2

Powers of Integers

An integer 7 is a perfect square if n = m? for some integer m. Taking into account
the prime factorization, if m = p{' - - p*, thenn = pfa‘ e pf“". That is, n is a
perfect square if and only if all exponents in its prime factorization are even.

An integer n is a perfect power if n = m® for some integers m and s, s >
2. Similarly, n is an sth perfect power if and only if all exponents in its prime
factorization are divisible by s.

We say that the integer  is square-free if for any prime divisor p, p? does not
divide n. Similarly, we can define the sth power-free integers.

These preliminary considerations seem trivial, but as you will see shortly, they
have significant rich applications in solving various problems.

2.1 Perfect Squares

Problem 2.1.1. Find all nonnegative integers n such that there are integers a and
b with the property
n*=a+bandn® = a®> +b°.

(2004 Romanian Mathematical Olympiad)

Solution. From the inequality 2(a®> + b%) > (a + b)*> we get 2n> > n*, that is,
n < 2. Thus:

forn = 0, we choosea = b =0,

forn =1,wetakea =1,b =0, and

forn =2, we may takea = b = 2.

Problem 2.1.2. Find all integers n such that n — 50 and n + 50 are both perfect
squares.
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48 I Fundamentals, 2. Powers of Integers

Solution. Let n — 50 = a® and n + 50 = b?. Then b* —a® = 100, so (b —a)(b+
a) = 2%.5%. Because b —a and b+ a are of the same parity, we have the following
possibilities: b —a = 2, b + a = 50, yielding b = 26, a = 24, and b — a = 10,
b+a = 10 witha = 0, b = 10. Hence the integers with this property are n = 626
and n = 50.

Problem 2.1.3. Let n > 3 be a positive integer. Show that it is possible to eliminate
at most two numbers among the elements of the set {1, 2, ..., n} such that the sum
of the remaining numbers is a perfect square.

(2003 Romanian Mathematical Olympiad)

Solution. Let m = |/n(n + 1)/2|. From m?* < n(n+1)/2 < (m + 1)* we
obtain
nn+1)

2
Therefore, we have

1
@—m2§2m§\/2n2+2n§2n—1.

—m?<m+1?—m?>=2m+1.

Since any number k, k < 2n — 1, can be obtained by adding at most two
numbers from {1, 2, ..., n}, we obtain the result.

Problem 2.1.4. Let k be a positive integer and a = 3k* + 3k + 1.
(i) Show that 2a and a* are sums of three perfect squares.

(ii) Show that if a is a divisor of a positive integer b, and b is a sum of three
perfect squares, then any power b" is a sum of three perfect squares.

(2003 Romanian Mathematical Olympiad)

Solution. (i) 2a = 6k>+6k+2 = (2k+1)2+ (k+1)2+k% and a® = 9k*+ 18k> +
15k +6k+1 = (k> +k)? + (2k* 4+ 3k +1)> +k*(2k +1)* = af + a3 +a3. (ii) Let
b =ca.Thenb = blz—i—b%—i—b% and b? = ¢%a? = cz(alz—l—a%—i—a%). To end the proof,
we proceed as follows: for n = 2p + 1 we have b>P*! = (bp)z(b% + b% + b%),
and forn = 2p + 2, b" = (bP)2b? = (b”)2c2(a% + a% + a32).

Problem 2.1.5. (a) Let k be an integer number. Prove that the number

Qk+1)7° = @2k-1)>

is the sum of three squares. (b) Let n be a positive number. Prove that the number
(2n + 1)3 — 2 can be represented as the sum of 3n — 1 squares greater than 1.

(2000 Romanian Mathematical Olympiad)



2.1. Perfect Squares 49

Solution. (a) It is easy to check that

Qk+1)° — 2k — 1) = (4k)> + 2k + 1> + 2k — 1%
(b) Observe that
Cn+1P—1=Cn+1)°-2n-1>+Cn—-1>—-@n-3>+... +3> - 13

Each of the n differences in the right-hand side can be written as a sum of three
squares greater than 1, except for the last one:

3P _13=42432 412
It follows that
n
Qn+1)° =2=3" 4424 > " [(4h)* + 2k + 1)* + (2k — )]
k=2

as desired.

Problem 2.1.6. Prove that for any positive integer n the number

(17 + 12v2)" — (17 - 12/2)"
42

is an integer but not a perfect square.

Solution. Note that 17 + 12¢/2 = (v2 + 1)* and 17 — 12¢/2 = (v2 = 1), 50

(17+12v2)" - (17— 12v2)"  (V2+1)" = (vV2-1)"

42 442
:(ﬁ+1)2n+(ﬁ_1)2n.(ﬁ+1)2n_(\/§_1)2n

2 272

Define
A_(fz+1)2”+(f2—1)2” . B_(ﬁ+1)2"—(ﬁ—1)2”
N 2 an B 2«/5 '

Using the binomial expansion formula we obtain positive integers x and y such

that
(\/E—i-l)zn = x + V2, (\/5— 1)2n =x — yv2.

Then
x_(ﬁ+1)2n+(ﬁ_])2n_A
= > =
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and

(\/54-1)2'1—(\/5—1)2”

= B,
J 242

and so AB is as integer, as claimed. Observe that
A2 —2B> = (A+V2B)(A—V2B)= (V2 + D¥(V2 - D =1,

so A and B are relatively prime. It is sufficient to prove that at least one of them
is not a perfect square. We have

(VZ+ 1)+ (V2 1) [(ﬁ+1)"+(ﬁ—1)"]2
A= _ 1
2 V2

and

2n 2n n n2
(V2+1) er(fz—l) :[(«/5+1)\—F2(«/§—1)]+1. o)

Since one of the numbers

V2+1)"+(v2-1)"  (V2+1)"'=(V2-1)"
V2 ’ V2

is an integer, depending on the parity of n, from the relations (1) and (2) we derive
that A is not a square. This completes the proof.

Problem 2.1.7. The integers a and b have the property that for every nonnegative
integer n, the number 2"a + b is a perfect square. Show that a = 0.

(2001 Polish Mathematical Olympiad)

Solution. If a # 0 and b = 0, then at least one of 2la + b and 2%2a + b is not
a perfect square, a contradiction. If a # 0 and b # O, then each (x,, y,) =
(2/2%a + b, V2"2a + b) satisfies

(X + Yn)(xn — yn) = 3b.

Hence, x + n + y, divides 3b for each n. But this is impossible because 3b # 0
but |x, + y,| > |3b] for large enough n. Therefore, a = 0.

Remark. We invite the courageous reader to prove that if f € Z[X] is a poly-
nomial and f(2") is a perfect square for all n, then there is g € Z[X] such that

f=g
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Problem 2.1.8. Prove that the number

11...1122...225
—_— ——
1997 1998

is a perfect square.

First solution.

N=11...11-10"" 4+22...22.10+5
—— ——
1997 1998

1 2
= §(101997 —1)-10"% + §(101998 —1)-10+5

1
_ 5(103996 4£2.5.10198 4 25) = [%(101998 + 5)]2

1997 2
100...005
= ———=1 =33...335%
3 N——
1997

Second solution. Note that

9N =100...00100...0025 = 10> + 10" + 25 = (10! + 5);
1996 1997

hence N is a square.

Problem 2.1.9. Find all positive integers n, n > 1, such that n> + 3" is a perfect
square.

Solution. Let m be a positive integer such that

m? =n®+3".
Since (m—n)(m+n) = 3", there is k > 0 such that m —n = 3¥ and m+n = 3"*.
Fromm —n <m +n followsk <n —k,andson —2k > 1.If n — 2k = 1, then
2n=(m+n)—(m—n)=3"k_3k =3k@n-2k _ 1) =3k3l — 1) =2.3k 0
n=3"=2k+1.Wehave3" = (14+2)" = 1+2m+2*(5) +--- > 2m + 1.
Therefore k = 0 or k = 1, and consequently n = 1 orn = 3. If n — 2k > 1, then
n—2k>2andk <n—k — 2. It follows that 3 < 37=%=2 and consequently

271 — 31’!—]{ _ 3k > 3n—k _ 3n—k—2 — 3"—]{—2(32 _ 1) — 8 . 3"—/{—2
>8[14+2(n —k—2)]=16n — 16k — 24,

which implies 8k +12 > 7n. On the other hand, n > 2k+2; hence 7n > 14k+ 14,
contradiction. In conclusion, the only possible values for » are 1 and 3.
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Problem 2.1.10. Find the number of five-digit perfect squares having the last two
digits equal.

Solution. Suppose n = abcdd is a perfect square. Then n = 100abc + 11d =
4m + 3d for some m. Since all squares have the form 4m or 4m + 1 and d €
{0, 1,4, 5,6, 9} as the last digit of a square, it follows thatd =0 ord =4.1fd =
0, then n = 100abc is a square if abc is a square. Hence abce{10%,112%, ..., 317},
so there are 22 numbers. If d = 4, then 100abc+44 = n = k? implies k = 2 p and

abc = ”22—_5“ (1) If p = 5x, then abc is not an integer, false. (2) If p = 5x + 1,
then abe = 2410l — 124 20Dy ¢ ¢ {11, 16,21, 26, 31}, s0 there are 5
solutions. (3) pr = 5x+2, then abc = x24 27 20x T ¢ N, false. (4) If p=5x+3,
then abe = x?+3%=2 ¢ N, false. (5)If p = 5x+4 then abe = x*+ 8L hence
x = 5m + 3 for some m = x € {13, 18,23, 28}, so there are four solutions.
Finally, there are 22 + 5 4+ 4 = 31 squares.

Problem 2.1.11. The last four digits of a perfect square are equal. Prove they are
all zero.

(2002 Romanian Team Selection Test for JBMO)

Solution. Denote by k2 the perfect square and by a the digit that appears in the last
four positions. It easily follows that a is one of the numbers 0, 1, 4, 5, 6, 9. Thus
K =a-1111 (mod 16). (1) If a = 0, we are done. (2) Suppose thata € {1, 5, 9}.
Since k2 = 0 (mod 8), k2 = 1 (mod 8) or k2 = 4 (mod 8) and 1111 = 7
(mod 8), we obtain 1111 =7 (mod 8),5- 1111 =3 (mod 8),and9 - 1111 =7
(mod 8). Thus the congruence k> = a - 1111 (mod 16) cannot hold. (3) Suppose
a € {4,6}.Since 1111 =7 (mod 16),4-1111 = 12 (mod 16),and6-1111 = 10
(mod 16), we conclude that in this case the congruence k2 =a-1111 (mod 16)
cannot hold. Thus a = 0.

Remark. 38% = 1444 ends in three equal digits, so the problem is sharp.
Problem 2.1.12. Let 1 < nj <np < --- < ng < --- be a sequence of integers
such that no two are consecutive. Prove that for all positive integers m between
ny+ny+---+nyandny +ny + - - - 4+ ny41 there is a perfect square.
Solution. It is easy to prove that between numbers @ > b > 0 such that /a —

Vb > 1 there is a perfect square: take for example ([v/b] + 1)%. It suffices to
prove that

Vit =, > 1, m> 1

This is equivalent to

e g > (e )

and then

Npel > 14201 +np+ - +ny,, m>1.
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We induct on m. For m = 1 we have to prove that np > 1 + 2,/n1. Indeed,
n>n+2=14+04+ny) > 1+ 2. /n1. Assume that the claim holds for some

m > 1. Then
N1 — 1> 21+ -+ ny,

SO (M1 — D2 > 4(n; + - -+ + n,y) hence
(g1 + D> > 41 + -+ ).

This implies
Nmt1 + 1> 2\/nl + -+ npt,

and since n,,+2 — 1,41 > 2, it follows that

Ny > 14+2n1 + -+ npyr,

as desired.
Problem 2.1.13. Find all integers x, y, z such that 4° + 4¥ + 4% is a square.

Solution. It is clear that there are no solutions with x < 0. Without loss of general-
ity assume that x < y < z and let 4 4+4Y +4% = y?. Then 22 (14+4Y ¥ 4427 =
u’. We have two situations.

Casel. 1 +47 " +4* ¥ isodd,ie., 1 +47 ¥ +4°% = 2a + 1)2. It follows that
Pt gl = ga+ 1),

and then
PN+ 4y =a@+1).

We consider two cases. (1) The number a is even. Then a + 1 is odd, so 4**~! =
aand 1+4°7Y = a+ 1.1t follows that 4>~ = 42=Y: hence y —x — 1 = 7 — y.
Thus z =2y —x — 1 and

4)( _|_4y +4Z — 4x +4y +42y—x—1 — (2){ +22y—x—l)2.

(2) The number a is odd. Thena + 1 iseven,soa = 4 + 1,a + 1 = 4y—*~1
and 4Y7*~1 — 427y = 2 It follows that 22Y=2*=3 = 22x=2y=1 4 | which is
impossible, since 2x — 2y — 1 # 0.

Case 2. 1 + 477" 4+ 4* ¥ is even; thus y = x or z = x. Anyway, we must have
y = x, and then 2 +4*" is a square, which is impossible, since it is congruent to
2 (mod 4) or congruent to 3 (mod 4).
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Additional Problems

Problem 2.1.14. Let x, y, z be positive integers such that

1
=

= =
< | =

Let & be the greatest common divisor of x, y, z. Prove that hxyz and h(y — x) are
perfect squares.

(1998 United Kingdom Mathematical Olympiad)

Problem 2.1.15. Let b an integer greater than 5. For each positive integer n, con-
sider the number
Xp=11...122...25,
——

n—1 n
written in base b. Prove that the following condition holds if and only if b = 10:

There exists a positive integer M such that for every integer n greater than M, the
number x, is a perfect square.

(44th International Mathematical Olympiad Shortlist)

Problem 2.1.16. Do there exist three natural numbers greater than 1 such that the
square of each, minus one, is divisible by each of the others?

(1996 Russian Mathematical Olympiad)

Problem 2.1.17. (a) Find the first positive integer whose square ends in three 4’s.
(b) Find all positive integers whose squares end in three 4’s. (¢) Show that no
perfect square ends with four 4’s.

(1995 United Kingdom Mathematical Olympiad)

Problem 2.1.18. Let abc be a prime. Prove that b> — 4ac cannot be a perfect
square.
(Mathematical Reflections)

Problem 2.1.19. For each positive integer n, denote by s(n) the greatest integer
such that for all positive integer k < s(n), n> can be expressed as a sum of squares
of k positive integers. (a) Prove that s(n) < n? — 14 for all n > 4. (b) Find a
number 7 such that s(n) = n? — 14. (c) Prove that there exist infinitely many
positive integers n such that

s(n) =n* — 14.

(33rd International Mathematical Olympiad)
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Problem 2.1.20. Let A be the set of positive integers representable in the form
a® + 2b? for integers a, b with b # 0. Show that if p? e Afora prime p, then
peEA.

(1997 Romanian International Mathematical Olympiad Team Selection Test)
Problem 2.1.21. Is it possible to find 100 positive integers not exceeding 25000
such that all pairwise sums of them are different?

(42nd International Mathematical Olympiad Shortlist)
Problem 2.1.22. Do there exist 10 distinct integers, the sum of any 9 of which is
a perfect square?

(1999 Russian Mathematical Olympiad)

Problem 2.1.23. Let n be a positive integer such that n is a divisor of the sum

n—1
L4y il
i=1

Prove that n is square-free.
(1995 Indian Mathematical Olympiad)

Problem 2.1.24. Let n, p be integers such that n > 1 and p is a prime. If n |
(p—1)and p | (n® — 1), show that 4p — 3is a perfect square.

(2002 Czech—Polish—Slovak Mathematical Competition)

Problem 2.1.25. Show that for any positive integer n > 10000, there exists a
positive integer m that is a sum of two squares and such that 0 < m —n < 3./n.

(Russian Mathematical Olympiad)

Problem 2.1.26. Show that a positive integer m is a perfect square if and only if
for each positive integer 7, at least one of the differences

m+1D2—m, m+2*-—m, ..., m+n?—m

is divisible by n.
(2002 Czech and Slovak Mathematical Olympiad)
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2.2 Perfect Cubes

Problem 2.2.1. Prove that if n is a perfect cube, then n> + 3n + 3 cannot be a
perfect cube.

Solution. If n = 0, then we get 3 and the property is true. Suppose by way of
contradiction that n% + 3n + 3 is a cube for some n # 0. Hence n(n® + 3n + 3)
is a cube. Note that

nn>+3n+3)=n’+3n°+3n=m+ 1> -1,

and since (n + 1) — 1 is not a cube when n # 0, we obtain a contradiction.

Problem 2.2.2. Let m be a given positive integer. Find a positive integer n such
that m + n + 1 is a perfect square and mn + 1 is a perfect cube.

Solution. Choosing n = m? + 3m + 3, we have
m4n+1=m>+4m+4=(m+2)>?

and
mn+1=m>+3m?>+3m+1=m+1)>.

Problem 2.2.3. Which are there more of among the natural numbers from 1 to
1000000, inclusive: numbers that can be represented as the sum of a perfect
square and a (positive) perfect cube, or numbers that cannot be?

(1996 Russian Mathematical Olympiad)

Solution. There are more numbers not of this form. Let n = k2 4+ m?>, where
k,m,n € Nand n < 1000000. Clearly £ < 1000 and m < 100. Therefore there
cannot be more numbers in the desired form than the 100000 pairs (k, m).

Problem 2.2.4. Show that no integer of the form Xyxy in base 10 can be the cube
of an integer. Also find the smallest base b > 1 in which there is a perfect cube of
the form xyxy.

(1998 Irish Mathematical Olympiad)

Solution. If the 4-digit number xyxy = 101 x Xy is a cube, then 101 | Xy, which
is a contradiction. Convert xyxy = 101 x Xy from base b to base 10. We obtain
xyxy = (b +1) x (bx+y) withx, y < b and b>+1 > bx + y. Thus for Xyxy to
be a cube, b> + 1 must be divisible by a perfect square. We can check easily that
b = 7 is the smallest such number, with b2 + 1 = 50. The smallest cube divisible
by 50 is 1000, which is 2626 is base 7.
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Additional Problems

Problem 2.2.5. Find all the positive perfect cubes that are not divisible by 10 such
that the number obtained by erasing the last three digits is also a perfect cube.

Problem 2.2.6. Find all positive integers n less than 1999 such that n? is equal to
the cube of the sum of n’s digits.

(1999 Iberoamerican Mathematical Olympiad)
Problem 2.2.7. Prove that for any nonnegative integer n the number
A=2"43"45" 46"

is not a perfect cube.
Problem 2.2.8. Prove that every integer is a sum of five cubes.

Problem 2.2.9. Show that every rational number can be written as a sum of three
cubes.

2.3 kth Powers of Integers, k at least 4

Problem 2.3.1. Given 81 natural numbers whose prime divisors belong to the set
{2, 3, 5}, prove that there exist four numbers whose product is the fourth power of
an integer.

(1996 Greek Mathematical Olympiad)

Solution. It suffices to take 25 such numbers. To each number, associate the triple
(x2, x3, x5) recording the parity of the exponents of 2, 3, and 5 in its prime factor-
ization. Two numbers have the same triple if and only if their product is a perfect
square. As long as there are 9 numbers left, we can select two whose product
is a square; in so doing, we obtain 9 such pairs. Repeating the process with the
square roots of the products of the pairs, we obtain four numbers whose product
is a fourth power.

Problem 2.3.2. Find all collections of 100 positive integers such that the sum of
the fourth powers of every four of the integers is divisible by the product of the
four numbers.

(1997 St. Petersburg City Mathematical Olympiad)

Solution. Such sets must be n,n,...,n or 3n,n,n,...,n for some integer n.
Without loss of generality, we assume that the numbers do not have a common
factor. If u, v, w, x, y are five of the numbers, then uvw divides ut+ vt w4 x4
and u* + v* + w* + y*, and so divides x* — y*. Likewise, v* = w* = x*

(mod u), and from above, 3v* = 0 (mod u). If u has a prime divisor not equal
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to 3, we conclude that every other integer is divisible by the same prime, contrary
to assumption. Likewise, if u is divisible by 9, then every other integer is divisible
by 3. Thus all of the numbers equal 1 or 3. Moreover, if one number is 3, the
others are all congruent modulo 3, so are all 3 (contrary to assumption) or 1. This
completes the proof.

Problem 2.3.3. Let M be a set of 1985 distinct positive integers, none of which
has a prime divisor greater than 26. Prove that M contains at least one subset of
four distinct elements whose product is the fourth power of an integer.

(26th International Mathematical Olympiad)

Solution. There are nine prime numbers less than 26: py =2, pp =3, ..., pg =
23. Any element x of M has a representation x = ]_[?:1 pf’, a; >0.Ifx,yeM
and y = ]_[?: | pfi , the product xy = ]_[1-9:1 pfi+hi is a perfect square if and only
if a; + b; = 0 (mod 2). Equivalently, a; = b; (mod 2) foralli = 1,2,...,9.
Because there are 2° = 512 elements in (Z/27)°, any subset of M having at least
513 elements contains two elements x, y such that xy is a perfect square. Starting
from M and eliminating such pairs, one obtains %(1985 —513) = 736 > 513
distinct two-element subsets of M having a square as the product of elements.
Reasoning as above, we find among these squares at least one pair (in fact many
pairs) whose product is a fourth power.

Problem 2.3.4. Let A be a subset of {0, 1, ..., 1997} containing more than 1000
elements. Prove that A contains either a power of 2, or two distinct integers whose
sum is a power of 2.

(1997 Irish Mathematical Olympiad)

Solution. Suppose A did not satisfy the conclusion. Then A would contain at most
half of the integers from 51 to 1997, since they can be divided into pairs whose
sum is 2048 (with 1024 left over); likewise, A contains at most half of the integers
from 14 to 50, at most half of the integers from 3 to 13, and possibly 0, for a total
of

973 + 18 +5+1 =997

integers.

Problem 2.3.5. Show that in the arithmetic progression with first term 1 and dif-
ference 729, there are infinitely many powers of 10.

(1996 Russian Mathematical Olympiad)

First solution. We will show that for all natural numbers 7, 108" — 1 is divisible
by 729. In fact,

1087 — 1= a0y — 1" =108 - 1)- A,
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and

=0©...9-.-(10...0110...01...10...01)
—— —— —— — —_———
9 8 8 8
=9(...1)---(10...0110...01...10...01).
——— N e N o’ ——

9 8 8 8
The second and third factors have nine digits equal to 1 and the root of digits (if
any) 0, so the sum of the digits is 9, and each is a multiple of 9. Hence 103! — 1 is
divisible by 9% = 729, as is 108" — 1 for any .
Second solution. In order to prove that 108! — 1 is divisible by 93, just write

81 81
108‘—1=(9+1)81—1=k-93+(2>92+(1>~9

=k-97+81-40-9> +81-9 = (k+361)-9°.
Remark. An alternative solution uses Euler’s theorem (see Section 7.2). We have

109729 = 1 (mod 729); thus 10"*7%9 is in this progression for any positive
integer n.

Additional Problems

Problem 2.3.6. Let p be a prime number and a, n positive integers. Prove that if
2P 4+ 3P = 4",

thenn = 1.

(1996 Irish Mathematical Olympiad)
Problem 2.3.7. Let x, y, p, n, k be natural numbers such that
X" 4yt = pk.
Prove that if n > 1 is odd and p is an odd prime, then 7 is a power of p.
(1996 Russian Mathematical Olympiad)

Problem 2.3.8. Prove that a product of three consecutive integers cannot be a

power of an integer.

Problem 2.3.9. Show that there exists an infinite set A of positive integers such

that for any finite nonempty subset B C A, ) _p x is not a perfect power.
(Kvant)

Problem 2.3.10. Prove that there is no infinite arithmetic progression consisting
only of powers > 2.
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