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The Central Idea: The Hilbert Transform

Proofs in this chapter are presented at the end of the chapter.

Prologue: The Hilbert transform is, without question, the most important
operator in analysis. It arises in many different contexts, and all these con-
texts are intertwined in profound and influential ways. What it all comes
down to is that there is only one singular integral in dimension 1, and it is
the Hilbert transform. The philosophy is that all significant analytic ques-
tions reduce to a singular integral; and in the first dimension there is just one
choice.

The most important fact about the Hilbert transform is that it is bounded
on L? for 1 < p < oo. Itis also bounded on various Sobolev and Lipschitz
spaces. And also on HR{e and the space of functions of bounded mean
oscillation (BMO). We discuss many of these properties in the present chap-
ter and later on in Chapters 4, 5, and 9. See also [KRAS5] and [STE2].

Even though the Hilbert transform is well understood today, it continues
to be studied intensely. Boundedness properties of the “maximum Hilbert
transform” are equivalent to pointwise convergence results for Fourier series.
In higher dimensions, the Hilbert transform is used to construct analytic
disks. Analytic disks are important in cosmology and other parts of
physics.

From our point of view in the present book, the Hilbert transform is
important because it is the inspiration and the role model for
higher-dimensional singular integrals. Singular integrals in RV are about
55 years old. Singular integrals on the Heisenberg group and other more
general settings are much newer. We shall study the former in some detail
and provide some pointers to the latter. Chapters 9 and 10 develop inte-
gral operators on H" in some detail—that is one of the main points of this
book.

We take it for granted that the reader is familiar with the most basic ideas
of Fourier series. Appendix 1 provides a review or quick reference.
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16 2 The Central Idea: The Hilbert Transform
2.1 The Notion of the Hilbert Transform

Capsule: Our first approach to the Hilbert transform will be by way of com-
plex variable theory. The idea is to seek a means of finding the boundary
function of the harmonic conjugate of a given function (which in turn is
the Poisson integral of some initial boundary function). This very natural
process gives rise to a linear operator that may be identified as the Hilbert
transform. Later on we shall see that the Hilbert transform arises rather nat-
urally in the context of partial summation operators for Fourier series. Most
any question of convergence of Fourier series may be reduced to an asser-
tion about mapping properties of the Hilbert transform. Thus the Hilbert
transform becomes a central player in the theory of Fourier series.

Now we study the Hilbert transform H, which is one of the most important
linear operators in analysis. It is essentially the only singular integral operator in
dimension 1, and it comes up decisively in a variety of contexts. The Hilbert trans-
form is the key player—from a certain point of view—in complex variable theory.
And it is the key player in the theory of Fourier series. It also comes up in the Cauchy
problem and other aspects of partial differential equations.

Put in slightly more technical terms, the Hilbert transform is important for these
reasons (among others):

It interpolates between the real and imaginary parts of a holomorphic function.
It is the key to all convergence questions for the partial sums of Fourier series.
It is a paradigm for all singular integral operators on Euclidean space (we shall
treat these in Chapter 3).

e It is (on the real line) uniquely determined by its invariance properties with
respect to the groups that act naturally on 1-dimensional Euclidean space.

One can discover the Hilbert transform by way of complex analysis. As we
know, if f is holomorphic on D and continuous up to 0D, we can calculate f at a
point z € D from the boundary value of f by the following formula:

1 1)
f@) = ri aDC—ZdC’ zeD.
We call : dc
i f—z (2.1.1)

the Cauchy kernel. _
If welet = €'Y and z = re'?, the expression (2.1.1) can be rewritten as
follows:

1 dc 1 —icd¢
i {—z 2w (¢ —2)

1 —ie™WV . ietVdy
2r e~V (et — reif)
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1 dy
T 2n . 1 —rei@=w)
1 1—rei@=w

=21 |1 —rei0-np??

_( 1 l—rcos(ﬁ—y/)dw)

27 |1 —rel@-w)|2

+i( L rsin@=y) dy/). 2.12)

2t |1 —rei@-v)]2

If we subtract 41E dy from the real part of the Cauchy kernel, we get

Re(l o d¢ )_d{//_ 1 <1—rcos(¢9—y/)_1)dl//

2ni (—2 A 2xm [l —rei@=w)|2 2
1 11,2
_ 2 7ol dy
27 \ 1 — 2rcos(@ — w) + r2
1 .
= 2P,(e’(9*%”>)d¢/. (2.1.3)

Note that in the last line we have, in effect, “discovered” the classical (and well-
known) Poisson kernel.

This is an important lesson, and one to be remembered as the book develops:
The real part of the Cauchy kernel is (up to a small correction) the Poisson kernel.
That is, the kernel that reproduces harmonic functions is the real part of the kernel
that reproduces holomorphic functions.

In the next section we shall examine the imaginary part of the Cauchy kernel
and find the Hilbert transform revealed.

2.2 The Guts of the Hilbert Transform

Now let us take the reasoning that we used above (to discover the Poisson kernel)
and turn it around. Suppose that we are given a real-valued function f € L*(8D).
Then we can use the Poisson integral formula to produce a function # on D such
that u = f (almost everywhere) on 0 D. We may find a harmonic conjugate of u,
say u', such that u"(0) = 0 and u + iu" is holomorphic on D. What we hope
to do is to produce a boundary function f for u'. This will create some sym-
metry in the picture. For we began with a function f from which we created u;
now we are extracting f' from «". Our ultimate goal is to study the linear operator

e
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The following diagram illustrates the idea:

L*(@D)> f — u

l

fT<—uT

If we define a function 2 on D as

wo=" [ 19 e,

2ni Jop & — 2

then obviously % is holomorphic in D. We know from calculations in the last section
that the real part of 4 is (up to adjustment by an additive real constant) the Poisson
integral u of f. Therefore Re & is harmonic in D and Im /4 is a harmonic conjugate
of Re h. Thus, if & is continuous up to the boundary, then we will be able to say that
ut =TImh and 7€) = lim,_, - u'(re'?).

So let us look at the imaginary part of the Cauchy kernel in (2.1.2):

rsin(@ — )
2|1 — rei@=v)|2°

If we let r — 17, then we obtain

sin(@ —y) sin(d — y)
2|1 — @2 27(1 —2cos(@ — w) + 1)
sin(f — w)

~ 4n(1 — cos(@ — y))
2 sin(()?”) cos(()?”)
 4r- ZCosz(H_zV’)
1 0—y
= cot .
4 2
Hence we obtain the Hilbert transform! H : f — f7 as follows:

2
Hf(ei(’):/o f(e”)cot(egt)dt. (2.1.4)

! There are subtle convergence issues—both pointwise and operator-theoretic—which we
momentarily suppress. Details may be found, for instance, in [KAT].



2.3 The Laplace Equation and Singular Integrals 19

[We suppress the multiplicative constant here because it is of no interest.] Note that
we can express the kernel as

2
0 cos ? 1— @2 4. .. 2 2
cot . = 62 = 2! - (1 + o(|9|2)) _

+ E©),
2 sinf 3(1—((’§>2i~-~) 0 g TEO

where E(0) = O(|0)) is a bounded continuous function. Therefore, we can rewrite

(2.1.4) as
2r _
Hf () = / f(e”)cot(e t) di
A 2

2 ) 2 2 .
= [ fE™ T ar+ | feHEG -1t
0 0—1t 0

Note that the first integral is singular at § and the second one is bounded and trivial
to estimate—just by applying Schur’s lemma (see [SAD] and our Lemma A1.5.5).2
In practice, we usually write

. 0—t 2
co ~ S
2 0—t

simply ignoring the trivial error term. Both sides of this “equation” are called the
kernel of the Hilbert transform. When we study the Hilbert transform, we generally
use the kernel on the right; and we omit the 2 in the numerator.

2.3 The Laplace Equation and Singular Integrals on RY

Let us look at Laplace equation in RY for N > 2:

N

Au(x) = Z aa , |ulx)=0.

j=1""

The fundamental solution’ (see [KRA4]) for the Laplacian is

1

F(X)ZCN' 5
|x|N72

N > 2,

where cy is a constant that depends on N.

2 Schur’s lemma, in a very basic form, says that convolution with an L! kernel is a bounded
operator on LP?. This assertion may be verified with elementary estimates from measure
theory—exercise.

3 It must be noted that this formula is not valid in dimension 2. One might guess this, because
when N = 2 the formula in fact becomes trivial. The correct form for the fundamental
solution in dimension 2 is

1
I'x) = log |x]|.
27
Details may be found in [KRA4].
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Exercise for the Reader: Prove the defining property for the fundamental solution,
namely, that AT'(x) = dy, where dy is the Dirac mass at 0. (Hint: Use Green’s
theorem, or see [KRA4].)

We may obtain one solution u of Au = f by convolving f with I'":
u=fxI.

For notice that Au = fx AT = fxdy = f.

In the ensuing discussion we shall consider the integrability of expressions like
|x|# near the origin (our subsequent discussion of fractional integrals in Chapter
5 will put this matter into context). We shall ultimately think of this kernel as a
fractional power (positive or negative) of the fundamental solution for the Laplacian.

The correct way to assess such a situation is to use polar coordinates:

1
/ |x|ﬁdx=// PN Vdrdo (&),
x| <1 = Jo

A few comments are in order: The symbol X denotes the unit sphere in RV, and do
is rotationally invariant area measure (see Chapter 9 for a consideration of Hausdorff
measure on a general surface) on X. The factor #V~! is the Jacobian of the change
of variables from rectangular coordinates to spherical coordinates. Of course the
integral in the rotational variable £ is trivially a constant. The integral in r converges
precisely when f > —N. Thus we think of — N as the “critical index” for integrabil-
ity at the origin.
Now let us consider the following transformation:

T:fr— fxI.

The kernel I is singular at the origin to order —(N —2). Studying L” mapping prop-
erties of this transformation is easy because I" is locally integrable. We can perform
estimates with easy techniques such as the generalized Minkowski inequality and
Schur’s lemma (see [SAD] and our Lemmas A1.5.5, A1.5.8). In fact, the operator
T is a special instance of a “fractional integral operator.” We shall have more to say
about this family of operators as the book develops.

The first derivative of I' is singular at the origin to order —(N — 1) and is
therefore also locally integrable:

or Xj

0x; x|

Again, we may study this “fractional integral” using elementary techniques that mea-
sure only the size of the kernel.
But if we look at the second derivative of I', we find that

GEAN XjX[

oxjoxe M |xNe2 )
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is singular at the origin of order —N and the integral has a critical singularity at 0.
Hence, to analyze the transformation

f:fH»/meu—nm,

we use the Cauchy principal value, denoted by P.V. and defined as follows:

P.V. /f(t)K(x —1)dt = lim FOK(x —t)dt.
e—~07F |x—t|>€
We shall be able to see, in what follows, that 7 (defined using the Cauchy
principal value) induces a distribution. It will also be bounded on L”(RV), 1 < p <
o0. The operator T is unbounded on L' and unbounded on L>. When specialized
down to dimension 1, the kernel for the operator T takes the form

K(t):i

This is of course the kernel of the Hilbert transform. In other words, the Hilbert
transform is a special case of these fundamental considerations regarding the solution
operator for the Laplacian.

In the next section we return to our consideration of the Hilbert transform as a
linear operator on function spaces.

2.4 Boundedness of the Hilbert Transform

The Hilbert transform induces a distribution
¢ — / ¢ (t)dt, forall p € C2°.

But why is this true? On the face of it, this mapping makes no sense. The integral is
not convergent in the sense of the Lebesgue integral (because the kernel 1/(x — 1)
is not integrable). Some further analysis is required in order to understand the claim
that this displayed line defines a distribution.

We understand this distribution by way of the Cauchy principal value:

1 1
Rv/x_twmn=Rv/t¢@—nm

lim ] ¢(x — t)dt

e—~07F |t]>e€ t

. 1
e—~>0*t |:/l>t>e t ¢(x - t)dt - /t>l t ¢(x - t)dt]

Yot — 1) — g(o)lar +/ i $(x — 1y,

lt]>1

I
3

Il
5

e=>0T /1> )t>¢
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In the first integral we have used the key fact that the kernel is odd, so has mean value
0. Hence we may subtract off a constant (and it integrates to 0). Of course the second
integral does not depend on €, and it converges by Schwarz’s inequality.

Since ¢p(x — 1) — ¢p(x) = O(|t|), the limit in the first integral exists. That is to
say, the integrand is bounded so the integral makes good sense. We may perform the
following calculation to make this reasoning more rigorous:

For € > 0 define

1
I, =/ O(|t))dt.

e<|t]<l t
Now if 0 < €] < €3 < o0 we have

1 1
Q-g:/ mmm—/ mmm:/ O()dt — 0
e <|t|<1 t e <|t|<1 t €1 <|t]<ey

as €1, €2 — 0. This shows that our principal value integral converges.
Let S denote the standard Schwartz space from distribution theory (for which
see [STG1], [KRAS]). If f € S, we have

1
Hﬂﬂ:RV/x_fﬂmh

m= ()7

Since } is homogeneous of degree —1, we find that (})A is homogeneous of degree

and

0 (see Chapter 3 on the Fourier transform and Chapter 4 on multipliers). Therefore it
is bounded.

Now
IHF 2 = 1Tl 2 = H(i)Af‘

By dint of a tricky argument that we shall detail below, Marcel Riesz (and, in its
present form, Salomon Bochner) proved that H : L? — L” when p is a posi-
tive even integer. By what is now known as the Riesz—Thorin interpolation theorem
(stated below), he then showed that H is bounded on p > 2. Then a simple duality
argument guarantees that H is also boundedon L” for 1 < p < 2.

= Cllflig2 = cllfli2
L2

Prelude: Interpolation theory is now an entire subject unto itself. For many years
it was a collection of isolated results known only to a few experts. The seminal
paper [CAL] cemented the complex method of interpolation (the one used to prove
Riesz—Thorin) as an independent entity. In the same year, Lions and Peetre [LIP]
inaugurated the real method of interpolation. The book [BERL] gives an overview of
the subject of interpolation.
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In general the setup is this: One has Banach spaces X, X1 and Yy, Y1 and an
operator
T :XoNX|1 —> YoUY].

One hypothesizes that
ITflly, = Cjllflx;

for j = 0, 1. The job then is to identify certain “intermediate spaces” and conclude
that 7' is bounded in norm on those intermediate spaces.

Theorem 2.4.1 (Riesz—Thorin interpolation theorem) Let 1 < pyg < p; < oo.
Let T be a linear operator that is bounded on LP0 and L1, i.e.,

ITfllLro < Coll fllLro,
ITfllee < Cill flle -

Then T is a bounded operator on L? ,Npy < p < p1, and

pi—p =P

ITfllLe < Co"™" - C - A fllr.

Now let us relate the Hilbert transform to Fourier series. We begin by returning
to the idea of the Hilbert transform as a multiplier operator. Indeed, let h = {h;},
with h; = —i sgn j; here the convention is that

—1lifx <0,
sgnx =130 ifx=0,
1 ifx>0.

Then the Hilbert transform H is given by the multiplier /4. This means that for
fe L),
Hf => h;f(j)e".
J

[How might we check this assertion? You may calculate both the left-hand side
and the right-hand side of this last equation when f(¢#) = cos jr. The answer will
be sin jt for every j, just as it should be—because sin jz is the boundary func-
tion for the harmonic conjugate of the Poisson integral of cos j¢. Likewise when
f(t) = sin jt (then Hf as written here is cos jf). That is enough information—by
the Stone—Weierstrass theorem—to yield the result.] In the sequel we shall indicate
this relationship by H = M,,.

So defined, the Hilbert transform has the following connection with the partial
sum operators:
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_N —_—
- N
y=sgn(j—N)
v =sgn(j+N)
-N
 — N

Figure 2.1. Summation operators and the Hilbert transform.
] . 1 .
x-NN1 () = [T+ sgn(j + N)] = 11+ sgn(j — N)]
1 . .
+,=-mG) + 2w ()]

1 1
= 2[Sgn(j + N) —sgn(j — N)] + 2[x{—/v}(j) + vy ()]

See Figure 2.1. Therefore, letting ;g () = e g(r) and letting P; be orthogonal

projection onto the space spanned by ¢’/!, we have
SNf(eit) = M){[fN,N]f(e”)
. . 1
=ie_nyHlenf]l—ieyH[e_nf]+ 2[szvf + Py f1. (2.1.5)

To understand this last equality, let us examine a piece of it. We look at the
linear operator corresponding to the multiplier

m(j) = sgn(j + N).
Let f(1) ~ 272 F(j)e'"s . Then

My f(0) =D sen(j + N) F(j)e"
J

= > sen()e N F(j = Nyel!
J
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=ie”™N Y (=D)sen()(j — N)e'!
J

=ie”™N" D (=)sgn(j)(en f) (e
J

=ie "N Hley f1().

This is of course precisely what is asserted in the first half of the right-hand side of
(2.1.5).

We know that the Hilbert transform is bounded on L? because it is a multiplier
operator coming from a bounded sequence. It also turns out to be bounded on L”
for 1 < p < oo. [We shall discuss this fact about H below, and eventually prove
it.] Similar remarks apply to the projection operators P;. Taking these boundedness
assertions for granted, we now reexamine equation (2.1.5). Multiplication by a com-
plex exponential does not change the size of an L? function (in technical language,
it is an isometry of LP). So (2.1.5) tells us that Sy is a difference of compositions of
operators, all of which are bounded on L”. And the norm is plainly bounded inde-
pendent of N. In conclusion, if we assume that H is boundedon L”, 1 < p < oo,
then Functional Analysis Principle I (see Appendix 1) tells us (since trigonometric
polynomials are dense in L” for I < p < o0) that norm convergence holds in L?
for 1 < p < oco. We now state this as a theorem:

Prelude: What is remarkable about this next theorem is that it reduces a question
of convergence of a sequence of operators to the question of the boundedness of a
single operator. This illustrates the power of functional analysis—a power that was
virtually discovered in the context of Fourier analysis. From our modern perspective,
the uniform boundedness principle makes this all quite natural.

Theorem 2.4.2 Fix 1| < p < oo and assume (to be proved below) that
the Hilbert transtorm H is bounded on LP(T). Let f € LP(T). Then
ISy f — fllr = 0as N — oo. Explicitly,
1/p
lim |:/ |SNf(x)—f(x)|pdx:| =0.
N—oo | JT

The converse of this theorem is true as well, and can be proved by even easier argu-
ments. We leave the details to the reader—or see [KAT].

It is useful in the study of the Hilbert transform to be able to express it explicitly
as an integral operator. The next lemma is of great utility in this regard.

Prelude: The next lemma is one of the key ideas in Laurent Schwartz’s [SCH] distri-
bution theory. It is an intuitively appealing idea that any translation-invariant operator
is given by convolution with a kernel, but if one restricts attention to just functions,
then one will not always be able to find this kernel. Distributions make possible a
new, powerful statement.
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Lemma 2.4.3 If the Fourier multiplier A = {4; }?‘;700 induces a bounded operator

M on LP, then the operator is given by a convolution kernel K = K. In other

words,
2

Maf@) = f K@) = ) [ oK G-

This convolution kernel is specified by the formula

o0
K@= > ije".
j=—00
[In actuality, the sum that defines this kernel may have to be interpreted using a
summability technique, or using distribution theory, or both. In practice we shall

always be able to calculate the kernel with our bare hands when we need to do so.
So this lemma will play a tacit role in our work.]

If we apply Lemma 2.4.3 directly to the multiplier for the Hilbert transform,
we obtain the formal series

o0
k(e = Z —i -sgnj - eVl

j=—00

Of course the terms of this series do not tend to zero, so this series does not converge
in any conventional sense. Instead we use Abel summation (i.e., summation with
factors of V1,0 < r < D) to interpret the series: For 0 <r < 1 let

oo
kr(e') = Z —irll . sgnj - e’

Jj=—00
The sum over the positive indices is

o0 o0
—i Zr/ cel = — Z[re”]/
Jj=1

Jj=1

) 1
= —1 . —1
1 —re'

—ire'
1 —reit’
Similarly, the sum over negative indices can be calculated to be equal to

ire "

1 —reit’
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Adding these two pieces yields that

it —ire' ireit
kr(e™) = 1 —reit + 1 —reit
—ir[e't — e

11— reit|?

2r sint

T 1= reit]2
_ 2rsint
" 14r2—2rcost

L 2 t
2r~2-sm20052

(1472 =2r) +2r(1 — cos? 5 +sin? )

. t t
4r sin 5 COS 5

= L2y
(1 +7r2=2r)+2r@2sin” }
We formally let » — 17 to obtain the kernel

sa t
ke =""2""2 —cot ! (2.1.6)
sin” } 2
This is the standard formula for the kernel of the Hilbert transform—just as we
derived it by different means in the context of complex analysis. Now we have given
a second derivation using Fourier analysis ideas. It should be noted that we have
suppressed various subtleties about the validity of Abel summation in this context,
as well as issues concerning the fact that the kernel k is not integrable (near the
origin, cot é ~ 2/t). For the full story, consult [KAT].
Just to repeat, we resolve the nonintegrability problem for the integral kernel
k in (2.1.6) using the so-called Cauchy principal value, and it will now be defined
again. Thus we usually write

1 [7 t
P.V. f(x —1)cot dt,
27 J_x 2

and we interpret this to mean

1 t
lim X — 1) cot dt. 2.1.7
e—~0t 21 /6<|t|§77: f( ) (2) ( )

Observe in (2.1.7) that for € > 0 fixed, cot(¢/2) is actually bounded on the domain
of integration. Therefore the integral in (2.1.7) makes sense, by Holder’s inequality,
as long as f € L? for some 1 < p < oo. The deeper question is whether the limit
exists, and whether that limit defines an L? function.
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We will prove the L”-boundedness of the Hilbert transform, using a method of
S. Bochner, below.

The reduction of norm convergence of Fourier series to the study of the Hilbert
transform is fundamental to the study of Fourier series. But it also holds great philo-
sophical significance in the modern history of analysis. For it shows that we may
reduce the study of the (infinitely many) partial sums of the Fourier series of a func-
tion to the study of a single integral operator. The device for making this reduction
is—rather than study one function at a time—to study an entire space of functions at
once. This is what functional analysis is all about.

Many of the basic ideas in functional analysis—including the uniform bounded-
ness principle, the open mapping theorem, and the Hahn—-Banach theorem—grew
out of questions of Fourier analysis. Even today, Fourier analysis has led to many
new ideas in Hilbert and Banach space theory—see [STE2], especially the Cotlar—
Knapp—Stein lemma (see Section 9.10).

In the next section we shall examine the Hilbert transform from another point
of view.

In the present section, we have taken the validity of Theorem 2.1.2 for granted.
The details of this result, and its proof, will be treated as the book develops. Our
intention in the next section is to discuss these theorems, and to look at some exam-
ples. In the next section we prove the L”-boundedness of the Hilbert transform.

2.5 LP Boundedness of the Hilbert Transform

Now we shall prove (at the end of the chapter) that the Hilbert transform is bounded
on LP(T), 1 < p < oo. We will present an argument due to S. Bochner. This
will allow us to make good use of the Riesz—Thorin interpolation theorem that we
discussed in Section 2.4.

Prelude: Next we present the famous result of Marcel Riesz from 1926. People had
been struggling for years to prove that the Hilbert transform was bounded on the L”
spaces other than p = 2, so Riesz’s result must be considered a true breakthrough.
The actual argument that we now present is due to Salomon Bochner. But Riesz
had slightly different tricks that also yielded a boundedness result just for the even,
integer values of p. It requires an extra idea, namely interpolation of linear operators,
to get the result for all p, 1 < p < oo (as in the ensuing theorem).

Proposition 2.5.1 The Hilbert transform is bounded on L?(T) when p = 2k is a
positive, even integer.

Theorem 2.5.2 The Hilbert transform is bounded on L”, 1 < p < oo.

Remark: The argument at the end of the proof of the last theorem (see Appendix 1)
is commonly called a “duality argument.” Later in the book, when this idea is needed,
it will be invoked without further comment or detail.
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We complete our consideration of the Hilbert transform by treating what
happens on the spaces L' and L>.

Prelude: The failure of singular integrals on the extreme spaces L' and L™ is a
fundamental part of the theory. The former fact gave rise, in part, to the relatively new
idea of real-variable Hl%e (the real-variable Hardy space—see Section 8.8). Singular
integrals are bounded on Hl{ o The latter fact gave rise to the space BMO of functions
of bounded mean oscillation (also see Chapter 8). Singular integrals are also bounded
on BMO. The book [KRAS5] gives a sketch of some of these ideas. Stein’s early work
[STES5] on the space L log L (the space of functions f such that [ | f| log™ | fldx is
finite) was another attempt to deal with the failure of singular integrals on L.

Proposition 2.5.3 Norm summability for Fourier series fails in both L' and L>°.

The proof of this last fact is just another instance of the concept of duality, as noted
earlier.

We conclude this discussion by noting that the Hilbert transform of the charac-
teristic function of the interval [0, 1] is a logarithm function—do the easy calculation
yourself. Thus the Hilbert transform does not map L to L°°. By duality, it does not
map L' to L'. That completes our treatment of the nonboundedness of the Hilbert
transform on these endpoint spaces.

2.6 The Modified Hilbert Transform

Capsule: The Hilbert transform, in its raw form, is a convolution operator
with kernel cot ; This is an awkward kernel to handle, just because it is
a transcendental function. We show in this section that the kernel may be
replaced by 1/¢. Most any question about the operator given by convolution
with cot ; may be studied by instead considering the operator given by con-
volution with 1/¢. Thus the latter operator has come (also) to be known as
the Hilbert transform.

We repeat here a basic lesson from this chapter. We note that in practice, people
do not actually look at the operator consisting of convolution with cot g This kernel
is a transcendental function, and is tedious to handle. Thus what we do instead is to
look at the operator

~ 1
H: fr— PV,

T 2
o | fa=n- (2.6.1)

Clearly the kernel 2/¢ is much easier to think about than cot ; Itis also homogeneous
of degree —1, a fact that will prove significant when we adopt a broader point of view
later.

Prelude: In the literature, people discuss variants of the Hilbert transform and still
call these the “Hilbert transform.” Once one understands the basic idea, it is a trivial
matter to pass back and forth among all the different realizations of this fundamental
singular integral.
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Lemma 2.6.2 If the modified Hilbert transform H is bounded on L', then it is
bounded on L*°.

We end this section by recording what is perhaps the deepest result of basic
Fourier analysis. Formerly known as the Lusin conjecture, and now as Carleson’s
theorem, this result addresses the pointwise convergence question for L>. We stress
that the approach to proving something like this is to study the maximal Hilbert
transform—see Functional Analysis Principle I in Appendix 1.

Prelude: The next theorem is the culmination of more than fifty years of effort by
the best mathematical analysts. This was the central question of Fourier analysis.
Carleson’s proof of the theorem was a triumph. Subsequently Fefferman [FEF4] pro-
duced another, quite different proof that was inspired by Stein’s celebrated limits of
sequences of operators theorem [STE6]. And there is now a third approach by Lacey
and Thiele [LAT]. It must be noted that this last approach derives from ideas in
Fefferman’s proof.

Theorem 2.6.3 (Carleson [CAR]) Let f € Lz(T). Then the Fourier series of f
converges almost everywhere to f.

The next result is based on Carleson’s theorem, but requires significant new
ideas.

Prelude: It definitely required a new idea for Richard Hunt to extend Carleson’s
result from L2 to L? for 1 < p < 2 (of course the case L? for2 < p < oo comes
for free since then LP C L2). P. Sjolin [SJO1] has refined Hunt’s theorem even
further to obtain spaces of functions that are smaller than L', yet larger than L? for
every p > 1, on which pointwise convergence of Fourier series holds. The sharpest
result along these lines is due to Hunt and Taibleson [HUT].

Theorem 2.6.4 (Hunt [HUN]) Let f € LP(T), 1 < p < oo. Then the Fourier
series of f converges almost everywhere to f.

A classical example of A. Kolmogorov (see [KAT], [ZYG]) provides an L!
function whose Fourier series converges* at no point of T. This phenomenon pro-
vides significant information: If instead the example were of a function with Fourier
series diverging a.e., then we might conclude that we were simply using the wrong
measure to detect convergence. But since there is an L' function with everywhere
diverging Fourier series, we conclude that there is no hope for pointwise conver-
gencein L.

Proofs of the Results in Chapter 2

Proof of Lemma 2.1.3: A rigorous proof of this lemma would involve a digression
into distribution theory and the Schwartz kernel theorem. We refer the interested
reader to either [STG1] or [SCH].

1t may be noted that Kolmogorov’s original construction was very difficult. Nowadays,
using functional analysis, this result may be had with little difficulty—see [KAT].
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Proof of Proposition 2.1.4: Let f be a continuous real function on [0, 27 ). We nor-
malize f (by subtracting off a constant) so that f fdx = 0. Let u be its Poisson
integral, so u is harmonic on the disk D and vanishes at 0. Let v be that harmonic
conjugate of u on D such that v(0) = 0. Then &~ = u + iv is holomorphic and
h(0) = 0.

Fix 0 < r < 1. Now we write

0= 2zh"(0)
2 .
= / h*(re'?) do
0

2
=/ [u(re’p) +iv(rei9)]2kd(9
0

2 2k 2k
=/ u2kd9+i(1)/u2k_lvd(9—(2)/u2k_21)2d9+-~-
0
2k
+i2k_l(2k ])/uvy‘_ldﬁ—l—i%/vzkd@.

We rearrange the last equality as

2 2
/ v do < (2k2k ])/ v~ do
0 - 0
2k /2” 2. 2k—2
+ lu“o |dO + ---
(2k—2) 0
2k\ [*" 2k\ [
+(2)/ |u2k21)2|d<9+(1)/ lu?*=1v|do
0 0

2
+/ [ do.
0

We apply Holder’s inequality to each composite term on the right—using the
exponents 2k/j and 2k/[2k — j] on the jth term, for j = 1,2,...,2k — 1. It is
convenient to let S = [ [u?*d6]"/?* and T = [[v* d0]'/*, and we do so. The

result is
2k 2k
7% < §T2k—1 2722 4
- (2k — 1) + 2k —2 +

2k 2k
+ (2)52k—2T2 + ( | )SZk—lT + §2,

Now define U = T/S and rewrite the inequality as

2k 2k 2k 2k
Uk < y2k—1 U%k=2 ... U2 U1
= <2k - 1) k-2 o))
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Divide through by U~ to obtain

2k 2k —1 2k —2k+3 2k —2k+2 —2k+1
< .
0= (o0 )+ G () (oo

If U > 1, then it follows that

v Y Y () () <o
~\2k—-1 2k —2 2 1 - '
We conclude, therefore, that

k
ol L2 < 2% |lull 2.

But of course the function v (re'?) is the Hilbert transform of u(re'?). The proof is
therefore complete.

Proof of Theorem 2.1.5: We know that the Hilbert transform is bounded on L2,
L%, LS, .... We may immediately apply the Riesz—Thorin theorem (Section 2.1.3)
to conclude that the Hilbert transform is bounded on L” for2 < p < 4,4 < p <
6,6 < p < 8, etc. In other words, the Hilbert transform is bounded on L” for
2<p <oo.

Now let f € LP for 1 < p < 2.Let ¢ be any element of L?/[P~11 with norm 1.
Notice that 2 < p/[p — 1] < oco. Then

Hi-pdo = [ | [ e’ Y ay|p@a0
2

//¢(e)cot9 SV aorway

)
—/[/w@eot‘”z d@} Fp)dy

—/H(ﬂ(w)f(w)dw-

Using Hdélder’s inequality together with the fact that we know that the Hilbert trans-
form is bounded on L?/IP~11 we may bound the right-hand side by the expression
Clloll pnp-ull fllLe < |I.fllLe. Since this estimate holds for any such choice of ¢,
the result follows.

Proof of Proposition 2.1.6: It suffices for us to show that the modified Hilbert
transform (as defined in Section 10.2) fails to be bounded on L' and fails to be
bounded on L°. In fact, the following lemma will cut the job by half:

Proof of Lemma 2.2.1: Let f be an L°° function. Then
IHflle = sup ‘/Hf(X)'qﬁ(X)dx = sup ‘/f(X)(H*@(X)dx :

peLl ¢eLl
gl 1 =1 gl 1 =1
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But an easy formal argument (as in the proof of Theorem 10.5) shows that
H*¢ = —He.

Here H* is the adjoint of H. [In fact, a similar formula holds for any convolution
operator—exercise.] Thus the last line gives

Il = sup ‘ / FYHS () dx
i =1
< sup Nz - IHSl L
peLl
19l =1
< sup Sl - Clilly
¢elLl
g1, 1=1
—C Sl

Here C is the norm of the modified Hilbert transform acting on L'. We have shown
that if 7 is bounded on L', then it is bounded on L. That completes the proof.



2 Springer
http://www.springer.com/978-0-8176-4668-4

Explorations in Harmonic Analysis

with Applications to Complex Function Theory and the
Heisenberg Group

kKrantz, 5.G.

2008, XV, 362 p., Hardcover

ISEN: @78-0-8176-4668-4

& product of Birkhauser Basel



