO obtained with spectroscopic ellipsometry 
analysis indicate that DAAO can adopt multiple orientations, either horizontal or tilted at 
different angles with respect to the CNT surface (Figure  2.10 ). It was also observed that 
higher amounts of DAAO were adsorbed at the IEP of the DAAO; moreover, the initial 
adsorption rate and the population of DAAO loosely attached (  G   1 ) to the CNT surface 
increase as the bulk protein concentration increases. More importantly, measurements of the 
enzymatic activity of the adsorbed protein (Figure  2.10 ) provided evidence that the enzy-
matic activity correlated with the adsorbed amount of protein when the adsorption reaction 
was performed under attractive electrostatic conditions. However, CNT surfaces modified 
with DAAO at, or above, the IEP of the protein displayed lower enzymatic activity.  
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  Figure 2.10.    Comparison between the enzymatic activity and amount of DAAO adsorbed to CNT under different 
experimental conditions. The  dashed line  was included with the sole purpose of connecting the DAAO thickness 
values (d DAAO ). Other pertinent conditions for this experiment are described in Ref.  [104] .       
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 If one considers that proteins generally display higher structural stability (and, there-
fore, a smaller tendency to spread at the IEP)  [114] , these results may suggest that, despite 
the amount adsorbed, DAAO could undergo small changes in orientation rather than changes 
in structural conformation on the CNT surface. These changes in orientation are responsible 
for the observed differences in the biological activity of the adsorbed protein; for this reason, 
not only the surface and the protein  [149] , but also the adsorption conditions dictate the bio-
logical activity of a protein adsorbed on a CNT surface. More information regarding adsorp-
tion of DAAO to CNT surfaces can be found in Ref.  [104] .   

  2.8. Innovative Applications  

 Recent developments in instrumentation and data analysis software have enabled ellip-
sometry to transcend the boundaries of traditional physics, engineering, and chemistry set-
tings. In this respect, several biomedical applications have been recently reported. For 
example, Schulz et al.  [150]  demonstrated that spectroscopic ellipsometry is a suitable opti-
cal tool to investigate biological specimens such as liver tissue, human nails, and human skin. 
These researchers performed a hydration study that revealed changes of the optical constants 
upon hydration and dehydration of nails and liver. The very different dehydration time scales 
for nails and liver provided evidence of the importance of the keratin matrix as a water bar-
rier  [150] . Danny et al. later extended this study to investigate the optical properties of vari-
ous layers of human skin. In this case, the evolution of  ψ  and D were described using a 
morphological model containing an effective medium approximation accounting for the 
water  content of the skin, surface roughness of corneocytes, and the alternating lipid layers 
in the skin  [151] . 

 Cardenas et al. recently applied ellipsometry to investigate the amount, thickness, and 
structure of films formed by human whole saliva on alumina surfaces  [81] . Their analyses 
were complemented by means of neutron reflectivity and AFM, and showed that saliva 
adsorbed rapidly on alumina. Such a film could be modeled by two layers: (1) an inner, 
dense, and thin region that formed a uniform layer and (2) a second layer, more diffuse and 
thicker, which protruded toward the bulk of the solution. The thickness of both layers of a 
salivary film formed on sapphire was found to be on the order of a few hundreds of 
Ångstroms  [81] . Researchers from the same laboratory also investigated the adsorption of 
two salivary mucins (specifically, structure and topography) under conditions similar to those 
found in the oral cavity in terms of ionic strength, pH, and protein concentration  [152] . In 
this case, the salivary protein film was described as a two-sublayer structure in which an 
inner, dense layer was decorated by large aggregates of proteins. The shape and height of 
these large aggregates largely depended on the type of substrata tested. Additionally, Santos 
et al .  showed that adsorption of a human salivary mucin (MUC5B) was controlled by the type 
of substrata; in this case, film topography was similar to that of the larger aggregates present 
in the salivary films. According to these results, MUC5B molecules adsorbed on hydropho-
bic substrates were especially resistant to both elution with buffer solution and SDS. 
Therefore, these large mucins can be responsible for the increased resistance of the saliva 
films on hydrophobic substrates. Mucins could then protect the intraoral surfaces against 
surface-active components present in oral health care products. These results are also in line 
with the adsorption of other salivary proteins to biological materials  [152] . 

 Ellipsometry has also been applied in the development of various biosensors. Several 
of these sensors were reviewed by Arwin  [153] . Attractive features for ellipsometric sensors 
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are the high resolution of the thickness of the adsorbed protein layer and the possibility of 
performing in situ measurements using nonlabeled molecules. According to the type of sens-
ing mechanism used, ellipsometric sensors were classified in terms of affinity layer (analyte 
interacts with a sensing layer deposited on a substrate, resulting in a change in thickness of 
the protein layer), matrix layer (analyte diffuses inside a thin layer deposited on a substrate, 
resulting in a change in the refractive index), integrating layer (analyte interacts with a sur-
face resulting in an accumulated thickness change over time), and a homogeneous layer 
(optical properties of the layer change upon interaction with the analyte)  [153] . Among other 
ellipsometric sensors, Demirel et al .   [154]  investigated the effects of several variables on the 
formation of self-assembled monolayers of 3-mercaptopropyltrimethoxysilane on Si sur-
faces. Such surfaces were then modified with oligodeoxynucleotides and used to detect 
hybridization by ellipsometry. Other studies involving DNA adsorption and subsequent inter-
actions have been also reported  [155–  157] . Using a micropatterned panel of seven lectins, 
Carlsson et al.  [158]  discriminated different meat juices from cattle, chicken, pig, cod, turkey, 
and lamb. In this case, biorecognition was evaluated with null ellipsometry and the data 
obtained were related to lactoferrin, an internal standard. Furthermore, the patterns of lectins 
binding to the meat proteins were visualized by scanning ellipsometry  [158] . 

 One of the most exciting areas in ellipsometry research is the development of imaging 
ellipsometry, which enabled quantification and visualization of the lateral thickness distribu-
tion of thin protein layers formed on solid substrates  [38] . Biosensors based on imaging 
ellipsometry combine the specificity of biomolecular interactions with protein-patterned 
surfaces and have the advantages of high spatial resolution, fast data acquisition, and simplic-
ity of use  [159] . In this respect, van Noort et al.  [160]  reported the fabrication of an affinity 
biochip with a matrix of 900 targets for detection of binding events of carbohydrates with 
lectins using imaging ellipsometry. More recently, an immunosensor based on imaging ellip-
sometry was developed for the detection of  Legionella pneumophila   [161] . The sensor was 
fabricated by sequential deposition of 11-mercaptoundecanoic acid, protein G, and a mono-
clonal antibody. Imaging ellipsometry was then used to detect binding of  L. pneumophila  to 
the antibody layer; the limit of detection in this case was approximately 10 3  colony-forming 
units/ml  [161] . Similar results were obtained when  Salmonella typhimurium   [162]  and 
 Yersinia enterocolitica   [163]  were examined. Comparable approaches have been also used to 
detect  Arthrobacter oxydans   [164]  and dengue virus particles  [165] , to investigate the orien-
tation of human immunoglobulin G  [166] , and to visualize two neutralizing human mono-
clonal antibodies from patients infected with severe acute respiratory syndrome coronavirus 
 [167] . 

 Yu and Jin  [79]  recently combined ellipsometry with electrochemical methods for 
studying electrostatic interactions of proteins and solid surfaces. These researchers provided 
evidence that the rate of fibrinogen adsorption on a potentiostatic surface was faster than that 
observed on the non-potentiostatic surface and concluded that hydrophobic interactions were 
the major driving force for the observed adsorption of fibrinogen to gold. Descriptions of 
other biomedical applications of imaging ellipsometry abound in the literature  [168–  171] .  

  2.9. Conclusions  

 In this chapter, the basic concepts behind ellipsometry and spectroscopic ellipsometry 
were discussed along with some pertinent instrument details. Particular emphasis was placed 
on experimental details related to the development of medically relevant bioconjugated 
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 surfaces. In this regard, ellipsometry has enabled collecting real-time data related to a wide 
variety of biological processes. When complemented with other techniques such as electron 
and fluorescence microscopy, circular dichroism, infrared spectroscopy, AFM, and quartz 
crystal microbalance, ellipsometry enables a rational interpretation of the microstructure of 
layers of protein adsorbed on material surfaces. Original papers investigating live tissues as 
well as imaging ellipsometry should open new possibilities for applications in the biomedical 
field. Clearly, opportunities abound for fundamental discovery as well as for breakthroughs 
in applications that involve proteins and biomaterials, biotechnology, and nanotechnology.      
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